MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface General Description
by user
Comments
Transcript
MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface General Description
19-4126; Rev 1; 2/09 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface The MAX1377/MAX1379/MAX1383 feature two simultaneous-sampling, low-power, 12-bit ADCs with serial interface and internal voltage reference. Fast sampling rate, low power dissipation, and excellent dynamic performance make the MAX1377/MAX1379/MAX1383 ideal for industrial process control, motor control, and RF applications. Conversion results are available through a SPI™-/ QSPI™-/MICROWIRE™-/DSP-compatible interface with independent serial digital outputs for each channel. The serial outputs allow twice as much data to be transferred at the given clock rate. The conversion results for both ADCs can also be output on a single digital output for microcontrollers (µCs) and DSPs with only a single serial input available. The MAX1377 operates from a 2.7V to 3.6V analog supply and the MAX1379/MAX1383 operate from a 4.75V to 5.25V analog supply. A separate 1.8V to AVDD digital supply allows interfacing to low voltage logic without the use of level translators. Two power-down modes, partial and full, allow the MAX1377/MAX1379 and MAX1383 (full power-down only) to save power between conversions. Partial power-down mode reduces the supply current to 2mA while leaving the reference enabled for quick power-up. Full powerdown mode reduces the supply current to 1µA. The MAX1377/MAX1379 inputs accept voltages between zero and the reference voltage or ±VREF/2. The MAX1383 offers an input voltage range of ±10V, which is ideal for industrial and motor-control applications. The input to each of the ADCs supports either a true-differential input or two single-ended inputs. The MAX1377/MAX1379/MAX1383 are available in a 20-pin TQFN package, and are specified for the automotive (-40°C to +125°C) temperature range. Features ♦ Dual, Simultaneous-Sampling, 12-Bit Successive Approximation Register (SAR) ADCs ♦ 2 x 2 Mux Inputs or Two Differential Inputs ♦ 1.25Msps Sampling Rate per ADC ♦ Internal or External Reference ♦ Excellent Dynamic Performance 70dB SINAD (MAX1377) 71dB SINAD (MAX1379/MAX1383) 84dBc/SFDR 1MHz Full-Linear Bandwidth ♦ 2.7V to 3.6V Low-Power Operation (MAX1377) 50mW (Normal Operation) 6mW (Partial Power-Down) 3µW (Full Power-Down) ♦ 4.75V to 5.25V Low-Power Operation (MAX1379) 90mW (Normal Operation) 10mW (Partial Power-Down) 5µW (Full Power-Down) ♦ 4.75V to 5.25V Low-Power Operation (MAX1383) 280mW (Normal Operation) 2.5µW (Full Power-Down) ♦ 20MHz, SPI-Compatible, 3-Wire Serial Interface User-Selectable Single (0.625Msps max) or Dual Outputs (1.25Msps max) ♦ Input Range: ±10V (MAX1383), 0–VREF or ±VREF/2 (MAX1377/MAX1379) ♦ Small 20-Pin TQFN Package SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. Functional Diagram VL AVDD AIN1A AIN1B 12-BIT SAR ADC1 T/H MUX MAX1377 MAX1379 MAX1383 OUTPUT BUFFER Applications CS REF Motor Control Communications Data Acquisition Bill Validation Portable Instruments SERIAL INTERFACE AND TIMING REFSEL INTERNAL REFERENCE RGND TEMP RANGE MAX1377ATP+ -40°C to +125°C PIN-PACKAGE -40°C to +125°C 20 TQFN-EP* MAX1383ATP+ -40°C to +125°C 20 TQFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. SCLK U/B CONTROL LOGIC S/D VL AIN2A MUX 20 TQFN-EP* MAX1379ATP+ CNVST A=1 Ordering Information PART DOUT1 12-BIT SAR ADC2 T/H AIN2B SEL AGND OUTPUT BUFFER DOUT2 DGND Pin Configuration appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. www.BDTIC.com/maxim MAX1377/MAX1379/MAX1383 General Description MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface ABSOLUTE MAXIMUM RATINGS AVDD to AGND ........................................................-0.3V to +6V VL to DGND ..............................................................-0.3V to +6V SCLK, CS, CNVST, U/B, S/D, SEL, REFSEL to DGND.......................................-0.3V to (VL + 0.3V) DOUT_ to DGND...........................................-0.3V to (VL + 0.3V) AIN1A, AIN1B, AIN2A, AIN2B to AGND MAX1377/MAX1379 .............................-0.3V to (AVDD + 0.3V) MAX1383 ..............................................................-12V to +12V RGND to AGND.....................................................-0.3V to +0.3V RGND to DGND.....................................................-0.3V to +0.3V DGND to AGND.....................................................-0.3V to +0.3V Maximum Current into Any Pin (except power-supply pins).....50mA Continuous Power Dissipation (TA = +70°C) 20-Pin Thin QFN (derate 34.5mW/°C above +70°C) ...2758.6mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-60°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX1377 (VAVDD = 2.7V to 3.6V, VL = 1.8V to AVDD, fSCLK = 20MHz (50% duty cycle), VREF = 2.048V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC ACCURACY Resolution 12 Relative Accuracy INL Differential Nonlinearity DNL (Note 1) Bits -1.25 +1.25 LSB -1 +1.5 LSB ±8 LSB Offset Error Offset-Error Matching Gain Error (Note 2) Gain-Error Matching (Note 2) ±12 LSB ±6 LSB ±6 Gain Temperature Coefficient DC Input Isolation AIN1A to AIN1B, AIN2A to AIN2B 80 AIN1A to AIN2A, AIN1B to AIN2B 80 LSB ppm/oC ±2 dB DYNAMIC SPECIFICATIONS (fIN = 500kHz, 2VP-P sine wave, 1.25Msps, 20MHz fSCLK) Signal-to-Noise Plus Distortion Signal-to-Noise Ratio SINAD SNR Total Harmonic Distortion THD Spurious-Free Dynamic Range SFDR Intermodulation Distortion IMD Unipolar 66 69.5 Bipolar 67 70 Unipolar 66 70 Bipolar 67 70 Up to the 5th harmonic fIN1 = 103.5kHz, fIN2 = 113.5kHz dB dB -84 -74 dB -86 -76 dB -78 dB Full-Power Bandwidth -3dB point 5 MHz Full-Linear Bandwidth (S/N + D) > 68dB, 1V input 1 MHz CONVERSION RATE (Figure 4) Minimum Conversion Time Maximum Throughput Rate Minimum Throughput Rate for Full Bandwidth Signal 2 tCONV 16 clock cycles per conversion (Note 3) 0.800 Dual output mode, S/D = 0 1.25 Single output mode, S/D = 1 0.625 (Note 4) 10 _______________________________________________________________________________________ www.BDTIC.com/maxim µs Msps ksps Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface (VAVDD = 2.7V to 3.6V, VL = 1.8V to AVDD, fSCLK = 20MHz (50% duty cycle), VREF = 2.048V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL Track-and-Hold Acquisition Time tACQ CONDITIONS MIN TYP MAX UNITS 125 ns Aperture Delay 2 ns Aperture-Delay Matching 2 ns Aperture Jitter (Note 5) External Clock Frequency 30 ps fSCLK 20 MHz VREF V ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B) Input Range U/B = 0, VAIN_A - RGND Differential Input Range U/B = 1, VAIN_A - VAIN_B Absolute Voltage Range 0 -VREF/2 0 +VREF/2 V AVDD V DC Leakage Current ±1 Input Impedance Input Capacitance At each analog input µA 34 kΩ 16 pF EXTERNAL REFERENCE (REFSEL = 1) Absolute Input Voltage Range VREF 1.0 Input Capacitance AVDD + 0.05 V ±1 µA 50 pF DC Leakage Current Input Current Time averaged at maximum throughput rate 800 µA INTERNAL REFERENCE (REFSEL = 0) Reference Voltage Level 2.028 Load Regulation 2.048 ISOURCE = 0 to 1mA 1 ISINK = 0 to 50µA 1 Voltage Temperature Coefficient 2.068 V mV/mA ppm/oC ±50.0 DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL) Input-Voltage Low VIL Input-Voltage High VIH Input Leakage Current IIL 0.3 x VL 0.7 x VL V V ±10 µA 30 pF 0.4 V DIGITAL OUTPUT (DOUT1, DOUT2) Output Load Capacitance Output-Voltage Low CDOUT VOL For stated timing performance ISINK = 5mA Output-Voltage High VOH ISOURCE = 1mA, VL ≥ 2.7V Output Leakage Current IOL High-impedance mode (Figure 9) VL - 0.5V V ±0.2 µA POWER REQUIREMENTS Analog Supply Voltage AVDD 2.7 Digital Supply Voltage VL 1.8 3.0 3.6 V AVDD V _______________________________________________________________________________________ www.BDTIC.com/maxim 3 MAX1377/MAX1379/MAX1383 ELECTRICAL CHARACTERISTICS—MAX1377 (continued) MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface ELECTRICAL CHARACTERISTICS—MAX1377 (continued) (VAVDD = 2.7V to 3.6V, VL = 1.8V to AVDD, fSCLK = 20MHz (50% duty cycle), VREF = 2.048V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Analog Supply Current SYMBOL IAVDD CONDITIONS MIN TYP MAX Normal operation 13 15 Partial power-down mode (Note 5) 2 Full power-down mode (Note 5) 1 Average Static Supply Current Digital Supply Current Power-Supply Rejection IVL PSR fSCLK = 20MHz, VL = 3V, CL = 30pF VAVDD = 3V ±10%, full-scale input UNITS mA 5 µA 8 10 mA 1 1.5 mA ±0.2 ±3 mV ELECTRICAL CHARACTERISTICS—MAX1379 (VAVDD = 4.75V to 5.25V, VL = 3V, fSCLK = 20MHz (50% duty cycle), VREF = 4.096V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS -1.25 +1.25 LSB -1 +1 LSB Offset Error ±8 LSB Offset-Error Matching ±9 LSB ±6 LSB DC ACCURACY Resolution 12 Relative Accuracy INL Differential Nonlinearity DNL (Note 1) Gain Error (Note 2) Gain-Error Matching (Note 2) Bits ±9 Gain Temperature Coefficient DC Input Isolation AIN1A to AIN1B, AIN2A to AIN2B 80 AIN1A to AIN2A, AIN1B to AIN2B 80 LSB ppm/oC ±2 dB DYNAMIC SPECIFICATIONS (fIN = 500kHz , 4VP-P sine wave, 1.25Msps, 20MHz fSCLK) Signal-to-Noise Plus Distortion Signal-to-Noise Ratio SINAD SNR Total Harmonic Distortion THD Spurious-Free Dynamic Range SFDR Intermodulation Distortion IMD Unipolar 69 70 Bipolar 70 71 Unipolar 70 71 Bipolar 70 72 Up to the 5th harmonic fIN1 = 103.5kHz, fIN2 = 113.5kHz dB dB -84 -76 dB -84 -76 dB -78 dB Full-Power Bandwidth -3dB point 5 MHz Full-Linear Bandwidth (S/N + D) > 68dB, 1V input 1 MHz CONVERSION RATE (Figure 6) Minimum Conversion Time Maximum Throughput Rate Minimum Throughput Rate for Full Bandwidth Signal 4 tCONV 16 clock cycles per conversion (Note 3) 0.8 Dual-output mode, S/D = 0 1.25 Single-output mode, S/D = 1 0.625 (Note 4) 10 _______________________________________________________________________________________ www.BDTIC.com/maxim µs Msps ksps Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface (VAVDD = 4.75V to 5.25V, VL = 3V, fSCLK = 20MHz (50% duty cycle), VREF = 4.096V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL Track-and-Hold Acquisition Time tACQ CONDITIONS MIN TYP MAX UNITS 125 ns Aperture Delay 2 ns Aperture-Delay Matching 2 ns 30 ps Aperture Jitter (Note 5) External Clock Frequency fSCLK 20 MHz ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B) Input Range U/B = 0, VAIN_A - RGND 0 VREF Differential Input Range U/B = 1, VAIN_A - VAIN_B -VREF/2 +VREF/2 0 AVDD Absolute Voltage Range DC Leakage Current ±1 Input Impedance Input Capcitance At each analog input V V µA 34 kΩ 16 pF EXTERNAL REFERENCE (REFSEL = 1) Absolute Input Voltage Range VREF AVDD + 0.05 1.0 Input Capacitance 50 pF DC Leakage Current ±1 Input Current Time averaged at maximum throughput rate V 800 µA µA INTERNAL REFERENCE (REFSEL = 0) Reference Voltage Level 4.086 Load Regulation 4.096 ISOURCE = 0 to 1mA 1 ISINK = 0 to 50µA 1 Voltage Temperature Coefficient 4.106 V mV/mA ppm/oC ±50.0 DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL) Input-Voltage Low VIL Input-Voltage High VIH Input Leakage Current IIL 0.3 x VL 0.7 x VL V V ±10 µA 30 pF 0.4 V DIGITAL OUTPUT (DOUT1, DOUT2) Output Load Capacitance Output-Voltage Low CDOUT VOL For stated timing performance ISINK = 5mA Output-Voltage High VOH ISOURCE = 1mA, VL ≥ 2.7V Output Leakage Current IOL High-impedance mode (Figure 9) VL 0.5V V ±0.2 µA POWER REQUIREMENTS Analog Supply Voltage AVDD 4.25 Digital Supply Voltage VL 1.8 5.0 5.25 V AVDD V _______________________________________________________________________________________ www.BDTIC.com/maxim 5 MAX1377/MAX1379/MAX1383 ELECTRICAL CHARACTERISTICS—MAX1379 (continued) MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface ELECTRICAL CHARACTERISTICS—MAX1379 (continued) (VAVDD = 4.75V to 5.25V, VL = 3V, fSCLK = 20MHz (50% duty cycle), VREF = 4.096V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Analog Supply Current SYMBOL IAVDD CONDITIONS MIN TYP MAX Normal operation 16 18 Partial power-down mode (Note 5) 2 Full power-down mode (Note 5) Average Static Supply Current Digital Supply Current Power-Supply Rejection IVL PSR µA mA 9 10 2 3 fSCLK = 20MHz, VL = 3V, CL = 30pF 1 ±0.2 mA 5 fSCLK = 20MHz, VL = 5V, CL = 30pF VAVDD = 5V ±10%, full-scale input UNITS ±3 mA mV ELECTRICAL CHARACTERISTICS—MAX1383 (VAVDD = 4.75V to 5.25V, VL = 1.8V to AVDD, fSCLK = 20MHz (50% duty cycle), VREF = 2.50V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS -1.5 +1.5 LSB -1 +1.5 LSB DC ACCURACY Resolution 12 Relative Accuracy INL Differential Nonlinearity DNL Offset Error (Note 1) Bits Unipolar ±12 Bipolar ±16 Offset-Error Matching Gain Error (Note 2) Gain-Error Matching (Note 2) ±10 LSB ±8 LSB ±6 Gain Temperature Coefficient AIN1A to AIN1B, AIN2A to AIN2B 74 AIN1A to AIN2A, AIN1B to AIN2B 80 LSB ppm/oC ±2 DC Input Isolation LSB dB DYNAMIC SPECIFICATIONS (fIN = 100kHz, 20VP-P sine wave, 1.25Msps, 20MHz fSCLK) Signal-to-Noise Plus Distortion Signal-to-Noise Ratio SINAD SNR Total Harmonic Distortion THD Spurious-Free Dynamic Range SFDR Unipolar 67 71 Bipolar 69 72 Unipolar 67 71 Bipolar 69 72 Up to the 5th harmonic dB dB -84 -72 -86 -72 dB dB fIN1 = 103.5kHz, fIN2 = 113.5kHz -78 dB Full-Power Bandwidth -3dB point 10 MHz Full-Linear Bandwidth (S/N + D) > 68dB, 1V input 1 MHz Intermodulation Distortion IMD CONVERSION RATE (Figure 4) Minimum Conversion Time Maximum Throughput Rate 6 tCONV 16 clock cycles per conversion (Note 3) 0.800 Dual output mode, S/D = 0 1.25 Single output mode, S/D = 1 0.625 _______________________________________________________________________________________ www.BDTIC.com/maxim µs Msps Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface (VAVDD = 4.75V to 5.25V, VL = 1.8V to AVDD, fSCLK = 20MHz (50% duty cycle), VREF = 2.50V, REFSEL = VL, S/D = DGND, CREF = 1µF; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL Minimum Throughput Rate for Full Bandwidth Signal CONDITIONS (Note 4) Track-and-Hold Acquisition Time MIN TYP MAX 10 tACQ UNITS ksps 125 ns Aperture Delay 2 ns Aperture-Delay Matching 2 ns 30 ps Aperture Jitter (Note 5) External Clock Frequency fSCLK 20 MHz +10 V ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B) Input Range U/B = 0, VAIN_A - RGND Differential Input Range U/B = 1, VAIN_A - VAIN_B Absolute Voltage Range -10 -10 +10 V -10 +10 V Input Impedance Input Capacitance At each analog input 10 kΩ 10 pF EXTERNAL REFERENCE (REFSEL = 1) Absolute Input Voltage Range VREF 1.25 Input Capacitance Input Current Time averaged at maximum throughput rate 2.5 V 50 pF 1600 µA INTERNAL REFERENCE (REFSEL = 0) Reference Voltage Level 2.48 Load Regulation 2.50 ISOURCE = 0 to 1mA 1 ISINK = 0 to 50µA 1 Voltage Temperature Coefficient 2.52 V mV/mA ppm/oC ±50.0 DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL) Input-Voltage Low VIL Input-Voltage High VIH Input Leakage Current IIL 0.3 x VL V ±10 µA 0.7 x VL V DIGITAL OUTPUTS (DOUT1, DOUT2) Output Load Capacitance For stated timing performance 30 pF Output-Voltage Low CDOUT VOL ISINK = 5mA 0.4 V Output-Voltage High VOH ISOURCE = 1mA, VL ≥ 2.7V Output Leakage Current IOL High-impedance mode (Figure 9) VL - 0.5V V ±0.2 µA POWER REQUIREMENTS Analog Supply Voltage AVDD Digital Supply Voltage VL Analog Supply Current IAVDD 4.75 1.8 Power-Supply Rejection IVL PSR 5.25 V AVDD V Normal operation 55 65 mA Full power-down mode (Note 5) 0.5 10 µA 44 58 mA 2 3.0 mA ±5 ±30 mV Average Static Supply Current Digital Supply Current 5.0 fSCLK = 20MHz, VL = 3V, CL = 30pF VAVDD = 5V ±10%, full-scale input _______________________________________________________________________________________ www.BDTIC.com/maxim 7 MAX1377/MAX1379/MAX1383 ELECTRICAL CHARACTERISTICS—MAX1383 (continued) TIMING CHARACTERISTICS (Figures 6, 10) VAVDD = 4.25V to 5.25V, VL = 1.8V to AVDD, VREF = 4.096V, fSCLK = 20MHz for MAX1379, 50% duty cycle, CL = 30pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL SCLK Clock Period CONDITIONS MIN TYP tCP 50 tCH/tCL 45 SCLK Pulse-Width High tCH 22.5 SCLK Pulse-Width Low tCL 22.5 SCLK Duty Cycle SCLK Rise to DOUT_ Transition tDOUT DOUT_ Remains Valid After SCLK tDHOLD CNVST Fall to SCLK Fall tSETUP CNVST Pulse Width SEL to CNVST Fall MAX ns % ns ns 14 CL = 30pF, VL = 3V 17 CL = 30pF, VL = 1.8V 24 CL = 30pF UNITS 55 CL = 30pF, VL = 5V tCSW Power-Up Time; Full Power-Down ns 4 ns 10 ns 20 tPWR-UP ns External load on REF < 3µF tSEL_SETUP 100 SEL Hold to CNVST Fall 2 ms 120 ns 10 ns CS Fall To CNVST Fall tCST External load on REF < 3µF 2 ms Restart Time; Partial Power-Down tRCV No external load 16 Cycles Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and the offset error have been nulled. Note 2: Offset nulled. Note 3: Conversion time is defined as the number of clock cycles (16) multiplied by the clock period. Clock has 50% duty cycle. Note 4: At sample rates below 10ksps, the input full linear bandwidth is reduced to 5kHz. Note 5: SCLK and CNVST not switching during measurement. Typical Operating Characteristics (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) -80 -100 -60 -80 100 200 300 400 500 ANALOG INPUT FREQUENCY (kHz) 600 -60 -80 -120 -120 0 -40 -100 -100 -120 8 -40 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 500kHz SINAD = 68.542dB SNR = 68.554dB THD = -90.391dB SFDR = 94.350dB VREF = 2.048V -20 AMPLITUDE (dB) -60 AMPLITUDE (dB) -40 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 250kHz SINAD = 68.720dB SNR = 68.769dB THD = -88.244dB SFDR = 91.237dB VREF = 2.048V -20 0 MAX1377 toc02 MAX1377 toc01 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 100kHz SINAD = 60.052dB SNR = 69.073dB THD = -92.267dB SFDR = 93.225dB VREF = 2.048V -20 MAX1377 BIPOLAR FFT MAX1377 BIPOLAR FFT 0 MAX1377 toc03 MAX1377 BIPOLAR FFT 0 AMPLITUDE (dB) MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface 0 100 200 300 400 500 ANALOG INPUT FREQUENCY (kHz) 600 0 100 200 300 400 500 ANALOG INPUT FREQUENCY (kHz) _______________________________________________________________________________________ www.BDTIC.com/maxim 600 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface MAX1377 UNIPOLAR FFT -80 -60 -100 -100 100 200 300 400 500 300 400 500 600 0 0.8 0.6 0.2 INL (LSB) 0.4 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.6 -0.8 -0.8 -0.8 -1.0 -1.0 -1.0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 DIGITAL OUTPUT CODE DIGITAL OUTPUT CODE DIGITAL OUTPUT CODE MAX1377 BIPOLAR DNL vs. DIGITAL OUTPUT CODE MAX1379 UNIPOLAR INL vs. DIGITAL OUTPUT CODE MAX1379 BIPOLAR INL vs. DIGITAL OUTPUT CODE 0.8 0.6 1.0 MAX1377 toc11 1.0 MAX1377 toc10 1.0 0.8 0.6 0.8 0.6 0.4 0.2 0.2 0.2 INL (LSB) 0.4 INL (LSB) 0.4 0 0 0 -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 -0.6 -0.6 -0.6 -0.8 -0.8 -0.8 -1.0 -1.0 -1.0 500 1000 1500 2000 2500 3000 3500 4000 4500 DIGITAL OUTPUT CODE 600 0 -0.4 0 500 0.6 0.2 500 1000 1500 2000 2500 3000 3500 4000 4500 400 0.8 0.2 0 300 1.0 0.4 -0.2 200 MAX1377 UNIPOLAR INL vs. DIGITAL OUTPUT CODE 0.4 0 100 ANALOG INPUT FREQUENCY (kHz) MAX1377 toc08 MAX1377 toc07 1.0 INL (LSB) DNL (LSB) 0.6 200 MAX1377 BIPOLAR INL vs. DIGITAL OUTPUT CODE MAX1377 UNIPOLAR DNL vs. DIGITAL OUTPUT CODE 0.8 100 ANALOG INPUT FREQUENCY (kHz) ANALOG INPUT FREQUENCY (kHz) 1.0 -80 -120 0 600 -60 0 1024 2048 3072 DIGITAL OUTPUT CODE 4096 MAX1377 toc12 0 -40 -100 -120 -120 DNL (LSB) MAX1377 toc05 -80 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 500kHz SINAD = 68.645dB SNR = 68.715dB THD = -83.617dB SFDR = 88.709dB VREF = 2.048V -20 MAX1377 toc09 -60 -40 0 AMPLITUDE (dB) -40 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 250kHz SINAD = 68.947dB SNR = 69.054dB THD = -85.101dB SFDR = 86.718dB VREF = 2.048V -20 AMPLITUDE (dB) AMPLITUDE (dB) MAX1377 toc04 fSAMPLE = 1.25MHz fSCLK = 20MHz fIN = 100kHz SINAD = 69.324dB SNR = 69.400dB THD = -86.952dB SFDR = 89.213dB VREF = 2.048V -20 MAX1377 UNIPOLAR FFT 0 MAX1377 toc06 MAX1377 UNIPOLAR FFT 0 0 1024 2048 3072 4096 DIGITAL OUTPUT CODE _______________________________________________________________________________________ www.BDTIC.com/maxim 9 MAX1377/MAX1379/MAX1383 Typical Operating Characteristics (continued) (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) MAX1379 BIPOLAR DNL vs. DIGITAL OUTPUT CODE 0.8 0.6 0.2 0.2 0 -0.2 0 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 2048 3072 0 4096 MAX1379 GAIN ERROR vs. TEMPERATURE 3072 4096 -40 1.2 CHANNEL 1 0.8 0.4 -40 -60 35 60 -80 85 fSAMPLE = 1.8Msps fSCLK = 28.8MHz fIN = 250kHz SINAD = 70.05dB SNR = 70.32dB THD = -82.35dB SFDR = 83.22dB VREF = 4.096V -20 -40 -60 -80 -120 300 600 900 0 300 600 900 ANALOG INPUT FREQUENCY (kHz) ANALOG INPUT FREQUENCY (kHz) MAX1379 FFT PLOT MAX1379 FFT PLOT MAX1379 TOTAL HARMONIC DISTORTION vs. SOURCE IMPEDENCE -60 -80 -100 MAX1377 toc20 fSAMPLE = 1.8Msps fSCLK = 28.8MHz fIN = 500kHz SINAD = 69.58dB SNR = 69.75dB THD = -83.79dB SFDR = 84.69dB VREF = 4.096V -40 -60 -80 -100 -120 -120 200 400 600 ANALOG INPUT FREQUENCY (kHz) 800 -72 TOTAL HARMONIC DISTORTION (dBc) -40 -20 AMPLITUDE (dB) -20 0 MAX1377 toc19 fSAMPLE = 1.8Msps fSCLK = 28.8MHz fIN = 300kHz SINAD = 70dB SNR = 70.27dB THD = -82.2dB SFDR = 81.81dB VREF = 4.096V -74 fIN = 500kHz MAX1377 toc21 TEMPERATURE (°C) 0 0 60 -100 0 85 35 MAX1379 FFT PLOT -120 10 10 0 -100 0 -15 TEMPERATURE (°C) fSAMPLE = 1.8Msps fSCLK = 28.8MHz fIN = 100kHz SINAD = 70.43dB SNR = 70.72dB THD = -82.33dB SFDR = 82.78dB VREF = 4.096V -20 AMPLITUDE (dB) 1.6 GAIN ERROR (LSB) 2048 0 MAX1377 toc16 CHANNEL 2 10 1024 MAX1379 FFT PLOT 2.0 -15 CHANNEL 2 DIGITAL OUTPUT CODE DIGITAL OUTPUT CODE -40 CHANNEL 1 -0.9 -1.5 AMPLITUDE (dB) 1024 -0.6 -1.2 MAX1377 toc17 0 -0.3 MAX1377 toc18 0.4 DNL (LSB) 0.4 OFFSET ERROR (LSB) 0.6 0 MAX1377 toc14 0.8 DNL (LSB) 1.0 MAX1377 toc13 1.0 MAX1379 OFFSET ERROR vs. TEMPERATURE MAX1377 toc15 MAX1379 UNIPOLAR DNL vs. DIGITAL OUTPUT CODE AMPLITUDE (dB) MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface -76 -78 -80 -82 fIN = 100kHz -84 -86 0 300 600 ANALOG INPUT FREQUENCY (kHz) 900 10 100 SOURCE IMPEDANCE (Ω) ______________________________________________________________________________________ www.BDTIC.com/maxim 1000 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface MAX1379 AVDD FULL POWER-DOWN CURRENT vs. TEMPERATURE 0.8 AVDD FULL POWER-DOWN CURRENT (mA) 0.9 0.7 0.6 -60 0.5 0.4 -80 0.3 0.2 -100 0.1 -120 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 0 300 600 900 -40 -25 -10 ANALOG INPUT FREQUENCY (kHz) 5 20 35 50 65 -40 -25 -10 80 13.0 12.5 12.0 11.5 11.0 35 50 65 80 MAX1377 toc26 20 18 AVDD SUPPLY CURRENT (mA) 13.5 20 MAX1379 AVDD SUPPLY CURRENT vs. CONVERSION RATE MAX1377 toc25 14.0 5 TEMPERATURE (°C) TEMPERATURE (°C) MAX1379 AVDD SUPPLY CURRENT vs. TEMPERATURE 10.5 16 14 12 10 8 6 4 2 10.0 0 -40 -25 -10 5 20 35 50 65 80 0 400 800 1200 1600 2000 TEMPERATURE (°C) CONVERSION RATE (kHz) MAX1379 FULL-SCALE AMPLITUDE vs. FREQUENCY MAX1379 INTERNAL REFERENCE VOLTAGE vs. ANALOG SUPPLY VOLTAGE 4.10 MAX1377 toc27 3850 3800 MAX1377 toc28 AVDD SUPPLY CURRENT (mA) 4.09 4.08 TA = +25°C 4.07 3750 VREF (V) 0 OUTPUT SWING (LSB) AMPLITUDE (dB) -40 4.0 MAX1377 toc23 fSAMPLE = 1.8Msps fSCLK = 28.8MHz fIN1 = 250kHz fIN1 = 300kHz IMD = -81.53dB VREF = 4.096V -20 1.0 MAX1377 toc22 0 MAX1379 AVDD PARTIAL POWER-DOWN CURRENT vs. TEMPERATURE MAX1377 toc24 MAX1379 INTERMODULATION PLOT 3700 3650 4.06 4.05 TA = -40°C 4.04 4.03 TA = +85°C 3600 4.02 4.01 3550 1 10 FREQUENCY (MHz) 4.20 4.45 4.70 4.95 5.20 AVDD (V) ______________________________________________________________________________________ www.BDTIC.com/maxim 11 MAX1377/MAX1379/MAX1383 Typical Operating Characteristics (continued) (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) 0.8 0.6 0.8 0.6 0.4 0.2 0.2 0.2 -0.2 INL (LSB) 0.4 DNL (LSB) 0.4 0 0 -0.2 0 -0.2 -0.4 -0.4 -0.4 -0.6 -0.6 -0.6 -0.8 -0.8 -0.8 -1.0 -1.0 -1.0 1024 2048 3072 0 4096 1024 2048 3072 0 4096 1024 2048 3072 DIGITAL OUTPUT CODE DIGITAL OUTPUT CODE DIGITAL OUTPUT CODE MAX1383 UNIPOLAR DNL vs. DIGITAL OUTPUT CODE MAX1383 OFFSET ERROR vs. TEMPERATURE MAX1383 GAIN ERROR vs. TEMPERATURE 8 OFFSET ERROR (LSB) 0.6 CHANNEL 1 0.4 0.2 0 -0.2 -0.4 -0.6 4 2 GAIN ERROR (LSB) 0.8 4096 MAX1377 toc34 10 MAX1377 toc32 1.0 MAX1377 toc33 0 MAX1377 toc31 0.6 1.0 MAX1377 toc30 0.8 INL (LSB) 1.0 MAX1377 toc29 1.0 DNL (LSB) MAX1383 UNIPOLAR INL vs. DIGITAL OUTPUT CODE MAX1383 BIPOLAR DNL vs. DIGITAL OUTPUT CODE MAX1383 BIPOLAR INL vs. DIGITAL OUTPUT CODE 6 CHANNEL 2 4 CHANNEL 2 0 CHANNEL 1 -2 2 -0.8 -4 0 1024 2048 3072 4096 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) DIGITAL OUTPUT CODE -40 -60 -80 -100 -120 -87.5 -88.0 -88.5 -89.0 -89.5 fIN = 100kHz fSAMPLE = 1.25Msps 125 250 375 500 ANALOG INPUT FREQUENCY (kHz) 625 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -90.0 0 12 MAX1377 toc36 -20 -87.0 TOTAL HARMONIC DISTORTION (dBc) fSAMPLE = 1.25Msps fSCLK = 20MHz fIN = 100kHz SINAD = 70.07dB SNR = 70.15dB THD = -87.39dB SFDR = 90.1dB VREF = 2.5V MAX1377 toc35 0 MAX1383 AVDD FULL POWER-DOWN CURRENT vs. TEMPERATURE MAX1383 TOTAL HARMONIC DISTORTION vs. SOURCE IMPEDANCE MAX1383 FFT PLOT AVDD FULL POWER-DOWN CURRENT (nA) 0 MAX1377 toc37 -1.0 AMPLITUDE (dB) MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface 0 100 200 300 SOURCE IMPEDANCE (Ω) 400 500 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface CONVERTING AT 1.25Msps 50 48 STATIC 46 42 54 53 52 50 -1 -2 500 1000 1500 2000 10 CONVERSION RATE (kHz) FREQUENCY (MHz) MAX1383 AVDD SUPPLY CURRENT vs. SUPPLY VOLTAGE MAX1383 AVDD SUPPLY CURRENT vs. SUPPLY VOLTAGE MAX1383 INTERNAL REFERENCE VOLTAGE vs. ANALOG SUPPLY VOLTAGE 50 CONVERTING AT 1.25Msps 48 STATIC 46 44 50 CONVERTING AT 1.25Msps 48 46 STATIC 44 4.65 4.85 5.05 5.25 TEMPERATURE AT TA = -40°C 2.494 TEMPERATURE AT TA = +85°C 2.493 2.492 2.491 40 4.45 TEMPERATURE AT TA = +25°C 2.495 42 40 2.496 MAX1377 toc43 52 42 2.497 MAX1377 toc42 EXTERNAL REFERENCE VREFIO (V) 52 54 AVDD SUPPLY CURRENT (mA) MAX1377 toc41 INTERNAL REFERENCE 4.25 1 TEMPERATURE (°C) 56 54 -3 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE AT TA = +125°C 2.490 4.25 4.45 4.65 4.85 5.05 5.25 4.75 4.85 4.95 5.05 5.15 5.25 VCC (V) VCC (V) VCC (V) MAX1383 INTERNAL REFERENCE VOLTAGE vs. TEMPERATURE MAX1383 EXTERNAL REFERENCE SUPPLY CURRENT vs. TEMPERATURE MAX1383 DIGITAL SUPPLY CURRENT vs. TEMPERATURE VAVDD = 5V 1.47 IEXREFIO (µA) 2.497 2.495 2.493 1.70 MAX1377 toc46 1.48 MAX1377 toc44 2.499 1.68 1.46 IDVDD (mA) AVDD SUPPLY CURRENT (mA) MAX1377 toc39 55 51 44 VREFIO (V) 0 OUTPUT SWING (dB) 52 MAX1383 FULL-SCALE AMPLITUDE vs. FREQUENCY MAX1377 toc45 AVDD SUPPLY CURRENT (mA) 54 56 AVDD SUPPLY CURRENT (mA) MAX1383 toc38 56 MAX1383 AVDD SUPPLY CURRENT vs. CONVERSION RATE MAX1377 toc40 MAX1383 AVDD SUPPLY CURRENT vs. TEMPERATURE 1.45 1.66 1.64 1.44 2.491 1.62 1.43 2.489 1.60 1.42 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) ______________________________________________________________________________________ www.BDTIC.com/maxim 13 MAX1377/MAX1379/MAX1383 Typical Operating Characteristics (continued) (VAVDD = 5V/3V, VL = 3V, fSCLK = 20MHz, TA = +25°C, unless otherwise noted.) Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface MAX1377/MAX1379/MAX1383 Pin Description 14 PIN NAME FUNCTION 1 REFSEL 2 REF Internal Reference Output/External Reference Input. For internal reference mode, bypass REF to RGND with a ≥ 1µF capacitor. For external reference mode, apply a reference voltage at REF. 3 RGND Reference Ground/Common Negative Input. In bipolar mode, RGND is the reference ground. In unipolar mode, RGND is the common negative input for all four analog inputs (see Figure 3). 4, 18 AGND Analog Ground 5 AVDD Analog-Supply Input. Bypass AVDD with a 10µF || 10nF capacitor to ground. 6 AIN2A Primary/Positive Analog Input Channel 2. AIN2A is the primary channel 2 input (AIN2A) if using single-ended inputs (U/B is low) and the positive channel 2 input (AIN2+) if using differential inputs (U/B is high) (see Figure 3). 7 AIN2B Secondary/Negative Analog Input Channel 2. AIN2B is the secondary channel 2 input (AIN2B) if using single-ended inputs (U/B is low) and the negative channel 2 input (AIN2-) if using differential inputs (U/B is high) (see Figure 3). 8 U/B Reference-Select Input. Drive REFSEL high to select external reference mode and power down the internal reference. Drive REFSEL low to select internal reference mode. Unipolar/Bipolar Input. Drive U/B low to select unipolar mode. Drive U/B high to select bipolar mode. In bipolar mode, the analog inputs are differential. 9 DGND 10 VL Digital Supply Ground 11 DOUT2 Serial-Data Output 2. Data is clocked out on the rising edge of SCLK. 12 DOUT1 Serial-Data Output 1. Data is clocked out on the rising edge of SCLK. 13 SCLK Serial-Clock Input. Clocks data out of the serial interface. SCLK also sets the conversion time. 14 CNVST Conversion-Start Input. Forcing CNVST high prepares the device for a conversion. Conversion begins on the falling edge of CNVST. 15 CS Active-Low, Chip-Select Input. Drive CS low to enable the serial interface. When CS is high, DOUT1 and DOUT2 are high impedance, the serial interface resets, and the device powers down. 16 S/D Single-Output/Dual-Output Selection Input. Drive S/D high to route ADC2 data through DOUT1 after ADC1 data. Drive S/D low for dual outputs with ADC1 data going to DOUT1 and ADC2 data going to DOUT2. See the Single-/Dual-Output Modes (S/D) section. 17 SEL Analog-Input Selection Input. If U/B is low (unipolar mode), drive SEL low to select the primary inputs, AIN1A and AIN2A. Drive SEL high to select the secondary inputs, AIN1B and AIN2B. In bipolar mode, SEL is ignored. 19 AIN1B Secondary/Negative Analog Input Channel 1. AIN1B is the secondary channel 1 input (AIN1B) if using single-ended inputs (U/B is low) and the negative channel 1 input (AIN1-) if using differential inputs (U/B is high) (see Figure 3). 20 AIN1A Primary/Positive Analog Input Channel 1. AIN1A is the primary channel 1 input (AIN1A) if using single-ended inputs (U/B is low) and the positive channel 1 input (AIN1+) if using differential inputs (U/B is high) (see Figure 3). — EP Digital Supply Input. Bypass VL with a 10µF || 10nF capacitor to ground. Exposed Pad. EP is internally connected to AGND. ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface The MAX1377/MAX1379/MAX1383 use an input track and hold (T/H) and SAR circuitry to convert an analog input signal to a digital 12-bit output. The dual serial interface requires a minimum of three digital lines (SCLK, CNVST, and DOUT) and provides easy interfacing to microprocessors (µPs) and DSPs. Four digital lines are required for dual-output mode. Input T/H Circuit Upon power-up, the input T/H circuit enters its tracking mode immediately. Following a conversion, the T/H enters the tracking mode on the 14th SCLK rising edge of the previous conversion (Figure 6). The T/H enters the hold mode on the falling edge of CNVST. The time required for the T/H to acquire an input signal is determined by how quickly the input capacitance is charged. If the input signal’s source impedance is high, the acquisition time lengthens. For the MAX1377/MAX1379, the acquisition time, tACQ, is the minimum time needed for the signal to be acquired (see the Definitions section). tACQ is calculated by the following equation: tACQ ≥ 9 x (RS + RIN) x CIN (MAX1377/MAX1379) where RIN = 450Ω, CIN = 16pF, and RS is the source impedance of the input signal. Figure 1 shows the acquisition time as tested using the circuit of Figure 2. The acquisition time is the time between the rising edge of a 1V to 3V step input and the falling edge of CONVST which produced a stable sample. Rs represents the source impedance of the function generator (50Ω) and Rx represents the variable filter resistance. For the MAX1383, tACQ has a typical constant value of 125ns. Also, it has a typical constant input impedance of 11kΩ. Since the input voltage seen at the pin is a function of a resistive voltage divider i.e., VIN x RIN/(RIN + RX) = VIN x 11kΩ/(11kΩ + RX), it is very important to select an RX << 11kΩ to avoid large gain error. MAX1377/MAX1379 Unipolar Mode The MAX1377/MAX1379 support two simultaneously sampled, single-ended conversions in unipolar mode. Drive U/B low for unipolar mode. In unipolar mode, switches A–D in Figure 3a close according to the position of SEL. Drive SEL low to close switches A and D and designate AIN1A and AIN2A as the active, singleended inputs referenced to RGND. Drive SEL high to close switches B and D and select AIN1B and AIN2B as the active, single-ended inputs referenced to RGND. The output code in unipolar mode is straight binary. See Figure 4a for the unipolar transfer function. MAX1377/MAX1379 Bipolar Mode Drive U/B high to configure the inputs for bipolar/differential mode. Switches A and C in Figure 3a are closed, designating AIN1A (AIN2A) and AIN1B (AIN2B) as the active, differential inputs. In bipolar mode, SEL is ignored. The output code is in two’s complement. Figure 5 shows the transfer function for bipolar mode. MAX1383 Input Mode A ±10V input mode is available on the MAX1383. It is accomplished by utilizing a resistive divider on the input followed by a low distortion amplifier to drive the track and hold circuit. Special high voltage ESD structures are also utilized on these channels. When using Rs MAX1377 fig01 1800 ACQUISITION TIME (ns) 1600 Rx ADC 1V TO 3V STEP C CONVST 1400 1200 1000 C = 1nF 800 Figure 2. Test Circuit 600 400 C = 120pF AIN1A (AIN2A) 200 0 0 50 100 150 200 AIN1B (AIN2B) RGND CIN RIN TO ADC+ B C SOURCE IMPEDANCE, Rx (Ω) Figure 1. MAX1377/MAX1379 Acquisition Time vs. Source Impedance A CIN RIN TO ADC- D Figure 3a. MAX1377/MAX1379 Equivalent Input Circuit ______________________________________________________________________________________ www.BDTIC.com/maxim 15 MAX1377/MAX1379/MAX1383 Detailed Description the MAX1383, the signal bandwidth is limited to 100kHz by specification. Since ±10V signals are divided down to a 2.5V range, this version should only be used with signals greater than 5V. For those applications with signals 5V or less, use the MAX1377/MAX1379 for best SNR performance. The configuration is shown on Figure 3b. Input Bandwidth The ADC’s input-tracking circuitry has a 5MHz smallsignal bandwidth, allowing the ADC to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC’s sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended. ±10V input swings. All inputs must not exceed the stated ranges for accurate conversions. Internal Reference Mode Drive REFSEL low to select internal reference mode. The MAX1377 includes an on-chip 2.048V reference; the MAX1379 has a 4.096V reference; and the MAX1383 includes a 2.5V internal reference. The reference output at REF can be used as a reference voltage source for other components. REF can source up to 2mA. Bypass REF with a 10nF capacitor and a 4.7µF capacitor to RGND. It is important to select a low ESR capacitor and keep the trace resistance as low as possible. Analog Input Protection REF (2.5V) R2 RIN ~ 11KΩ (typ) R1 INPUT FULL-SCALE TRANSITION MAX1383 +FS = 4VREF 111...111 111...110 ZS = 0 111...101 -FS = -4VREF 8 x VREF 1 LSB = 4096 DIGITAL OUTPUT CODE Internal protection diodes that clamp the analog input to AVDD and AGND allow the analog inputs to swing from AGND - 0.3V to AVDD + 0.3V without damage to the MAX1377 and MAX1379. The MAX1383 can handle 000...011 R4 INA 000...010 3pF R3 000...001 T/H 000...000 -FS INTERNAL SIGNAL GROUND VREF - 1 LSB +FS +FS - 3/2 LSB INPUT VOLTAGE (LSB) Figure 4b. MAX1383 Single-Ended Input Figure 3b. MAX1383 Equivalent Input Circuit FULL-SCALE TRANSITION FULL-SCALE TRANSITION MAX1377/ MAX1379 011...111 111...111 111...101 FS = VREF 011...100 ZS = 0 V 1 LSB = REF 4096 000...010 DIGITAL OUTPUT CODE 111...110 DIGITAL OUTPUT CODE MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface VREF 2 ZS = 0 -VREF -FS = 2 V 1 LSB = REF 4096 +FS = 000...001 000...000 111...111 MAX1383 111...110 +FS = 4VREF ZS = 0 -FS = -4VREF 8 x VREF 1 LSB = 4096 111...101 000...011 000...010 100...001 000...001 100...000 000...000 0 1 2 3 INPUT VOLTAGE (LSB) FS FS - 3/2 LSB Figure 4a. MAX1377/MAX1379 Unipolar Transfer Function (U/B = Low) 16 -FS VREF - 1 LSB DIFFERENTIAL INPUT VOLTAGE (LSB) +FS +FS - 3/2 LSB Figure 5. Bipolar Transfer Function (U/B = High) ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface Initialization After Power-Up Upon initial power-up, the MAX1377/MAX1379/ MAX1383 require a complete conversion cycle to initialize the internal calibration. Following this initialization, the ADC is ready for normal operation. This initialization is only required after a hardware power-on reset and is not required after exiting partial or full power-down mode. Input Voltage Range (MAX1383) The input range on the MAX1383 has an 8x relationship with the reference voltage. For example, when the reference voltage (internal or external) is 2.5V, the input range is ±10V (20VP-P). Starting a Conversion and Reading the Output With SCLK idling high or low, a falling edge on CNVST begins a conversion (see Figure 6). This causes the analog input stage to transition from track to hold mode. SCLK provides the timing for the conversion process, and data is shifted out as each bit of the result is determined. A rising edge in CNVST forces the device into one of three modes. The mode is determined by the clock cycle in which the transition occurs and whether the device is set for single or dual outputs. Figures 7 and 8 show each mode that is activated with a rising CNVST edge for single and dual outputs. External Reference Mode Drive REFSEL high to select external reference mode. Apply a reference voltage at REF. Bypass REF with a 10nF capacitor and a 4.7µF capacitor to RGND. As with the internal reference, it is important to select a low ESR capacitor and keep the trace resistance as low as possible. CS tCSW CNVST tSETUP tCH 13 1 SCLK tCL tCST 14 tACQ tDOUT D11 DOUT_ D10 D9 D8 D7 D6 D5 D4 D3 D2 D0 D1 tDHOLD INTERNAL T/H STATE TRACKING HOLD MODE Figure 6. Detailed Serial-Interface Timing Diagram CS CNVST POWER-DOWN CONTINUOUS MODE DOUT1 HI-Z DOUT1 GOES HI-Z SCLK 1 2 3 4 14 28 29 Figure 7. Single-Output CNVST Transition Modes ______________________________________________________________________________________ www.BDTIC.com/maxim 17 MAX1377/MAX1379/MAX1383 Serial Interface The internal reference is continuously powered-up during both normal and partial power-down modes. In full power-down mode, the internal reference is disabled. Allow at least 2ms recovery time after a power-on reset or exiting full power-down mode for the reference to settle to its intended value. MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface CS CNVST POWER-DOWN 1 SCLK 3 2 4 CONTINUOUS MODE 16 15 14 DOUT_ HI-Z 17 DOUT_ HI-Z Figure 8. Dual-Output CNVST Transition Modes SINGLE CONVERSION CNVST 8 1 SCLK 0 DOUT_ 0 0 D11 D10 D9 16 9 D4 D5 D6 D7 D8 D3 D2 D1 D0 HIGH-Z HIGH-Z CONTINUOUS-CONVERSION SELECTION WINDOW* CONTINUOUS CONVERSION CNVST SCLK DOUT_ 8 1 0 0 0 D11 D10 D9 D8 14 9 D7 D6 D5 D4 D3 D2 16 D1 1 D0 *CNVST MUST GO HIGH BETWEEN THE 14TH RISING AND 16TH FALLING EDGES OF SCLK. TO MAINTAIN CONTINUOUS CONVERSIONS, DOUT_ REMAINS LOW BETWEEN CONVERSION RESULTS IN CONTINUOUS-CONVERSION DUAL-OUTPUT MODE. Figure 9. Dual-Output Mode, Single and Continuous Conversions DOUT1 (and DOUT2, if S/D = low) transitions from high impedance to being actively driven low once the ADC enters hold mode. DOUT_ remains low for the first three SCLK pulses and begins outputting the conversion result after the 4th rising edge of SCLK, MSB first. DOUT_ transitions complete tDOUT after each SCLK rising edge and the DOUT_ values remain valid for tHOLD after the next rising edge of SCLK. A total of 16 SCLK pulses are required to complete a normal conversion in dual-output mode and 28 SCLK pulses in single-output mode. DOUT_ goes low after the 16th rising edge of SCLK and goes high-impedance when CNVST goes high. 18 For continuous operation in single-output mode, pull CNVST high after the 14th rising and before the 28th rising edge of SCLK. In dual-output mode, if CNVST returns high after the 14th rising and before the 16th falling edge of SCLK, DOUT_ remains active so continuous conversions can be sustained. If CNVST is low during the 16th edge of SCLK (dual-conversion mode) and the 28th falling edge of SCLK (single-output mode), DOUT_ returns to its high-impedance state on the next rising edge of CNVST or SCLK, enabling the serial interface to be shared by multiple devices. See Figures 9 and 10 for single and continuous conversion timing diagrams. ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface Partial Power-Down (PPD) Reduce power consumption by placing the MAX1377/ MAX1379 in partial power-down mode. Partial powerdown mode is ideal for infrequent data sampling and applications requiring fast wake-up times. Pull CNVST high after the 3rd and before the 14th rising edge of SCLK to place the device in partial power-down mode. This reduces the analog supply current to 2mA. While in partial power-down mode, the internal reference remains enabled (if REFSEL = GND). Figure 11 shows the timing sequence to enter partial power-down mode. Full Power-Down Mode (FPD) Full power-down mode is ideal for infrequent data sampling and very low-supply current applications. To enter full power-down mode, place the MAX1377/MAX1379/ MAX1383 first in partial power-down mode. Perform the CNVST/SCLK sequence necessary to enter partial power-down mode. Repeat the same sequence to enter full power-down mode. In full power-down mode, the internal reference is disabled to minimize power consumption. Figure 12 shows the timing sequence to enter full power-down mode. Another way to enter the full power-down mode is to drive CS high. If CS is high, the MAX1377/MAX1379/ MAX1383 act as if the full power-down sequence were issued. To exit the CS-initiated power-down mode, drive CS low. Allow 2ms for the reference to wake up and settle before performing a conversion. SINGLE CONVERSION (SINGLE OUTPUT) CNVST SCLK DOUT1 8 1 0 0 0 D11 D10 D9 D8 9 D7 16 D6 D5 D4 D3 D2 D1 D0 17 24 D11 D10 D9 D8 CHANNEL 1 CONVERSION RESULT D7 D6 D5 D4 28 D3 D2 D1 D0 HIGH-Z CHANNEL 2 CONVERSION RESULT CONTINUOUS CONVERSION (SINGLE OUTPUT) CNVST SCLK DOUT1 8 1 0 0 0 D11 D10 D9 D8 9 14 D7 D6 D5 D4 D3 D2 D1 D0 CHANNEL 1 CONVERSION RESULT 16 17 24 D11 D10 D9 D8 D7 D6 D5 D4 CHANNEL 2 CONVERSION RESULT 25 D3 27 28 D2 D1 D0 Figure 10. Single-Output Mode, Single and Continuous Conversions ______________________________________________________________________________________ www.BDTIC.com/maxim 19 MAX1377/MAX1379/MAX1383 Power-Down Modes Single-/Dual-Output Modes (S/D) In dual-output mode, conversion results from the two channels appear on separate outputs. DOUT1 outputs the result from channel 1 and DOUT2 outputs the result from channel 2. Drive S/D low to operate in dual-output mode. For DSPs with two-buffer and two-input-stream capability, use the dual-output mode to allow for easier DSP software for dual streams. Two buffer locations can be used so the streams do not need to be separated. In single-output mode, the results from both channels appear on DOUT1. The channel 2 conversion result follows the channel 1 conversion result (see Figure 10). The MSB (D11) of the channel 2 conversion result appears on DOUT1 after the 16th rising edge of SCLK. The LSB (D0) of the channel 2 conversion result appears on DOUT1 after the 27th rising edge of SCLK and is ready to be clocked in on the 28th rising edge of SCLK. DOUT2 is high-impedance when S/D is high. If CNVST goes high after the 28th rising edge of SCLK, DOUT1 goes high impedance until the next conversion is initiated (single-conversion mode). If CNVST goes high after the 14th rising edge and before the 28th rising edge of SCLK, DOUT1 is actively driven low until the next conversion results are ready (continuous- conversion mode). Note: In single-output mode, the conversion speed is limited to 0.625Msps by the maximum SCLK. MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface PPD WINDOW CNVST CNVST MUST GO HIGH AFTER THE 3RD BUT BEFORE THE 14TH SCLK RISING EDGE SCLK 3 1 9 1ST SCLK RISING EDGE 0 DOUT_ 0 0 MODE 14 DOUT_ GOES HIGH IMPEDANCE ONCE CNVST GOES HIGH D11 D10 D9 D8 D7 NORMAL PARTIAL POWER-DOWN ENABLED REF Figure 11. Partial Power-Down Timing Sequence EXECUTE PARTIAL POWER-DOWN SEQUENCE TWICE CNVST SCLK 1ST SCLK RISING EDGE DOUT_ MODE 0 0 0 DOUT_ ENTERS THREE-STATE ONCE CNVST GOES HIGH 1ST SCLK RISING EDGE D11 D10 D9 D8 D7 0 NORMAL 0 0 0 0 0 0 0 FPD PPD ENABLED REF DISABLED Figure 12. Full Power-Down Mode Timing Sequence Exiting Partial and Full Power-Down Modes Drive CNVST low and allow at least 14 SCLK cycles to elapse before driving CNVST high to exit partial or full power-down mode. When exiting partial power-down mode, conversions can begin immediately without having to wait for the reference to wake-up. When exiting full power-down mode, allow at least 2ms recovery time after exiting to ensure that the internal reference has settled. In partial or full power-down mode, maintain idle SCLK low or high to minimize power. 20 Applications Information SPI and MICROWIRE The MAX1377/MAX1379/MAX1383 are compatible with all four modes programmed with the CPHA and CPOL bits in the SPI or MICROWIRE control register. Conversion begins with a CNVST falling edge. DOUT_ goes low, indicating a conversion is in progress. Two consecutive 8-bit reads are required to get the full 12 bits from the ADC. DOUT_ transitions on the rising edge of SCLK. DOUT_ is guaranteed to be valid tDOUT after the rising edge of SCLK and remains valid until tDHOLD after the next SCLK rising edge (see Figure 13). ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface QSPI Unlike SPI, which requires two 8-bit reads to acquire the 12 bits of data from the ADC, QSPI allows the minimum number of clock cycles necessary to clock in the data. The MAX1377/MAX1379/MAX1383 require 16 clock cycles from the µC to clock out the 12 bits of data. The conversion result contains three zeros followed by the 12 data bits, and a trailing zero with the data in the MSB-first format. Three-Phase Motor Controller The MAX1377/MAX1379/MAX1383 are ideally suited for motor-control systems (Figure 16). The devices’ simultaneously sampled inputs eliminate the need for complicated DSP algorithms that realign sequentially sampled data into a simultaneous sample set. The ±10V (MAX1383) input allows for standard industrial inputs, eliminating the need for voltage-scaling amplifiers. CNVST I/O SCLK tDOUT tDHOLD SCK SCLK MISO1 DOUT1 MISO2 DOUT2 3V TO 5V MAX1377 MAX1379 MAX1383 DOUT_ SS A) SPI Figure 13. Data Valid and Hold Times CNVST CS SCK SCLK MISO1 DOUT1 DOUT2 MISO2 3V TO 5V SUPPLIES ANALOG SUPPLY DIGITAL SUPPLY RETURN RETURN SS OPTIONAL FERRITE BEAD AVDD MAX1377 MAX1379 MAX1383 B) QSPI VL AGND MAX1377 MAX1379 MAX1383 DGND VDD GND I/O CNVST SK SCLK SI1 DOUT1 SI2 DOUT2 MAX1377 MAX1379 MAX1383 DIGITAL CIRCUITRY C) MICROWIRE Figure 14. Power-Supply Grounding and Bypassing Figure 15. Common Serial-Interface Connections to the MAX1377/MAX1379/MAX1383 ______________________________________________________________________________________ www.BDTIC.com/maxim 21 MAX1377/MAX1379/MAX1383 For CPOL = 0 and CPHA = 0 or CPOL = 1 and CPHA = 1, the data is clocked into the µC on the rising edge of SCLK. For CPOL = 0 and CPHA = 1 or CPOL = 1 and CPHA = 0, the data is clocked into the µC on the falling edge of SCLK. The MAX1377/MAX1379/MAX1383 are compatible with all CPOL/CPHA configurations since the data is valid on the falling and rising edge of SCLK. MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface MAX1383 AIN1A MISO1 12-BIT ADC T/H MISO2 12-BIT ADC T/H DSP-BASED DIGITAL PROCESSING ENGINE AIN1B AIN2A AIN2B IGBT CURRENT DRIVERS CURRENT SENSORS IPHASE2 IPHASE1 THREE-PHASE ELECTRIC MOTOR PHASE 2 PHASE 1 PHASE 3 SIN/COS POSITION RESOLVER IPHASE3 = - IPHASE1 - IPHASE2 Figure 16. Three-Phase Motor Control 22 ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface AVDD VL MAX1377 I QUADRATURE DEMODULATOR Q Establish a single-point analog ground (star ground point) at AGND, separate from the digital ground, DGND. Connect all other analog grounds and DGND to this star ground point for further noise reduction. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation. See Figure 14. High-frequency noise in the AVDD power supply affects the ADC’s high-speed comparator. Bypass the supply to the single-point analog ground with 0.01µF and 10µF bypass capacitors. Minimize capacitor lead lengths for best supply-noise rejection. Definitions Integral Nonlinearity 12-BIT ADC 12-BIT ADC DSP PROCESSING T/R Layout, Grounding, and Bypassing For best performance, use PCBs with ground planes. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another or digital lines underneath the ADC package. VL DAC QUADRATURE TRANSMITTER DAC Figure 17. Quadrature Wireless-Communication System Aperture Delay Aperture delay (tAD) is the time defined between the falling edge of CNVST and the instant when an actual sample is taken. Signal-to-Noise Ratio For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of fullscale analog input (RMS value) to the RMS quantization error (residual error). The theoretical minimum analogto-digital noise is caused by quantization error, and results directly from the ADC’s resolution (N bits): SNR = (6.02 x N + 1.76)dB Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nulled. The static linearity parameters for the MAX1377/MAX1379/ MAX1383 are measured using the end-points method. In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock jitter, etc. Therefore, SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset. Differential Nonlinearity Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency’s RMS amplitude to the RMS equivalent of all other ADC output signals: SINAD(dB) = 20 x log(SignalRMS/NoiseRMS) Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of 1 LSB or less guarantees no missing codes and a monotonic transfer function. Aperture Jitter Aperture jitter (tAJ) is the sample-to-sample variation in the time between the samples. Signal-to-Noise Plus Distortion Effective Number of Bits Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC’s error consists of quanti- ______________________________________________________________________________________ www.BDTIC.com/maxim 23 MAX1377/MAX1379/MAX1383 Wireless Communication Use the MAX1377/MAX1379/MAX1383 in a variety of wireless communication systems. These devices allow precise, simultaneous sampling of the I and Q signals of quadrature RF receiver systems. Figure 17 shows the MAX1377 in a simplified quadrature system. The device has a differential input option that allows either full differential or psuedo-differential signals. The 2:1 input mux allows measurement of RSSI and other systemmonitoring functions with this device. Intermodulation Distortion zation noise only. With an input range equal to the fullscale range of the ADC, calculate the ENOB as follows: Any device with nonlinearities creates distortion products when two sine waves at two different frequencies (f1 and f2) are input into the device. Intermodulation distortion (IMD) is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones, f1 and f2. The individual input tone levels are at -6dBFS. ⎛ SINAD − 1.76 ⎞ ENOB = ⎜ ⎟ ⎝ ⎠ 6.02 Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as: CNVST SCLK DOUT1 DOUT2 Pin Configuration ⎞ ⎟ ⎟ ⎠ CS ⎛ V 22 + V 32 + V 4 2 + V 52 THD = 20 × log⎜ V1 ⎜ ⎝ 15 14 13 12 11 TOP VIEW where V1 is the fundamental amplitude, and V2 through V5 are the amplitudes of the 2nd- through 5th-order harmonics. S/D 16 SEL 17 Spurious-Free Dynamic Range Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest distortion component. MAX1377 MAX1379 MAX1383 AGND 18 AIN1B 19 AIN1A 20 10 VL 9 DGND 8 U/B 7 AIN2B 6 AIN2A (EXPOSED PAD)* + Full-Linear Bandwidth 4 5 AVDD TQFN *CONNECT PAD TO AGND Full-linear bandwidth is the frequency at which the signal-to-noise plus distortion (SINAD) is equal to 56dB. 3 AGND 2 RGND 1 REF Full-Power Bandwidth Full-power bandwidth is the frequency at which the input signal amplitude attenuates by 3dB for a full-scale input. REFSEL MAX1377/MAX1379/MAX1383 Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface Selector Guide SUPPLY VOLTAGE (V) INTERNAL REFERENCE VOLTAGE (V) INPUT VOLTAGE RANGE SAMPLING RATE (Msps) MAX1377 2.7 to 3.6 2.048 0 to VREF, ±VREF/2 1.25 MAX1379 4.75 to 5.25 4.096 0 to VREF, ±VREF/2 1.25 MAX1383 4.75 to 5.25 2.5 ±10V 1.25 PART Package Information Chip Information PROCESS: BiCMOS 24 For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 TQFN-EP T2055-4 21-0140 ______________________________________________________________________________________ www.BDTIC.com/maxim Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface PAGES CHANGED REVISION NUMBER REVISION DATE 0 7/08 Initial release of the MAX1377/MAX1379 — 1 2/09 Initial release of the MAX1383 — DESCRIPTION Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25 © 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. www.BDTIC.com/maxim MAX1377/MAX1379/MAX1383 Revision History