MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP General Description
by user
Comments
Transcript
MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP General Description
19-5708; Rev 0; 12/10 KIT ATION EVALU E L B A IL AVA Ultra-Low Power Op Amp in a Tiny 6-Bump WLP The MAX44264 is an ultra-small (6-bump WLP) op amp that draws only 750nA of supply current. It operates from a single +1.8V to +5.5V supply and features ground-sensing inputs and rail-to-rail output. The ultralow supply current, low-operating voltage, and rail-torail output capabilities make these operational amplifiers ideal for use in single lithium ion (Li+), or twocell NiCd or alkaline battery systems. The rail-to-rail output stage of the MAX44264 is capable of driving the output voltage to within 4mV of the rail with a 100kΩ load, and can sink and source 11mA with a +5V supply. The IC is unity-gain stable and available in a space-saving 0.9mm x 1.3mm, 6-bump WLP package. Applications Cell Phones Features o o o o o o o Ultra-Low 750nA Supply Current per Amplifier Ultra-Low +1.8V Supply Voltage Operation Ground-Sensing Input Common-Mode Range Outputs Swing Rail-to-Rail Outputs Source and Sink 11mA of Load Current No Phase Reversal for Overdriven Inputs High 120dB Open-Loop Voltage Gain o Low 500µV Input Offset Voltage o 9kHz Gain-Bandwidth Product o 250pF (min) Capacitive Load Capability o Available in a Tiny, 0.9mm x 1.3mm, 6-Bump WLP Package Ordering Information Tablet/Notebook Computers Mobile Accessories PART TEMP RANGE PINPACKAGE TOP MARK MAX44264EWT+ -40°C to +85°C 6 WLP +CB Battery-Powered Devices +Denotes a lead(Pb)-free/RoHS-compliant package. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. www.BDTIC.com/maxim 1 MAX44264 General Description MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP ABSOLUTE MAXIMUM RATINGS VDD to VSS ...............................................................-0.3V to +6V IN_+ or IN_-......................................(VSS - 0.3V) to (VDD + 0.3V) OUT_ Shorted to VSS or VDD ......................................Continuous Continuous Power Dissipation (TA = +70°C) 6-Bump WLP (derate 10.5mW/°C above +70°C) .............840mW Operating Temperature Range ......................... -40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) ................................+300°C Soldering Temperature (reflow) ......................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VDD = +5V, VSS = 0V, VCM = 0V, VOUT = VDD/2, RL = ∞ to VDD/2, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage Range VDD Supply Current (per Amplifier) IDD Input Offset Voltage VOS CONDITIONS Guaranteed by PSRR tests MIN TYP UNITS 5.5 V VDD = +1.8V 0.6 VDD = +5.0V 0.75 1.2 ±0.5 ±7.0 mV ±1500 pA IB ±200 Input Offset Current IOS ±12.5 Input Common-Mode Voltage Range VCM Input Bias Current MAX 1.8 Guaranteed by the CMRR test VSS µA pA VDD 1.1 V Common-Mode Rejection Ratio CMRR Specified with VSS ≤ VCM ≤ (VDD - 1.1V) 70 95 dB Power-Supply Rejection Ratio PSRR +1.8V ≤ VDD ≤ +5.5V 70 90 dB RL = 1MΩ, VOUT = 50mV to VDD - 50mV 90 120 Large-Signal Voltage Gain AVOL RL = 100kΩ, VOUT = 200mV to VDD - 200mV 90 112 VOH RL = 10kΩ, VOUT = 200mV to VDD - 200mV 100 Swing high specified as VDD - VOH RL = 1MΩ 1 4 RL = 100kΩ 4 10 RL = 10kΩ 40 Swing low specified as VOL - VSS RL = 1MΩ 0.5 5 RL = 100kΩ 1 5 RL = 10kΩ 10 Output Voltage Swing VOL Gain-Bandwidth Product Phase Margin 2 dB mV GBW 9 kHz φM 90 degrees _______________________________________________________________________________________ www.BDTIC.com/maxim Ultra-Low Power Op Amp in a Tiny 6-Bump WLP (VDD = +5V, VSS = 0V, VCM = 0V, VOUT = VDD/2, RL = ∞ to VDD/2, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL Slew Rate SR Input Voltage Noise en Output Short-Circuit Current Power-On Time Power-Off Time tON tOFF Capacitive Load CLOAD CONDITIONS MIN VOUT = 4V step TYP MAX 2 f = 1kHz 150 f = 10kHz 120 Shorted to VSS (sourcing) 11 Shorted to VDD (sinking) 36 V/ms nV/√Hz mA 2 µs µs 2 No sustained oscillations UNITS 250 pF ELECTRICAL CHARACTERISTICS (VDD = +5V, VSS = 0V, VCM = 0V, VOUT = VDD/2, RL = ∞ to VDD/2, TA = TMIN to TMAX, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS Supply Voltage Range VDD Guaranteed by PSRR tests Supply Current (per Amplifier) IDD VDD = +5.0V Input Offset Voltage VOS Input Offset Voltage Temperature Coefficient Input Bias Current MIN TYP 1.8 VCM Common-Mode Rejection Ratio CMRR Power-Supply Rejection Ratio PSRR Large-Signal Voltage Gain AVOL UNITS 5.5 V 1.5 µA ±15 mV 8 TCVOS IB Input Common-Mode Voltage Range MAX Guaranteed by the CMRR test VSS VSS ≤ VCM ≤ (VDD - 1.1V) 56 +1.8V ≤ VDD ≤ +5.5V, 0oC ≤ TA ≤ +85oC 65 +2V ≤ VDD ≤ +5.5V, -40oC ≤ TA ≤ +85oC 65 VOUT = 50mV to VDD - 50mV, RL = 1MΩ 75 VOUT = 200mV to VDD - 200mV, RL = 100kΩ 75 µV/°C 4.25 nA VDD 1.1 V dB dB dB VOH Swing high specified as VDD - VOH RL = 1MΩ 5 RL = 100kΩ 15 VOL Swing low specified as VOL - VSS RL = 1MΩ 5 RL = 100kΩ 5 Output Voltage Swing mV Note 1: All devices are production tested at TA = +25°C. All temperature limits are guaranteed by design. _______________________________________________________________________________________ www.BDTIC.com/maxim 3 MAX44264 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VDD = +5V, VSS = 0V, VCM = 0V, RL = 100kΩ to VDD/2, TA = +25°C, unless otherwise noted.) SUPPLY CURRENT vs. TEMPERATURE 0.8 0.6 0.5 0.4 0.3 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.40 0.25 0.20 0.15 0.10 0.05 0 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 TEMPERATURE (°C) OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE INPUT BIAS CURRENT vs. TEMPERATURE INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE 0.30 0.25 0.20 0.15 0.10 -100 -150 -200 -250 -300 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -30 -40 -50 -60 -80 -90 -400 0 -20 -70 -350 0.05 -50 -25 0 25 50 75 0 100 0.5 1.0 1.5 2.0 2.5 3.0 3.5 COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) COMMON-MODE VOLTAGE (V) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY OUTPUT VOLTAGE SWING LOW vs. TEMPERATURE OUTPUT VOLTAGE SWING HIGH vs. TEMPERATURE 1.4 RL = 100kΩ 5 1.2 -40 -50 -60 -70 VDD - VOH (mV) VOL - VSS (mV) -30 1.0 0.8 0.6 0.4 -80 RL = 1MΩ -90 10 100 1k FREQUENCY (Hz) 10k 3 2 RL = 1MΩ 0 0 -100 RL = 100kΩ 4 1 0.2 4.0 MAX44264 toc09 -20 6 MAX44264 toc08 1.6 MAX44264 toc07 0 -10 100 MAX44264 toc06 0 -10 INPUT BIAS CURRENT (pA) -50 INPUT BIAS CURRENT (pA) 0.35 MAX44264 toc05 0 MAX44264 toc04 0.40 4 0.30 TEMPERATURE (°C) 0.45 0 0.35 SUPPLY VOLTAGE (V) 0.50 OFFSET VOLTAGE (mV) 0.45 OFFSET VOLTAGE (mV) SUPPLY CURRENT (μA) 0.7 0.50 MAX44264 toc02 0.8 SUPPLY CURRENT (μA) 0.9 MAX44264 toc01 0.9 OFFSET VOLTAGE vs. TEMPERATURE MAX44264 toc03 SUPPLY CURRENT vs. SUPPLY VOLTAGE PSRR (dB) MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP -50 -25 0 25 50 TEMPERATURE (°C) 75 100 -50 -25 0 25 50 TEMPERATURE (°C) _______________________________________________________________________________________ www.BDTIC.com/maxim 75 100 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP 1.2 -70 -80 -90 -100 0.8 0.6 0 25 50 75 100 60 -50 0 25 50 75 2.5 100 3.0 4.0 4.5 OUTPUT VOLTAGE (Vp-p) GAIN AND PHASE vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY GAIN 45 0 GAIN (dB) 90 -45 PHASE -90 100 1k 10k -135 100k 180 5.0 MAX44264 toc15 10.00 135 GAIN 90 45 0 RL = 1MΩ AVCL = 1000V/V CL = 250pF 1 10 0.10 -45 PHASE 1.00 -90 100 1k 10k -135 100k 0.01 10 100 1k 10k FREQUENCY (Hz) STABILITY vs. CAPACITIVE AND RESISTIVE LOADS VOLTAGE NOISE DENSITY vs. FREQUENCY 100 36 ISINK 32 28 10k IOUT (mA) CAPACITIVE LOAD (pF) 1k IOUT vs. VOUT 40 MAX44264 toc17 100k MAX44264 toc16 10k MAX44264 toc18 10 MAX44264 toc14 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 PHASE (deg) MAX44264 toc13 180 CL = 12pF RL = 1MΩ 135 AVCL = 1000V/V FREQUENCY (Hz) NOISE (nV/√Hz) 3.5 TEMPERATURE (°C) 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 1 -25 TEMPERATURE (°C) PHASE (deg) GAIN (dB) -25 RL = 10kΩ 100 70 0 -50 110 80 0.2 -120 RL = 100kΩ 90 0.4 -110 RL = 1MΩ 120 1.0 AVOL (dB) -60 130 THD + N (%) CMRR (dB) -50 140 MAX44264 toc11 -40 MINIMUM SUPPLY VOLTAGE (V) -30 AVOL vs. OUTPUT VOLTAGE SWING 1.4 MAX44264 toc10 -20 MINIMUM SUPPLY VOLTAGE vs. TEMPERATURE MAX44264 toc12 COMMON-MODE REJECTION RATIO vs. TEMPERATURE UNSTABLE REGION 1k 24 20 16 12 ISOURCE 8 4 0 100 10 10 100 1k 10k FREQUENCY (Hz) 100k 10k 100k RESISTIVE LOAD (Ω) 1M 0 1 2 3 4 5 VOUT (V) _______________________________________________________________________________________ www.BDTIC.com/maxim 5 MAX44264 Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0V, VCM = 0V, RL = 100kΩ to VDD/2, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0V, VCM = 0V, RL = 100kΩ to VDD/2, TA = +25°C, unless otherwise noted.) VDD = +5V AV = +1V/V RL = 1MΩ CL = 250pF INPUT 50mV/div INPUT 50mV/div OUTPUT 50mV/div OUTPUT 50mV/div OUTPUT 500mV/div VDD = +5V AV = +1V/V RL = 1MΩ CL = 1000pF 500μs/div 500μs/div 500μs/div MAX44264 toc23 MAX44264 toc22 OUTPUT 500mV/div 30 VDD = +5V AV = +1V/V RL = 1MΩ CL = 1000pF INPUT 500mV/div 25 PERCENT OVERSHOOT (%) VDD = +5V AV = +1V/V RL = 1MΩ CL = 12pF INPUT 500mV/div PERCENT OVERSHOOT vs. CAPACITIVE LOAD LARGE-SIGNAL STEP RESPONSE LARGE-SIGNAL STEP RESPONSE OUTPUT 500mV/div MAX44264 toc24 VDD = +5V AV = +1V/V RL = 1MΩ CL = 12pF MAX44264 toc21 MAX44264 toc20 MAX44264 toc19 INPUT 500mV/div SMALL-SIGNAL STEP RESPONSE SMALL-SIGNAL STEP RESPONSE SMALL-SIGNAL STEP RESPONSE RL = 1MΩ 20 RL = 100kΩ 15 10 RL = 10kΩ 5 0 0 500μs/div 500μs/div 50 100 150 CLOAD (pF) SMALL-SIGNAL GAIN vs. FREQUENCY 1 0 1 0 GAIN (dB) -2 -3 -4 AV = 1 -1 -2 -3 -4 -5 -5 -6 -6 -7 -7 100 1k FREQUENCY (Hz) 6 RL = 100kΩ VOUT = 100mVP-P CL = 12pF 2 AV = 1 -1 MAX44264 toc26 RL = 10kΩ VOUT = 100mVP-P CL = 12pF 2 SMALL-SIGNAL GAIN vs. FREQUENCY 3 MAX44264 toc25 3 GAIN (dB) MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP 10k 100 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ www.BDTIC.com/maxim 200 250 300 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP RL = 1MΩ VOUT = 100mVP-P CL = 12pF 1 AV = 1 -1 RL = 10kΩ VOUT = 1VP-P CL = 12pF 0 GAIN (dB) GAIN (dB) 0 2 -2 -3 AV = 1 -1 -2 -3 -4 -4 -5 -5 -6 -6 -7 -7 100 1k 10k 100 100k LARGE-SIGNAL GAIN vs. FREQUENCY 2 1 RL = 100kΩ VOUT = 1VP-P CL = 12pF 2 1 RL = 1MΩ VOUT = 1VP-P CL = 12pF AV = 1 0 -1 GAIN (dB) GAIN (dB) LARGE-SIGNAL GAIN vs. FREQUENCY AV = 1 0 10k 3 MAX44264 toc29 3 1k FREQUENCY (Hz) FREQUENCY (Hz) MAX44264 toc30 1 MAX44264 toc27 2 3 MAX44264 toc28 LARGE-SIGNAL GAIN vs. FREQUENCY SMALL-SIGNAL GAIN vs. FREQUENCY 3 -2 -3 -4 -1 -2 -3 -4 -5 -5 -6 -6 -7 -7 100 1k FREQUENCY (Hz) 10k 100 1k 10k FREQUENCY (Hz) _______________________________________________________________________________________ www.BDTIC.com/maxim 7 MAX44264 Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0V, VCM = 0V, RL = 100kΩ to VDD/2, TA = +25°C, unless otherwise noted.) Ultra-Low Power Op Amp in a Tiny 6-Bump WLP MAX44264 Pin Configuration TOP VIEW MAX44264 + IN+ A1 A2 VSS IN- B1 B2 VDD OUT C1 C2 N.C. WLP BUMP SIDE DOWN Pin Description PIN NAME FUNCTION A1 IN+ Noninverting Amplifier Input A2 VSS Negative Power-Supply Voltage B1 IN- Inverting Amplifier Input B2 VDD Positive Power-Supply Voltage C1 OUT Amplifier Output C2 N.C. No Connection. Not internally connected. Applications Information Ground Sensing The common-mode input range of the MAX44264 extends down to ground, and offers excellent commonmode rejection. These devices are guaranteed not to undergo phase reversal when the input is overdriven. Power Supplies and Layout applications, good layout is extremely important because low-power requirements demand high-impedance circuits. The layout should also minimize stray capacitance at the amplifier inputs. However some stray capacitance may be unavoidable, and it may be necessary to add a 2pF to 10pF capacitor across the feedback resistor as shown in Figure 1. Select the smallest capacitor value that ensures stability. The IC operates from a single +1.8V to +5.5V power supply. Bypass power supplies with a 0.1µF ceramic capacitor placed close to the VDD pin. Ground layout improves performance by decreasing the amount of stray capacitance and noise at the op amp’s inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place external components close to the op amps’ pins. Bandwidth VCC VIN MAX44264 VSS R2 The IC is internally compensated for unity-gain stability and has a typical gain-bandwidth of 9kHz. Stability The IC maintains stability in their minimum gain configuration while driving capacitive loads. Although this product family is primarily designed for low-frequency 8 R1 2pF TO 10pF Figure 1. Compensation for Feedback Node Capacitance Chip Information PROCESS: BiCMOS _______________________________________________________________________________________ www.BDTIC.com/maxim Ultra-Low Power Op Amp in a Tiny 6-Bump WLP PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 6 WLP W61B1+1 21-0217 — _______________________________________________________________________________________ www.BDTIC.com/maxim 9 MAX44264 Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. MAX44264 Ultra-Low Power Op Amp in a Tiny 6-Bump WLP Revision History REVISION NUMBER REVISION DATE 0 12/10 DESCRIPTION PAGES CHANGED Initial release — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. www.BDTIC.com/maxim