...

Biology Ch. 13 Notes Evolution

by user

on
Category: Documents
34

views

Report

Comments

Transcript

Biology Ch. 13 Notes Evolution
Biology
Ch. 13 Notes
Evolution
LT3
13.1 Briefly summarize the history of evolutionary
thought.

Evolution: The development of new types of organisms
from preexisting types over time.

Modern definition: a heritable change in the
characteristics within a population from one generation to
the next.

Idea as old as ancient Greeks.
Charles Darwin

1830, 22 years old

Served on H.M.S. Beagle: “Ship’s Naturalist”

Around-the-world voyage lasting five years.

Aristocrat so could socialize with Captain.

Despised by the Ship’s Surgeon.

Sought to provide evidence and mechanism for evolution
13.1 Explain how Darwin’s voyage on the Beagle
influenced his thinking.
Anatomy: Cuvier(anatomist/archeologist) reassembled fossil
bones
o Stated:
o Past organisms differed greatly from any living
species.
o Some organisms had become extinct.
o Deeper, older strata hold fossils that are
increasingly different from living species.
o Catastrophism: sudden geologic catastrophes
caused extinction of large groups of organisms
at certain points in the past. (Geologic change
and extinction occurred).
Geology: Lyell
o Shared some of Cuvier’s ideas
o Laws of nature in past same as today:
o “Uniformitarianism”
o Lyell’s geologic evidence fit with Darwin’s evidence from biology.
o
Biology

Lamarck’s Ideas on Evolution
o Died the year Darwin set sail.
o Supported change over time.
o Spontaneous generation for simple life.
o Simple life becomes more complex.
o Acquire Traits thru experience or behavior then pass those traits on to
offspring.
o “Inheritance of Acquired Characteristics”
Darwin’s Competition:
Scientists don’t argue that evolution occurs, but HOW it
happens or it’s mechanism.

1830-1835 Voyage of the Beagle

1830 Alfred Russell Wallace turns 7 years old, grows up
to be a biologist and also sails around the world.

Both Darwin and Wallace arrive at the same conclusions.

1858 Both present ideas to scientists in London.

1859 Darwin publishes: “On the Origin of Species”

1835  1858 = 23 years
Galapagos Video with Alan Alda
Mrs. Loyd 
[email protected]
Page 1 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
13.1 Describe the ideas and events that led to Darwin’s 1859 publication of
The Origin of Species.
http://wps.aw.com/bc_campbell_concepts_6/83/21320/5458063.cw/index.html
13.2 Explain why individuals cannot evolve and why evolution does not lead
to perfectly adapted organisms.
Individuals do not evolve:

They can only pass on traits to

fertile offspring with

varying degrees of success: “fitness”
Evolution does not lead to perfectly adapted organisms:

Not goal oriented

NS results from environmental factors that vary

from place to place and time to time

“fitness” will vary

Adaptations are compromises

ex. blue-footed boobie’s feet
o work great in water
o clumsy on land

Evol: Laryngeal Nerve in Giraffes
13.3 Describe two examples of natural selection known to occur in nature.
Notes three key points about how natural selection works.
Thousands of experiments document evolution in action.
Example #1: Ground Finches’ beaks

20 year study

changes in beak size

eat small seeds

in dry years, fewer seeds, birds eat more large seeds

birds with larger, stronger beaks have the advantage

average beak size in population increases.

during wet years, opposite happens.
Example #2: Pesticide resistance
Three Key points: Simulation of Natural Selection:
1. N.S. is editing not creative
2. Contingent on time and space: N.S. favors characteristics
that fit current, local environment.
3. Significant evolutionary change can occur in a short time.
Simulation of Natural Selection: http://biologyinmotion.com/evol/index.html
Mrs. Loyd 
[email protected]
Page 2 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
LT4 13.4 Explain how fossils form, noting examples of each process.
Fig. 13.4 A-F
A. Skull of H. erectus:
actual remains
B. Ammonite casts:
minerals replace
organic molecules,
harden, refilled,
hardens, turned out of
a mold.
1. Petrified trees.
C. Dinosaur tracks: trace
fossils: footprints,
burrows, other traces
that represent
behavior.
D. Fossilized organic
matter of a leaf: actual
remains preserved by omitting bacteria and fungi
from growing.
E. Insect in amber: fossilized tree sap (actual)
F. Ice Man (otzi): frozen (actual)
G. La Brea tar pits (actual)
H. Peat bogs: Tolund Man (actual)
13.4 Explain how the fossil record provides some
of the strongest evidence of evolution.
The Fossil Record: the sequence in which fossils appear within layers of sedimentary
rocks.
 Strata: layers
 Superposition: oldest is deepest, youngest is shallow
 Fossilization is a rare event
o hard parts fossilize best and most often
o soft parts (skin, feathers) fossilize least often.
 Speciation requires little time (geologic time scale)
 Fossil record is incomplete as one should expect.
 Bacteria is oldest fossilized life form
 Transitional fossils: fig. 13.4H
o Terrestrial mammals to whales
o Vestigial pelvis
o Share ankle bone design unique to: pigs, hippos, cows, camels, and deer.
Mrs. Loyd 
[email protected]
Page 3 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
LT4
Evidence of Evolution:
 Fossils (“Comparing
Primate Fossils” or
“Skulls Lab” Activity)

Biogeography: Wallace
established
biogeography (the
study of the past and
present geographical
distribution of
organisms) by studying
the distribution of
animal species around
the world.

Comparative anatomy
o homologous features: Blast Animation
“Homologous Structures”
o analogous features
o embryonic development:

gill slits

tail

“Ontogeny recapitulates
Phylogeny”
o vestigial features
Boelens Python Vestigial
Pelvis 
Molecular biology

AA sequence in proteins (“Biochemical Evidence” activity)

Chromosomes (“Comparing Primate Fossils” Activity)

Important molecules: Cytochrome c highly conserved.
Mrs. Loyd 
[email protected]
Page 4 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
THE EVOLUTION OF POPULATIONS
13.7 Define the gene pool, a population, and
microevolution.
Gene Pool: The total collection of genes in a population at
any one time. Used to study evolution at the population level.
Population: A group of individuals of the same species living
in the same place at the same time.
Microevolution: Evolution on its smallest scale, occurring in
the gene pool of a population. When the relative frequencies
of alleles in a population change over a number of generations.
13.8 Explain how mutation and sexual recombination
produce genetic variation.
Mutation: A chance event, not a mechanism (controlled
by genes.)
New alleles originate by a change (mutation) in the nucleotide
sequence of DNA.
 Ultimate source of genetic variation
 Most mutations occur in body cells and are not passed on.
 Only mutations in gametes are passed on.
 Chromosomal mutations:
o that delete, disrupt or rearrange many gene loci
are usually harmful.
o Duplication of part of a chromosome is an
important source of genetic variation.

Extra genes that can be mutated.

Olfactory receptor genes in mammals
allows for greater range of scent
detection.

Mice = 1,300 receptors

Humans = 1,000 receptors
Sexual Recombination
Fresh assortments of existing alleles:
 Crossing over during Prophase I.
 Independent orientation of homologous chromosomes Metaphase I of
meiosis
 Segregation of alleles
 Random Fertilization
Review Questions:
1. What is the ultimate source of genetic variation?
2. What is the source of most genetic variation in a population that reproduces
sexually?
Mrs. Loyd 
[email protected]
Page 5 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
1. mutation
2. Unique combinations of alleles resulting from sexual reproduction.
13.8 Explain why prokaryotes can evolve more quickly than eukaryotes.
 Prokaryotic mutations can multiply rapidly due to rapid reproduction rate.
o Bacteria are haploid, one gene per character, a new allele can have
immediate effect.
 Mutation Rate:
o Animals and plants average 1/100,000 genes per generation.
o Considered a low mutation rate.
o Long time spans between generations,
o diploid genomes prevent most mutations from significantly affecting
genetic variation in plants and animals from generation to
generation.
MECHANISMS OF MICROEVOLUTION
13.11 Define genetic drift and gene flow. Explain how the bottleneck effect and
the founder effect influence microevolution.
Mech.of Evol. 7:40min.
Genetic drift: A change in the gene pool of a population due to chance.
 The smaller the population, the greater the effect.
 Alleles may be lost to the population due to chance
 This reduces variation by such losses.
 Examples are:
o Bottleneck Effect
o Founder Effect
Bottleneck Effect:
 Catastrophe may kill indiscriminately and leave few survivors.
 Reduced gene pool variation affects population
 Less variation reduces population’s fitness
Founder effect:
 When a few individuals colonize as isolated island or other new habitat.
 The smaller the group, the less likely the genetic makeup will represent
larger population they left.
 Genetic difference between large pop. and founder pop. is founder effect.
Gene Flow:
 Allele frequencies can change as a result of fertile individuals move into or
out of a population.
 Gene flow reduces differences between populations.
 Compare to similarities in a closed society like the Amish.
FOUNDER EFFECT example

1814, 15 people founded British
colony, Tristan da Cunha on island in
Atlantic.

One of the 15 was a het for retinitis
pigmentosa.

In 1960, of the 240 descendants, 4
had RP, 9 were hets.

Frequency 10x higher than parent
population.
13.11 Explain how genetic bottlenecks threaten the survival of certain
species.
 Ice age: Human population estimates 600 breeding individuals at one
time in S. Africa. Genetic variation between individual humans about
30% less than between individual chimpanzees.
 Florida panther
 African cheetah
 Illinois greater prairie chicken reduced by agriculture and development
from millions in 19th C. to 50 individuals in 1993. Flocks from neighboring
states added into Illinois flock. Regained hatching success from 50% to
90% due to added alleles.
Mrs. Loyd 
[email protected]
Page 6 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
13.12 Explain why natural selection is the only mechanism that leads to
adaptive evolution.
Chance Events:
 Genetic drift (bottleneck, founder effects)
 gene flow
 mutation
Chance + sorting:
o natural selection

chance: random collection of genetic variation

sorting: some alleles are favored over others.

sorting makes in adaptive

improves the match between organisms and their
environment.

environments change

“fitness” is a moving target

adaptive evolution dynamic process
13.13 Distinguish between and describe an
example of:
stabilizing selection:
 most common type
 favors intermediate phenotypes
 stable environment
 conditions reduce phenotypic variation
 example: human infant weight averages
6.5-9 pounds, extremes have higher infant
mortality.
directional selection:
 shifts the overall makeup of the popul. by
selecting against individuals at one of the
phenotypic extremes..
 example: insects exposed to pesticide
disruptive selection:
 environmental conditions are varied and
favors individuals at both extremes.
 leads to two or more contrasting
phenotypes
13.15 Explain how antibiotic resistance has evolved.
Discovery Channel video clip
http://wps.aw.com/bc_campbell_concepts_6/83/21320/545806
3.cw/index.html
13.17 Give four reasons why natural selection cannot
produce perfection.
1. Selection can act only on existing variations
a. can use only phenotypes available
b. may not be ideal trait for environment
c. advantageous alleles do not arise on demand
d. extinction happens
2. Evolution is limited by historical constraints.
a. co-opts existing structures and adapts them to
new situations
b. Example: environmental changes favor flight;
wings would be best but nature must use the
parts available. Bats and birds did not evolve a
new set of appendages, they changed what they
already had.
3. Adaptations are often compromises
a. Each organism must do many different tasks but..
b. …adaptations may be better suited for some
tasks than others
c. Example: blue-footed booby uses webbed feet to
swim after prey well, but they are clumsy on land.
4. Chance, natural selection, and the environment
interact.
a. Chance plays a bigger role than once thought
Mrs. Loyd 
[email protected]
b.
Example: a storm blows insects out to sea. A
few land on an island, many perish. The few that
survived may not be the individuals that would be
best adapted to the new environment.
Question: Humans owe much of their physical versatility
and athleticism to their flexible limbs and joints. But we
are prone to sprains, torn ligaments, and dislocations.
a. Which one of the four reasons given for why natural
selection cannot produce perfect organisms best explains
this?
b. Explain how your chosen reason applies specifically to
humans.
Page 7 of 7
http://loydbiology.weebly.com
9/21/2016
http://www.mybiology.com
Fly UP