Comments
Description
Transcript
HOMEWORK ASSIGNMENT 7: Solutions
PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 7: Solutions Topics covered: addition of three angular momenta, degenerate perturbation theory ~1 and S ~2 , and one spin-1 particle, described 1. Consider a system of two spin-1/2 particles, described by S 0 0 ~ ~ ~ ~ by S3 . Let S = S1 + S2 . What are the allowed values of s ? For each allowed value, give the allowed m0 values. Use Clebsch Gordan coefficients to express the |s0 m0 m3 i states in terms of the |m1 m2 m3 i states. ~=S ~1 + S ~2 + S ~3 . What are the allowed values of the quantum number s? For each s value, list Let S the alllowed m-values. Express the states |s0 , s, mi as linear superpositions of the |s0 m0 m3 i states, and then as linear superpositions of the |m1 m2 m3 i states. Notation: For s = 2, we use | ⇑i for m = 2, | ↑i for m = 1, |0i for m = 0, | ↓i for m = −1, and | ⇓i for m = −2; For s = 1, we use | ↑i for m = 1, |0i for m = 0, and | ↓i for m = −1; For s = 1/2, we use | ↑i for m = 1/2, and | ↓i for m = −1/2. The allowed values of s0 are 0, 1 For s0 = 0, the only allowed value for m0 is 0. For s0 = 1, the allowed values for m0 are −1, 0, 1. The |s0 m0 m3 i states follow the standard singlet/triplet forms: |s0 m0 m3 i = |m1 m2 m3 i |1 ↑ m3 i = | ↑↑ m3 i 1 |10m3 i = √ (| ↑↓ m3 i+| ↓↑ m3 i) 2 |1 ↓ m3 i = | ↓↓ m3 i 1 |00m3 i = √ (| ↑↓ m3 i − | ↓↑ m3 i) 2 For For For For For s0 = 0, the allowed value of s is 1. s0 = 1, the allowed values of s are 0, 1, 2. s = 0, the allowed value of m is 0. s = 1, the allowed values of m are −1, 0, 1. s = 2, the allowed values of m are −2, −1, 0, 1, 2. 1 (1) (2) (3) (4) (5) |s0 smi = |s0 m0 m3 i |12 ⇑i = |1 ↑↑i |12 ↑i = |120i = |12 ↓i = |12 ⇓i = |11 ↑i = |110i = |11 ↓i = |100i = |01 ↑i = |010i = |01 ↓i = = |m1 m2 m3 i = | ↑↑↑i 1 √ √1 (|1 ↑ 0i + |10 ↑i) = ( 2| ↑↑ 0i + | ↑↓↑i + | ↓↑↑i) 2 2 √ √ 1 √1 (|1 ↑↓i+2|100i+|1 ↓↑i) = √ (| ↑↑↓i+ 2| ↑↓ 0i+ 2| ↓↑ 0i+| ↓↓↑i) 6 6 √ 1 √1 (|10 ↓i + |1 ↓ 0i) = (| ↑↓↓i + | ↓↑↓i + 2| ↓↓ 0i) 2 2 |1 ↓↓i = | ↓↓↓i 1 √ √1 (|1 ↑ 0i − |10 ↑i) = ( 2| ↑↑ 0i − | ↑↓↑i − | ↓↑↑i) 2 2 1 √1 (|1 ↑↓i − |1 ↓↑i) = √ (| ↑↑↓i − | ↓↓↑i) 2 2 √ 1 √1 (|10 ↓i − |1 ↓ 0i) = (| ↑↓↓i + | ↓↑↓i − 2| ↓↓ 0i) 2 2 √ 1 √ √1 (|1 ↑↓i−|100i+|1 ↓↑i) √ ( 2| ↑↑↓i − | ↑↓ 0i − | ↓↑ 0i + 2| ↓↓↑i) = 3 6 1 |00 ↑i = √ (| ↑↓↑i − | ↓↑↑i) 2 1 |000i = √ (| ↑↓ 0i − | ↓↑ 0i) 2 1 |00 ↓i = √ (| ↑↓↓i − | ↓↑↓i) 2 2 (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) Calculations: 0 S− |12 ⇑i = (S− + S3− )|1 ↑↑i = (S1− + S2− + S3− )| ↑↑↑i p √ √ √ 2 · 3−2· ↑|12 ↑i = 1 · 2−1 · 0|10 ↑i+ 1 · 2−1 · 0|1 ↑ 0i = | ↓↑↑i+| ↑↓↑i+ 1 · 2 − 1 · 0| ↑↑ 0i √ √ 2|12 ↑i = 2(|10 ↑i + |1 ↑ 0i) = | ↓↑↑i + | ↑↓↑i + 2| ↑↑ 0i √ 1 1 |12 ↑i = √ (|10 ↑i + |1 ↑ 0i) = (| ↓↑↑i + | ↑↓↑i + 2| ↑↑ 0i). 2 2 √ 1 1 0 S− |12 ↑i = (S− + S3− ) √ (|10 ↑i + |1 ↑ 0i) = (S1− + S2− + S3− ) (| ↓↑↑i+| ↑↓↑i+ 2| ↑↑ 0i 2 2 √ √ √ 6|120i = |1 ↓↑i + 2|100i + |10 ↓i = (| ↓↓↑i+ 2| ↓↑ 0i+ 2| ↑↓ 0i + | ↑↑↓i) √ √ 1 1 |120i = √ (|1 ↓↑i + 2|100i + |10 ↓)i) = √ (| ↓↓↑i+ 2| ↓↑ 0i+ 2| ↑↓ 0i + | ↑↑↓i) 6 6 1 1 √ 0 S− |11 ↑i = (S− +S3− ) √ (|1 ↑ 0i−|10 ↑i) = (S1− +S2− +S3− ) ( 2| ↑↑ 0i−| ↑↓↑i−| ↓↑↑i) 2 2 √ 2|110i = |1 ↑↓i − |1 ↓↑i = | ↑↑↓i − | ↓↓↑i 1 1 |110i = √ (|1 ↑↓i − |1 ↓↑i) = √ (| ↑↑↓i−| ↓↓↑i) 2 2 1 1 0 S− |110i = (S− + S3− ) √ (|1 ↑↓i − |1 ↓↑i) = (S1− + S2− + S3− ) √ (| ↑↑↓i − | ↓↓↑i) 2 2 √ √ 1 2|11 ↓i = |10 ↓i − |1 ↓ 0i = √ (| ↓↑↓i + | ↑↓↑i − 2| ↓↓ 0i) 2 √ 1 1 |11 ↓i = √ (|10 ↓i − |1 ↓ 0i) = (| ↓↑↓i + | ↑↓↑i − 2| ↓↓ 0i) 2 2 3 (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) 2. Derive general expressions for the energy-shifts up to third-order and state vectors up to second-order in degenerate perturbation theory. As described in the lecture notes, solving the first- and second-order equations gives: Enm = En(0) + λvnm − λ2 X Vnmn0 m0 Vn0 m0 nm ∆n0 n 0 (32) n 6=n m0 X λ2 X Vnmn0 m0 |nmi = |nm(0) i 1 − 2 0 ∆n0 n 00 m 6=m n 6=n m000 n 6=n m0 + X |nm 0(0) m0 6=m X Vn0 m0 nm00 Vnm00 n000 m000 Vn000 m000 nm 0 m0 nm + V n 2 vnm 00 m ∆n000 n 000 X X Vnm0 n00 m00 Vn00 m00 nm vnm Vn0 m0 nm 0 0(0) i λ 1+λ |n m i − λ + vnm0 m ∆n00 n ∆n0 n ∆n0 n 00 0 n 6=n m00 n 6=n m0 + λ2 X Vn0 m0 n00 m00 − n00 6=n m00 X Vn0 m0 nm000 Vnm000 n00 m00 00 00 Vn m nm vnm000 m ∆n0 n ∆n00 n 000 (33) m 6=m To proceed, we need to use the third-order equations to find the third-order energy-shift and the second-order correction to the |nm0(0) i states. The third-order equation is: (3) (2) (1) (H0 − En(0) )|nm(3) i = −V |nm(2) i + Enm |nm(0) i + Enm |nm(1) i + Enm |nm(2) i (34) (3) Hitting from the left with hnm(0) | and solving for Enm gives (3) (2) (1) Enm = hnm(0) |V |nm(2) i − Enm hnm(0) |nm(1) i − Enm hnm(0) |nm(2) i X = Vnmn0 m0 hn0 m0(0) |nm(2) i n0 6=n m0 = X X n0 6=n n00 6=n,n0 m0 m00 + Vnmn0 m0 Vn0 m0 n00 m00 Vn00 m00 nm ∆n0 n ∆n00 n X Vnmn0 m0 vn0 m0 Vn0 m0 nm X Vnmn0 m0 Vn0 m0 nm vnm − 2 ∆n0 n ∆2n0 n 0 0 n 6=n m0 − X X n 6=n m0 X Vnmn0 m0 Vn0 m0 nm000 Vnm000 n00 m00 Vn00 m00 nm vnm000 m ∆n0 n ∆n00 n 000 n0 6=n n00 6=n m 6=m m00 m0 4 (35) Hitting from the left with hnm0(0) | and solving for hnm0(0) |nm(2) i gives hnm0(0) |V |nm(2) i Enm (2) − hnm0(0) |nm(1) i vnm vnm X Vnm0 n00 m00 Vn00 m00 nm = − ∆2n00 n 00 hnm0(0) |nm(2) i = n 6=n m00 + X n00 6=n m00 − X X n000 6=n,n00 m000 X n00 6=n n000 6=n m m00 m000 − X Vnm0 n00 m00 Vn00 m00 n000 m000 Vn000 m000 nm Vnm0 n00 m00 vn00 m00 Vn00 m00 nm + vnm ∆n00 n ∆n000 n vnm ∆2n00 n X Vnm0 n00 m00 Vn00 m00 nm0000 Vnm0000 n000 m000 Vn000 m000 nm vnm vnm0000 m ∆n00 n ∆n000 n 0000 6=m X Vnm0 n00 m00 Vn00 m00 nm Vnmn000 m000 Vn000 m000 nm vnm ∆n00 n vnm0 m ∆n000 n 000 n00 6=n n 6=n m000 m00 5 (36) 3. Consider a system described in the basis {|1i, |2i, |3i, |4i} 1 0 0 0 1 0 H0 = ~ω0 0 0 2 0 0 0 by the bare Hamiltonian 0 0 0 2 (37) Let the system be perturbed by the operator 0 2 V = ~g 1 1 2 0 1 1 1 1 0 2 1 1 2 0 (38) First, determine the ‘good basis’ for degenerate perturbation theory, then compute the eigenvalues and eigenvectors of H = H0 + V to second-order in perturbation theory. The bare Hamiltonian has two degenerate subspaces. The set {|1i, |2i} spans the space corresponding (0) (0) to E1 = ~ω0 , and the set {|3i, |4i} spans the space corresponding to E2 = 2~ω0 . By inspection, we see that 0 2 (39) V1 = V2 = 2 0 There fore the good basis states are |11(0) i = |12(0) i = |21(0) i = |22(0) i = 1 √ (|1i − |2i) 2 1 √ (|1i + |2i) 2 1 √ (|3i − |4i) 2 1 √ (|3i + |4i) 2 (40) (41) (42) (43) with first-order energies given by In this basis we have v11 = −2~g (44) v12 = 2~g (45) v21 = −2~g (46) v22 = 2~g (47) 1 0 V = 2~g 0 0 0 1 0 1 0 0 1 0 0 1 0 1 (48) From this, we see that states |11(0) i and |21(0) i are not coupled to any other states by V . Thus, beyond the first-order energy-shift, they are not perturbed by V . 6 Thus the problem maps onto a single non-degenerate problem in the {|12(0) i, |22(0) i} Hilbert space, for which we have 1 0 (49) H0 = ~ω0 0 2 and V = 2~g 0 1 1 0 (50) The states to second-order are therefore |11i = |11(0) i (51) 2g 2g 2 (0) |12i ≈ |12 i 1 − 2 − |22(0) i ω0 ω0 (52) |21i = |21(0) i (53) 2g 2 (0) 2g (0) |22i ≈ |12 i + |22 i 1 − 2 ω0 ω0 (54) The energies to second-order are E11 = ~ω0 − 2~g E12 ≈ ~ω0 + 2~g − (55) 4~g 2 ω0 E21 = 2~ω0 − 2~g E22 ≈ 2~ω0 + 2~g + 7 (56) (57) 4~g 2 ω0 (58) 4. Prove that in order to predict the resonance-frequency shifts of a perturbed quantum system to second-order, one needs only to compute the energy levels to second-order, and that this implicitly requires computing the eigenstates only to first-order. Then show that in order to compute the shift in the expectation-value of an arbitrary operator to second-order, one must compute the eigenstates to second-order. The resonance frequency shifts are the differences between the energy eigenvalues, which means they can be computed to second-order directly from the second-order energies. The second-order (2) energy corrections are given in terms of the first-order eigenstates via En = −hn(0) |V |n(1) i. To compute the expectation value of an operator to second-order, we need to evaluate hAi = hψ(t)|A|ψ(t)i X c∗m cn hm|A|niei(Em −En )t/~ = mn (59) expanding to 2nd order gives h X hAi = nc∗m cn hm(0) |A|n(0) i + λ hm(1) |A|n(0) i + hm(0) |A|n(1) i m i +λ2 hm(0) |A|n(2) i + hm(1) |A|n(1) i + hm(2) |A|n(0) i h i (0) (0) (1) (1) (2) (2) i Em −En +λ Em −En +λ2 Em −En t/~ × e which shows that the second-order eigenstates are required. 8 (60) 5. Consider a pair of identical harmonic oscillators, described by the Hamiltonian H0 = ~ω(A†1 A1 + A†2 A2 + 1). (61) Determine the energy eigenvalues and degeneracies of the two lowest energy levels of H0 . Let the system be perturbed by the operator V = ~λ(A†1 A†2 + A†1 A2 + A†2 A1 + A1 A2 ). (62) For the states comprising the two lowest bare energy levels, determine the full energy eigenvalues of H = H0 + V to second-order and the eigenstates to first-order in λ. (0) The lowest energy level is the ground state, E1 = ~ω, with non-degenerate eigenstate |1(0) i = |00i, (63) (0) The first excited energy level is E2 = 2~ω, with d2 = 2. The degenerate subspace is spanned by the states {|01i, |10i}. in basis {|01i, |10i}, we have V2 = ~λ 0 1 1 0 (64) For the ground-state, we have (1) E1 = 0 and (1) |1 ∞ X i=− n1 ,n2 =0 (n1 ,n2 )6=(0,0) |n1 n2 i (65) hn1 n2 |V |00i ~ω(n1 + n2 ) (66) with p p hn2 n2 |V |m1 m2 i = ~λ (m1 +1)(m2 +1)δn1 ,m1 +1 δn2 ,m2 +1 + m2 (m1 +1)δn1 ,m1 +1 δn2 ,m2 −1 p √ + m1 (m2 +1)δn1 ,m1 +1 δn2 ,m2 −1 + m1 m2 δn1 ,m1 −1 δn2 ,m2 −1 (67) this becomes λ |11i 2ω (68) λ ~λ2 h00|V |11i = − 2ω 2ω (69) |1(1) i = − with the second-order energy then given by (2) E1 = − For the n = 2 subspace, the ’good basis’ is 1 |21(0) i = √ (|01i − |10i) 2 (70) 1 |22(0) i = √ (|01i − |10i) 2 (71) 9 The first-order energies are (1) E21 = −~λ (72) (1) E22 = ~λ (73) The first-order eigenstates are |21(1) i = −|12i h12|V |21(0) i h21|V |21(0) i − |21i 2~ω 2~ω λ (|12i − |21i) 2ω λ (|12i + |21i) |22(1) i = − 2ω = − (74) so that the second-order energies are (2) E21 = h21(0) |V |21(1) i ~λ2 = − √ (h01| − h10|)A1 A2 |(|12i − |21i) 2 2ω ~λ2 = − ω (2) = h22(0) |V |22(1) i ~λ2 = − ω E22 (75) (76) We have then E1 ≈ ~ω − ~λ2 2ω (77) ~λ2 ω ~λ2 ≈ 2~ω + ~λ − ω E21 ≈ 2~ω − ~λ − (78) E22 (79) and |1i ≈ |00i − |21i ≈ |22i ≈ λ |11i 2ω 1 √ (|01i − |10i) − 2 1 √ (|01i + |10i) − 2 10 (80) λ (|12i − |21i) 2ω λ (|12i + |21i) 2ω (81) (82)