...

Apdex Implementation at AOL Session 45A Session 45A Apdex Case Studies

by user

on
Category: Documents
10

views

Report

Comments

Transcript

Apdex Implementation at AOL Session 45A Session 45A Apdex Case Studies
Session 45A Apdex Case Studies
Apdex Implementation at AOL
Session 45A
CMG International Conference
San Diego, California
December 5, 2007
Eric Goldsmith
Operations Architect
[email protected]
Our Environment
ƒ Operations organization
ƒ Measuring Web site performance from customercentric view
ƒ Full page load measured from outside datacenter
ƒ Multiple geographic locations
ƒ Goals
ƒ Short-term: Identify product issues/outages
ƒ Long-term: Achieve uniform geographic performance, in parity with
competitors
Slide 2
Session 45A Apdex Case Studies
Current Metrics & Shortcomings
ƒ Response Time & Availability
ƒ Often don’t tell whole user-experience story
ƒ Reported as averages
ƒ Hides variance, and is skewed by outliers
ƒ Reported in absolute numbers
ƒ No context of a target (goal) value
Slide 3
Goals of Apdex use
ƒ Inclusive view of performance, availability, and data
distribution
ƒ “Building in” of a target, and data normalization
around it
ƒ Performance is evaluated qualitatively against a target
Slide 4
Session 45A Apdex Case Studies
Data Source and Collection
ƒ Using commercial 3rd-party tool to gather
measurements from multiple geographic locations
ƒ Data of interest for our Apdex calculations
1.
2.
3.
4.
Date/Time
Measurement Value
Success/Error (Error = Frustrated)
Test Location
ƒ Data collection is batched (daily)
Slide 5
Calculation and Graphing in Excel
ƒ Calculate sub-score for each row (data point)
If (error) score = 0
else if (measurement <= T) score = 1
else if (measurement <= F) score = 0.5
else score = 0
ƒ Define interval over which to calculate Adpex score
– Hourly, daily, weekly, etc.
– Segregate by location, if desired
– Apdex spec recommends >100 data points per interval
ƒ Then calculate overall Apdex score for interval
=sum(sub-scores) / count(measurements)
ƒ Get fancy with DSUM() and DCOUNT()
ƒ Database lookups simplify segregation by date, location, etc.
Slide 6
Session 45A Apdex Case Studies
Target ‘T’ Determination
ƒ We chose our targets based on competitor
performance
ƒ For a given Web site, identify its target competitor (may be self)
ƒ The ‘T’ marker method we chose initially was based
on “Best Time Multiple”
ƒ “Measure average response time from a ‘good’ location, then add
50% to build in tolerance for other locations”
ƒ Instead, we averaged data from all locations
ƒ Our thinking was that the 50% inflation wasn’t necessary because of
the natural diversity of the data from multiple geographic locations
Slide 7
Example Results Presentation
Performance - National
A [1.1]
B [1.1]
C [1.1]
1.00
Excellent
0.95
0.90
Good
0.85
0.80
Fair
0.75
0.70
Poor
0.60
0.55
0.50
0.45
0.40
0.35
0.30
Unacceptable
0.25
0.20
0.15
0.10
0.05
31-Aug-07
30-Aug-07
29-Aug-07
28-Aug-07
27-Aug-07
26-Aug-07
25-Aug-07
24-Aug-07
23-Aug-07
22-Aug-07
21-Aug-07
20-Aug-07
19-Aug-07
18-Aug-07
17-Aug-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
11-Aug-07
9-Aug-07
10-Aug-07
8-Aug-07
7-Aug-07
6-Aug-07
5-Aug-07
4-Aug-07
3-Aug-07
2-Aug-07
0.00
1-Aug-07
Apdex Score
0.65
Slide 8
Session 45A Apdex Case Studies
Example Results Presentation cont’d
Performance - Regional
A-East [1.1]
A-West [1.1]
B-East [1.1]
B-West [1.1]
C-East [1.1]
C-West [1.1]
1.00
Excellent
0.95
0.90
Good
0.85
0.80
Fair
0.75
0.70
Apdex Score
0.65
Poor
0.60
0.55
0.50
0.45
0.40
0.35
0.30
Unacceptable
0.25
0.20
0.15
0.10
0.05
31-Aug-07
30-Aug-07
29-Aug-07
28-Aug-07
27-Aug-07
26-Aug-07
25-Aug-07
24-Aug-07
23-Aug-07
22-Aug-07
21-Aug-07
20-Aug-07
19-Aug-07
18-Aug-07
17-Aug-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
11-Aug-07
9-Aug-07
10-Aug-07
8-Aug-07
7-Aug-07
6-Aug-07
5-Aug-07
4-Aug-07
3-Aug-07
2-Aug-07
1-Aug-07
0.00
Slide 9
Problems with our initial T
ƒ Initial results were promising…but as we examined
data over time, the Apdex results didn’t always
correlate well with observations
Performance - West
A-West [1.1]
B-West [1.1]
Target competitor never
achieves Excellent level
C-West [1.1]
1.00
Excellent
0.95
0.90
Good
0.85
0.80
Fair
0.75
0.70
Poor
0.60
0.55
0.50
Significant
performance change
not reflected
0.45
0.40
0.35
0.30
(see next slide)
Unacceptable
0.25
0.20
0.15
0.10
0.05
31-Aug-07
30-Aug-07
29-Aug-07
28-Aug-07
27-Aug-07
26-Aug-07
25-Aug-07
24-Aug-07
23-Aug-07
22-Aug-07
21-Aug-07
20-Aug-07
19-Aug-07
18-Aug-07
17-Aug-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
11-Aug-07
10-Aug-07
9-Aug-07
8-Aug-07
7-Aug-07
6-Aug-07
5-Aug-07
4-Aug-07
3-Aug-07
2-Aug-07
0.00
1-Aug-07
Apdex Score
0.65
Slide 10
Session 45A Apdex Case Studies
Example of Initial T Problem
West Coast Page Load Time
Before
After
T
F
5.0
• 44% reduction in
average load time
• But Apdex score
didn’t change
4.5
4.0
3.5
Time (sec)
3.0
2.5
2.0
1.5
1.0
0.5
17-Aug-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
0.0
Slide 11
Plan B
ƒ We experimented with various T determination
techniques, and eventually settled on the “Empirical
Data” method
ƒ “Find T that results in the proper Apdex for a well studied group”
ƒ In our environment…
ƒ For a given Web site, identify its target competitor (may be self)
– The performance of this competitor is defined as “Excellent”
ƒ Determine the smallest T such that the competitor’s Apdex score
remains Excellent for a period of time (at least 1 month)
Slide 12
Session 45A Apdex Case Studies
New T
ƒ With the new T, the Apdex results correlate better with
observations
Performance - West
A-West [1.6]
B-West [1.6]
Target competitor now
achieves Excellent level
C-West [1.6]
1.00
Excellent
0.95
0.90
Good
0.85
0.80
Fair
0.75
0.70
Apdex Score
0.65
Poor
0.60
0.55
0.50
Performance change
now reflected
0.45
0.40
0.35
0.30
Unacceptable
0.25
0.20
0.15
0.10
0.05
31-Aug-07
30-Aug-07
29-Aug-07
28-Aug-07
27-Aug-07
26-Aug-07
25-Aug-07
24-Aug-07
23-Aug-07
22-Aug-07
21-Aug-07
20-Aug-07
19-Aug-07
18-Aug-07
17-Aug-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
11-Aug-07
9-Aug-07
10-Aug-07
8-Aug-07
7-Aug-07
6-Aug-07
5-Aug-07
4-Aug-07
3-Aug-07
2-Aug-07
1-Aug-07
0.00
Slide 13
Changing T
ƒ Define technique for reevaluating T on an ongoing
basis
ƒ But don’t want to change T too often
ƒ Suggestions for reevaluating T:
ƒ Quarterly, looking at prior 3 months of data
ƒ When a significant product change occurs
ƒ When requested (from business)
Slide 14
0.80
0.75
0.65
0.60
0.95
0.90
0.85
0.80
0.75
0.65
0.60
31-Aug-07
0.85
30-Aug-07
0.90
30-Sep-07
1.00
29-Aug-07
0.95
29-Sep-07
0.25
28-Aug-07
1.00
28-Sep-07
27-Aug-07
26-Aug-07
25-Aug-07
24-Aug-07
23-Aug-07
22-Aug-07
21-Aug-07
20-Aug-07
19-Aug-07
0.25
27-Sep-07
26-Sep-07
25-Sep-07
24-Sep-07
23-Sep-07
22-Sep-07
21-Sep-07
B [1.6]
20-Sep-07
18-Aug-07
17-Aug-07
B [1.6]
B [1.1]
19-Sep-07
18-Sep-07
17-Sep-07
16-Aug-07
15-Aug-07
14-Aug-07
13-Aug-07
12-Aug-07
11-Aug-07
10-Aug-07
9-Aug-07
8-Aug-07
7-Aug-07
6-Aug-07
5-Aug-07
4-Aug-07
3-Aug-07
2-Aug-07
1-Aug-07
Apdex Score
A [1.6]
A [1.1]
16-Sep-07
A [1.6]
15-Sep-07
14-Sep-07
13-Sep-07
12-Sep-07
11-Sep-07
10-Sep-07
9-Sep-07
8-Sep-07
7-Sep-07
6-Sep-07
5-Sep-07
4-Sep-07
3-Sep-07
2-Sep-07
1-Sep-07
Apdex Score
Session 45A Apdex Case Studies
Example - T Change
Performance - National
C [1.6]
C [1.1]
Excellent
Good
0.70
Fair
0.55
Poor
0.50
0.45
0.40
0.35
0.30
0.20
Unacceptable
0.15
0.10
0.05
0.00
Slide 15
Apdex vs. Other Metrics
Performance - National
C [1.6]
Excellent
Good
0.70
Fair
0.55
Poor
0.50
0.45
0.40
0.35
0.30
0.20
Unacceptable
0.15
0.10
0.05
0.00
Slide 16
Session 45A Apdex Case Studies
Apdex Score
Apdex vs. Performance & Availability
Deep Dive 1
Virtually no
change in
Apdex for B,
despite large
change in
performance
and
availability.
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
5.0
Excellent
Go o d
Fair
Poor
A [1.6]
B [1.6]
C [1.6]
Unacceptable
4.5
Performance (seconds)
4.0
3.5
3.0
A
2.5
B
2.0
C
1.5
1.0
Deep Dive 2
0.5
0.0
100.0
Apdex
shows B
performing
better than
A. Perf/Avail
charts show
opposite.
Availabiilty (percent)
99.5
99.0
98.5
98.0
97.5
97.0
96.5
96.0
95.5
Deep Dive 1
30-Sep-07
29-Sep-07
28-Sep-07
27-Sep-07
26-Sep-07
25-Sep-07
24-Sep-07
23-Sep-07
22-Sep-07
21-Sep-07
20-Sep-07
19-Sep-07
18-Sep-07
17-Sep-07
16-Sep-07
15-Sep-07
14-Sep-07
13-Sep-07
12-Sep-07
11-Sep-07
9-Sep-07
10-Sep-07
8-Sep-07
7-Sep-07
6-Sep-07
5-Sep-07
4-Sep-07
3-Sep-07
2-Sep-07
1-Sep-07
95.0
Slide 17
60
50
Performance - National
B
T
B-Avg
F
7.0
40
Performance (seconds)
Virtually no change in Apdex
for B, despite large change in
performance and availability.
30
20
10
6.0
0
4.0
3.0
2.0
1.0
314 (0.22)
F
A
22
0.75
S
422 (0.60)
T
195 (0.14)
F
A
88
0.74
S
419 (0.59)
T
219 (0.15)
F
A
73
0.74
15-Sep-07
377 (0.53)
T
14-Sep-07
S
13-Sep-07
0.0
12-Sep-07
Performance (seconds)
5.0
Slide 18
Session 45A Apdex Case Studies
Deep Dive 2
60
50
Performance - National
A
A-Avg
T
40
B
B-Avg
F
Performance (seconds)
Apdex shows B performing
better than A. Perf/Avail charts
show opposite.
7.0
30
20
10
6.0
0
Performance (seconds)
5.0
4.0
3.0
2.0
1.0
15
106
0.79
436 (0.61)
213 (0.15)
7
0.70
553 (0.79)
146 (0.10)
5
63
0.62
506 (0.36)
919 (0.32)
0.76
5
0.68
942 (0.66)
607 (0.84)
469 (0.17)
111 (0.08)
4
0.89
23-Sep-07
341 (0.24)
1074 (0.38)
22-Sep-07
552 (0.20) 215 (0.15)
21-Sep-07
807 (0.59) 390 (0.55)
20-Sep-07
19-Sep-07
0.0
3
0.83
Slide
0.92 19
Closing Thoughts
ƒ We’re still exploring the application of Apdex in an
Operations organization
ƒ Can Apdex be used to identify the day to day "issues" traditionally
identified through analysis of performance and availability metrics?
ƒ Or is it better suited as a method of performance representation for
the business side of the house?
ƒ Interesting to calc: what would it take for a product to
achieve the next "band" of performance
ƒ What performance level do I need to move from Poor to Fair
ƒ Help in establishing interim targets
Slide 20
Session 45A Apdex Case Studies
Thank You
Questions?
Fly UP