Comments
Description
Transcript
PHY481: Electromagnetism
PHY481: Electromagnetism Solving Laplace’s equation via “Separation of Variables” 1) Cartesian coordinates 2) Spherical coordinates 3) Cylindrical coordinates Examples Lecture 20 Carl Bromberg - Prof. of Physics Cartesian coordinates Determine nature of solutions on the rectangle (unbounded z) – Grounded at x = –a/2 or +a/2 then Xk(x) = Akcos(kx) +Bksin(kx) – Grounded at y = –a/2 or +a/2 then Yk(y) = Akcos(ky) +Bksin(ky) – Other solution is then Uk(u) = Ckcosh(ku) + Dksinh(ku) (same k) Use periodic (sine or cosine) solution and boundary conditions to determine legal values of k = nπx/a (same for both solutions) Generate general solution V(x,y) = Σ Xk(x)Yk(y) Use additional boundary conditions to determine coeficients – Periodic B.C.: Vb(x0,y) = Σ Xk(x0)Yk(y) or Vb(x,y0) = Σ Xk(x)Yk(y0) – Apply Fourier Integral to both sides: 1 a Be sure to split Fourier integral (-a,-a/2,a/2,a) # Vb (x, y0 )cos m! x a (or y version) a "a – Use orthogonality on right side: a cos ( n! x a ) cos ( m! x a ) = $ mn (or y version) # – Determine coef. Ak,Bk,Ck,Dk "a Substitute into V(x,y) = Σ Xk(x)kY(y) Lecture 20 Carl Bromberg - Prof. of Physics 1 From previous Exam 2 Boundary conditions V (x, ± a 2) = 0, x ! 0 V (0, y) = 2V y / a V (x, y) ! 0, as x ! " 0 Y Solution Y ( y) = Acos ( k! y a ) + Bsin ( k! y a ) Apply boundary condition on Y solution y V (0, y) = 2V0 y a , an odd function ! A = 0. +a 2 Y (± a 2) = Bsin ( ±k " 2 ) = 0 ! k = 2n, an even integer. Apply boundary condition on X solution (same k) 2n! x a "2n! x a V (0, y) = X (x) = Ce + De ; V (x, y) # 0, as x # $, % C = 0 Most general solution consistent with boundary conditions ! V (x, y) = " K n sin ( 2n# y a ) e $2n# x a n=1 Lecture 20 ! $ n=1 x y V =0 !a 2 n=1 a Solution V (x, y) = a V (0, y) = " K n sin ( 2n# y a ) 2V 1 K n = " V (0, y)sin ( 2n# y a ) dy = 4 20 a !a a # 2V0 ! Determine coefficients 2V0 V =0 ( "1)n+1 n a 2 " 0 n+1 2V0 $ ( !1) ' % ( y sin ( 2n# y a ) dy = # & n ) sin ( 2n! y a ) e "2n! x a Carl Bromberg - Prof. of Physics 2 Spherical coordinates: V(r, θ) = R(r)Θ(θ) Laplace’s equation for potential in Spherical coordinates (no phi dep.) 1 # $ 2 #V ' 1 # $ #V ' ! V (r," ) = 2 & r )( + 2 &% sin " )( % #r #" r #r r sin " #" 2 Separate solutions Sep. of variables V (r,! ) = R(r)"(! ) B ! R(r) = Ar + r ( !+1 B! % " ! V (r,! ) = ) $ A! r + !+1 ' P! ( cos! ) r & !=0 # Boundary condition on a sphere V (a,! ) = f (! ) 1 # V (a,! )Pn (cos! )d (cos! ) "1 Lecture 20 !(" ) # F(cos" ) = P! (cos" ) Legendre Polynomials P0 ( cos! ) = 1 P1 ( cos! ) = cos! P2 ( cos! ) = ( 3cos ! " 1) 2 2 P3 ( cos! ) = (5cos ! " 3cos! ) 2 3 Orthogonality 1 # Pm (cos! ) Pn (cos! ) d (cos! ) = "1 Carl Bromberg - Prof. of Physics 2$ mn 2n+1 3 Familiar problem in spherical coordinates 1 Orthogonality of Legendre polynomials: # Pm (cos! ) Pn (cos! ) d (cos! ) = "1 Consider a grounded conducting sphere radius, a, in a constant external field, E0 in z direction E field Boundary condition V = 0 on sphere # ( V (a,! ) = 0 = $ A! a + B! a !=0 ! " ( !+1) 2$ mn 2n+1 )P (cos! ) ! Multiply by Pn ( cos! ) and integrate 1 B! ' 1 $ ! &% A! a + !+1 )( # P! ( cos! ) Pn ( cos! )d ( cos! ) # V (a,! )Pn (cos! )d (cos! ) = 0 = + a !=0 "1 "1 Boundary condition n ! ( n+1) 2n+1 V (r ! ",# ) = $ E0 z = $ E0 r cos# 0 = An a + Bn a 2 ( 2n + 1) Bn = ! An a * cos! = P1 (cos! ) !!=1 ( A1 = ! E0 ) uniform field ( B! % " ! V (r,! ) = ) $ A! r + !+1 ' P! ( cos! ) r & !=0 # Lecture 20 dipole dipole moment 3 = ! E0 r cos" + E0 a cos" r 2 Carl Bromberg - Prof. of Physics 3 E0 a = p 4!" 0 4 Another spherical coordinate problem Disk, charge density σ, radius R. Determine potential on z-axis, then at all angles. ! V (r,0) = V (z,0) = 4"# 0 2" % 0 R d$ % 0 (z &d & 2 +& ) 2 12 = ! ( 2 2 12 )(z + R ) ' z *+ 2# 0 ( Use an expansion of it to B! % " ! V (r, ! ) = A r + P! ( cos! ) ) $# ! !+1 ' find potential everywhere. & r !=0 2 2 12 (z + R ) ( = z 1+ R 2 z ) 2 12 ( 2 2 4 4 ) = z 1 + R 2z ! R 8z + ... 2 ! $ 2 !R 2 12 & V (z,0) = (z + R ) # z = % ' 2" 0 2" 0 2 $1 & R ( # 3 + …) % 2z 8z ' Match coefficients 2 "R All A! = 0 V (r,! ) = 2# 0 2 1 R B0 = ; B2 = ! 2 8 Lecture 20 2 f (! ) = 1 + f "(0)! + f ""(0) ! 2 12 f = (1 + ! ) f " = (1 + ! ) ; f (0) = 1 #1 2 f "" = #(1 + ! ) *$ B0 ' $ B2 ' +& 1 ) P0 ( cos! ) + & 3 ) P2 ( cos! ) . %r ( ,% r ( / 2 "# R V (r,! ) = 4#$ 0 12 (1 + ! ) 2 12 (1 + x ) / 2 ; f "(0) = 1 2 #1 2 / 4 ; f ""(0) = #1 4 2 = 1+ ! 2 " ! 8 2 4 = 1+ x 2 ! x 8 +… ,.% 1 ( % R 2 ( % 3cos! + 1( 0. -'& *) + ' 3 * '& *) + …1 & 4r ) 2 ./ r .2 Carl Bromberg - Prof. of Physics 5 From previous Exam 2: Ring of charge Potential on z axis 3 #( x $ )d x $ Q ( 2 Q 2 %1 2 2 2 %1 2 ) (1 + a z ) = & x % x$ = 4!" z + a 4!" 0 z 0 Expansion in powers of a/z let ! = " 2 = a 2 z 2 1 V (z) = 4!" 0 f (! ) = (1 + ! ) "1 2 ; f #(! ) = " 12 (1 + ! ) "3 2 ; f ##(! ) = + 43 (1 + ! ) "5 2 2 4 ' Q $ a a V (z) = & f (0) + f #(0) 2 + f ##(0) 4 + …) ( 4!" 0 z % z 2z 2 4 2 4 ' ' Q $ a 3a Q $1 a 3a = & 1 * 2 + 4 + …) = & * 3 + 5 + …) % ( ( 4!" 0 z 4!" 0 % z 2z 2z 8z 8z Potential in spherical coordinates with boundary condition at large r " V(r,# ) = & B! r V(r ! ",# ) = 0 $ A! = 0 !=0 % ( !+1) P! ( cos# ) Matching coefficients for solutions on the z-axis " V(z,0) = # B! z !=0 Lecture 20 ! ( !+1) 2 4 ) Q &1 a 3a = + 3 + 5 +… = ( ! 3 + 5 + …+ * z 4$% 0 ' z 2z z z 8z B0 B2 B4 Carl Bromberg - Prof. of Physics 6 Ring of charge, continued Matching coefficients for solutions on the z-axis 2 4 ) Q &1 a 3a V(z,0) = # B! z = + 3 + 5 +… = ( ! 3 + 5 + …+ ' z 2z * z 4 $% z z 8z !=0 0 No odd ! solutions " ! ( !+1) B0 B2 B4 2 Q Q a Q 3a B! = 0 for odd !, B0 = ; B2 = ; B4 = 4!" 0 4!" 0 2 4!" 0 8 4 Insert coefficients into general solution 2 4 ( Q %1 a 3a V ( r,! ) = ' $ 3 P2 ( cos! ) + 5 P4 ( cos! ) + …* ) 4"# 0 & r 2r 8r Lecture 20 Carl Bromberg - Prof. of Physics 7 From previous Exam 2 Surface charge density ! (" ) = ! 0 cos " . Find Potential inside and out ! ( x" ) d x" V (z) = $ x # x" 3 = 2 2& %0R 4&' 0 % R = 0 2' 0 1 " !1 $ 0 3 2 2 for z < ! R 2 2 2 = 1 2 2 3R z 1 2 2 3R z 1 # ! R 2 ! 2Rxz + z 2 ( R 2 + Rxz + z 2 ) % $ & !1 #$ ! ( R ! z )2 [ R 2 + Rz + z 2 ] + ( R + z )2 [ R 2 ! Rz + z 2 ]%& = {! ( R ! z )[ R + Rz + z ] + ( R + z )[ R2 ! Rz + z 2 ]} 3R2 z 2 = 2z 3R2 2 2 2 2 2 2 2 = {! ( z ! R )[ R + Rz + z ] + ( R + z )[ R ! Rz + z ]} 3R z = 2R 3z 2 2 2 2 2 2 2 = {( z ! R )[ R + Rz + z ] ! ( R + z )[ R ! Rz + z ]} 3R z = !2R 3z z < R : V (z) = [! 0 3" 0 ] z ; Lecture 20 2 = z + R ! 2Rz cos# R + z # 2Rzx = for z > R 2 2 2 x ! x " = ( z ! Rcos# ) + R sin # xdx R + z ! 2Rzx for ! R < z < R 2 R + z # 2Rz cos) 0 2 1 $ = (# 0 cos$ ) R sin $ d$ d% cos) sin ) d) d( $ #1 2 2 & xdx 2 ! ( x " ) d x " = # ($ ) d x " 2 2 3 '2 z > R : V (z) = #$! 0 R 3" 0 %& z ; 3 !2 z < ! R : V (z) = ! $%" 0 R 3# 0 &' z Carl Bromberg - Prof. of Physics 8 Cylindrical coordinates Laplace’s equation in cylindrical coordinates Separation of variables 2 1 # $ #V ' 1 # V ! V (r," ) = &% r )( + 2 2 = 0 r #r #r r #* 2 V (r,! ) = R(r)"(! ) r dependence φ dependence 2 2 r 2 r # $ #R ' 1 # * ! V (r," ) = =0 &% r )( + 2 V R #r #r * #" Constants sum to zero n 2 !n Separate solutions ! n (" ) = Cn cos n" + Dn sin n" n Rn (r) = An r + Bn r 2 !n R0 (r) = Aln r + B Solution with series to insure boundary conditions can be satisfied # ( V (r,! ) = Aln r + B + $ An r + Bn r n=1 Lecture 20 n "n )(C cos n! + D sin n! ) n n Carl Bromberg - Prof. of Physics 9 Cylinder problem Half cylinders, radius R. V = +V Find potential inside and out. # ( V (r,! ) = Aln r + B + $ An r + Bn r n=1 n "n 0 on right half, and V = -V 0 on left half )(C cos n! + D sin n! ) n n Boundary conditions at r = 0 and r = ∞ " VInt (R,! ) = VExt (R,! ) VInt (r,! ) = # An r cos n! n n An R = Bn R n=1 " VExt (r,! ) = # Bn r $n cos n! n=1 " VInt (r,! ) = # cn n=1 " VExt (r,! ) = # cn n=1 r R R r cos n! Lecture 20 ; Bn = cn R n #% V 1st & 4rd quadrants f (! ) = $ 0 nd th &%"V0 2 & 3 quadrants cos n! sin ( (2 j + 1) ! 2 ) = ("1) cn Be careful to break Fourier integral into pieces !! n n = cn R Use Orthogonality n n An = !n j cj = 4V0 (!1) j " (2 j + 1) Orthogonality n 2" $ cos n! cos m! = "# nm 0 Complete solution ( #1) j r 2 j+1 VInt (r,! ) = cos(2 j + 1)! % " j=0 2 j + 1 R 2 j+1 4V0 $ ( #1) j R 2 j+1 VExt (r,! ) = cos(2 j + 1)! % 2 j+1 " j=0 2 j + 1 r 4V0 $ Carl Bromberg - Prof. of Physics 10 From previous Exam 2 (Method of Images) Two charges above grounded plane. Determine potential and force on charge q. P z q Image -d –q Potential above the plane 1 1 $ + & ( x + d )2 + ( z # d )2 q & ( x # d )2 + ( z # d )2 V (x,0, z) = % 4!" 0 & 1 1 # # & ( x # d )2 + ( z + d )2 ( x + d )2 + ( z + d )2 ' d q +d d x –q ( & & ) & & * 2 $ î k̂ î + k̂ ' # # % 2 ( 2 2 & 4d 4d 8d 2 ) 2 $* q 2- * 2- ' %, 1 # = î # 1 + /. ,+ /. k̂ ( 2 &+ ) 4 4 16!" 0 d q F= 4!" 0 Lecture 20 Carl Bromberg - Prof. of Physics 11 Capacitor problem from previous Exam 2 Cylindrical capacitor d = b ! a << a For Va=V, determine C, Q, and U. i) Means spacing very small ii) Means cylinder areas are nearly the same iii) Field between the cylinders must be ~ the field between parallel plates with the same area. Initial state 2 2 1Q Q (b ! a) 2!" 0 aL ! 0 A 2"! 0 aL U= = Q= V C= = 2 C 4"# 0 aL b# a d b# a Force to pull inner cylinder out changing the overlap. dL = L! " L (negative) dL dU dL W = dU = !U =! L U L Without initial assumptions V (r) = C= V0 ln ( b r ) ln ( b a ) E(r) = dU U =! dL L V0 ln ( b a ) r E(a) = 2 dU U Q ( b ! a ) F=! = = 2 dL L 4"# 0 aL V0 ln ( b a ) a = ! Q = " 0 2#" 0 aL Q 2!" 0 L 2!" 0 aL because ln ( b a ) = ln [( a + d ) a ] = ln [1 + a / d ] ! ( b " a ) a = # V ln ( b a ) b$ a Lecture 20 Carl Bromberg - Prof. of Physics 12