HOMEWORK ASSIGNMENT 3: Solutions Fundamentals of Quantum Mechanics
by user
Comments
Transcript
HOMEWORK ASSIGNMENT 3: Solutions Fundamentals of Quantum Mechanics
PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 3: Solutions Fundamentals of Quantum Mechanics 1. [10pts] The trace of an operator is defined as T r{A} = set. P m hm|A|mi, where {|mi} is a suitable basis (a) Prove that the trace is independent of the choice of basis. Answer: Let {|mi} and {|em i} Pbe two independent P basis sets for our Hilbert space. We must show that m hem |A|em i = m hm|A|mi. Proof: X hem |A|em i = m = X mm′ m′′ X mm′ m′′ = X m′ m′′ = X m′ m′′ = X m′ = X m hem |m′ ihm′ |A|m′′ ihm′′ |em i (1) hm′′ |em ihem |m′ ihm′ |A|m′′ i (2) hm′′ |m′ ihm′ |A|m′′ i (3) δm′ m′′ hm′ |A|m′′ i (4) hm′ |A|m′ i (5) hm|A|mi (6) (b) Prove the linearity of the trace operation by proving T r{aA + bB} = aT r{A} + bT r{B}. Answer: T r{aA + bB} = X hm|aA + bB|mi (7) m = X (ahm|A|mi + bhm|B|mi) (8) X X hm|A|mi + b hm|B|mi (9) m = a m m = a T r{A} + b T r{B} 1 (10) (c) Prove the cyclic property of the trace by proving T r{ABC} = T r{BCA} = T r{CAB}. Answer: First, if T r{ABC} = T r{BCA} then it follows that T r{BCA} = T r{CAB}, so we need only prove the first identity. T r{ABC} = X hm|ABC|mi (11) m = X mm′ m′′ = X mm′ m′′ hm|A|m′ ihm′ |B|m′′ ihm′′ |C|mi (12) hm′′ |C|mihm|A|m′ ihm′ |B|m′′ i (13) = T r{CAB} 2 (14) 2. Consider the system with three physical states {|1i, |2i, |3i}. In this basis, the Hamiltonian matrix is: 1 2i 1 (15) H = −2i 2 −2i 1 2i 1 Find the eigenvalues {ω1 , ω2 , ω3 } and eigenvectors {|ω1 i, |ω2 i, |ω3 i} of H. Assume that the initial state of the system is |ψ(0)i = |1i. Find the three components h1|ψ(t)i, h2|ψ(t)i, and h3|ψ(t)i. Give all of your answers in proper Dirac notation. Answer: The eigenvalues are solutions to det |H − ~ωI| = 0 (16) Taking the determinate in Mathematica gives 4ω + 4ω 2 − ω 3 = 0 (17) ω(ω 2 − 4ω − 4) = 0 (18) which factorizes as which has as its solutions ω1 = 2(1 − √ 2) ω2 = 0 √ ω3 = 2(1 + 2) (19) (20) (21) the corresponding eigenvectors are √ 1 |ω1 i = (|1i + 2i|2i + |3i) 2 1 |ω2 i = √ (−|1i + |3i) 2 √ 1 |ω3 i = (|1i − 2i|2i + |3i) 2 (22) (23) (24) The components of |ψ(t)i are found via |ψ(t)i = e−iHt |ψ(0)|i, giving √ √ 1 2 + e−i2(1− 2)t + e−i2(1+ 2)t 4 √ √ i h2|ψ(t)i = √ e−i2(1− 2)t − e−i2(1+ 2)t 2 2 √ √ 1 h3|ψ(t)i = −2 + e−i2(1− 2)t + e−i2(1+ 2)t 4 h1|ψ(t)i = The mathematic script I used to work this problem is on the following page: 3 (25) (26) (27) 4 3. Cohen-Tannoudji: pp 203-206: problems 2.2, 2.6, 2.7 2.2 (a) The operator σy is hermitian: † ∗ 0 −i 0 i 0 −i † σy = = = = σy i 0 −i 0 i 0 We find the eigenvalues via det |σy − ωI| = 0: −ω −i det i −ω = ω2 − 1 = 0 (28) (29) The solutions are ω = 1 and ω = −1. Let the corresponding eigenvectors be |+i and |−i, so that σy |±i = ±|±i. (30) Hit this equation with the bra h1| and insert the projector onto the {|1i, |2i} basis: (−h1|σy |1i ± 1) h1|±i − h1|σy |2ih2|±i = 0 (31) inserting the values of the matrix elements of σy then gives: ±h1|±i + ih2|±i = 0 (32) a non-normalized solution is then h1|±i = i h2|±i = ∓1 (33) (34) the normalized eigenvectors are then given, up to arbitrary overall phase-factors, by |+i = |−i = 1 √ (i|1i − |2i) 2 1 √ (i|1i + |2i) 2 (35) (36) (b) The projectors are given by I± = |±ih±|. In matrix form, in the {|1i, |2i} basis, these are h1|±ih±|1i h1|±ih±|2i I± = (37) h2|±ih±|1i h2|±ih±|2i ! i ∓1 i −i = = √ √ √ √ 2 2 2 2 ∓1 −i ∓1 √ ∓1 √ √ √ 2 2 2 2 1 i ∓ 2 2 1 ± 2i 2 2 = I and I + I = I: we need to show that I± ± + − 1 ∓i 1 ∓i 2 2 2 2 2 I± = ±i ±i 1 1 2 2 21 12 i i + ∓ ∓ 4 4 4 4 = 1 1 + ± 4i ± 4i 4 4 1 i ∓ 2 2 = 1 ± 2i 2 = I± 5 (38) (39) (40) (41) (42) (43) I+ + I− = 1 2 + 2i − 2i 1 2 + 21 − 2i 1 0 = 0 1 = I = 1 2 + 2i (c) The results for M and Ly are attached. 6 + 1 2 − 2i i − 2i + 2 1 1 2 + 2 + 2i 1 2 (44) (45) (46) (47) 2_2M.nb 1 H* Enter the matrix M *L M = 882, I Sqrt@2D<, 8-I Sqrt@2D, 3<<; MatrixForm@MD In[190]:= i 2 j j j j è!!! k - 2 è!!! 2 y z z z z 3 { Out[191]//MatrixForm=  H* now compute the Hermitian conjugate and make sure it is self-adjoint *L In[192]:= MatrixForm@Conjugate@Transpose@MDDD i 2 j j j j è!!! - 2 k è!!! 2 y z z z z 3 { Out[192]//MatrixForm=  H* Now find the eigenvalues *L In[198]:= y = Solve@Det@M - w IdentityMatrix@2DD ã 0D; H* extract the eigenvalues from y *L w1 = w ê. y@@1, 1DD In[213]:= Out[213]= 1 w2 = w ê. y@@2, 1DD In[214]:= Out[214]= 4 H* now we find the eigenvectors the old-fashioned way*L H* e1 and e2 will be the normalized eigenvectors *L In[227]:= y = Solve@HHM - w1 [email protected], c<L@@1DD ã 0, cD Out[227]=  99c Ø ÅÅÅÅÅÅÅÅÅ è!!! == 2 81, c ê. y@@1DD< e1 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Sqrt@Conjugate@81, c ê. y@@1DD<D.81, c ê. y@@1DD<D In[229]:= Out[229]= 2  9$%%%%%% ÅÅÅÅ , ÅÅÅÅÅÅÅÅÅ è!!! = 3 3 2_2M.nb 2 In[230]:= y = Solve@HHM - w2 [email protected], c<L@@1DD ã 0, cD 88c Ø - Out[230]= è!!! 2 << 81, c ê. y@@1DD< e2 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Sqrt@Conjugate@81, c ê. y@@1DD<D.81, c ê. y@@1DD<D In[231]:= Out[231]= 1 2 9 ÅÅÅÅÅÅÅÅÅ ÅÅÅÅ = è!!! , - $%%%%%% 3 3 H* we can form the projectors via the outer-product function *L In[243]:= I1 = Outer@Times, Conjugate@e1D, e1D; MatrixForm@I1D 2 i ÅÅÅ j 3 j j j è!!!! j j - ÅÅÅÅÅÅÅÅÅ Â 2 Å k 3  2 y ÅÅÅÅÅÅÅÅÅ Å z 3 z z z z z 1 ÅÅÅ 3 { è!!!! Out[244]//MatrixForm= In[245]:= I2 = Outer@Times, Conjugate@e2D, e2D; MatrixForm@I2D 1 i ÅÅÅ j 3 j j j è!!!! j j ÅÅÅÅÅÅÅÅÅ Â 2 k 3 Å Â 2 y - ÅÅÅÅÅÅÅÅÅ Å z 3 z z z z z 2 ÅÅÅ 3 { è!!!! Out[246]//MatrixForm= H* To verify the othogonality relation, we compute [email protected] In[251]:= [email protected] Out[251]= 0 H* Lastly, we verify the closure relation *L In[252]:= MatrixForm@I1 + I2D Out[252]//MatrixForm= J 1 0 N 0 1 *L 2_2Ly.nb • 9/28/09 1 H* First we enter the matrix Ly *L — Ly = ÅÅÅÅÅÅÅÅ 880, Sqrt@2D, 0<, 8-Sqrt@2D, 0, Sqrt@2D<, 80, -Sqrt@2D, 0<<; 2I MatrixForm@LyD 0 i j j j j j j — j j ÅÅÅÅÅÅÅ è!!!!Å j j 2 j j j j j j 0 k — - ÅÅÅÅÅÅÅ è!!!!Å 2 0 — ÅÅÅÅÅÅÅ è!!!!Å 2 y z z z z z z  — - ÅÅÅÅÅÅÅ z è!!!!Å z z 2 z z z z z z 0 z { 0 H* Now we take the transpose and complex conjugate *L MatrixForm@Conjugate@Transpose@LyDDD ê. Conjugate@—D Ø — i 0 j j j j j j — j j ÅÅÅÅÅÅÅ è!!!!Å j j 2 j j j j j 0 k — - ÅÅÅÅÅÅÅ è!!!!Å 2 0 — ÅÅÅÅÅÅÅ è!!!!Å 2 y z z z z z z  — - ÅÅÅÅÅÅÅ z è!!!!Å z z 2 z z z z z 0 z { 0 H* By comparison, we see it is Hermitian *L H* This the the matrix whose determinant gives the spectrum of Ly *L MatrixForm@Ly - w IdentityMatrix@3DD i -w j j j j j j — j j ÅÅÅÅÅÅÅ è!!!!Å j j 2 j j j j j 0 k — - ÅÅÅÅÅÅÅ è!!!!Å 2 -w — ÅÅÅÅÅÅÅ è!!!!Å 2 y z z z z z z  — - ÅÅÅÅÅÅÅ z è!!!!Å z z 2 z z z z z -w z { 0 H* Here we let mathematica solve the characteristic polynomial *L, y = Solve@Det@Ly - w IdentityMatrix@3DD ã 0D; Solve::svars : Equations may not give solutions for all "solve" variables. H* so the eigenvalues are: *L More… 2_2Ly.nb • 9/28/09 w1 = w ê. y@@1, 1DD w2 = w ê. y@@2, 1DD w3 = w ê. y@@3, 1DD 0 -— — H* "Eigensystem" will give the eigenvalues and Hun-normalized eigenvectors *L y = Eigensystem@LyD; e1p = y@@2, 1DD; e2p = y@@2, 2DD; e3p = y@@2, 3DD; H* To normalize them, we compute the normalization constants *L n1 = Sqrt@[email protected]; n2 = Sqrt@[email protected]; n3 = Sqrt@[email protected]; H* The normalized eigenvectors are then: *L e1 = e1p ê n1 e2 = e2p ê n2 e3 = e3p ê n3 1 1 9 ÅÅÅÅÅÅÅÅÅ è!!! , 0, ÅÅÅÅÅÅÅÅÅ è!!! = 2 2 1  1 9- ÅÅÅÅ , ÅÅÅÅÅÅÅÅÅ = è!!! , ÅÅÅÅ 2 2 2 1  1 9- ÅÅÅÅ , - ÅÅÅÅÅÅÅÅÅ = è!!! , ÅÅÅÅ 2 2 2 H* Here we form the projectors by using Mathematicas outer-product function *L I1 = Outer@Times, Conjugate@e1D, e1D; I2 = Outer@Times, Conjugate@e2D, e2D; I3 = Outer@Times, Conjugate@e3D, e3D; 2 2_2Ly.nb • 9/28/09 3 MatrixForm@I1D MatrixForm@I2D MatrixForm@I3D 1 Å i ÅÅÅ j 2 j j j j j 0 j j j j 1 j ÅÅÅ k 2Å 0 0 0 1Å ÅÅÅ i j 4 j j j j j  j j ÅÅÅÅÅÅÅÅ è!!!Å!Å j j 2 2 j j j j 1Å j j - ÅÅÅ 4 k 1Å i ÅÅÅ j 4 j j j j j  j j - ÅÅÅÅÅÅÅÅ è!!!Å!Å j j 2 2 j j j j 1Å j - ÅÅÅ 4 k 1 ÅÅÅ Å y 2 z z z z z 0 z z z z z 1 ÅÅÅÅ z 2 {  - ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 1Å ÅÅÅ 2  ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 y z z z z z z  z - ÅÅÅÅÅÅÅÅ è!!!Å!Å z z 2 2 z z z z z 1 z z ÅÅÅÅ 4 { 1Å - ÅÅÅ 4 1Å y - ÅÅÅ 4 z z z z z z  z ÅÅÅÅÅÅÅÅ è!!!Å!Å z z 2 2 z z z z z 1 ÅÅÅÅ z 4 {  ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 1Å ÅÅÅ 2  - ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 H* Here we square the matrices. By comparison we see that Ij 2 =Ij *L MatrixForm@MatrixPower@I1, 2DD MatrixForm@MatrixPower@I2, 2DD MatrixForm@MatrixPower@I3, 2DD 1Å ÅÅÅ i j 2 j j j j j 0 j j j j 1 j ÅÅÅ k 2Å 0 0 0 1Å i ÅÅÅ j 4 j j j j j  j j ÅÅÅÅÅÅÅÅ è!!!Å!Å j j 2 2 j j j j 1Å j - ÅÅÅ 4 k 1Å ÅÅÅ i j 4 j j j j j  j j - ÅÅÅÅÅÅÅÅ è!!!Å!Å j j j j 2 2 j j 1Å j j - ÅÅÅ 4 k 1Å ÅÅÅ y 2 z z z z z 0 z z z z 1Å z z ÅÅÅ 2 {  - ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 1Å - ÅÅÅ 4 2 1Å ÅÅÅ 2 -  ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 1Å ÅÅÅ 4 2  ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 1Å ÅÅÅ 2  - ÅÅÅÅÅÅÅÅ è!!!Å!Å 2  ÅÅÅÅÅÅÅÅ è!!!Å!Å 2 2 2 y z z z z z z z z z z z z z z z { 1Å y - ÅÅÅ 4 z z z z z z  z ÅÅÅÅÅÅÅÅ è!!!Å!Å z z 2 2 z z z z z 1Å z z ÅÅÅ 4 { H* Lastly, we sum the projectors to verify the closure relation *L MatrixForm@I1 + I2 + I3D 1 0 0y i j z j z j j 0 1 0z z j z j z 0 0 1 k { 2.6 Let σx = By definition we have eiασx = 0 1 1 0 (48) ∞ X (iα)m m σx m! m=0 For the m = 0 term, we have σx0 = I, and for the 0 2 σx = 1 1 = 0 = I (49) m = 1 term, σx1 = σx . For the m = 2 term, we find 1 0 1 (50) 0 1 0 0 (51) 1 (52) From this it follows that σx3 = σx and σx4 = I, and so on. So we see that all odd powers give σx and all even powers give I. Thus we can write iασx e ∞ ∞ X X (iα)2m (iα)2m+1 = I + σx (2m)! (2m + 1)! m=0 m=0 ∞ ∞ X X (−1)m (α)2m+1 (−1)m (α)2m + iσx = I (2m)! (2m + 1)! (53) (54) m=0 m=0 = I cos(α) + iσx sin(α) where the last step is possible because we recognize the series expansions for sin and cos. 7 (55) 2.7 We can start by computing σy2 and seeing what 0 2 σy = i 1 = 0 = I happens −i 0 −i 0 i 0 0 1 (56) (57) (58) Since the previous derivation followed strictly from σx2 = I, then the same result must be valid for σy . eiασy = I cos(α) + iσy sin(α) (59) For σu = λσx + µσy , here we start by computing σu : 0 λ − iµ σu = λ + iµ 0 (60) Computing the square gives σu2 = 0 λ − iµ λ + iµ 0 λ2 + µ 2 0 = 0 λ2 + µ 2 1 0 = 0 1 = I 0 λ − iµ λ + iµ 0 (61) (62) (63) (64) Thus it follows immediately that eiασu = I cos(α) + iσu sin(α) iσx 2 e −0.42 0.91i 0.91i −0.42 0.54 0.84i = I cos(1) + iσx sin(1) = 0.84i 0.54 e2iσx = I cos(2) + iσx sin(2) = eiσx (65) 0.54 0.84i 0.84i 0.54 = = −0.42 0.91i = 0.91i −0.42 0.54 0.84i 0.84i 0.54 = e2iσx 0 i+1 ei(σx +σy ) = exp i−1 0 0.16 0.70 + 0.70i = −0.70 + 0.70i 0.16 8 (66) (67) (68) (69) (70) (71) (72) iσy e iσx iσy e e = 0.54 0.84 −0.84 0.54 0.54 0.84i 0.84i 0.54 0.54 0.84 = −0.84 0.54 0.29 − 0.71i 0.45 + 0.45i = −0.45 + 0.45i 0.29 + 0.71i 6= ei(σx +σy ) 9 (73) (74) (75) (76) 4. Cohen-Tannoudji ;pp341-350: problem 3.14 a. From inspection, the eigenvalues of H are ~ω0 and 2~ω0 , with the latter being doubly degenerate. The eigenstates are |u1 i, |u2 i, and |u3 i, with the first being the non-degenerate state. Thus a measurement of the energy would yield ~ω0 with probability 1/2 and 2~ω0 with probability 1/2. 1 1 3 hHi = ~ω0 1 + 2 = ~ω0 2 2 2 1 5 1 = ~2 ω 2 hH 2 i = ~2 ω02 1 + 4 2 2 2 r p 5 9 1 ∆H = hH 2 i − hHi2 = ~ω0 − = ~ω0 2 4 2 b. The eigenvalues of A are a and −a, with eigenstates |a, 1i = |u1 i, |a, 2i = |−ai = c. √1 (||u2 i 2 − |u3 i) √1 (|u2 i 2 + |u3 i), and Clearly, the initial state is a superposition of |a, 1i and |a, 2i, so the probability to obtain a is 1 and to obtain −a is 0. Thus after the measurement, the state will remain unchanged. e−iω0 t e−i2ω0 t e−i2ω0 t |ψ(t)i = √ |u1 i + |u2 i + |u3 i 2 2 2 d. Because the initial state is a superposition of degenerate eigenstates of A, we know that hAi(t) = a e−i2ω0 t e−i2ω0 t e−iω0 t √ |u1 i + |u2 i + |u3 i B|ψ(t)i = b (|u1 ihu2 | + |u2 ihu1 | + |u3 ihu3 |) 2 2 2 −i2ω0 t e e−iω0 t e−i2ω0 t = b |u1 i + √ |u2 i + |u3 i 2 2 2 so that hψ(t)|B|ψ(t)i = b e−iω0 t eiω0 t 1 √ + √ + 2 2 2 2 4 =b 1 1 + √ cos(ω0 t) 4 2 e. From the previous problem, we can see that a measurement of A at time t will yield a. The eigenvalues of B are b and −b, with eigenstates |b, 1i = |u3 i, |b, 2i = √12 (|u1 i + |u2 i), and |−bi = √1 (|u1 i − 2 |u2 i). −i2ω t e−iω0 t + e 2√20 2 √ 2 3 8 + 4 cos(ω0 t) Projecting |ψ(t)i onto |−bi gives h−b|ψ(t)i = Taking the square modulus gives p(−b) = By probability conservation, we have then p(b) = 1 − p(−b) = 10 5 8 − √ 2 4 cos(ω0 t)