...

56 Barium (Lehrstuhl Kristallographie,

by user

on
Category: Documents
56

views

Report

Comments

Transcript

56 Barium (Lehrstuhl Kristallographie,
Barium
56
A
K.FISCHER
(Lehrstuhl ftlr Kristallographie, Universi­
lal des Saatlandes, Saarbriicken, Germany)
B---O
H.
(Mineralogisch-Petrographisches Institut
der Universltat, Tubingen, Germany)
PUCHELT
--_._-~--~~--~~~--~~---
Barium
56-A-1
56-A. Crystal Chemistry
I. General
In the crystal structures of barium minerals, Ell. is surrounded by O. OH, H:P
or a halogen ion as nearest neighbors. Its valency is two and the bond type is pte­
dominantly ionie. Of the divalent positive ions, Ba2 + has the largest ionic radius
(except Ra 2+). Isostructural replaeement of, Or by, other large canons such as
Pb:l+ and Sr2+ is frequently observed. Less common is replacement of K + and
of the smaller ion Ca2+. A few examples of crystal chemical relations which are not
listed in the tables below are the following synthetic compounds: BaPC;201D>
BaAlu018 , SrFC;Z019' StAln.Oul etc. in the magnetoplumhitc series; pandaite with
Ell. partiaUy replacing ell. in the pyroehlorc group; isotypy of K[N03l and witherite
Ba[C031; Ca-Ba-mimerisitc; heinrichite and meta-uranocircite in the torhernite
and meta-torbemire group.
The coordination of Ba has been reviewed by ~fANOHAR and RAMASESHAN
(1964). The coordination number ranges from 6 to 12 for 0, OH, HIlP- The existence
of a large variety of coordination polyhedra is illustrated in Tables 51-A-1, 51-A-2,
and 5t·A-3 in which crystal structures of Ba minerals and a few selected synthetic
compounds are listed. In general, oxygen atoms with disrances larger than 3.3 A
are not considered as sharing one coordination polyhedron (exception: barite).
This limitation appears to be justilied as in the majority of the structures the
distance of the" next-nearest" 0 neighbors is substantially larger than the range of
distances attributed ro the first-order coordination. In other cases. however, the
distances show a broad and rather: uniform range of variation (e.g. Ba, in taramellite)
so that it is difficult to define the coordination number. The type of coordination
polyhedron of Ba apparently has a minor influence on the energy balance of these
structures. Nevenheless it can control the structure type as has been demonstrated
for silicates by LIEBAU '(1962, 1968).
The following :averages for atomic distances were ohtained for the different
coordination numbers indicared:
Cccedl­
uarion
number
6
7
S
9
10
12
Atomic
distance.
A.
2.78
2.7 8
2.1\
2.8 s
2.8,
2.9,
_
(BaD, BaZn02 , benitoite)
(paeacelsian, BarGeO,] high)
(BaNiO:, Ba(OH), . 8HIO, BaUO.. gillespire, t:U':l!rlellite)
(Ba[SPe]· 2H:O, Ba[B(OH),]2. Ba[BIO,], eelsian, sanbomite)
(BaOh BaTi.O•• Ba[B,O,l, Ba,[pO.J.J
(psilomelane, high BaTiO" nitrobarite, barite, noeseehlre,
B3.t[P04JI> "hexagoeel" Ba[AI,;Si:20el, ¢.BaO, . 2H,Oij
56-A-2
Barium
These data demonstrate a general increase of distance with increasing coordination
number. This can be considered only as a first approximation because of the restricted
selection of minerals and artificial compounds; (for some other compounds used for
the computation of the averages, which are not listed in Tables 56-A-l, 56-A-2 and
56-A-3, sec MANOHAR and RAMASP.SHAN, 1964).
D. Crystal Chemistry of Some Minerals and Synthetic Compounds
a) Oxides. Halides
The structure of psilomel.ane (Ba., H,O)IMnSOlO consists of MoDe octahedra
and (Ba., HP)Ol:l cube-octahedra (only oxygen atoms with distances ~3.16 A ace
considered]. Ba and H 20 occupy the same eqcipoine (partial ordering assumed),
probably because of very similar distances of Ba-Q and O-H20 atoms and mole­
cules (Hcbddgea ?). The crystal structure of hollandite BaMna01B has the same
coordination polyhedron for Ba (BYSTROM and BYSTROM, SR 13, 1950, 186). In
synthetic oxides and hydroxides almost all coordination numbers from 6 to 12 occur;
Table S6·A-1. CoordinaJion of Ea in
ro",~
oxidu and halidu
Mineol or
synthetic compound
Coordin:ued
atoms,
distanees co BainA
Coordination
polyhedron
Ba[llo[al
60
60
(20
80
octahedron
octahedron, aeveeely
distorted
quadratic prism, severely
distorted
distoered quadratic
antipriam
irregular
teeecgonal prism with
reeagonal pyramids on
two base faces
pentagonal prisrn
dis toned cubo­
octahedron
cube-octahedron
Ba[alZntIJO~
•
Ba(IJNi[6lO.
2.76
2.64-2.97
3.36)
2.80; 2.84
Ba[ll{OH)~' 8~O
80H
2.69-2.77
Ba(llUtllOI
Ba(1010.
80
80
20
2.71-2.99
2.79
2.68
100
80
2.81-3.09
2.85-3.16
2.78; 2.88
2.83
Ba[lOlTi 111O,
psilomelane,
(Ba, ~0)~IJ1fn~110l.
Ba[UllTi[llO~
[high-temp. phase)
BarIJF{'l
Bat llCI2 • 2H.O
4H1O
120
6F
7Q
2H~O
2.68
3.14-3.38
2.76
eube
distorted rrigonal prism
with 2Cl and 1H~0 on
top of prismatic faces
Reftt·
mo~
1
2
3
4
5
6
7
8
9
10
11
References: L GeRLACH (SB 1913-1928, 119). 2. V. ScHNl>RING, HOPPE and ZE.l.IANN
(SR 24, 1960, 454). 3. LAND£R (SR 15. 1951, 180); for srrucrurc, see LANOER (1951).
4. MANOHA1\. and RAMASESHAN (1964). 5. SAI>fSON and SILLtN' (SR 11, 1947-48, 441).
6. AlIRAHoUIS end IGu.NAJS (SR 18, 1954;364). 7. TJ;;MP1E1'ON and DAUBEN (SR24, 1960,
326).8. WADSU;Y (SR 17,1953,429).9. GOLOSCHMIIJT (SB I, 1913-1928. 333). 10. DAVEY
(SB I, 1913-1928, (87). 11. JENSEN (SR 10, 1945-19~, 95).
Barium
56-A-3
halides and hydrated halides are known with coordination numbers of 8 and 9.
A selection of these eompccnds (especially oxides and hydroxides with coordination
polyhedrons not described for minerals in this section) is included in Table 56-A-1.
b) Nitrates, Catbonates, Borates
The BaO lS icosahedron found in nitrobarite Ba[N0312 was also observed in
Da[OO.l.· 3~0, a-BaO.· 2H20 2 , Ba[SiFnl lind Ba[GcFnl (MANol-lAR and RA­
MASESHAN, 1964). In the carbonate minerals, Ba replaces Ca in the aragonite series
(witherite and solid solutions) with a coordination polyhedron which can be
described as a distorted cube with one of its edges elongated f01: housing the 9th
atom above its centre: the same coordination polyhedron is also reponed for
sanbomite B~[Si~qol. Barytocalciee BaCa[COJl a has an independent structure also
with a coordination number of 9 (two distances of 3.28 and 3.30 A are not included).
In norsethite, BaMg[Cq,lllJ Ba has a 6+6 coordination forming a distorted ditri­
gonal prism (LIPPMANN, 1968). No barium berate mineral structures are known at
present. Of the synthetic berates, Ba[B(OH),h is Isostructural with the correspond­
ing Sr borate (see subsection 38.A-II), whereasBa[B,O,] is not (coordination numbers
9 and 10).
c) Sulfates, Phosphates
Barite Ba[SO,] is isostructural with anglesite Pb[SO,] and celestite Sr[SO.].
(Solid solutions are known as anglesa-barite, baryta-celestite and calcio-barite.]
°
Table 56-A-2 Coordif/llJion rifBa in some OXD-~QIII
Mineral or
synthe:tic compound
Nitrobarite,
Coordinate:d atoms,
dlacaeees to Ba in A
Ba[1.2J[NO~h
6+60
90
90
(20
Witherite:, BaC1J[C03l
Barytocalcite,
BaEllCaJ6l[C03h
Norsethite, Ba[l.RlMg(6J[CO~h
Ba(·l[B(OH).ll
6+60
Bal:
90H 2.73-2.90
90H
90
100
100
(20
B3.t: 6 +60
100
2.71-2.83
Bal:
B~:
Barite, Ba[llJlSO.J
BaEl.RlBa.pol[pO.ll
0..2.8
2.56--2.99
3.28; 3.30)
2.72; 3.18
2.77-2.99
2.61-3.08
2.71-3.12
2.76--3.08
3.30)
2.80; 3.23
B~:
Bsl'lBaE10J[Bi~IBl'JOI.l
2.86; 2.95
I B•• ,
Coordination
polyhedron
distorted
icosahedron
see text
Refet"­
ences
1
2
3
distorted
ditrigon:J.1
prism
trigonal prism
wi'"
4
5
centered filcc::l
Ireegular
,
see [CJtr
7
distorted
Icosahedron
see text
8
Referenees r 1. VEGAllD and BILBERG (SB 2, 1928--1932,386); cf. LUTZ (SR 24, 1960,
421). 2. CoLBY and LA Cosra (SB 3, 1933-35, 407). 3. ALu (SR 24, 1960, 425). 4. LlPP·
:l.rANN (1968). 5. KRAVCHENKO (1965). BLOCK and PERLOPP (1965). 7. SAHL (1963); see also
CDLVlLLE and STAUDHAWoIRR (1967). 8. ZACHARlASEN (SR 11, 1947--48, 388).
56-A-4
Barium
The coordination polyhedron based on a coordination number of 12 consists of
two nearly parallel rings of 5 and G oxygens on both sides of the Ba atom, with
on top of the 6-ring (for an alternative description, see MANOHAR and
a 12th
RAMAsESHAN, 1964). In this coordination polyhedron, 20 with distances of 3.30 A
are included. Omitting them From the 5-ring would lead to a rather one-sided coordi­
nation pclyhedrcc (SAHL. 1963). Ba,[PO.h, Isostructural with SrS[pO.]1, b:LS two
coordination polyhedra for Ba with coordination numbers of 12 and 10; the latter
One consists of a distorted "besagccal" pyramid (symmetry 3m) sligbtly above the
Ba atom and a triangle below.
°
d) Silicates
6l[SiO.]
and Sr~61[SiO.] are isostrucrural with olivine (O'DANIEL and
Ba.1:
TSCHEISCHWILJ, SR 9, 1942--44, 261). Another silicate with isolated tetrahedra,
BaO . SiO~ . GH!O. bas two different coordination polyhedra with coordination
numbers of8 and 10 whicb share faces with eaeb other.bur have no common corner
with the [SiO.1 teerahedrou. The ten-fold coordination can be described :LS a penta­
gonal pyramid above a square. In benitoite BaTi[SisOo1 (isomorphous to pabstite
BaSn[Si30oD, the coordination polyhedron is severely distorted. (The next 60 atoms
beyond the nearest ligands are not eonsidered because of their distance of 3.43 A.)
Taramellire B~(Fe, Ti, MgMSiPI21(0H),. with rings of 4[SiO.J tetrahedra, has
three different coordination polyhedra for Ba with a coordination number of 6,
6 and 7 (?). The Iaar coordination polyhedron can also be describcd as having a
coordinarionnumher of9 (two additional O's at a distance of3.12 A) or with a coordi­
nation number ofl1 (two additional oxygen atoms at a distance of3.21 A). Ba[GeOsl,
with a germanare chain of the "Zwcierketten"-type, is one of the few examples
for a coordination number of7. (Higbee condensed silicate chains with Ba as cations
have been investigated by KATSCHER and LIDMU (1965, 1966». In the sheet silicates,
small percentages of Ba have been found in some muscovires. The mineral
anandite (Ea, K)(Fe, MgJa[(Si, Al, Fe)Plo1(0, 0H)2 was recently described as a
member of rhe rrioctahedral mica family (PATrIARATCHI, SAA:RI lind SAHAMA, 1967).
Other Ba silicates with single sheer structures do not have the usual plane silicate
sbeet of tbe mica. type and do nor contain DR or H,D (LIEBAU, 1968). Sanbornite,
Ba[Si 2D61, with undulating sheets built of 6-membered rings has the same coordina­
tion polyhedron for a coordination number of 9 as described for witherite. In the
structure of gillespite BaFe[Si.,'olo1 (with folded sheers of 4- and Bcmemhered rings
of [SiO.) tetrahedra), the coordination polyhedron of Ba can be derived from a
cube whose faces are each divided into 2 triangles to form a triangular dodecahedron
of symmetry 4: (cf also cupecnvelee: PABST, 1959; MAzzI and PABST, 1962). Ba
replaces Sr or Ca in synthetic compounds of the melilite series (B~[Fe['lSj~O,l.
B~[Mo['lSi20,], cf. WYCKOFF, 1968, P' 22S--227)1. For the non-feldspar form of
Ba[~Si:lDJ. containing double sheets, a besegonal (or pseudo-bexagonal) prism
has heen described :LS the coordination polyhedron (on the orthorhombic distortion,
cf. TAKE.UCHI, SR 22, 1958, 501). The same coordination polybedton bas been
found in cymrite Ba[AlSiPa(DH)J. In the Ba-feldspar celsian Ba[~Si:0s]. the
coordination polyhedron is si.mila.r to that in witherite (if a tenth oxygen atom at a
1 The classification of tetrahedral structures follows ZOLTAt'S suggestion (1960).
56-A-5
Barium
Table 56-A-3. CoordinaHan of Ba in Jomt silirafu
Mineral or
synthetic compound
Cccedlnated atoms,
distances to Ba in A
Coordination
polyhedron
2.83-2.90 distorted quadratic
antiprism
B:l:ll:, 10aH, Hp 2.83-2.90 see text
heavily distorted
60
2.77
Benitoite, BllJ6ITi\5J(Si~OgJ
octahedron
or trigonal prism
2.83; 2.90 distorted hexagon
Taramellitc,
B~: 60
2.73; 2.75 distorted tdgonnl prism
Ba:(Fe, Ti, Mg)~·l(OHMSiPIZ] Bil:!: 60
2.71-3.00 see text
Ba3 : 70
3.12;3.21)
(2+20
2.62-2.94 irregular
70
.i.Ba[·1[Ge[410~1 (high)
2.74--2.94 see text
Saaborahe,
70
3.14
20
~Ihl'J[Si!Os]
2.73; 2.98 heavily distorted
~Gillcspite. Bo,l8JFdtI>:I{Si,0Io]
'0
cube or trigonal
dcdeeahedeon
hexagonal prism
120
~2.89
Bal1.2J [A1:Si:O.l
("hexagonalce1sian")
hexagonal prism
120
3.05
Cymrite.
3.39)
Ba[l l l [AlSi~09(OH)J
(2 xtH:O
2.67-3.14 see text
Celsian,
'0
Ba[·J[A.I,;Si.O.]
(10
3.42)
70
2.73-2.83 see text
Paracelsian,
(20
3.32~3.37)
Ba111CA4SiPul
2.82-3.12 distorted cobo­
110
Barylice,
3.34)
octahedron
BIIJ1.21J[B4~JSip,l
(10
(minus one?)
80,HzO
2.77-3.08 see (ext
Harmotome,
3.26
20
Ba[lOlfAl.SieOll]·6Hp
BaO • SiO~ . 6 H:O
Ba l:
80H,HP
R<f.
1
2
3
4
5
6
7
,
,
10
11
12
Referenees : 1. HOt-rNElUId DORNll.ERGER-SCHlFF (SR 26,1961.513).2. Frscnae (1969).
3. MAZZI and ROSSI (1965). 4. Hn•.'I.ER (1962). 5. DOUGlASS (SR 22, 1958. 490). 6. PABST
(SR 9. 1942-44. 249); d, Mazzr and PABST (1962), PABST (SR 23. 1959. 486). 7. MATSUMOTO
(SR 15. 1951, 304); ef. TAKEUCHI (SR 22.1958,501).8. KASlIAJiV (1966). 9. Nr.WNliAM and
MEG... w (SR 24, 1960, 491). 10. B...iCAtuN and Beccv (SR 24,1960,492); cr. SMTm (SR 17.
1953. 556). 11. ARR"'SHE"W. ILYUKltrN and BELOV (1964). 12. S...O...N...G.... M"'RuMo and
T...KEUClH (SR 26, 1961. 532).
distance of 3.42 A is nee counted), with one surprisingly short distance of 2.67 A
(see NEWNHAl.{ and MEGAW, SR24, 1960. 491). In the framework structure of
paracelsian (with the same chemical composirion as celeien), which has a structure
closely related to danburite Ca[B~4ISi20B]' a similar coordination polyhedron with
a coordination number of 9 has been described, including two distances larger than
3.3 A. Omitting these latter two oxygen atoms, the coordination polyhedron con­
sists of a distorted rectangle with Ba nearly in its plane plus twO oxygen atoms
forming a gable-roof on top of it and the seventh oxygen below its centre. The
56-A-6
Barium
distorted cuba-octahedra around Ba in barylite Ba(Be"S4,O,l (with one distance
Iargee than 3,3 A), form chains by linked triangles. Two crystal structures of natural
Ba-eecliees, edicgtonite Ba[Al~Si301()] . 4Hp (TAYLOR and JACKSON, SB 3, 1933 to
1935,529) and barmorome BaIA4Si,018]' 6HP are known. In bannotome, Ba is
surrounded by ten 0 or HiD in a coordination polyhedron similar to that of
BaD· SiDl! . 6 H 20. Two of the 6 distances from Ba to framework oxygen atoms
are rather long (3.26 A).
Barium
56-8-1
56-B. Isotopes in Nature
Natural Ba is a mixture of seven stable isotopes (Table 56-B-l). The atomic
weight is 137.34 (Atomic Weight Conference of the IUl'AC, 1961, Butterworth
Scientific Publications, 1962), calculated on the basis that 12C=12.00000000.
(ST>l.O~IINGEU tJ
Table 56-B-1. Sli1b/~ lJo i/()/()pu in I/o/un
oJ., 1958; MAl"rAUCH ~/ 01.,1965; EUGSTER
~/
01., 1969)
Stable
isotopes
% in natural
mixtures
Isotope masses
»c = 12.00000000
l:IuBa
0.1056± 0.0002
0.1012± 0.0002
2.417 ± 0.003
6.592 ± 0.002
7.853 ±0.004
11.232 ± 0.004
71.699 ± 0.007
129.9062
131.9051
133.9046
134.9056
135.9043
136.9055
137.9050
"'j"
lUBa
'"B,
nUBa
U7Ba
l:18Ba
Measurements (I) made hy UMEMOTO (1962) indicate an enrichment of the
lighter Ba isotopes in the Pasamnnre and Nuevo Laredo achondrites and Broder­
heizn chondrite with a maximum of 2.5% for l30Ba in the Bruderheim achondrite.
This potential accumulation decreases almost linea.cly to mass l38Ba.
Recent investigations of Ba isotope distribution in meteorites (EUGS'rnR et al.,
1969) showed that differences in isotopic composition between meteoritic and
terrestrial samples are always < 0.1 % for all isotopes.
A very small amount of the short-lived BOBa occurs in nature as a fission product
of 138U (KURODA and BowARDS. 1957; HEYDEGGER and KURODA, 1959).
Itt..lc<d monulCrip. reccivttl' Scp.<",be< 1911
Q Sprlogo<-V<rl.p; Ilulin· Hdddbert: 1972
Barium
56-C-1
56-C. Abundance in Cosmos, Meteorites, Tektites,
and Lnnar Samples
I. Cosmos
Ba bas been detected spectroscopically in sears of all spectral classes except
classes 0 and B. These classes correspond to such high temperatures that all reso­
nance transitions of the highly ionized atoms fall Inro the ultraviolet range, whlcb is
inaccessible for terrestrial observation. Ba abundances are normally given as atomic
ratios per 10(2 H atoms or 10e Si atoms, or as ratios of Ba acorns/Fe atoms.
Atmosphercs of main sequence stars always seem to contain Ba in similar eODM
centraticns. In Table 56-C-1, the sun is given ;'IS one example. Pronounced differ­
enees of Ba concentrations have been reported for twO other groups of stars which
do not belong to the main sequcnee. BaIT stars, whicb arc considered to be carbon
StaIS with higbcr temperatures than N stars (GORDON, t %8), exhibit an overahun­
dance of s process clements, including Ba (BIOELMJu'l and KEENAN, 1951; DUR~
BIDGE and BURBIDGE,1957; WARNER. 1965). FUJITA and TSUJI (1965) found s process
Table 56·C~1. Baril/m abll/ldallu insrarr
Type of star
Name:
Hijl,b IIdo&iJy starr:
F 6 IV~V
Subdwarf
Horizontal branch
Subdwarf
Subdwa.r;f
Afain Itql/tiltt
Jog Ba
for log H = 12.00
Reference
Serpends
2.09
KEGEL
HD 140283
HD 161817
0.11
0.94
BASGHEK
HD 19445
HD 122563
0.35
-2.65
i'
(1962)
(1962)
KODAIRA (1964)
ALLER, GREEN5TEiN
(1960)
\'(fALLERSTEIN. PARKER,
GJU:ENSTEIN. HELfER,
ALLER (1963)
1101'S.'
G2V
sun
et 01. (1960)
2.10
GOLDBERG
2.01
CAYREL. C.l.TII..EL
OJbn liars
G B III
11
Virginis
(1966)
(log Ba{1og Fe)....
-(log 8:1/log Pe:).""
,}foin ItqtltlllilJort:
GV
cv
GV
pCom
99 He:rA
8SPe:gA
et 01. (1963)
il 01. (1963)
HELFER l/ 01. (1963)
0.06 ± 0.20
0.11 ±0.20
-0.10 ± 0.20
HELFER
0.02±0.15
H.E.r.FER
HELFER
Ol,"r Ilarl (Jllbgio!/I).'
GIV
CHe:r
iJ 01. (1963)
Barium
56-C-2
elements in N star Y evn to be overabundant by factors ofl0~ to lQ3 when compared
to main sequence stars. Strong enhancement of Ba lines in N stars has been detected
by GORDON (1968) and UTSUMI (1967). A certain relationship of BaIT stars to S type
stars was observed (WAR..~ER, 19(5) whereas R stars show normal Ba abundances.
CLATION (1964) bas developed the idea that in a special type of s process nucleo­
synthesis, the elements heavier than Zr are favored and this process is assumed to
work in Ban stars.
Population IT stars which arc characterized by their high velocity sbow higber
atomic ratios, H/Ba., than main sequence stars. Nevertheless, the abundance ratios
of elements heavier than carbon are similar to main sequenee stars (UNSOLD, 1967).
BURDIDGE and BURnlDGE (1957) found that the subdwarfs HD 106223 and A Bootis
are depleted in Be by factors of 20 to 30.
ALLER (1961) gives the logarithms of the ratio, number of Ba atoms in the
sun/number of Ba atoms in the star, in the subdwarf for three typical subdwarfs:
HD 140283, log (NsunlNmr) =2.59; HD 19445, log(N,uJNm,)=2.15; HD 219617,
10g(N.unlNstar) = 1.4(). Spectral measurements for the CH stars HD 26 and HD 626
(WA.LLERSTElN and GRH.NSTEIN, 1964) and comparison to the G 8ID star e Virginis
sbowed them to be Ba deficient by a factor of 30 to 50. HELPER e/ al, (1963) gave
the logarithms of atomic ratios (Naa/NyJ.tar---(Nsa/NpJ.un for four a:G stars:
CHerculis (+0.02± 0.15), PComae Berenicis (+0.06 ±0.20), 99 Herculis (+0.11 ±
0.20),85 Pegasi (-0.10± 0.20). Logarithms of atomic abundances of Ba in cosmos
are published by ALLEN (1963) as 2.11 for H = 12. The welgbe ratio is 4.25. SUESS
and UREY (1956) and CAMERON (1959) calculated the ratio of Ba aroms per 1(}l1 Si
atoms as 3.66; in the sun the same ratio is 3.978 (ALLER, 19(1).
­
rr, Meteorites
The published data are summarized in Tables 56~C2 and 3. Distribution pattems
of Ba are plotted in Figures 56-C-ta through d. Generally meteorite "finds" show
higber Ba values than "fulls"> indicating a probable terrestrial contamination of
the c,finds ", Thus a log of the normal distribution of Be can be observed only in
chrmdrire falls, whereas the "finds" of the same class exhibit a random distribution.
A
C
H
0
s
o
N
D
R
T
"
E
,
ppm Bil
CALCIUM POOR ACHONDRITES
[ZICALCILt-4 RICH .I010NDRITES
[SJ FtNDS
Fig. 56-C-b. Di$tribution of Barium in achondrfrea
Barium
56-C-3
c
H
o
o
o
0
o
o
o
o
0
o
0
H
o
T
R
E . 5
o
u
lOOI0200ppmBa
181 CLA:>s SYMBOLS eel" Cc2 l2Jct.ASS SYMBOLS CHL.CLl.
t2I AHOS (Q.L OHL'I1
DCLASS SYMBOL Ccl
Fig. 56-C-l b. DUitribution of Barium in carbonaceous and enstatite chondrites etc.
c
H
0
H
o
T
R
E
5
-
FALLS
-f-­
II
1
a
,
10
,0
F!NDS
z
s
10
o
00
00 ppm Ba
Fig. 56-C-I c. Distribution of Barium in ordinary chondrites, Class symbol CH
56-C-4
Barium
CliO
T
NOR
E
S
FAll.S
s
te
ppm"
FfNOS
-
~
,
,
~
f-­
~
-
f-­
I
S
"
~
'00 150 200 ppmBa
Fig. 56·C-1d. Distribution of Barium in ordinary chondrites, Crass symbol CL
Calcium rich acbcudrites are also high in Ba, whereas Ca-pece achondrites show low
Ba values, close to chondrites. In calculations of Ba averages in meteorites, the finds
have to be omitted. The few data available for nonsilicate meteorite phases (all
< 9 ppm) indicate that Ba is definitely a Jithophilic element. Table 56-C-4 lists the
mean concentrations of Ba in individual meteorite gtoups. Numbers of analyses
used are given in brackets. Class CH and CL meteorites are by far the most Frequent
stony meteorites and by using thcir data, the Ba average for ebondrites is calculated
as 6.3 ppm.
Barium
56-C-5
Table 56-C-2. Barium
Name of rneceorite
Ba content
ppm
Refer­ I Name of meteorite
cnee
St. Marks
Cahill," poor (uhondrilu
A. (fall1):
Cumberland Falls
Norton County
,.
2
10
10
Ah (falls):
2.5
5
Johnstown
•
Shalka
10
12
10
18.5
11
Ab (faHI):
juvinas
9-27
2G
30.2
Moore County
Paaamcnre
Sioux County
17
22
2G
28.6--29.8
3B
28.2
20
25
2
1
15
1
5
1
15
,
5
1
5
27.2
15
Srannern
62
Bereba
]onzac
53
28.6
29-29.3
1
2
15
Angra des Reis
21.5
48
Ap /if/dr):
Binda
Nuevo Laredo
2
40
46
44
39.3
39.3
15
15
15
1
1
7
13
,
15
Chondrilu
Crt (falls):
Abee
11.8
1.8
1.G
2.41
2.25
Indareb
G••
1.9
Crt (jallr):
Hvlnls
Khaiepur
Pillistfcc
Ba content
ppm
G
5.9
G
G
G
G.'
5.5
CH (jimu):
Acme
120
Alamagocdc
2G
Aurora
20
Colby (Kamas)
Coldwater
Cook
Coolidge
Covert
Dimbool.a
Estacsdo
Farley
Gladstone
Hugoton
Kaldccnera Hill
Kansas City
•
15
6
13
170
10
20.3
32
115
12.8
6
290
17
200
16.8
•
5
3
3.6
5
3.8
5
Kissij
Marsland
Modoe
Morland
Morven
10.1
Nerdcc
Orlovka
12.9
18
Peuopavlovka
Plainview
4
10
28
Ransom
7
Seibert
Texline
TutU
Wilmot
CH (falh)
Alc.xandrowsky
All.gm
6
13
14
3
Refer­
cnee
34.6
Cavour
Cokilfnl lith QfbOlfdriJu
Ao, (Jll/It):
Bununu
ill /fOJ!] 111rflOriJu
Aviles
Barbotan
Beardsley
Beaver Creek
Cangas de Oais
Erxleben
125
13
120
82
10
4.6
4
<1
1-3
5
3
5
5
1-3
10
10
10
10
10
10
G
10
10
G
12
10
10
10
6
10
8
10
7
10
13
10
6
G
10
10
10
10
12
10
10
10
10
10
6
10
2
2
10
13
12
12
2
56-C-6
Barium
Table 56-C-2. (Continued)
Name of meteorite
Fore!' City
Forest Vale
Hessle
IehkaIa
xercoeve
K~,"
Lumpkin
Monroe
Mount Browne:
Nanjemoy
Ocha.nsk (1)
Ochansk (2)
Olmedilla de Alaceon
Pantar
Pultusk
Richardton
Uberaba
\\'I'es(on
Yarnor
Zbovtnevyi
Ba content
ppm
3.37
3.7
4
9
3.3
3.30-3.37
4.3
8
4
6
4
6
5
7.9
4
13
5
2
5
4
3
5
3.2
2.9
3
7
3.2
4
4
6
6
11.3
6
Reference
3
7
"
13
12
15
6
12
"
16.0
11.3
Am'"
53
Becoham
Berdyansk
Bluff
Brisco
Cadcll
Cocunda
Cook
Cool:lmon
De Nova
Good1:Lnd
Harrisonville
Refer­
ence
Hayes Center
32
3.
52.4
5
21.2
94
8.4
21.
12
Herlmlrage Plains
Kingfisher
Kulnine
Ladder Creek
Lake Brown
La Lande
Long Island
"
12
12
6
""
""
"4
4
"
12
"7
"
1"0
13
13
,.
10
Loongaca (Forese
McKinney
Melrose
Nardoo (2)
Ness County (1894)
Otis
Potter
Rawlinna
Roy
Rush Creek
Silverton (N. S.
Wales)
Tryon
Vincent
Wacondlt.
Yalgoo
CL (11111J):
AlMndlo
Bjurbole
0
B
6.6
7
34
7
3
15'5.B
10.0
40.0
46.5
115
10
7
6
6
"
12
0
12
"""
"
6
6
6
6
10
10
10
ChateaURenard
Chantonn:ly
Colby (Wisconsin)
DhurmsaIa
Elenovka
F"rmington
Holbmok
"
"
6
6
"6
"
100
12
190
13.1
"6
6
155
15.5
2'
7
""
""
Lok,)
Bruderheim
Accalana
Addie Land
Barratta
Ba content
ppm
12
CL (finds):
Asson
Name of meteorite
I
155
15
7Z
5
10.3
19.
15.8
7
18.2
3
<1
8
5
14.2
3.37; 3.4
4.3
3.37
6
1 (03
4.5
6
5
10.5
9.1
2.7-9
5.B
12.2
4
26
9
3.6
6
10
"""
6
"
6
12
0
"
"63
2
12
14
15
10
2
"
10
10
6
6
2
3
6
7
10
12
13
Barium
56-C-7
Table 56-C-2. (Continued)
NllnIC:
of meteorite:
Ba content
ppm
Homestead
Khohac
Knyahinya
Krasnol-Ugol
Kuleschovka
Kunaahak
(light)
(wk)
L'Ajgle
Leedey
Marion
Maziba
Moa
Narelian
New Concord
Ni Koiskoje
Olivenza
P""",,,
Pavlograd
Paperi
Pccvomaisky
Saint Michel
53C1.tov
5tavropol
Refer­
enee
12
6
6
2
10
10
10
10
9
9
2.7-9
2
3.76; 3.85
3
3.64-3.76 15
3
10
4
10
21.7
6
5
10
6
12
7.6
6
4
10
2
10
16.4
6
3.5
10
6.5
10
8.6
6
5
10
133
6
4
10
10
22
10
2.5
11.0
5.1
13.8
1-3
5
5
3.5
4
4.8
5.2
Name of meteorite:
Refe-r­
BOl content
ppm
ence
'Tane
Tc:nham
Tc:nnasilm
5
15.8
10
10
6
12
eLL (foJIJ):
Ecelsbeim (light)
(dark)
Mangwc:ndi
Olivenu
Savt.5chen kojc
6.9
7.1
12.3
6
4
13
13
165
9.9
26
10
6
10
4
11.9
21.8
8.2
9.5
10.5
10
6
6
13
6
9.8
<1
2.4
8
2.5
4
6
12
13
12
12
10
6
10
10
eLL (filltU) ;
Kill,
Lake Labyrinth
Sb>w
CHL:
Fdix
Karoonda
Lane
Mokoia
Warrenton
etJ :
Orguc:il
Hessle
Mighci
Murray County
6
Rifmnm (mtlhDdJin brothll): 1. DUKE and SILVEIt, 1967 (?); 2. VON ENGELKAIlOT. 1936
(5); .3.EUGSTER tlal.•1969(I); 4.FREDRtKSON andKEIL,1963(S); 5. GhsT,1965 (I); 6.GREEN­
LAND and LovERING, 1965 (5); 7. H.wAGUCHI efaL, 1957 (N/R); 8. HEY, 1966 (?);
9. UVRUKHINA Ii al., 1966 (N/R); 10. MOORE and BROWN, 1963 {S}; 11. PHIU'OTTS Ii IJ/.,
1967 (1); 12. PINSON tid., 1953 (S); 13. Raao, 1963 (N/R); 14. SHilolA lind HONDA, 1967
(N/R); 15. TERA ti IJ/., 1970 (1).
Table 56-C-3. Barium ill ItfJlI} irons alld ironl
Namc of meteorite
.
Ba content Refa'-­ I N ame 0 f mC[CO(J[e
ppm
ence
M (fill),
Esthcrvillc
M (find),
Pallasitc olivine
Og (find):
Canon Diablo (troilite)
5
1
7
12
0.4
<0.006
<0.3
RiftrtnCtl: see Table 56-C-2.
13
13
13
Ba eoneent
ppm
0", (find):
Ni poor aU%itc
<0.1
Toluca (uoi!itc)
2.37
E1 Tac:o
Octahedrite, \'(feckc(oo
8.70
Station
Refer­
ence
13
3
3
Barium
Table 56-C-4. Average Ba (onmllralio/u
56-C-B
rif slanynuleoritu
Falls
A,
Ab
Ap
Co,
Ce2
CH
a
8
(2)
3.B (3)
30.0 (11)
8.6 (7)
5.9 (3)
4.9 (42)
7.2 (53)
Enstatite achondrites
Beonaire achondrites
Pigeoniee-plagioclase achondrites (eucrites)
Enstatite chondrites
Enstatite chondrites
Higb iroo (H)-group chondrites
Low iron (L)-gmup chondrites
Finds
34.2
(5)
43 (33)
47.1 (42)
All calculations of Ba averages in meteorites suffer from one or both of the
following uncertainties: inhomogeneity of the samples and difficulties in analytical
methods. The first point was demonstrated by MOORE and BROWN (1963), when
they analyzed dlffercnt pam of the Holbrook chondrire, which was a fall. They got
a range of 8 to 110 ppm Ba for the different parts of the specimen.
ill. Tektites
Ba concentrations' in tektites are reponed to be in the range of 300 to 7,700 ppm
(Table 56-C-5. Fig. 56-C-2). Olde.r data. which, are generally lower, are reviewed
by GMELIN (1960). All the more recent papers show Ba values to he much higher in
tektites than in any meteoritic material. Whereas most investigators found Ba conTable 56-C-5. Bari/lm in leklilu alld otber natural glaJlu
Locality
Be concentration
=g'
No. of Method Reference
anal.
m~
Tektitu
Afrka
Ivory Coast
Alia
Indornalaysia
Philippines
Indochina
Atutralia
Australi:l
Eurape
Czechoslovakia
North Anltrita
Tens
Georgia
Martha's Vineyard
........"
657
2
I
SCHNErZLf;;1l tt at. (1967)
300-320
310
420
2
1
900--2,000 1,300
6
S
S
S
PINSON el al. (1953)
PINSON tl al. (1953)
VOROB'EV (1959)
340--420
54O---llOO
540---'00
375
6
620
630
43
24
S
S
S
CHAO (t963)
TAnORand SACHS (1964)
TAYJ..01l (1962)
2,000--7,700 3,600
10
S
VOROB'EV (1960)
610
580
21
566
7
1
S
S
S
S
370--1,100
380--1,100
340-715
390
10
CH"O (1963)
Ccrrrr..... H til. (1967)
CUITI"CT" # til. (t967)
CUITlrr" (I al. (1967)
Barium
56-C-9
Table 56-e.-5. (Continued)
Locality
No. of Method Reference
Ba concentration
=.'
anal,
mean
Nil/lira! glauu
TaS/1tIl11;a
290-360
Darwin Glass
340
8
5
T AnoR and SOLOMON
(1964)
Darwin Glass, dark
Darwin Glass, light
1
1
M
M
CHAPMAN~'
400
1
200
M
M
5
d al. (1967)
al. (1967)
T A'nOR. and KOUlE (t9~
1
SCtrnETZLER
5'"
300
hU/To/ia
Macedon, dark
Macedon, light
Hc:nbury impact glass
600-700
650
1
2
Ajri'Q
Bosumtwi Crater
53>-<;24
579
2
Ill. (1967)
(1967)
CHAP~AN tID/.
CHAPMAN
CHAPMAN
tJ
d al. (1967)
Tektites
Africa
Ivery COOSl
Asia
Imlomaloysio
IndochinQ
Philippines
Australia
Europe
Czechoslovakia
North·AmericQ
Tl'~Q5
Georgia
Martha's Vineyard
­
Other natural glasses
Tasmania
Darwin Gloss
dark
light
Australia
Macedon dark
light
Henbury rrnpcct Glass
I
",I
10'o" .-'~~~~-'-';~.--=::O;::'-~~
1000
ppm Ba
10000
I
I
r
."
!
!
!
!
Fig. 56-C-Z. Barium in tektites and other natural glasses
Barium
56-C-,O
centrations in the range of 330 to 1,100 ppm, the values of VOROB'EV (1959, 1960)
both fat moldavites and indochinites are higber by a factor as great as ten, compared
with tektite values from the same areas investigated by other scieneisrs. PIlEUSS
(1935) gives a mean of 450 ppm Ba fat 36 tektites, 14 of which were moldavites.
BOUSKA and POVONDRA (1964) published semiquantitative spectrographic data for
mcldavites showing that six OUt of seven samples had 100 to 1,000 ppm Ba, and the
otbee hadless than 100 ppm Ba. 'rhus, it cannot be excluded that VOROB'EV'S values are
tOO higb due to a systematic error, especially slnce no simple parent material can be
imagined whieh would provide so much Ba. TAYLOR (1965, 1966) could relate
acsrralites by their Ba concentration and the content of othet clements to Henbury
impact glass and Henbury gteywacke as parent materials. Similar investigations of
SCHNETZLER el at. (1967) showed the consistency of Ba and RE concentrations in
Ivory Coast tektirea and Bosumtwi Crater impact glasses and strong similarities to
Bosumtwi phyllites. Calculations by TAYLOR (1962) made it obvious that no meteo­
rite splash could affect the Ba concentrations of the eesulticg impact glasses and
tektites.
IV. Lunar Samples
Considerable effort bas been expended on analytical investigations of lunar
samples ftom Apollo 11 and 12 missions. From data of the individual investigators,
averages were calculated for the different types of material according to the classifica­
tion established by the Lunar Sample PreJimifJaty Examination Team (1969, 1970),
(Table 56~C-6).
The overall unwelgbted average for Apollo 11 marerial calculated from the
means of the partieular batches (33) is 240 ppm Ba., s = 76. The range of data for
Table 56-C-6. Baril/m ill IlIJIar rod:z
Sample type
Bariwn eomenr (ppm)
arith. mean
ApeI/o 11 (Mare TranquilliJa#s):
Type A: line grained vesicular rocks
251
Type B: medium gnined vuggy igneous rocks 176
Type C: breech
230
Type D: "lunar soU" (fines)
169
Apoll() 12 (D&tan of Slorms)
Basaltie rocks
Breccia
Fines
Sample 1201.3
72
420
stand. dcv.
No. of
analyses
130
72
37
66
4<1
37
16
50
13
3
7
24
210
586
189
3,088
2,256
23
&ftrtmufor Apello 11 /amplu (mtl!Jadrin brod:tls): ANNELand HSLZ (1970)(5); BROWN
et at, (1970) (X); CoMPSTON tJ al, (1970) (X); GAST eral. (1970) (1); GaLES et at. (1970) (N/R);
HASl(]N el aI. (1970) (N/R); MAxw:ELLti al. (1970) (5); MORRISON el al. (1970)(N/R, M); MUR~
THY tI al. (1970) (I); PHlLl'OTTS and SCHNETZLER (1970) (I) ; SMAl"ES tf al. (1970) (I) ; T AnoR elal.
(1970) (S); TERA tl al. (1970) (I); WAKITA tt al. (1970) (NfRh WXNx.e tI 01. (1970) (N/R).
RifereNt for Ap()IIo 12 samplu: DRAx.e tJ 01. (1970) (M); HUBBARn er al. (1970) (1):
HUBBARD tlol. (1971) (I); LSPET (1970) (5); MAxwELL and WIIK (1971) (S); SCHNE'ttLER
elo/. (1970) (I); WAKITA nnd Scrnrrrr (1970) (N/R).
Barium
56-C-11
total rock analyses covers 10 to 370 ppm Ba, but values of cprc 55,900 ppm and
24,400 ppm have been found (M) in interstitial K rich (9.4 and 10.9% K~O) phases
From a 4 mm frngment from lunar soil (toOaS-LR-I) (ALBu and CHODDS, 1970).
These K rich phases consist predominantly of glass and exeeemely fine-grained
crystalline material. Tbelr chemical composition approaches but does DOt reach K
feldspar composition. The K rich phase, which is present in about 6 vol.-% in
sample lOOBS-LRRI, may also be responsible for Ba, Rh, and K concentrations in
other samples, where a dose relationship between these dements was observed.
For several samples. a grouping to separate high K, Rb, Ba material from low K.
Rb, Ba material has been tried. A few samples do nor fit this separation. Still, the
K/Ba ratios are rather eonstanc in general. Inhomogeneities of Ba content in different
chips o(one sample have been reponed, especially by WAKITA eta/., N/R, (1970).
Different ebips of their batch 10019 differ hyas mueh as 210 ppm in their Ba conrenr
(130 and 340 ppm). Analyses (N/R) of size Fractions of lunar soil showed a Ba
enrichment in the finer fraction (WAKITA el 01.• 1970).
Enrichment of Ba in moon rocks from Mare Tranquillitatis is 26 to 110 times
(GAST et 01., 1970) compared to cbondritie abundances. Within a single rock, concen­
tration factors are similar for the "Incomparable elements" Ba, U, Th, Zr, and
REE e.'(eepr Eu.
Several individual minerals have been analyzed for Ba. The results are given in
Table 56-C-7.
Apollo 12 samples from the OCC3!l of Srorms show lower Ba content in the
basaltic rocks (average 72 ppm), bee higher values for breccia (average 420 ppm)
and for "fines" (average 586 ppm). A most unusual roek is sample 12013 with
61 % sio., 2% KzO and an average of 3088 ppm Ba. Microprobe investigations of
individual points in alkali feldspars of this sample gave upto B% BaO and 13.1 %
KzO, i.e., compositions of celsian-orthoclase solid solution series (L/lnati& Asyl/lm,
1970). In rock 12013, Be is enriched upro mote man 2,000 times compared to
chondrites (HUBBARD el (II., 1970).
Table 56-C-7. B(I ,on/enlof ;ndMdll~1 m;lItr(l!J from Apollo 11 and 12 st1111plet
Minernl
Lunar sample
Ba concentration Method Reference
ppm
A/J611t1 1':
Plagioclsse
Plagioclase
Plagjoclase
Oinopyroxene
Pyroxene
Pyroxene
10085
10044-24
10062-29
10085
10044-24
10062-29
Ilmenite
<1; < 1; 15; 1,500 M
I
Z71
70.1
I
<1; 45
M
93.7
I
30.9
I
81.2
I
ANDERSEN d ~1.
PHILl'OITS el t1/.
PHILl'OITS d t1f.
ANDERSEN d (II.
PHiLPOITS el t11.
PHiLPOITS el t1/.
(1970)
(1970)
(1970)
(1970)
(1970)
(1970)
MURTHY tl t11. (1970)
Apollo 12:
Plagioclase
AIk. feldspar
AIk. feldspar
12013
12013
12013-10
(40)
Ruised f'I\StI\lJCripl .. ~""': Scp«mbcr 1\171
910
10650
895; 910; 8,680;
20,400
M
M
M
DRAKE tlol. (1970)
DRAJU: tlof. (1970)
LUNATIC ASYLUM (1970)
Barium
56-0-1
56-D. Abundance in Rock-Forming Minerals (I)
and Barium Minerals (II)
I. Rock-Forming Minerals
In igneous rocks of the earth's crust Ba usually does not form minerals of its
own, but is distributed among a number of silicate structures, mainly feldspars and
micas. The most Important substitution is for potassium due to tbe neady identical
ion sizes, even wjth the somewhat more covalent cbacacter of the Ba-O bond.
Substitution fot Ca is observed in plagioclases, pyroxenes and amphiboles. Apatire
and calcite are the most important rock forming non-silicates containing Ba,
a) Feldspars
K feldspars are the most important Ba carriers. Investigations by Roy (1965,
1967) and G,-\T and Roy (1968) with synthetic rnembets have shown that a continuous
series of solid solutions exist at high temperatures between K feldspars and ceisian.
In me subsolidus region, rwo gaps of miscibility seem to exist, one close to the
microcline composition and me other between hyaJopbane and celslan (Fig. 56-D-1).
Tbc system BaO-~Oa-SiO~ was recently investigated by LIN and FOSTER
(1968,1969).
In nature, K feldspars with BaO >2% are rare. They are mostly restricted ro
alpine type fissures (adularia) and deposits of manganese oxide.
Be concentrations upto 9.5 % in feldspars of me orthoclase-ee1sim series are
reponed from the alkalic rock complex, Magner Cove (ERICr.:SON and BLADE, 1963)
and from phonolites in Sourh West Germany (\'l7EISKIRCHNER, 1969). Be distri-.
burien in K feldspars has been investigated by many authors. As a general pattern,
it was found that .in magmatic sequences the early crystallized K feldspars show the
higbest Ba concentrations, whereas mlcrcclincs from pegmatircs were low (S) in
this clement (SHIMER, 1943j BRAY, 1942). Metasomatic alteration of a g eanlre body
(BJa.ck Forest, Germany) was discussed as a cause of abundant K feldspar pheno­
crysts wlrh a high and rather homogeneous Ba distribution by E~UfERMANN ([968),
(X).
Dlsrribution of Ba abundances in K feldspars is shown for igoeous rocks, peg_
matires, and alpine fissures in Fig. 56-0-2 using the data of Table S6-D~1. The histo­
grams clearly demonstrate that, in general, average pegmatitie K feldspars contain
Jess Ba than those from granitic rocks.
Ba may enter the plagioclase structure depeoding on composition in the An-Ab
series, temperature and pressure, of competing elements. DUCHESNE (1968) found
a correlation between potassium and Ba concentrations. Many indications exist
supporting me view that all the Ba in feldspars can be plotted in the four compo~
nent system Ab, An, Or, Cn. Plots of Ba concentrations for different members
o
Springcr-Vcrbg Bera.. • Hcid<lb<rg
1m
56-0-2
Barium
SANlDJNE
HVALO~HANES
"O"OCU.thC7N)
"
wl.%Cn
O:IJ---r.,
i
n
_ _
'5'SllOO,......"
2IXD 6(XD 10::00 lIDXl IlIl1D Z2DOO 25DOO JOOXl
Sa IN 56 K FElDSPARS fll:lM ALPlNE FISSURES
1000 3000 5000 7lJOO
!llXI)
nooo
l3000 !!lOOO
Ba. IN 320 KFEl..l:lSAI.RS I'iQol PEG/oWlTES
DOD
500.)
7CKXl 9000 1100:1 tlOOO 1500l 17000
6'1 IN 317 K FEI..JlSFI'.RS FJb,4 ROCKS
Fig.56-D-2. Distribution of Ba eeeeenceatlons in K feldspars (see Table 56-D-1
references)
fOf
BarIum
56-D-3
Table 56-D-1. BariJlI11 ronunfraf;ons ;11 KjeJdspart
Rock type
No. of
analyses
PtgmaJitu
7
36
6
5
44
17
15
5
9
11
40
44
16
64
11
4
Alpine fismru
13
3
15
33
1
Barium eecceceedcn
range
ppm
79­
19­
'­
209­
59­
20-
109­
43S­
199­
arith.
reean
1,130
27.
100
6,000
3,400
10,000
1,700
5,620
4,750
1,600
45'
47'
159­
159­
<19­
600
76­
27­
397
1,000
9,000
171- 10,525
3,550
236-->6,000
11
4
3
2
10
Granite'"
150
Gnnjte·!nvikite
5
Alkalic rock
4
Monzonite,
25
132
710
911
2,408
1,290
355
436
1,660
4,581
251
495
5
X
5
5
5
5
5
5
X
5
5
5
5
5
5
5
<10- 10,525
863
220- 55,800
2,400­ 3,270
7,730
2,690
X
2,600- 29,000 14,050
630- 15,300 5,000
1,970
1,970
5
5
5
220-- 55,800
19ntolu ro~Ju
Granite
Granodiorite
Quartzmonwnite
Trachyte
Granite
Method Reference'
avtragtjar 320 Jamplu
N
7,481
162- 2,340 1,150
322- 1,440
810
BRAT (1942)
CoRRJ>lA NlN£S (1964)
VON ENGELHARDT (1936)
ERICKSON and Bung (1963)
HEIER and T"'Tl.OR (1959)
HIGA'l:Y (1953)
HiGAn (1949)
HiTCHON (1960)
MARKART and PJ\EISINGER
(1964)
OPTEOAL (1961)
OPTEDAL (1962)
OPTEDAL (1958)
PIRANI and 5mBoLI (1963)
SHCH.ERlIA tf oj. (1964)
TATl.OR ttal. (1960)
TOWNeND (1966)
RTBACH and NISSeN (1967)
MARKART and l'RI>ISINGER
(1964)
W£lBl'.L (1957)
Wtillll'.L and MEYI!.R (1957)
Hswnsr-r (1959)
averagt for 65 sampl,'s
361
201
809- 5,4()0
4,700
3,920
2,475
X
5
5
5
BRAY (1942)
BRAY (1942)
BRAY (1942)
CAJlIdICHlLEL (1965)
EMILIANI and VE.SPIGNANI
(1964)
EMMER1rIANN (1968)
VON ENGELHARDT (1936)
ERIGKSON and BLADn(1963)
HEmR (1960)
1,000- 9,500
,9- 5,480
3,84()
2,765
5
5
HnmR and TAYLOR (1959)
Hnu and DUTRA (1966)
360- 13,600
3,370
(1959)
(1959)
HOWIE (1955)
JAsMUNn and StiCK (1964)
MARKART and P8b:JJ:NGER
(1964)
1,080- 1,260
5,100- 8,600
108-
90- 14,300
909- 4,000
130- 12,000
1,170
6,850
5
5
5
5
5
g=i",
Granite, gneiss
Gmnite, grano­
diorite, gneiss
Trachyte
Granite
Cbarnockite
Monwnitic :1.I:C\1­
mulatew
Granite, gneiss
41
12
10
3
4
16
2.500- 5,000
1.070- 12,100
5,000
5
5
5
X
19
364- 4,620
2,220
X
429- 2,700 1,550
fuwLEry
fuwLEry
Barium
56-D-4
Table 56-D-1. (Continued)
Rock type
No. of
analyses
Alkalic rock
Granite
Granite
Quartz, monzon-
Barium concentration
Method Reference
arith.
range
ppm
meen
4
63D- 5,900
314
X
70
9
29
2<;- 9,480
4,35Q-..- 4,770
3- 3,000
2,124
4,560
X
X
S
PERCHUCK and RYA.BCHIKOV
(1968)
RHODES (1969)
RICHYER (1966)
ROGER~ (1958)
S
S
S
S
S
S
S
S
M
M
S
X
SCHARBER"l' (1966)
SU'l" tJ oj. (1959)
SHClIERBA. tlol. (1964)
SHCHJlRBA. dol. (1964)
SlIClIJ!RBA. d oj. (1964)
SHClIER.6A. tl 01. (19G4)
SHCHERBA. elol. (1964)
SHCHEIl.lIA. e/ 01. (1964)
S~II"l'H and RIDSE (1966)
SlJITH and RISSE (1966)
TOW~E~D (1966)
WHITE (1966)
990
iric
Granire
4
Geanite-ronalite
5
Gran.ite
Granodiorite
Adamellite
Syenite
Monzonite
Syenodiorlte
Different rocks
Different rocks"
Granite
Granite
II
91
14
1,020
3,000
2,500
45-
392
176
836
3
4
2
6
32
23
12
7
950
8352,000-
460
162
ISS
595
< 200- 18,000
<200- 6,200
277->6,000
76<;- 1,526
3,559
1,183
J- 18,000
2,626
1,240
averoge!IJr 598 samplu
Sanidine.
of the plagioclase solid solution series show that the pure components contain less Ba
than the intermediate plagicclases (Table5G-D-2, Fig. 56-D·3). This may be due to the
fact that the pure end members are mostly very late or secondary crystals which
formed from a Ba-pcor liquid. Distribution of Ba between coexisdng K feldspars
and plagloclases is discussed 3S a potencial geothermorneter by HEIER (1960, 1961).
BARTH (1961) showed that a straight line relation exists between log rarios of Ba in
coexisting feldspars and log inverse absolute temperatures. He deduced that below
2500 C, plagioclase is the preferred host mineral for Ba. IIYAMA (I96B) studied
Ba distribution between potassium feldspars and plagloclases experimentally by hy­
drothermal runs at 600~ C and 1,000 bars. His results contradict the observedo»s in
natural rocks as he finds higher B::I incorporation in the plagiccleses than in the
coexisting K feldspars. RUDERT (1970) experimentally found an incorporation of
Ba in albite at 930~ Cf1 kb, upro 3Dweight % of cclslan molecules; BRUNO and GAZ­
ZONr (1970) substituted large amounts of Ca in the modifications of Ba.A1:lSi20 g •
In the hexagonal modification synthesized by solid stare reaction at 1,200~ C,
Ca. replaces Ba upto 37% (atomic fmction); in ebe hexagonal modification obtained
by ccyscallleaeicc of a melt, the replacement is limited to 25 % ; the same value was
found for the monoclinic modificarioc by heating the mentioned modifications to
1,450n C.
Barium
56-0-5
24ANORTH ITES
32 BYTOWNITES
'J9 LABRADORITES
131ANDESINES
3500
780LJGOCLASES
55ALBITES
o
200 400600BOO XXXlt1OO1f.OO IiOOBXl2lXXlppm
Fig. 56-0-3. Distribution of B1 concentrations in plagioclases (see Table 56-D-2 for
references)
56-D-6
Berfurn
Table 56-D-2. Barium cDllun/ratiollF ill plagiodolu from ;gmoliT al/d nulamorpJII& roth Qnd
r~/u of bydrofh"I1lQ/ origin
Rock type
No. of Barium concentration
analyses
Anorlhilu from~
Basalt
Pumice
Anorthosite, gabbro
and others
Metam. rock (amphi­
bolite facies)
~euun. rock (granu­
lite facies)
Dache-andeshe
Norire
ByJoI1lniJu!rom:
Anorthosite, norite
and ethers
Gabbro-anorthosite:
Basalt
Meteen. rock (ampbibo­
lite f:tcies)
Gabbro
LabrtuloriJujrom:
Anonhodte, gebbeo
and others
Basalt
Gabbro-anonbcsire
Anorthosite:
Metam. rock (amphi­
oolite facics)
Meeam. rock (gr.mulite
facies)
Ncrhe
Gabbro
Teechenite-basalr,
gabbro
Anduinu from:
Anorthosite
Granite, granodiorite
Gneiss, anorthosite
and others
Gnnodiorite-anortho­
ppm
arirb.
mean
60
10
60
10
range
1
1
13
<100­
3
<45
2
3
Method Reference
Brass (1961)
500 <217
S
S
M
Cokl£.TT and RIeBE
<45
S
SEN (1960)
<45­
80 <60
S
SEN (1960)
1
<45­
10
'0 <63
10
S
S
SEN (1960)
SEN el <1/. (1959)
12
,
<100­
tOO < 100
M
CoRllTT
40­
320
2
270
7
22­
<45­
2
80+
B5
38
<100­
CoATS
(1952)
(1967)
,
,
and RIBBE
(1967)
130
146
54 <46
S
S
S
MUIR tJ
82
5
SEN If
300 <195
M
E'!ofldONS (1952)
al. (1964)
SEN (1960)
01. (1959)
CORUl"r and RUIIIs
(1967)
200­
800 400
5
2
3
130­
85+
115­
580 347
160 122
150 160
5
5
S
4
270­
480
295
S
SEN (1960)
3
2
45­
50­
130
80
75
S
5
WAGNl>R
,
,s
so-
65
ColUlWALL :md ROSE
(1957)
EMMONS (1952)
PAPEZIK (1965)
SEN (1%0)
SEN rJ 41. (1959)
and
MrrCHELL
1,500
451
S
(1951)
WILKINSON (1959)
630- 3,500 1,250
370- 1,000 310
M
ANDERSON
5
Buy (1942)
COlllEIT and R1BBE
19
<100­
GOO <177
M
5
,0­
330 224
5
(1966)
(1961)
EmlONS (1952)
site:
Mnnzonitic accumulates 12
440-- 1,020
735
X
]umrND end SECK
(1964)
Gneiss
Pegmadre
Anorthosite
11
12
10
900-18,000 6,100
300
150- 1,075 384
10- 1,430
S
5
5
OFTWAL (1958)
OFnDAJ.. (1958)
PAPEZIK (1965)
Barium
56-D-7
Tahle S6·D-2. (Continued)
Rock typc
No. of
Barium coocentracion
ana­
lyses
Mctam. rock (amphi­
bolire facies)
Metam. rock (geanu­
lite fades)
arith.
mean
=8 0
ppm
15
<4>­
12
4>­
450­
Method Refereocc
990 <224
S
SEN (1960)
700
380
S
SEN (1960)
560
205
174
390
S
S
SEN (1960)
SEN (1960)
SEN a al. (1959)
\'7AGER and MITCHBf.L
(1951)
WILKINSON (1959)
Geanlee
Tonalite, granodiorite
G:1hbro
4
2
250+
6
6
80­
200­
870
320
255
600
Teschenlee, gabbro
2
350+
600 475
S
3,4tI0
3.4tI0
<100- 1.100 <134
M
M
850
S
Daclre-andeske
5
S
OJig{)CJa1tJ jrom:
Anoethosite
Pegmatite. granite
and others
1
43
ANDERSON (1966)
COIU.ErI' cad RmBE
(1967)
CORNWALL and ROSE
B"""
2
700+ 1.000
Granite
Pegmatite
Granite
4
1
2
70­
365
150­
380
132
365
268 20.
S
S
S
Granite:
Merem, rock (amphi­
bcllec facies)
Metam. rock (gCWlU'
lite: facics)
Rhyolite-rhyodacitc
4
5
180­
4>­
250 210
540 205
S
S
E},l},lONS (1952)
l!rrCHON (1960)
PIRANI and SrIdBOf.I
(1963)
SCHARBERT (1966)
SEN (1960)
<90- 1.170 <425
S
SEN (1960)
922
380 155
235 175
S
S
S
S£N (1960)
SEN (1960)
SE;N tl oj: (1959)
650 <145
M
Granirc
Granite, granodiorite
7
2
5
2
(1957)
45- 1,800
6>­
120+
AJlJilujt'Dm:
Pegmatite, alpine
fissure
Ba!l:ll.t
Pegmatite:
Pegmatite
Pegmatite
Pegmatiee:
Metam. rock (green­
schist facies)
DiB"ecent rocks
Pegmatite:
Granophyre
36
<100­
CORLl'.TT and RmBE;
(1967)
1
700
S
69
X
S
S
CORNWAW. and ROSE
(1957)
CoRIU':LI. NEVES (1964)
EMMONS (1952)
VON ENGEf.HAROT
(1936)
HtGAZY (1953)
SEN (1960)
6
54-­
1
1
1
2
1
2
1
5
<45
5
<45
S
S
4' _24
<200
30
M
S
S
SMITH and RnlBE (1966)
TAYLOR tl ai. (1960)
WAGER and MrrCtfll,LL
(1951)
1.000+ 1.100 1,050
2,160
2,160
S
S
WILIGNsON (1962)
Hswrsrr (1959)
I
2
5
I
<200
12­
30
80
700
AJwrlhodaJujt'D",:
Basalt, t:r:I.chyte
Phonolite
2
1
56-D-8
Barium
b) Micas and Other Important Rock Forming Minerals
Micas are the next important Ba carriers in rocks. Ranges of Ba concentrations
in these and other minerals are given in Table 56-D-3 and in Fig. 56-D-4. Ba is a
concentrated in blotires as in muscovites. Only lepidolites have much lower Ba val­
ues. Generally micas from pegmatites show lower Ba values than those from the
adjacent country cocks (TAKUBO and TATEKAWA, 1954). but each pegmatite may
have its own "Ba level". Extensive material on Ba contents, mainly from peg­
matite muscovites, was published by HElNRICH~1 01. (1956). These authors found Ba
concenrradona from Ito9,900pprn in 162 samples, predominandy pegmatite mus­
covites, They calculated an avemge of 1,020 ppm Ea.
PeTRQV et at. (1965) found that the relative concenerations of Ba in biotires in­
crease with metamorphic grade. In rocks free of K feldspars, biotite is often the
main Ba carrier, sometimes rogetber with pyroxenes and amphiboles. In skams
•
K-feldspar (983)
Plagioclase {3771
923
,
Nepheline (\8 1
,
1186
Leucitel7)
1198
Biotite (352)
"1<" !;
Muscovite (263)
Lepidolite (3S)
,4
,
quartz (16)
tcurmcunetrcj
Sphene 1191
Beryl (5J.)
. '14,
7S
~
~
T
"<-x
,~
X_-----l
248
T
,
liO
•
T
'24
TI
•
IT
Olivine (19)
~
T
Amphibole (187)
f
.<--<
83
, 10T
Pyroll:ene 1m]
B200 .
'057
.-><----<--<
Chlorite (26)
Apalile(91]
~
,
Phlogopitel261
I
Gl:lrnel (lSI)
79
12
T
Kyonitel26)
Sillimanile{5J
u
,.
T
' I
T
r
Ando.lusite 19l
'36
T
Scapo.lite( 1.2)
Calcite 11.7)
•
60
• _ _ .T
,
I
0
10
--<
!
'00
!
1000 ppmBa
,
10000
Fig. 56-D-4. Ba ccncenrearions in rock forming minerals (see Table 56-0-4 for references).
" Indit.:lccs total averages. x Indicates group averages
Barium
56-0-9
Table 56-0_3. Bar;'11l/ rO/Jrel1fmfiol/l ill rork jumillg mil/erall
Rock rype
No. of Barium ccncenrrarlcn
ana­
arith.
range
lyses
mean
ppm
of igmolfl
IIlId 111tlllm~rphir for}:1
Method Reference
Ntphtlillt
Alk.wc cock
Alkalic cock
3
5
<45- 3,320
100- 3,000
1,270
1,200
5
5
Pegmatite
Alkalic rock
6
4
<10­
20
<100- 3,400
20
1,670
5
X
< 10-- 3,400
923
VON ECKER~rANN(1952)
Earcxscx and BUDE
(1963)
OFTEOAL (1962)
PEllCHUCK and
RYABCHTKOV (1968)
m'uogtjor 181amplu
Ltllrift
Leucite-basanire
2
1,160- 1,250
1,200
5
Leueleepbyee-leuelre
hasanirc
5
710- 2,250
1,180
5
710-- 2,250
1,186
VON E1'.lGEl.lIARllT
(1936)
H.J'.NDER~ON (1965)
m',ragtjar 71amplu
Biofift
Paragneiss
Alkalic roek
Quaetzdiodce-granlre
Chamnckire
Pegmatite
Gneiss, schist,
amphibolite
Gneiss, amphibolite
Goc:iss, schist
Pegmatite
Quarnmonzonite,
granodineite
Goeiss, schist
Mcoadcose
Granite, norite
Pegmatite, wallroek
Metamorphic rock
(staurolite zone)
Migmatire, granite
Basalt
Cordierire-biorire,
gneiss
67­
103­
600--5001,430240-1,700-
720
470
.1,100
2,000
6,730
5,000
6,360
294
241
7'0
1,500
5,200
1,405
4,065
84+
lOll
'0
5
25
300- 2,200
·930
5
4
900---12,000
4,500
5
13
2
7
35
4QO.....­ 2,700
900+ 2,300
45- 2,320
100- 1,200
1,830
1,600
717
750
5
5
5
5
BRAY (1942)
Buy (1942)
BUTLER (1967)
CAllO (1964)
CAll~fICHA..EL (1967a)
DOOGE tf 01. (1969)
VON ECKER}lANN
(1952)
E~IILlANI and
VESI'IGNANI (1964)
ENGEL and ENGEL
(1960)
ERICKSON and BL<l.OE
(1963)
HASLAM (1968)
HEIER (1960)
HITCHON (1960)
HUN21CKER (1966)
8
20
3
24
900- 3,180
120- 2,450
200­ 400
450--- 8,500
-2,400
5
5
5
X
KRETZ (1959)
MOXHAM (1965)
OFTEOAL (1962)
RIMSAITE (1964)
RmSAlTE (1964)
SCHWARCZ (1966)
SEN eJ 01. (1959)
STERN (1966)
TUREKIAN and
PHINNEY (1962)
WHITE (1966)
W'LKlNSON (l962)
WYNNE-EDWARDS and
HAT (1%2)
QlltrQJjtjof J52 Jan/plu
Granite, granodiorite 12
Pegmatite
3
18
Schist
5
Metapelite
8
Rhyolite
GC21litic rock
34
Alkalic rock (carbon­ 8
atire)
Granite
2
17
7
10
48
22
8
1
8
810
300
1,212
5
5
5
5
.1\1
5
5
2,700
1,086
2,500
2,000
1,410
808
780
1,822
873
BOO
X
5
5
5
5
240- 1,335
2,500
60­ 530
880
2,500
290
X
5
5
42- 8,500
1,198
900472500<15042-
Barium
56-D-10
Table 56:-0-3. (Coorinued)
Roek type
No. of
ana-
IYSl:s
Phlogopi/t
Wyomingite, orendire 12
Wolgiditl:, wyomin.
9
gite, .6u:royill:
Alkalic rock
2
Lamprophyre, b:l5alt
Mwmvile
Granite
Pegmatite
Schist
Granire
Pegmatite
Pegmatite
Pegmatite
Goei5s, schist
Alpine fiSllu.re
Metameephie rock
Pegmatite
,
7
5
22
2
168
I
B
14
2
I
2B
Barium conceeeeadon
range
arith.
ppm
mom
3,670-10,100
3,140-14,300
7,350
12,000
M
M
C!.RMICI-IAEL (1967b)
CARMICHAEL (1967b)
1,000+ 4,000
2,500
5
2,700- 4,850
4,016
X
1,000-14,300
8,202
ERICKSON and BLADE
(1963)
RIJdSAn'E (1964)
avrrage for 26 [ampler
900
490
125
lOB-
23- 360
1,400-- 2,900
1,000+ 1,100
1,930
1,050
2- 9,BaO
1,020
36
110- 1,200
250+
'00
ss
160
850
265
21,400
180- 1,650
21,4<10
2-21,400
1,057
797
>-
9
,
18
7
2_
f8
4
,
20-
'00
10-
I!
17-
L~pidolill
Pegmatite
Pegmatite
26
9
Method Reference
2-
5
5
5
5
5
5
5
S
S
\'<f
S
BRAY (1942)
.BRAY (1942)
BUTLER (1%7)
E~IIL[ANr and
VliSI'IGNANI (1964)
HEINRICH et st. (1953)
HEINRICH (1967)
Hrrcno» (1960)
HUNZICXER (1966)
SCHWANDER ela1.
(19GB)
SNETSINGER (1966)
S"I'EIlN (1966)
aprrage jor 26J lampler
S
S
HEINRICH tl al. (1953)
HEINRICH (1967)
avtragejor J5 lal1Jp/~1
120
5
SO
25
5
148
36
S
CoRNWALL and ROSE
(1957)
E~IILtANI and
VESPIGNMolI (1964)
GIU.SENS (1967)
>58
5
MoHJt (1956)
Chlori/~
Basalt
Granite
Sehisc
I!
(2,100)
Garnet, chloeire,
schist
Quartz
Granite
Pegmatite
Basic intrusion
Amphibole
Metamorphic rock
(amphibolite)
\Xlolgidite, orendite
1
358
10- 2,100
8J
SSO
50
410
4
,.()....
I!
,()....
1
7
,
4
I!
7
average jor 26 lal1Jplu
5
5
5
BIl.AT
(1942)
Hn'CHON (t960)
\'1AGe" and MrrCHELL
(1951)
Qt·tragejor 161amplu
7-
550
112
<5()....
200
100
5
CARO (1964)
1,800- 5,400
3,700
M
C"'R~lJCI-lAEL
(1967b)
Barium
56-D-11
Table 56·Dv3. (Continued)
Roek type
No. of
analyses
Barium concentration
Method Reference
urith.
range
ppm
meao
Schist, glaucophane
9
2-
120
20
5
Schist, riebeckite
4
<4-
140
74
5
Schist, actinolite
2
12+
410
211
5
Granite
17
Granodior-ite, quartz-
,
715-
50
95
30
5
60
S
diorite
Metamorphic rock
(amphibolite)
24
24-
320
100
S
Dicrirc, porphye
15
100-
13
6
44-
300
104
36
36
150
Schist
Quartzdiorite
Granite
Rhyodacite
Gneiss, schist
Monzoniric
accumulate
4
1
a
11
Gneiss, amphibolite
16
AmphiboLite
9
Gneiss, schist
20
2
Nep beliuc-ayenite ,
pegrnarirc
1
Ophiolite
Tonalite, granodiorite 12
Essexire
2
Basalt
1
PyrtJXtJlt
Basic layered rock
Basalt
Basalt etc.
COl£lotAN and P APIKE
(1966)
COLE!>tAN and P APIKE
(1966)
COLEloCAN and PAPIKE
(1966)
DODGE 11 .. l. (1968)
DODGE er at. (1968)
ENGEL and ENGEL
(1962)
ENGEL (1959)
GRESENS (1967)
HASLAM (1968)
HASLAM (1968)
HASLA~1 (1968)
HUNzlCKER (2966)
195
60
5
5
5
5
5
5
(1,200)
90- 1,780
7S5
X
160
230
150
15
5
5
5
5
JMMUND and SEC~
(1964)
KRETZ (1959)
KRETZ (1960)
MOXHAM (1965)
OFTEDAL (1962)
27
5
5
5
5
PLAS and HUm (1961)
S,E;N,t 0/. (1959)
SnIP~ON (1954)
WILKrNsON (1962)
1010180
<10-
<90[010+
20
27
lO-
2S-100
20
20
180
300
360
485
<90-
66
BO
150
40
90
100
2~
5,400
12-
22
18
S
214-
an'a.!,' for /87 JO"lpltl
5
5
s
,0-
BOO
60
195
Alkalic rock
Alkalic rock
9
32
<4S--
540
160
300
5
5
Peridotite
Quarrzdioritc
2
4
1
10
10510
<90-
18
27
14
16
360
<145
5
5
5
5
ATKINS (1969)
BrERs (t961)
CORNWALL and ROSE
(1957)
VON EcKER~{ANN(1952)
ERICl'SON and BLAOE
(1963)
GREEN (1964)
HASLAM (1968)
ISHLOKA (1967)
KIl,E;T2; (1960)
20
<S-10+
<1-
22
~11
5
5
5
LEELA.NANDA~I (1967)
LEMAITllli (1962)
MOXIIA~( (1960)
S
MUIR It 0/. (1964)
NIXON It 0/. (1963)
Granite
Mccamcrphic rock
(skarn)
Chemcckire
Basalt, trachyte
Metamorphic rock
(skarn)
B:lS:Uc
Kimberlite
14
1
2
38
60
<10- 5,000
10
SO
44
s
5-
4S
9
<10-
[SO
30
12
21
33
5
56-0-12
Barium
Table 56-0-3. (Continued)
Rock type
No. of Barium concentrations
ana­
range
arirh.
lyses
ppm
mean
Method Reference
Pegmatite
Olivine b:L5a1t
Metamorphic cock
(skun)
Syenire, gabbro,
- esscxite
Oahbro
1
1
38
10
1.5
S
1­
65
5
<1<>­
30
<21
S
SIMPSON (1954)
9
<5­
60
16
S
WAGER and MITCHUL
'Teschenltc, basalt,
gabbro
11
<5­
60
11
S
(1951)
Wn.KINSON (1959)
< 1- 5,000
75
10
1.5 N/R
15 S
OI'TEOAL (1962)
(I 0/. (1968)
ONUMA
SBAW d oj.
(1963)
aPlrogr for 221 JOl1lplu
from the Greenville province, KRETZ (1960) reports that the Be content decreases in
the following sequence: biotite> amphibole> pyroxene. The structure of chain
silicates, where Ba occupies Ca positions, seems to accept more Ba at higher tern­
perature of formation; ENGEL. and ENGEL (1962) found an increasing Ba content
(9, 18, 86, 106 ppm) in hornblendes from metamorphic rocks formed at 400, 500.
525, and 6250 C
Quartz has a rather low Ba content, and it is not certain whether contamination
by other minerals was avoided in all analyses published.
From minerals of metamorphic origin, garnets exhibit the highest Ba values.
Kyanites, sillimanlres, and andalusites arc much lower and always contain less than
100 ppm Ba.
Calcite from alkalic rocks in the form of carbonadtes is somewhat enriched in
Ba. Crystals from hydrothermal veins generally have very low Ba conceorrations.
The vcry rare Ca-Ba-carhonates, alstonite, baryeocalcire, and bensronire are of no
Importance in rock formation and do not form solid solution series with the end
members.
Depending on type and ecvimnment of formation, zeolites contain different
amounts of Ba in their structures. Upto 300 ppm Ba were found in analcime sed
natrolire (ERICJ.:SON and BLADE, 1963; WJLKIN'SON, 1959). In srilbitc, thomsonire,
cbabasite, gmelinice, and gismancline, concentrations between 600 and 5,200 ppm
Ba were reported (Hess and RoY, 1960). Phillipaites, or constituents of the series
pbillipsue-harmotome, which occur In manganese nodules and in larger amounts in
certain deep sea sediments. may be extremely enriched in Bs, upto 44,500 ppm
(SHKABARA, 1950; Hoss and RoY, 1960).
c) Barium Partition between Mineral and Host Rock
and Between Coexisting Minerals
During the first stages of differentiation of basaltic magmas, Ba is enriched in the
liquid phase. Witb progressing crystallization Ba is incorporated, especially in
K feldspars and micas, which extract chis element from the melt. Pcgmeddc stages
of differcntiation series are consequently often impoverished in Ba.
Table: 56-0-4. Barimll dirJribllliOll b(/IJ'w/mil/(rals alld IMal ro(k,
Pair
mineral
rock
No. of
pairs
7
5
Barium concentration range:
mineral
120-1,800
770-1,100
1,100--1,400
400-1,100
1.17- 8.95
0.723.98
2,14- 2.37
1.6 15
M
<10-1,140
0,13->16.3
5
.8
140--6,900
560-3.500
2,600-3,000
1,400-6.700
Gnnc:t
tracbyre
Eclogite:
11
150- 165
Amphibole:
Biotite
Psc:udoJeucitc
Leueice
Rhyodacite:
Metllllrkose
Juvite:. tinguaitc
Leueire-porphyre,
Ieucite-basanite
Biotite:
Arnphibclite
Biottre
Gneiss
Arnphibolite:s
Grn:iss
Granulite
Gronitic gneiss
Granitic gneiss
Biotite gneiss
Muscovite:
Museovite
Plagioclase:
Orrhoclcse
Biotite:
Biotite:
1
180
7
7
5
472-1,086
50--4,000
710-2,250
1,190-1,730
50--6,500
1,950--2,250
9
575-1,150
290-1,150
1,000--1,200
390-1,100
110- 475
3,330-5.380
847-1,110
60- 530
270- 760
250--1.050
270-- 760
310--1,050
160--2,500
706- 731
706- 730
103- 380
19
5
9
12
5
2
8
5
5
5
rock
ppm
Trachyte:
Trachyte
Phonolite
Dacite.Yhyolire
2
Mc:thod Reference
ppm
Plagioclase
Anorthocl:m:
Biotite
Sanidine
Distribution
coefficient
Bamla/Barock
580
0.31
0.290.230.361.22-
OAO1.330.850.114.671.200.41-
5
0.65 5
1.00 X
0.81 X
5
5
4.08 5
3.55 5
3.37 5
4.60
2.44
7.38
1.52
3.95
X
X
5
BERLIN and HENDERSON (1969)
BERL1N and HJlNDEnSON (1969)
BERLIN and HENDIlnsoN (1969)
C... UlIC.,,,,EL (1967a)
HAIIN-\'V"IlINUElUI:R and LUel.:E
(1963)
HASL... M (1968)
H",SL...}! (1968)
HENDERSON (1965)
HENDERSON (1965)
,•'".
"3
HUNZICl.:JlR (1966)
HUNZICIo:ER (1966)
HUNZ1CKER (1966)
HUNZ1Cl.:ER (1966)
SIiN (1960)
WmTE (1966)
WHlTl;; '(1966)
\'V"YNNE-EDW...RDS rt al. (1962)
~
m
,
-"'"
,
¥:
tJ
'­
Table 56-0-5, Eori"m tliJ/ribtl/io/l bdw/lIl eo/xiI/bIg mi/leroh
~
Pnirs
mineral I
mineral II
Biotite
Muscovite
No. of Rock rype
pain
5
12
18
Biotite
Biotite
Oonocfase
Gamet
7
8
22
Biotite
Biotite
Hornblende
Pyroxene
5
20
2
(phlogoplre)
Biotite
Alk. feldsp.
Snnidine
Sanidine
Orthoclase
Plaglocl.
Plagiocl.
Pyrolto;no;
Pyroxene
Ciinopyrox.
Ilmenite
Plagioclase
Plagioclase
Amphibole
Nepheline
Amphibole
Clinopyroxene
Amphibole
Sea polite
Olivine
7
4
12
11
3
10
3
5
19
2(6)
Gnci~~,
migmarite
Schist, paragneiss
Schist
Migmadre, gneiss
paragneiss
Memm. sequence (42)
Metamorphic rock
Gneiss, schist
Phonolite, rhyo­
dacite
Metaarkose
Trachyte
Monz. eumularcs
Monz. cumulates
Alkalic rock
Monz. cumulates
Dceanire, andesite
Sk:lm
Skarn
Ankoranite, alknli
basalr
Range
mineral I
ppm Ba
Range
1,250"
1,525 11
600 240 350 580 1,000 120 2,480 +
630"
1,970 11
1,400 -2,900
1,176 -6,718
35 -1,100
1,100
1,335
2,200
1,410
3,000
2,450
4,670
mineral II
Range of
discrib.
ppm B:I
coestc.
11
15
10
21.3
+
38
60
485
55.0
472 - 1,086
7 132
2,700 - 6,900
560 -3,500
-12,100
394 -1,165
90 -1,770
900 -12,100
100 -3,400
990 - 2,300
-415 -1,780
395 - 1,170
23
1.26­ 10.2
58.2
2.6­
12 ->500
26
1­
14 210
31
4.9- 175
1.9 5.1
'00
1.98
0,80
0.31- 0.56
0.20- 0.25
2.00-15.0
21.0 -75.8
33 -68
2.50-60
116 +85
0.01 - 0.28
0.93 -10.8
2.30 -15.9
1.50 -22.1
0.38 -25.0
0.51 - 1.69
4.75 -18.7
<0.016-- 2.00
0,013- 0.20
2.59 -34.5
Method Ref­
erence
x
X
1
1
S
X
3
5
5
4
5
2
6
S
I
s
s
X
X
X
X
7
8
,
10
11
11
12
11
J
8
S
S
I
13
13
8
R,jtrMU: 1. RUISA1TE (1964); 2. BUTLER (1967); 3. WHITE (1966); 4. ENGEL and E:-:GEL (1960); 5. Tt:n.EKlAN and PHINNEY (1962);
6. HIETANEN (1971); 7. 1IoXHAM (1965); 8. PH1LPOTTS and SCHNETZLER (1970a); 9. SClIWARCZ (1966); 10. B.r:n.U:-l and HE:-lI)ERSO:-l (1969);
11. JAS~IUND and SEC~ (1964); 12. PEI1.CHUCl.: :lnd RYAilCHiI.:DV (1968); 13. SHAW dol. (1963).
II average.
tn
m
e·
~
3
Barium
56-0-15
The degree of relative incorporation of an dement into a specific mineral is
given by the ratio:
D __ concentra~j.~of Ba in the I?~~~cry---=~
concentration of Ba in the: melt
This distribution coefficient can be calculated if equilibrium phenocrysts are corn­
pared with total ground mass, for instance, of volcanic rocks. If the amount of
phenocrysts is low, the Ba content of the total rock can be used in the denominator
of the above given equation. Distribution coefficients can also be calculated for
metamorphic rocks, which constitute equilibrium mineral assemblages.
A number of these coefficients have been calculated from published data
(Table 56-04). It must be mentioned that the distribution coefficients depend on
several factors: pressure, temperature, the amount of Ba available, presence of
competing dements, etc.
BULIN and HENDERSON (1969) determined Ba in sanidine and plagioclase
crystals, and the embedding ground mass of eraebyees and phonolites. They could
reconstruct, by Ba and Sr determinations, the sequence of crystallization (sanidlne
or plagioclase 6rst) and even detected in one case indications for secondary redis­
tribution.
PHlLl'OTIS and SCHNE'rZLER (1970a), analyzing (I) phenocrysts and a matrix of
basic to intermediate volcanic rocks, calculated partition coefficients (Ba concen­
nation in mineral/Ba concentration in matrix) for: plagioclases, 0=0.0537 to
0.589 (9 pairs); K feldspars,O =6.12; clinopyroxenes, D = 0.0129 to 0.388 (10pairs);
ortbopyroxenes, D =0.121 ?-ad 0.141; micas (biotite-phlogopite), D=I.09, 6.36
15.3; homblendes, D =0.0996, 0.417, 0.731; garnet, D =0.0172; and olivines,
0=0.00864 and 0.0112. Only K feldspars and micas concenerare Ba relative to the
matrix. They observed a strong coherence of Ba and K in almost all phenocrysts.
The D-value of the K/Ba ratio is within the range of 0.5 to 2.0 in nearly all their
examples. Since this K/Ba ratio is found to be extremely consistent in basic rock
types, these authors recommend it as an "indexing criterion" for solar systems.
Ba distribution coefficients herween coexisting minerals (Table 56-0-5) give
some idea of the relative importance of minerals for the Ba ccnreor of a rock. It
must be kept in mind that analyses of mineral phases isolated from a certain rock do
not necessarily represeor equilibrium conditions. Ba concentration in a definite
mineral is affected. by pressure, temperature, Ba availability, structure and position
in the sequence of separation from the melt, and other parameters.
A useful index of fractionation is the ratio Ba/Rb. Be has a tendency to be
captured in early K minerals, whereas Rb is enriched in the residual melts due ro
its smaller charge and larger ion size. TAYLOR and HEmR (1960) report a variation
of the Ba/Rb ratio in feldspars from gneisses, granites and pegmatites from 54 to 0,04.
II. Barium Minerals
Because of their abundance, the most important Ba minerals and consequently
the main Ba carriers in the earth's cruse are: in Igneous rocks. K feldspars, whirh
contain a certain percentage of celsian molecules; and in sedimentary rocks and
hydrothermal deposits, barite. Under special conditions, a large number of well
Barium
56-D-16
defined Be minerals can form. Sometimes they arc reported from only one locality.
In Table 56-D-6 the nonsilicates and silicates are listed. Criteria for me presentation
in these lists have been: (1) reported by STRUNZ (1966), and/or (2) approved by the
Commission on New Minerals of IMA.
Table: 56-D-6. Barium mintrall
Mineral
Formula
Oxidu
Bitlictite
Hollandite
Pandnirc
Prldcrlre
Psilornelaoe
Rijkeboerirc
Todnrokire
(BaO·6UO~·11Hp
Ba:Mns0 16
(Ba,Sr, Ca)(Nb, Ti, Ta)P.·H~O
(K, Ba)l.a(Ti, FC)P'I
(Ba, H:0)Mns010
Bat_,,(Ta, Nb):PiH:O)
(Mn, Mg, Ca, Ba, Na, K):Mn sO n ·3H,O
Carb(Jrloftl
Alstonite (Ba-aregeaire)
Barytncnlcite
Bennonne
Burbankire
Esrbocemaire
Ewaldire
Hu=ghoitc
Kordylite
Mckelveyice
Ncrseehiee
Srencnicc
Witherite
BaGi.{COah
BaCa[CO~h
(Ca, Mg, !l1nMBa, S~).[COs]u
(Na, Ca, Sr, Ea, CcMCOsl~
(Ca, RE, Na, Sr, Ba)[CO~]
Ba(Gl, RE, Na, K, Sr, U, O)[COsJ.
BaCe(COa ]2F.
Ba(Cc, La, NdhFJ{COah
Na2Ba~CaY:[CO~]g·Hp
BaMg[COa ]:
(Sr, Ba, Na)2A1[CO~]F
BaCO~
Nitra"
Niuobadte
Sulfa/e"'
Barite
Stlmifl
Guilleminite
Pbosphalu. Arsena/a. Vonadares
Babefphire
Bergenirew
Dueserme
Feeeaairec
Fnncevillite
Gam:agarite
Gorceixire
Hcinrichite
Metaankoleire
Metaheinrlchitc
Metauranocircirc 1
Meteuranocireitc 1I
Strcnriumapatireb
Uranocircite: I
Uranocircite: 1I
Vesignictite:
Weileritc d
Be:$Ba,fPO,],O F,·O.35H 20
Ba(UO,J,[PO.M°H).·SH,O
BaFe~+,H[AsO.MOH).
(Pb, Ba),[PO,kSH20
(Ba, Pb)(UO,J,[VO.Ja·SH20
Ba,(Fe, Mn)IU,Ol$(OH):
BaAJ,(OH)&[PO.],·Hp
Ba(UO,J,[AsO.J,·10Hp
(K, Ba)(UO,J:[PO.k6H:O
Ba(UO"2[AsOt]2· SH P
Ba(UOal:[pO, la·SH20
Ba(UO~2[PO,]:·6Bp
(Sr, Ba).(D., RE, ;\Ig, Nalt[POIMF, OH)s
Ba(UOal.[pO,J:·12H:O
Ba(UO~.[PO']2·10Hp
BaCu,[VO,].(OH):
BaAI)Ho-IIAsO" 50,]:(01-1),_.
Barium
56-D-17
Tablc 56-0-6. (Continued)
Mineral
Formula
NuoJilkaJu
Bariumuranophane
Garrclsite
BnH[U0:JSiO{l.· 5HP
(Ba, Ca)4H6SiJ110~O
SoronlkaJes
Bnferrishe
Barylite
Hyalorekritc
Innelite
L:l.buotsovite
Nenandkevlchiee
Shcherbakovite
Yoshimuraire
Ring JilkaJu
Armeni[e
Baotire
Benitoke
Cappclenite
Muirice
Papsrite
Taramdlite
Traskite
Verplanckire
BaF~TiSi~Os
BaBe~Si~O~
(Pb, Ca, Ba)IB[Sig01?](F, OH)
Ba.(Na, K. Mn, Ti)~Ti(O, OH, F),(S. Si)O~/Si"O?]
(K, Ba. Na)(Ti, Nb)(Si, AlMO, OH)7·Hp
(Na, K, o, Ba)(Nb, Ti)[Si,071'ZH,O
(K, Na, BaMTi, Nbl:[SL;,07h
(Ba. Sr),(Mn, Fe. Mg),(Ti, Fe)(OH, Q),{(S, p. Si)O,JSiP?]
BaCa~ISi801S·2H!O
B~{Ti. Nb)8Si,O:,Q
BaTiSi 3 0 S
(Ba, Ca.
NaMY, Ce, La>s[BO.MSiPs]
BaIDuy,fnTiSilo03S(OH, Q, F)IO
Ba(Sn. Ti)Si 309
B~{Fc3+. rt, Fel+M0H),lSi{Ol:]
B8tFe~Ti.Si1l038(OH,a, F)6·6H.O
Bag(Mn, Fe, Ti)SiP.(O, ox. C1, F)~' 3H,O
ce,
Cbaill Jiliralu
Batisite
Krauskopfiee
W:alsuomice
Shed Jiliralu
Arumdite
Baelumphlogoptee
Barium­
vll.n2dium-muscovite
Gillespite
Oellaclrerlre
Sanbornite
(Ba, K)(Fe, MgMSi, AI. Fe)4010(O, OH)2
(K, Ba)Mg 3<F, OHMAISi30 ID]
(K, Na, Ba)(Al, 'rt, V, MgMOHJ.[AISi:O'Dl
BaFe[Si"O,oJ
(K, Ba)(Al, Mgh (OH, F).[AISi,olol
Ba.[Si"O,.l
Trr/ruilirales (Wi/bolll z~olilu)
Baaalshe
BaN:l:![AI.SitO I]
Cdsian
Ba[AItSi.Ds]
Paracelsian
Ba[AI.Si,Os]
Bariumafbire
solid solution Ab-Or-Ce
Bariumpl:rgiodasc
solid solution Ab-An·C..
solid solution Ce-An
Calciocebian
. solid solution Or-Ce
Hyalophane
solid solution
Hariurnsanidine
B:tAISi~08(OH)
Cymelre
Wcnkite
(Da,GiMSOll.A1tSinOu(OHh
56-D-18
Barium
Table 56-0-6. {Continued}
Mineral
Zeoli/a
Barium heulandire
Brewstedee
Edingtonire
Harmotome
Wellsite
Formula
(Cll,Ba){AI1SiPls] -6H ,O
(Sr, Ba, Cl\)~ Al.Sil10,~ ·10H.O
Ba A1~Si,Olo -3H~O
B~ AI.Si 120,,-12H.O
solid solution phillipaite-harrnotornc
Vl/dassift:J silica/a
Fresnoire
joaquinite
Leukosphenite
Macdonaldite
Tiensharrire
B:l.tTiSiP.
NaBa(Ti, FehSiPII
BaNa.(TiO),{SiP41J
BaCa...SiaO,.-11H,O
N~BllMnTiB.Si80.o
Calciobarite (C.'\), Beriroceleseite, Cclcsrobarirc (Sr), Barltoangleslte, Anglesobaeirc,
Hokutolite,·Weisb;u:hite (Pb), Radicbarkc (Ra). Reviews on composition, occueence, and
crystallographic and phvaieal properties are given by DANA (1951), HINT'.t:E (1930, 1938,
1960). X-ray evidence for the exiscenee of a barlre-celcsrhe isomorphous series has been
obtained by SABINE aod YOUNG (1954).
BOSTRthl e/ 01. (1%8) studied subsolidus phase relations and Iautee constants in the
system BaSO.-SrSO••PbSO•.
• Barite Forms more or less continuously, solid solutions with Ca, Sr, Ra, and Pb
~ulfates. In keeping with respective compositions, different names are used for the members
of the series:
b No decisive vote of the IMA new mineral commission.
e Doubtful mineral species.
a Not yet approved by IMA new mineral commission,
Barium
56-E-l
56-E. Abundance in Common Igneous Rock Types
A survey of Ba concentrations of rocks published by v. ENGELHARDT (1936)
showed that Ba content in igneous rock series normally increases with increasing
SiD: concentration. Recent data of Ba concentrations in common igneous rocks are
summarized in Tables 56-E-l and 2. The grouping follows the outlines of WEDE­
1"0HL in volume 1 of this handhook. The listing contains the range of individual
values, the arirhmcue means and the standard deviation (s) of these means. Ba
distribution in the main rock types is briefly discussed, as well as its bearing on
genetic interpretations.
I. Ultramafic Rocks
The most important ultramafic rocks in the development of magmatic series are
dunltea and peridotites. From the available data, mostly spectrographic, an average
of 8.8 ppm for dunite and of 25 ppm for peridotite was calculated. In their table of
elemental distribution in the earrb's crust, TUREKIAN and WEDEl"OHL (1961) preferred
a neutron activation value of 0.4 ppm Ba for dunire rather than a spectrographic
determination average of 6 ppm.
All data for these rocks suffer from potential contamination (sec discrepancy
between finds and falls of chondrites) and from analytical difficulties oceurring close
to the detection limit of Ba.
Pyroxenitcs contain a little more Ba (average 23 ppm); biotite pyeoxenitcs
have concentrations upto 3,200 ppm Ba (HIGAZY, 1954), as do kimberlites, where
phlogopite is the main Ba carrier. Very high values are also reported for carbonatires
(average 3,520 ppm) which sometimes even contain barite.
n. Gabbroic and Basaltic Rocks
Gabbroic rocks of intrusive occurence (average Ba content 246 ppm) closely
resemble continental tholeiitic basalts (average Ba eonrent 246 ppm).
Basalts can be divided iuro three groups according ro their trace element concen­
tration (Fig. 56-E-l). The averages for Ba arc as follows:
Oceanic tholeiitic basalts
Tholeiitic basalts of continents and oceanic islands
Alkali basalts
14.5 ppm Ba
246 ppm Ba
613 ppm Ba.
All trace element data for oceanic tholeiitic hasahs indicate a general uniformity
for widely separated parts of the oceans. MUlIl ell/I. (1964), however, determined
Ba front the rift zone of the Midatlantic Ridge, at 450 N, and found 55 to 220 ppm (S).
The continental tholeiitic basalts contain more Si, K, Ba, Cs, Pb, and Rb than
oeeanie tholeiitic basalts (GAST, 19(0).
56~E~2
Barium
Table: 56-E-1. BarilUJI in
Rock type
Alka1i granite
Granite
Granodiorite
Quartadiorite
Quartzmonzonite
Alkali syenite
Syenite
No. of
local­
ilies
cr
No. of
mean
values
used
"
References b
in ppm
in ppm
19
28
22- 2,100
22- 3,000
857
732
7
5
3
53
400-- 1,815
18
18
150-- 1,250
888
811
233-- 6,000
1,605
12,87, 124
,
to
300-- 2,070
1,067
21,34,75, t09
30
230--18,000
2,753
24,34,44,58,63,97,
100, 109, 111
4
2S
148
7,500--14,000
10,360
4
Diorite
10
Anorthosice
3
4
12
Nepheline
syenite
Arith. mean
of means
grouped by
locality
608
Gabbro
Norire
rocks
3
1
3
Mom:ogabbro
No. of Range of
iedi­
individual
vidual values
values
illtrllJi~~
66
18
524
126-- 1,150
S-- 1,250
655-
475
310
714
246
11, 12, 73
453
6,73,83,87, 124, 131
87,90,131
100
75.87, 90
228
171
78
10-- 6,300
1,427
6,17,21,24,26,31,
32,49,50,54,55,57,
62,67,72,73,75.80,
83, 85. 87, 89, 93,
106, 121, 126
4,21,75,87,91, tOO,
101, 109, 111, 127
75,91
75,87,99
1.206
Z1, 34, 35, 43, 44, 58,
59, 61, 75, 111, 125
3
1
5
8
3
850-- 2,800
1,598
64,88,111
650-- 2,000
1.500
63
66
88-- 2,430
973
Dunitc
,
18
Peridotite
6
Pyroxenite
2
Kimberlite
,
Essexire
Tesehenitc
ljolite.
meltcigicc,
jaccpyraegiee
Corbccadre
4
,
0.>-- 40
70
15.5- 67
27, 35, 43, 44, 75
8.8
38
34.39,56,75,98.100
23
75,98
13
35
20- 2,860
847
215
88--54.000
3,799
38, 39. 64, 75, 98
23,29,53.68
23,27-29, 35, 41,
46, 64, 69, 105, 123
.. s is the standard deviation of the mean values of the difl'ereot authors, srcndsed
devlatioos are given omy when 10 or more mean values wete available.
" Foe list of references sec Page 56-E-4.
/
56-E-3
Barium
Table 56·E-2. Bariu/1/ ill lJoka/lie rock!
Rock type
No. of
local-
ides
0'
No. of
individual
values
Range of
individual
values
Arith. mean
of means
grouped by
locality
in ppm
in ppm
"
References b
No. of
rnean
values
used
8
126
1-
700
118
20
153
5- 3.650
1,127
Rhyodacite
3
12
7
22
550- 1,800
150- 1,250
1,210
Dacite
Quartz larlte
Alkali trachyte
AlkaJi rhyolite
Rbyolite
Trachyte
632
629
550
1
2
10
2
30
800+ 1,500
20- 3,000
1,150
1,177
3
2
4
1,379
7
841
703
475
25.30,36,86,102,
103, 109
8.9,18,25,26,30,74,
79,88,89,92,103,
108, 109, 112,121
18,30,89
87,89,118,122
112
667
88, 128
3,36,71,88,92,
107,128
18, 88, 112
88, 112
2, 3, 8, 39, 45, 51,
74,79,88, 89, 108,
110, 112, 115, 118,
120, 122, 128
3,5,8,10, 13-16,
19,20,22,37,48,51,
52,60,65,74,76,77,
81, 87-89, 92, 94­
96,99,113,114,117,
119, lZ7, 128
I, 3, 33, 51, 66, 76,
78,81,88,116,117,
129, 130, 132
33, 42, 70, 82, 84
27,
71, 88, 104
Lame minette
Latire andesite
Andesite
23
185
137- 2,500
3DO- 2,250
80- 2,700
Tholeiitic
51
555
20- 1,160
246
197
Alkali basalt
16
tOO
3Q.- 1,350
613
223
OCC3nic tholeiite
Phonolite
Nepheline
basanite
Nepheline
41
5
41
42
lQ.- 2,000
999
8
95
250- 9,360
1,976
7.40,64,88, 104,
107, 130, 133
2
1
1
1
2
5
2
9
2
600- 5,900
1,800+ 4,000
l,8DO- 7,000
2,200+10,000
45Q.- 6,930
3,444
64, 130
64
basalt
cephrirc
Leucire
3-
46
14.5
basanite
Leucice
cepheitc
Nepbelinice
Ankaratrite
Leueime
hfclilitite
Alntriee
22
2,900
3,510
6,100
1,890
11.3
«,
64
64
27-29,47
.. s is the standard deviation of the mean values of the different authors, st:lnd3.td deviations
are given only when 10 or more rnecn values were available.
b For list of references sec Page 56-E-4.
56-E-4
Barium
Ry(rtllCU (/l/d!xJ,IJ ill bracJ:f/~): 1. BAKER. 1969 (X); 2. B"'KER. 1968 (5); 3. U.\I\ER
rJ 01.• 1964 (5); 4. BARAGAR, 1960 (S): 5. BARThL dol.• 1963 (5): 6. BRXl!ER. 1965;
7. BROWN and CARMICH"'EL, 1969 (X); 8. Bvexs, JR., 1961 (5); 9. CARMICHAEL and
McDoNALD, 1961 (S); 10. CL"'RKE, 1970; 11. CLlI'l'ORD (J 01.• 1962 (5); 12. CLII'I'ORO rJ 01.,
1969 (5); 13. CO"'TS, 1952 (S); 14. Co...'rs, 1953 (S); 15. COATS, 1959 (5); 16. Co...-rs flal.•
1961 (5); 17. Cocco, 1953 (5); 18. CORNW"'LL, 1962 (5): 19. CORNW"'LL and ROSE JR .• 1957
(S); 20. Cox and HORNUNG. 1966 (5, X); 21. Cox rl oj., 1965 (S); 22. Cox el 01., 1967 (5);
23. D"'WSON, 1962 (5); 24. DU:TRICH and Hsree, 1967; 25. DIXON elal., 1968 (5);
26. DUNIIA~I, 1968 (5): 27~ v. ECI\ER)IANN,1948(S), 28. v. ECKERM"'NN,1966(S); 29. Y. ECKER_
~I"'NN, 1967 (S); 30. EL-HINN",WI. 1969 (S); 31. zaur...NI and VESPIGN"'NI. 1964 (5);
32. E)IMERMANN, 1968 (X); 33. ENGEL etaJ.• 1965 (S); 34. v. ENG£LH"'ROT.1936(S);
35. ERICKSON and BuoE, 1963 (5); 36. EWART rJal., 1968 (S); 37. FlI.IRBAIRN elal.•
1953 (5), 38. FISHER and ENGEL, 1969 (5); 39, FL...N"'GAN, 1969 (S. NjR. X);40. FORN"'SERI
et al., 1963 (\XI); 41. G",RSON. 1967; 42. GAST, 1965; 43. GERAS(~IOVSKJI. 1966 (5);
44. GERASIMOIISKII and BJ;UA£II, 1963 (5); 45. GWSCA and IONEscu, 1965; 46. GOLD, 1963;
47. GOLD, (967; 48. GRlOJ;NLAND and LOIIERJNG. 1966 (S); 49. GROH~lANN and SCflROLL.
1966 {SJ; 50. GROUT. 1935 (\XI); 51. GUNN. 1965 (X); 52. Gmm, 1966 (X); 53. H"'HN­
WEINHUMER. 1959 (5); 54. HAHN-\VJ;INHEIMI:R and ACKERMANN. 1967 (X); 55. HALL,
1967 (X); 56. l!A)IAGUCHI (Jal.• 1957 (N/R); 57. HUJ;R, 1960 (5); 58. HUf;R, 1964 (5);
59. HEIER, 1965 (S); 60. HEIJ;R (Jal., 1966 (S); 61. HENDHSON. 1965 (S); 62. HERl. and
DVTlu, 1960 (5); 63. HIG... ZY, 1952 (5); 64. HIG"'l.T, 1954 (S); 65. Hcrz, 1953 (S);
66. HUCKENHOLZ. 1969 (X); 67. HUG! and 5WAINf;, 1963 (5); 68. JAN~E, 1962, 69. JOIl:<~ON,
1961 (5): 70. K... y (laJ.• 1970 (I); 71. KING and SUn-IERLAND, 1967; 72. KOLBE, 1964;
73. KOLBlO and TATLOR. 1966 (5); 74. KUNo elal.• 1957 (5); 75. LU;BENDERG, 1960 (S);
76. LIPMAN. 1969 (S): 77. ,MACDoN"'LO and EATON. 1964 (5); 78. LE M"'ITRlO, 1962 (S);
79. MARKHJNIN ,I oj.. 1964 (S); 80. MAR).!O and SUIIOU., 1966 (5); 81. M"'TJ-H.l5, 1957 (S);
82. MELSON et 01.,1968 (S); 83. MOENK&, 1960 (S); 84. MUIR tJ 01.• 1964 (5); 85. MUKIJE.RJlOl',
1968 (S); 86. NOBLE nnd HAFi'TI'. 1969 (S); 87. NOCJ.:OLDS and ALLJON. 1953 (5);
88. Nocsouos snd ALI.f;N. 1954 (S); 89. NOCKOLDS and ALLEN. 1956 (5); 90. O~RUSCH
and Ricnraa, 1969 (X); 91. r ...ruzIK. 1965 (5): 92. P.lITlORSON. 1951 (S); 93. PATT£RSON.
1953 (S); 94. P",TTERSON and SW.\JNf;, 1955 (5); 95. PAITERSON elal.• 1955 (S); 96. PECK
rIal., 1966 (5); 97. PlOCOI\ s, 1962 (S); 98. PINSON rtal., 1953 (5); 99. PRINZ, 1964 (5);
100. Re cn and H"'Q, 1963 (S); 101. READ dol., 1965 (X); 102. RENF/l.r;w dol., 1966 (S);
103. RENFRew rial., 1968 (5); 104. R,oux. 1970 (S,X); 105. RUSSJ3LL dol.• 1954 (5);
106. S"'HAMA, 1945 (S); 107. S"'VELLI. 1967 (X); 108. SHELTON. 1955; 109. SIEONER.
1965 (S); 110. SmGERS dol., 1969 (X); 111. SIMPSON, 1954 (5); 112. 51NHA and TIW"'RI.
1964 (S); 113. SINH'" and K"'RI\ARE, 1964a (5); 114. $,NH... and KARK"'Re, 19Mb (5);
115. SMITH, 1964 (5); lt6. SmTU and C"'R)IICII"'lOL, 1969 (X); 117. SN"'VELT JR. do!.,
1968 (S); 118. 5TARITSIN. 1964 (5); 119. STARK 3.Jld TRACEY. 1963 (5); 120. T"'YLOR and
WHrtE, 1966 ($); 121. T...YLOR rtaJ., 1968 (S); 122. TAYLOR dol., 1969 (5); 123. TE~lPLf;
and GROG"'N, 1965 (X); 124. TOWNEND, 1966 (S); 125. VL"'SOV nat., 1966 (S); 126. VOL­
aORTu. 1962 (W); 127. WI.\GJ;R and MITCHELL. 1951 (S); 128. WAGER end MITCHELL,
1953 (5); 129. WWEJlOHL, 1954 (5); 130. \'V'EDu>OllL. 1961 (S); 131. \V'lOIDEL, 1960 (S);
132. \\'ILKINSON, 1959 (5); 133. WILI.:INSON, 1968.
Differences in Ba concemration among tholeiitic basalts of particular rcglcns
were found in South Africa, where Rhodesian tholeiites show unusually high mean
Ba values upto 1,020 ppm (Cox rt fll., 1967), while the basalts of Basutoland and
Swaziland arc of normal tholeiitic geochemistry. GRJ::ENLAND and LOVERING (1966)"
studied differentiation within a tholeiitic sill in Tasmania (Australia). Ba concen­
trarions increase here, from the bottom to the 1735 It-high tOP of the £Jow, from
160 to 500 ppm. Elements with similar enrichment trends ate F and Ga, whereas
nonparallel behavior was found for Ni, Co. Cr and Sc.
Barium
_ _
56-E-5
l:f~~~~~il:I:L_O:C:E:ANIC
(SINGLE VALUES)
THOLEIITIC BASALTS
_
""
"00
THOLEIITIC
BASALTS OFCONTINENTS
ANO OCEAHIC ISLANOS
(AVERAGES I
2
5
la
20
so m zoc
SOO 1000
ALKALI BASALTS
(AVERAGES)
'00
"00
ppm Ba
Fig. 56-E-1. Barium distribution in basaltic: racks
ENGEL et al, (1965) gave the ratio of the masses of alkali olivine basalts to tholei­
itic basalts as 2:98. Consequently. an average of 253 ppm Ba is to be assumed
for average continental basaltic rock. P.lUNZ (1967), in his summary of rrace elemem
data for basalts. found an arithmetic mean for all basalts of303 ppm and a geometric
mean of 220 ppm for 253 analyses. From the wide range of Be concentrations
within similar petrographic types and. from similar Ba values for different
petrographic types within any region. it is indicated that differences in the initial
abundance of Ba in basaltic magmas exist (PRINZ. 1967). The generation of such
differences is attributed to different degrees of partial melting. mantle inhomo­
geneity or wall rock reactions U.. .MIESON and CL....RKE. 1970).
Anorthosites and norires arc both lower in Ba than tholeiitic basalts. The normally
observed relationship between K and Ba is not found in Canadian anorthosites. In
Barium
56-E-6
these rocks, which are rich in Ca, the Ba-Ca dbdochy is superimposed on the more
common Ba-K relation.
ill. Granitic Rocks
a) High Ca Content
Granitic reeks with a high Ca content, 2.S in granodiorites and quartz-diorites,
are usually high in Ea. Avemges are 888 ppm and 81t ppm, respectively; within
particular areas the Ba content may vary considerably. An avcmge for both rock
types, calculated with the percentages of WEVl!POHL (1969), is 873 ppm.
b) Low Ca Content
Granitic rocks with low Ca content, which are represented by granites and
quanzmonzonites, show extremely different Ba values (Fig. 56-E-2). This may be
soo
1000
1S<JO
2000
ppm Ba
Fig. 56-E-2. B:l distribution in grmitc:s (28 local means, sec Table 56-E-l)
partly due to origin and to differences in [he respective processes of formation.
Metasomatical alterations may also have changed the Ba content in some granites
(d. EM~mR;o,IANN, 1969). The granlre average from 28 regional mean values is
732 ppm. Within certain granite bodies, the Ba concentration may exhibit a narrow
spread, while the means are low or high. Gradational change of Ba content was
also observed (EmtERMANN, 1969). For three qcurtzmonzonire areas, an avernge of
1,605 ppm was calculated.
­
The effusive equivalents of granitic cocks contain more Ba (average 1,127 ppm)
than grantees. The single quartz Jarite value, however, is much lower than the
average quartzmonzonire content,
IV. Intermediate Rocks
Intermediate rocks, such as syenites and trachytes, ate strongly enriched in Ba.
While the syenite average is 2,753 ppm, the effusive equivalent avemges only 1,177
pp~. TUREKIAN and WEDEl'OHL (1961) gave a value of 1,600 ppm, which was
calculated from data of v, ENGELHAROT (1936) and SAHAloIA (1945).
V. Alkalic Rocks
Alkalic rocks are all considerably enriched in Ba. All averages are higher than
1,000 ppm, with nepheline-syenite showing 1,427 ppm, phonolire 1,000 ppm and
nepheline-basanite 1,976 ppm Ba. In rocks of the Lovozero alkali massif (USSR),
Ba is enriched upto 3,300ppm (VLAsOV et 01., 1966). The Kola alkali complex
(USSR) eonrains UpIO 1,600 ppm Ba in its nephellne-syenlres and upro 1,350 ppm
Ba in rhe foyahes (GER.....SIMOVSKll and BELYAEV, 1963).
Barium
56-E-7
BAAIlJ.4 CONCENTRATIONS IN DIFFERENTIATES FRC*!
S1. HELENA ISLAND
ae
pp
1500
•
•
..
.­
-
-
•
•
o
45
"
55
"
a
65
'IoSIOz
BARIUM COMCENTRATIOMS IN OIFFERENTlATES
FROM ST,HELENA ISLAND
8a.
pp
•
1500
•
•
"00
soo
•
•
-,
..
·2
,
a
5
b
Fig. 56-E-3. Correlation of Ba concemraucn and
SiO~
(upper plot) cod K 20 ccnrene in a
differentiation series (I3A,um., 1969)
Many investigators (v. ENGE.LJ-lAIlDT. 1936; WAGER and MITCHELL, 1951;
NOCKOLDS and ALLEN, 1953, 1954, 1956; WILKINSON, 1959; MARKHININ ef ai.,
1%4; P. E. BAKER, 1%8) found that Ba concenrradons increase during progressing­
differentiation. One example of correlation between concentrations of Ba and Si02
and ~O (as parameter of differentiation) is given for volcanic rocks of Saint Helena
island, South Atlantic (Fig. 56-E-3).
Sometimes Sr shows the same trend, while a nonparallel behavior is observed
for Ca, V, Co, Co, Ni, and Sc. In several instances the relation between Be and other
Barium
56-E-B
dements is not as simple; plotting versus differentiation, solidification, mafic index
or Larsen factor provides a better insight into dijlesencaeicn behavior.
In series which proceed far in dlfferenriarlon, Ba concentrations normally pass a
maximum. Since Ba substitutes mostly for K, this indicates that a distribution
coefficient
(~ )crystal/(~)mc:lt' larger than unity is effective in acid magmas for ac
least one major mincral
mostly potash feldspar or mica.
This type of Ba distribution prevails in the example given in Fig. 56-E-3, in the
Scottish Caledonian rocks, and the East Central Sierra Nevada rocks analyzed by
NOCKOLDs and ALLEN (1953). As a consequence of this differentiation behavior,
Ba is always very low in pegmatites of ttuly magmatic origin (cf. Table 56-0-1 and
v, ENGELHARDT, 1936). A trend of KfBa rados to increase from 26 to 36 in a
tholeiitic scquence was found by GUNN (1965)..
Data. for averages of Ba concentration in igneous rocks have been subject to
changes in the last year due to the fact that more and better data. bave been published.
Consequently. the mean calculated Sa content in igneous crustal rocks lias changed,
3inCC better insight into the relative abundance of rock types was obtained. With the
Ba concentrations of Table 56-E-l, one arrives at a Ba average of 728 ppm for the
upper continental crust of the earth, using the data for the relative amounts of
intrusive rocks by WJ'.DEJlOHL (1969, handbook; Tables 7--8). Esamples for Ba
dUttibution between minerili of certain rocks are given in Table 56-E-3.
Compilation and interpretation of Ba data from Iirerarure suffer somewhat from
the difficulties in analytical determination. This is shown graphically by the Be
values for the standard rocks Gl and WI (Fig. 56-E-4). The considerable spread of
values - - even wirh the sarne analytical method - cannot be explained by too coarse
grain size of me reference samples (KLEEMAl'lN, 1967), since similar observations
were made with the much more finely ground new standard rocks of the USGS
(FLANAGAN, 1969). As the individual authors use tbeir own different values for
luecmal reference, difficulties arise when results from different sources are compared.
This must be considered when the data from these paragraphs are evaluated.
c-.
Table 56-E-3. Bari/lm diJlrib/l/iol/
Rock type
Horconctke ferro gabbro
Olivine ncrite
Quartz bicrite norhe
Granodiorite
G~[C
Predazzo granite
Adamdlile porpllyrice
Adamcllite
Spben pyeoxeniee
Teschenire
- Quartz and plagioclase.
Total
rock
13a ppm
Quartz
Ortho-
Plagio-
Biotite
Ba pprn
clese
Ba ppm
cl"",
Ba ppm
Ba ppm
50
5
300
20U
10
1,000
1,000
70
3,000
2,500
108
600
110
500
275
1100.
1,600
90'
2,500
2,000
125-
6'
275
225
100
100
1,250
120
900
350
Barium
56-E-9
.,
STANDARD GRANITE
...
1000
""
__
__
. ".
"
"
.
3000
.1050
2000 ppm Sa
STANa&.RD DIABASE
WI
'00
o
SOOppm Ba
Q"lTIC6.L SPECTROSCOPY
IZI NlAY
lSJ NASS SPECTROSCOPY
Fig.
EJ ISOTOPE
DILUTION
I8l GRAVllo4ETRIC
FLUORfSCENCE
56-E-4. Sa determinations on standard rocks (FAIlUlAIRN a at., 1951; STE.VE.NS tlai.,
1960; FLEISCHER and STEVENS, 1962; FLEISCIIRR, 1965, 1969; FL,I.:-;OAGAN, 1969)
ill rotlu
Muskovire Amphibole Pyroxene
Ba ppm
Ba ppm
Ba ppm
10
10
15
5
Olivine
5
Method References
S
S
S
S
S
S
WAGE/t
and
MlTCHELL
se» tf ai. (1959)
SI!N
tt
SEN
tf
(1951)
ai. (1959)
se» tt ai. (1959)
ai. (1959)
EllILrAl'Or and VESPIGNANI
(1964)
120
35
10
20
10
/t"";oet! "..nuocrip<
~""':
S<pt<:mbcr l!7T1
et. (1964)
(1953a)
EII'CK'SON and BLADE (1963)
WILKINSON (1959)
WILKlNSON (f
S
S
S
BU'T't.E1I
56-F-1
Barium
56-F. Behavior during Processes Connected
with Magmatism
I. Pegmatites
Pegmarltes of magmatic origin generally contain less Ba rhan their embedding
wallrocks of magmatic or metamorphic origin. This feature is most apparent in the
main Ba carriers, feldspar and mlca. By analytical studies of alkali feldspars from rhe
South Norwegian Precambrian basement complex, HEIER and TAYLOR (1959) found
that the concentration of Ba in potash feldspars decreases with increasing ditTer­
eneiation. The K feldspars of large pegmatires in the surveyed area always contain
less Ba than the hosr cock. This general trend was diagramarically shown by HEIER
(1962) and can also be seen in Fig. 56-D-2, for which additional analyses were used.
TAUOR and HEIER (1960) stressed the importance of the Ba/Rb ratio in feldspars
for judging the degree of fractionation. Since Rb is more discriminated against in
the K feldspar structure than Ba, Rb is continuously enriched in the fluid dnring
crysta1.lization. Under the assumption of constant distribution coefficients for both
elements, this leads to the highest Rb values in the last crystallization. Low Be
values in granite-pegmatite feldspars are also reporred by v. ENGELHARDT (1936),
OFTEDAL (1958), and TAKUBO and TATEKAwA (1954). Within a pegmatite body,
OFTEOAL (1959) found the younger microcline to be poorer in Ba than the older one.
Similar Ba impoverishment was found in nepheline-syenite pegmatites (v. ENGEL­
HARDT, 1936; OFl'EDAL, 1962) as compared to the lardallte and larvlklrc from which
they are supposed to be derived. Biotite from granite pegmatite also is impoverished
in Ba compared to the biotite from the mother granite (TAKUBO and TATEKAWA,
1954),
Ba behavior is different in the small pegmatite bodies which sometimes form by
metamorphic processes. In the plagioclase gneiss area of JUSter, Norway, small
pegmatiric veins occur with high Ba values. HrrcHON (1960) investigated pegmarires
of three metamorphic complexes in Scotland. While two complexes showed the
usual Ba relation between pegmatite and country rock, pegmatites of the third
complex (Laxfo[dian) were markedly enriched in Ba in all minerals [microcline­
perthite 3,785 and 5,620 ppm; oligoclase 365 ppm; biotite 900 ppm, 760 ppm,
1,100 ppm and 2,320 ppm Ba). In these pegmatites, the Ba concece of the individual
minerals Inerecses towards the core of rhe respective body. It is possible that in the
case of Laxfocdian pegmatites metasomatic proccsses caused a later Ba enrichment in
the pegmatite minerals.
ll. Metasomatism, Wallrock Alteration, Greisenization
Metasomatic changes of Ba content of rocks occur sometimes with emplacement
of pegmarites. Evidence for a large scale metasomatic Ba addition in a rock body
@
5pri~K',.V.,lag Bodi~
'll.i,ldbo'!l 1972
Barium
56-F-2
was found for the Albtal granite, Germany, by EMMERMANN (1968, 1969). This
author investigated the distinct diB'ererlces in the distribution patterns of Ba in the
rwo occurring K feldspar generations and reached the conclusion that the potash
feldspar megacrysts (mean Ba content 4,600 ppm) had grown during a postmagmatic
srage from a merasomanc, Ba rich fluid, whereas the groundmass K feldspar (mean
Ba conrenr 1,600 ppm) represents the first generation.
Metasomatic alterations in granodiorite, dacite, and gabbro related to serpen­
tinization of ultramafic rocks in the Western United States, generally resulted in a
distinct Ba impoverishment. In a few cases, small intermediate zones with Ba
enrichment were observed (COr.m.tAN, 1967).
LUR'YE (1963), analyz:ing spectrographically the silicic wallrocks of Zambarah
xlnc-Iead ore deposit, Central Asia, found a pronounced decrease in the concen­
tration of Ba and Sr towards the veins. The Ba content drops from 3,000 to 6,000ppm,
in fresh tack conmitting abundant K feldspar, to 300 ppm as a maximum in com­
pletely sericitized, feldspar free rocks close [Q the ore. He concludes that all barite
and its Sr content originates from the feldspar deeomposition in the wall rocks.
Granitic wallrocks of hydrothermal veins in the Black Forest, Germany, were
analysed for Ba distribution by OF-GENS (1956). Extensive studies of w:a.Ilrock
alterations were carried out by TOOKER (1963) in the Freer Range Mineral Belt,
Colorado, USA. His spectrographic analyses showed that Ba, as with other large
ions, normally tends to be removed veinward from all Precambrian and Tertiary
metamorphic and igneous rocks he investigated. During alteration in the rock,
pH drops along with the decrease of K, Ba ere.
Greiseni.zation normally proceeds with the removal ofBa from the affected rock.
In a mixture of samples from 24 greisen, v, E."lGELHARl)T (1936) found an abundance
of 160 ppm Ba. This value is far below rhe content in the respective unaltered igncous
silicic rocks. SOLOMON (1966) reports Ba removal from granites (430 ppm and
250 ppm) by greisenization (Ba In the altered rocks: 160 ppm -and 105 ppm respec­
tively) in the North Penninc ore field, Great Britain.
ill. Ore Deposition
Probably, magmatic-hydrothermal fluids originally do not contain any significant
amount of Ba, but obtain this element by leaching suitable wallrocks. The im­
portance of chis meehanlsm, mentioned in the previous paragraph, was already
stressed by v. E.'1GELHARDT (1936). Another mechanism working in sedimentary
environments is dissolution of barite from the sediment by bacterial sulfate reduc­
tion in suitable diagenetic environment (PUCHELT, 1967). As a third way of peoducing
Ba containing fluids, certain metamorphic reactions may give off Ba because struc­
tures which had iacorpceeed high Ba concentrations become unstable.
The most common Ba ore is barite. It is deposited hy fluids with a high oxidation
porential, where sulfur is present as sulfate. Suitable conditions of this kind occur
close to the earth's surface or in subsurface areas wbere sulfate solutions mix wirh
reduced Ba containing waters (d. Subsection 56-I-IV). In solution, Ba migrates to
the region of sulfate stability and thus is often bound to a narrow zone close to the
earth's surface.
56-F-3
Barium
Modes of barite formation and possibilities of BaS04 transport in solution are
discussed by PUCHELT (1%7). Barite contains, in all cases, certain amounts of Jso­
morpbous Sr. Concentrations of this element in marine barites (upto 3.36%) are
summarized by CHURCH (1970). STARKE (1964) analysed a largc number of vein
barites which contain uptc 12% 5r504 • The condiricns necessary for witherite
formation from ore forming fluids are not often fulfilled. Calculacions for BaC03
formation, at 250~C and COr fugacides of 0.1,1.0 and 100atm" were carried our
by HOLlAND (1965) for varying sulfur and oxygen fugacities.
Products of hydrothermal activities are also the alpine fissure type minerals of
which adularia are sometimes most apparently enriched in Ba (cE Table 56-D-1).
IV. Volcanic Exhalations, Gas Transport
The possibility of Be transport through hydrous gas phases was demonstrated
by the experiments of Sn.tlIlEL (1967). Results are dlsccsscd in chapter 56-H.
Naaoxo (1945) found traces of Ba in fumarole subllrnatcs (mostly NaCl, KG and
NH~O) of Klyuchcrskoy volcano, USSR. MINGUZZI (1948) determined traces of
Ba in fumarole products of Vesuvius, Italy.
56-G-l
Barium
56-G. Behavior during Weathering
aod Alteration of Rocks
Expcrimental weatbering of K feldspar in distilled water (PVCHELT, 1967)
showed that Ba is preferentially released from this silicate structure into the solution.
The weight ratio K~O/BaO, being 18.9 in the mineral, is much lower in the weather­
ing solution (8.1).
In the naturally occurring wcatbering series biotite - hydro biotite - ver­
miculite, BOETTCHER. (1966) observed, by spectrographie analysis, a decrease of the
Baa content from 4,500 ppm co 300 ppm.
ROSENQUIST (1939) leached a granite powder (0.11% Baa) with distilled water.
In the residue of the weathering solution Baa was enriched to 0.91%_
Extensive studies on diffcrent rocks and their weathering products were carried
our by BUTLER. (1953b, 1954) (Table 56.G-l). In three types, Ba is enriched in the
silt and clay fraction of tbe weathered material, while in a fourth example even the
weathering residue is leached with respect to Ba.
Table 56-G~1. Bon/1m di//dbution during red R!{o/btri/lg (BUTl.l;It, 1953b, 1954)
Roek type
Ba content (ppm)
fresh
,~k
Granite
Hornblende schist
Quam free syenite
Hypersthene monzonite
110
10
1,000
1,000
Reference:
from weathered rock
(Analytic::al method)
silt
C:l saruraeed
fraction
clay fracrion
180
190
500
500
300
45
870
BUTLl;It, 1953b (5)
BUTLEIt, 1953b (5)
Bcrr.sa, 1954 (5)
15
Bcrr.ea, 1954 (5)
Both Ba increase and Ba decrease have been observed in the weathering products
in studies by a great number of investigators. Among the factors whlcb inHuence
Ba behavior in this process are: climate; type of clay minerals, which form during
the dccompcsidoc , amount and kind of organic material present; and sulfur or
sulfate content. Since barium sul..&tc is a compound of very low solubility, this last
factor predominates in sequences originally rich in sulfides.
A survey of Ba content of soils was published by SWAINE (1955). Most soils
contain 100 to 3,000 ppm Ba of which only trace amounts can normally be extracted
by means of INNH.. acetate. The highest value which SWAINE reports (3.3% Be)
comes from Tennessee, USA, from areas where barite had been mined. Older
literature is Jisted in G~{EUN (1960). Under special acid conditions of weathering in
deserts, varnishes form, which always show Ba enrichment (ENGEL and SHARP,
1958) (5).
R.criocd........-ripe r=i=l: S<lI""mbcr Inl
<0 SpriJlga-Vcri>R Beolin· H.idolbc'l( 1972
Barium
56-H-1
56-H. Solubilities of Compounds which Control
Concentrations of Barium in Natural Waters (I),
Adsorption Processes (II)
I. Solubilities
Only rwo Ba compounds exist which can control the Ba content of natural
waters: BaSO, - barite, and BaCO, - witherite.
a) Solubility of BaSO,
BaSO, is the least soluble and most abundant Ba mineral in the earth's cruse.
Its solubility in water upto 100"C has been repeatedly determined. Some of the
available data are given in Pig. 56-H-1. STROBEL (1967) published data for BaSO~
solubility in rhe hydrothermal range upro 600"e. At this temperature and 1,084 bars,
he obtained a solubility of 9.61 ± 1.95 mg BaSO,/l,OOOg Hp.
a
:
,.
(
:<.
Fig. 56-H-1. Solubility of barium sulfate in distilled Water (KOHLR!..USCH, 1908; i\IELCIiER.
1910; N.EU~IANN. 1933; ROSSIiINSItT. 1958; T.E~rPLEToN. 1960; BURTON tlal.• 1968)
Elecreclyees considerably increase the BaSO, solubility. TEMPLETON (1960) has
investigated sodium chloride influence upto 95"C with solutions upto 5 moW NaG.
PUCIreLT (1~67) radiochemically determined BaSO, solubility at 25 and 50"C in
upto 6.08 molal NaG solutions. Experiments upm 350"C were carried out by
UCHAMEYSHVIU dol. (1966) with O.25N, 1.0N and 2.0N sodium chloride solutions.
Investigations uprc 600"C with epee 2 molal (or 11.69~;' ?) NaG solutions were
Barium
performed by STltUBEL (1967). Solubility data upto the. boiling point are plotted
versus N2Q molality in Fig. 56-H-2. For 600° C, 1,990 bars and 2N (?) N2Q solutions,
STRUBRJ. repom a solubility of 971 mg/kg HIIO. In the hydrothermal range, BaS04
solubility sensitively increases with pressure. STROBEL'S investigations show that an
area of retrograde B2S0~ solubility exists between 350 and 450°C.
lIli 8&50(,
pe 10009 H20
90
"
"
,
90'"
a
2
"
z
,
a
s
6 mol NaO
Fig. 56-H-2. Solubility of barium sulfate in NaCl solcdon. + TEMPLETON, 1960; X
1967; 0 PUCl-IEU. 1967
STRUIIEL,
Influences of other electrolytes on BaSO.. solubility in aqueous solutions were
studied by: NEUMANN (1933), KCI, KNO a, :Mg~ Mg(NO.J... La0a' La{N0.J3;
UCHlr.MElSHVILl ~f af. (1966), KG, MgCl" CaC):; and PUCHF.LT (1967), KCI, MgCJ 1,
Ca~. COUINS and ZELlSSKI (1966) investigated the effect of synthetic brines
containing N2Cl, MgCI" CaCl" and NaHC03 .
The results of PuCHELT are:
Solution
Muimum solubility found at
BaSO. solubility
mg/l,OOO g HzD
temperature
ionic strength
KG
KG
25· C
50° e
5 .e
5.o
54.0
csci,
25° e
50° e
5.5
5.5
42.4
59.8
~IA
25° e
MgCI,
50
6 .o
6 .o
47.2
71.6
Cad,
0
e
40.8
UCHAMEJSHVlLI ef 01. (1966) found a strong increase in BaSO.. solubility in Cae]z
solutions with tcmpeearures bceween 100 and 255°C. In MgOI solutions, too, a
barium sulfate solubility higher than that in NaO and KO solutions was observed
by tbese investigators.
Barium sulfate solubility in sea water was calculated by CHOW and GOLDBERG
(1960), and experimentally studied at one atmosphere pressure by PuCHELT (1967),
Barium
56-H-3
who also made investigations regarding the kinetics of BaSa, precipiration in sea
water. The solubility of 89!J.g BaSO"/! (at 20°C), found by PUCHELT agrees well
with the value of 87.9!J.g BaS04/1 (at 25<>C) of CHOW and GOLDBP.RG. Recently,
BURTON et al. (1968) obtained a mean value of 81lJ.g/J. Close to saturation, complete
equilibrium is reached slowly. Despite seeding. PUCHJ'.LT (1967) needed about
80 days. He also made experiments to study the influence of salinity of sea water on
solubility and covered the range upto 87.5°/00 salinity. HANOR (1969) and CHURCH
(1970) calculated the effect of aqueous complexing and presence of Sr, Ce, and K on
the solubility of BaSO~~S[S04 mixed crystals in sea water.
Pressure increases the solubility ofBaS04 . ln pure water the solubility product is,
by a factor of 5.4, larger at 1 kilohar than at 1 atm. pressure. In a sodium chloride
solution of 0.727 molality rhe same rario is only 4.2.
b) Solubility of BaC0:J,
Barium carbonate solubility depends largely on rhe CO 2 partial pressure of
equilibrium atmospbere. At 25°C and 1 arm. CO 2 pressure. GARRELS et al. (1960)
determined a dissociation constant of to- 8 •84 for witherite. The solubility product of
ltC_labeled BaCO J in basic aqueous solutions at 25°C was found to be 4.0' 1O-10 ±
0.5· 10-10 by BACC.... NARI et al. (1968).
Increase in carbon dioxide pressute causes an increase in BaC03 solubility. This
effect is much smaller at higher remperatures than at lower temperature (M.... LININ.
1963), (Fig. 56-H-3).
TOWNLEY et al. (1937) showed that
increased B~C03 solubility according to
centrations investigated (uptO 3 molal)
solubility. The effect of KO in the same
LiG. NaG. and KO at 25°C and 40°C.
tbeir respective eoncentration. In all con­
LiCI produced the strongest increase in
molality was the least.
'00
"00
150"C
o
U.SOC
so
Fig. 56-H-3. Solubility of
BaCO~
"
ee
in water wirh increasing
"0 aim ~ PRES5URE
CO~
pressure (MALlNIN, 1963)
Barium
56-H-4
rn, Adsorption Processes
Be is adsorbed from solutions by clays, hydroxides, and organic matter. In
addition to BaS04 solubility, these processes control the amount of Ba present in
natural waters.
a) Clays
Ba adsorption on the sodium charged form of standard montmorillonite, illite,
and kaolinite, at 25°C was studied by PUCHELT (1967) for pur~ and electrolyte
containing solutions. Ba adsorption decreases witb ionic strength of the exchange
solution. In rivers, the ratio of Ba which is adsorbed by suspended matter depends
on the type of suspension and the concentration of ions competing for adsorption
sites.
Ba exchange on vermiculite and bentonite was investigated by LEVI and SCHIE­
WER (1965). Bentonite adsorbs Ba more strongly than NHt, Mg-t, and Ca++
(KOMUV U ill., 1965). CARLSON and OVERSTREET (1967) found a high adsorption of
incompletely dissociated Ba hydroxide by bentonite at pH 6. The heat of exchange
of Ba ions on bentonite with H+, Na-, and K+ were calorimetrically determined by
Txnztav and MUKSINOV (1967). GANGULY and MUKHERJEE (1951) investigated Ba
exchange on bentonite, kaolinite, illite, and mica.
b) Hydroxides
Ba adsorption by hydrous ferric oxide was investigated by DUVAL and KURaATOV
(1952). PUCHELT (1967) studied, experimentally, Ba adsorption on y MnO(OH) and
found that NaG concentrations upto 3.5 % do ncr influence the amount of Ba
adsorption. y MnO(OH) em adsorb as much as 20% (by weigbt) of its Mn content
of Ba, These results probably can explain the Ba content of deep sea manganese
nodules. PUCHELT also observed that y MnO(OH) adsorbs more than 85% of the
Ba concentration which exists in equilibriu m with a BaS04 preclpitare. Adsorption
of Ba ions on silica gels from acid solutions depends on time of exchange, specific
surface, and pore size of the gel (KIRICHENKO et al., 1965).
c) Organic Substances
BEL'KEVICH et ill. (1966) equilibrated 0.05 to O.2N earth alkali solutions with
the H-form of peat. They found Ba to have the strongest tendency to substitute for
H in peat. Adsorption of 131Ba by coal humic acid was studied by MATSUl>1AilA and
ISHIYAlllA (1966). PUCHELT (1967) observed that bacteria may extract Ba from
solutions, but it is not yet dear, whether this happens by adsorption or incorporation.
56-1-1
Barium
56-I. Abundance in Natural Waters
I. Springs and Fresh Water Wells
Only ,-cry few spring and fresh waters are free of sulfate. Thus the solubility
product of BaSOt is the limiting factor for the Ba concentration. As spring waters
normally have only low amounts of dissolved solids and moderate temperatures,
no considerable increase ofBaSO... over the distilled water solubility is to be expected.
These waters originate normally from rain water which had only a limited time for
equilibration in sediments and soils. The Ba content is mainly controlled by the
solution of Ba compounds (mostly barite), and exchange of Be from silicate struc­
tures. Several analyses are published for water whiclt served medical purposes. A
survey of older data (methods: W) is given by DELKESKAMP (1900, 1902); some
values published before 1949 are tabulated by GME!.n'I (1960). PUCHELT (1967)
surveyed the more recent literature grouping the waters in hydrocarbonare, chlo­
ride, sulfide and sulfate rypes according to their prevailing anion,
Table 56-1-1. BII l011wllrllliolu ill
Type of waree
Europran spring /JIa/us.
(PUCHELT. 1967)
No. of
Ba range
Arich. mC3Jl
springs
ppb
ppb
Standard
deviation
Hydrocarbonare
16
Chloride
22
4-22.900
12- 9,500
ISO­ 750
1­ 230
1,757
1,340
5,672
2,681
Sulli<k
3
Sulfate
9
In very few cases of spring water, higbee values were observed than were expecrcd
from the BaS0t solubility product. Their existence is explained by supersaturaeion
which sometimes occurs for a short time after adding sulfate to Be solutions.
Drinking water from fresh water wells was analysed in the USA by DORFOR and
BECKJ!R (1964). Fer 10 wells from all parts of the country rhey found 4.6 to 34 ppb
B. (S).
Additional new data. for ground and spring waters were published for: South
Africa. (KENT, 1949; KE.NT and RUSSELL, 1949), BuJgaria (PENCHliV et al., 1958, 1960),
Czechoslovakia (RuBESKA and MIKSOVSKY, 1963), Finla.nd (WILSKA, 1952), Germany
(FRICkE!., 1968), Hungary (STRAUB, 1950), Japan (IKEDA, 1955afb; IcmKUNI. 1966;
IWASAKI ef 0/.,1963), and the Sevier Union (BABtNETS and RADKO, 1956; GRUSHKO
and SHlPITSYN, 1948; KONTOROVICH tl 01.,1963; OSTRDUMOV and ROSSK.IKH, 1965;
SHtNKARENIW, 1948; YUSUROVA, 1957). The highesr value reported comes from a
Japanese warm spring of sodium chloride type and is 62 ppm :&.L
Barium
n. Rivers and Lakes
Only North American rivers have been exrensivelv analysed for -Ba. The in­
cesdgaeicns of DURml et ttl. (1%0) and DURVAl and HAHn" (1961) covet long periods
of time, climacic conditions and disebarge for a number of riven. In all cases they
found, over a year, a considerable and complex variance of Ba ccnrenr. One example
is given in Table 56-1-2.
Table 56-1-2. Variation oj Ba tOl/wllralio/l in Mi.uiuippi J/·"lrr lltar Baloll RO/18f, Lemtana,
U.S.A.
Dare of sampling
:May 10, 1958
Oct. 14. 1958
i\Iarch 13, 1959
:\olay 18, 1959
Run-off
m3/sec
Di5501ved solids
B.
ppm
ppb
24.550
7.400
18.600
H.800
160
223
78
127
72
84
184
255
DURUM et ttl. (1960) covered 30% of the total ron-err of the Nonh American
rivers with their analyses, and DUlWM and HAFFTY (1963) found a median Ba
concentration of 45 ppb from the available clara. Ba/Sr ratios (by weight) vary be­
tween 0.2 and 3.9 (PUCH£.LT, 1967), but give a geometric mean of 0.87 for North
American rivers (DVRUAl and HAFFn', 1963), whicb may be compared with
0.78· IQ-S in the oceans. A number of rivers and lakes being used as drinking water
resources have been analysed for Ba by DUIlPOR and BECKER (1964). By spectro­
graphic analyses, they determined a range of Ba contenr in rivers between 3.1 and
340 ppb (arithmetic mean: 75.7 ppb). Lakes and brackish water in North America
and Europe ranged from 3 to 140 ppb Ba (DURFOR and BECKER, 1964; BROWN et ttl.,
1962; WILSKA, 1952; LANDERGREN 2.Od MANHEIM, 1963). Coneenrrarion ranges for
severn! rivers JUe plotted in Fig. 56-I-I.
Local variations of Be content due to rock composition of the drained area were
found by MILLER (1961) in New Mexico and Baowx d nl. (1962) in Alaska. They
observed the highest Ba values from regions with sediments (sandstone, slates),
less from granites, and obtained the lowest means from quaraite. The disrribution
of Ba along a river was studied by UUTWEIN and WEISE (1962) for the Mulde in
Germany. They observed values of 5 [0 100 ppb Ba in rrue solution in the river
itself but upto 730 ppb in certain adjoining creeks which drained mining areas.
According ro these authors, in the upper pan of the river 70% and more of the Ba
is transported in true solution as che ion. On Howing into the Elbe afrer 245 km,
only 20% of the Ba is srill in the ionic form, 80% having been adsorbed onto days
and organic matter. In regions wirh extreme sulfare concentrations, Ba content is
low in accord with the BaS04 solubility product. TUREKIAN et 01. (1967) describe
rhe Ba varlazicn of rhe Neuse river (North Carolina, USA). Ba concentration
decreases in the upper part of the river, (16 to 5.7 ppb) in slate and granite areas,
but Increases regularly downstream to 22 ppb in slate, schist, sand and limestone
Barium
56-1-3
-"='
Or,."g..
I"
A .. ia
MekC"<1 (C.. mbod.)
Can.. da
Chul'l:hill
ill
{J}(I,l
(3}(4)
Fraser
Slla"",,,,,,,e
MatXe"z,e
Nelso"
-
Europ ..
G\omma
Muld..
-
{3,(4}
(JJ[4)
(J}(q
13)
I"
iJltl,l
Apalachicola
A lchafalaya
Colorado
Columbia
Hudson
....(J}(4)
Mfnlnlppi
---.. (3)(6)
(J)
......P)(4)
(J)
Mobile
Palu..."l
(J)(4)
~~=====~
(8)
(J)
en
"eun
Sacram.. ere
SO'.Ilh Plale Riv....
......
(6)
Su~quehi."nil.
,,<J)
Yukon
(3)
•
Pig. 56-1-1. Ba concentration ranges of rivers (all data obtained by specrrographlc methods).
100
ppb ail.
1. DEVILUER5 (1962); 2. DURU~[ and HuFTY (1963); 3. DURmllIQI. (1960); 4. DURU.\! and
HAPFTY (1961); 5. LWTWEl:-' and Wf.ISE (1962); 6. DURFOR and BECKER (1964); 7. TUREKlAN II QI. (1967); 8. HEIDEL and FRE:-:lER (1965)
areas. Where the petrographic composition influences the drainage waters of a certain
area distinctly, no general conclusion can be drawn from trace elemecc data from
large civet basins regarding the origin of the particular trace element.
m, Oceans
From all oceans, Ba determinations are available in surface to bottom profiles.
The concentration ranges upto 78 ppb Ba and the estimated mean is about 20 ppb
(TuiLEKlAN and JOHNSON, 1966). Analytical data are compiled in Table 56-1-3.
In general, the Ha concentration seems to be lower in the Atlantic than in the
Pacific. In most cases the surface Jayers are depleted in Ba. Special features have
been observed for tbe distribution of Ba in the Pacifie dose to the equator; CHOW
and GoLDBERG (1960) have found a steady increase of Ba concentration with depth
in the respective profiles (Fig. 56-I-2a). They explained this by high biological
aetivity in the surface ayers of this region, incorporation or adsorption on organic
matter, and a downward transport with the organic debris. They found Ba to
resemble radium in distribution with depth. WOHLGEMUTH and BROECKER (1970)
could also correlate Ba content with concentrations of other blo-Importanc elements
and found parallels wirh Ra distribution. These authors sampled from very deep
56-1-4
Barium
Table 56-1-3. 1hz {ollwllraliollJ ill thr oualls
Maximum No. of
sampling samples
depth (m)
Ba range
ppb
4,752
\8
10
4,350
4
Philippine SOl
4,000
10
II
-33
AnrarcTic
5,120
125
8
Sourh E:J.st Pacific
1,500
8
,
-56
South West P:Il;ific
5,000
5
19
-78
Esse Pacific
4,580
13
8.5 -31.2
Easr Pacific
4,000
\3
6.1 -23.5
Locality
Padfi'
OIMII
Central part, close
rc equator
fm/iall
:Metood References
-63
19 -33
I
N/R
--17
I
CttOW and GOLDBERG
(1960)
TUIlEKr.-I.N end JOHNSO:-;
(1966)
TUilEKTA:-l and JOHr-;50~
(1966)
TUREKIAN and JOH:-SO~
(1966)
TURF;KIAN and JOHNSO:-l
(1966)
TUIlF;/UA:-l and JOHNSO~
(1966)
WOLGDIUTH and
BROECKER (1970)
\'(.'OLCEMUTII (1970)
O'lQI/
Central part
Wcst Indian Ocean
South Indian Ocean
.~urface
1
14
400
3
2\
--46
4,500
3
10
-IS
N/R
39
60
,
-32 (65)
N/R
AI/ailli' Ottan
Long Island Sound
N/R
Caribbean, Gulf
of Mexico
South Atlantic
3,019
17
5
-23
5,000
3
\5
-21
Norrb .Adannc
5,061
21
4,100
3,000
3
12.9 -13.1
8
'2
2,098
16
0.04--22.8
Equatorial
4,387
35
0.80--37.5
English. Channel
Oaribbr::an
Puerto Rico Trench
and off Barbados
surface
4,729
7,540
20
1
2B
,
-31
-18
N/R
1
F
6.3
NtR
7 -23
7.9 -19.1
I
S
TUREIo:.IAN and JOHNSON
(1966)
TUIlEKIAN and JOHNSON
(1966)
HOl.TF;R II at. (1964)
TUREKIAN and JOJINSON
(1966)
TUltEKIAN and JOJINSON
(1966)
TUREKtAN and JOIIN~O:"l
(1966)
TURF;KIAN and JOHNSON
(1966)
BOLTLR rt a/. (1964)
CItOW and PATTERSON
(1966)
ANOERSEl'ol and HUSIE
(1968)
ANDERSEN and HU~IE
(1968)
BOWEN (1956)
Szxao nnd JOF;NSUU (1967)
WOLGEllU'TH end
BIl.OF;CKER (1970)
ocean regions but did not find a marked Be increase rowaeds the sea floor. TUREKIAN
and JOHNSON (1966) observed, in some places, a maximum of Ba concentration in
depths of 600 to 1,200 m (Fig. 56-I~2b) which, however, coincides with the region
of lowest Ba sulfate solubility (35 fLgfl) in agreement with the interaction of rem­
56-1-5
01
Barium
,,­
.­
(/
;~~., \
1-
2 -
o
\
"i •
\
"
I
t
i,­
3
,
\
;
j
I
I
I
~,
2
.
1
\
3
,,
':
\
.­
5 -
,
:
\
:
10
/
. "
:
t ,:
I :
\
\
I
I.
"
\
\
1
"
50
6'Jp.g Bc/!
perature decrease and pressure increase (CHOW and GOLOBERG, 1960). One possible
explanation for these high values could be that microcrystals of barite have contam­
inated the samples. SZ.\BO and JOENSUU (1967) found in profiles in the Caribbean the
lowest concentration in the depths of about 1,000 In (Fig. 56-1-2a). In two areas,
the equatorial Pacific and the Atlantic off southwest Africa, high values for Ba were
found both in the sediments and in St:3. water, whereas in other places no cor­
reladon could be detected.
From the Ba supply of the streams, saruraeicn of Ba sulfate should almost be
reached in the oceans. From strewn discharge (3.6' 101 kma/yr) and Ba concen­
tration of 45 ppb (DURUM and fuFFTY, 1963), ocean-mass of 1,372.108 km3, and
Ba content of 20 [J.g/l (TUll.EKIAN and JOHNSON, 1966), the residence time of Ba in
rhe sea can he calculated to be 17 . llP yean. Using a sedimentation rate of 0,05 g
SiOJyr for diatomaceous ooze (based on ~~Si), a Ba conrenr of 6,000 ppm and a
mean ocean depth of 5,000 m, TUREKIAN and JOHNSON computed a residence time
of only 33 years ahove this particular sediment. Possibly chis low value and the
observed increase of Ba content with depth indicate an additional supply of Ba
from some volcanic source on the ocean floor. With an average of 20[J.g/l Ba, the
tow content of the oceans is 27.4 . 10D tons of Ba.
56-1-6
Barium
Table 56-1-4. Ba"il1lJ mllUllfratioli illJormatioll Jl'afrfl
Period
Counrry TOb!
No. of
samples
No. of
MC2ll Ba
samples cone. of
>1 ppm samples
B,
with Ba
Maximum An:l.­
Reference
B:l cone. Iyti­
ppm
cal
method
>1 ppm
Precambrian
Ordovician
U.S.A.
U.S.A.
Silurian
U.S.A.
Devonian
Un....
Germany
U.S.A.
Carboni­
fercus
[Missis­
sippian,
[Pennsyl­
vanian)
Permian
jurassic
Ceecaceous
Tertiary
Quarternary
1
4
2
1
3
4
61
4
100
S
1
320
320
S
2
1
2
2
5
1.1
\Y,'
13
21
7
69
12
37
218
1,140
205
700
'"
2,000
971
5
S
W,S
S
S
U.S.S.R.
73
"
Belgium
Germany
1
4
1
3
1,007
1,260
5
5
24'
225
«;
1,006
69
832
2,860
2,806
\VI
\'V,S
152
38
798
2,000
\,\', S
Great
38
Britain
U.S.A­
152
77
22
l12
34
447
265
5,530
1,080
72
36
20
23.
1,980
11
·190
21
U.S.S.R. 111
Gcrn:w.ny
U.S.A.
U.S.S.R. 4'
Germany 26
Sweden
U.S.A.
,
)a.pan
U.S.A.
Pobnd
U.S.A.
3
4
3
;'5
7
2
24
1
2
2
2
347
5,100
~3(j
15
•
347
5.2
600
,..
73
14.8
1
14
"
37
3.'
16
W,S
5
30
1
5
5
S
S
S
5, \VI
S
72
"
150
S
S
4
28
5
WHITE (1965)
MCGRAIN and
THOMAS (1951)
MCGRAIN and
THOMAS (1951)
Wi'llTE (1965)
FIU'.SENlUS (see
MTCHEL. 1963)
POTH (1962)
ParCE tl al. (1937),
WHlTE rt al. (1963)
HOSJrINS (1947)
KOZTN (1964)
CAMER)IA.'-l (1951)
)AJrOJl5HAGEN and
MilNNlCH (1964)
MICHEL (1963)
PUCHELT (1964),
(1967)
WasJtrwirllfbajls­
sIdle (in PUCHEL.T,
1967)
ANDERSON (1945),
GIBSON (1963)
PRICE tl al. (1937)
POTH (1962),
HOSXINS (1947)
COL.LlNS (1969)
MCGRAIN and
THOMAS (1951)
KOZIN (1964)
fuRll!>lANN (1961)
WHIn; tf ai. (1963)
KOZIN (1964)
PUCH£LT (1967)
ASSARSON (1948)
BucxL.EY tl at,
(1958), WHITE tt al.
(1963)
BAIL£Y tf al. (1961)
BAlI.n et 61. (1961),
WHCTE (1965)
DOWGIALW (1965)
WHCTE et al. (1963)
56-1-7
Barium
IV. Formation Waters
Feeqcecdy, Ba was discovered in formation waters which had lost their initial
sulfate consent through bacterial activity during diagenesis. As these bacteria require
a reducing environment and organic substances to live on, their areas of activity
and tbus high Ba ccncencrations in formation waters, are always connected with
occurences of organie matter (oil, bitumen, coal, or gas). Ba bas been found in such
waters from beds of all geological ages from all over the world. The Ba concen­
tration may reach 5,500 ppm, but no correlation of the Ba concentration with any
other parameeer of the solutions (dissolved solids, Sr, Ca, K concentration) could
be found. Often the BatSr weighr ratio is larger than unitj·. An extensive survcy of
data is given by PUCHELT (1967). A more condensed compilation was prepared for
chis chapter (Table 56-1-4).
In the Sevier Union, Ba ccnceneraricns in formation waters have been successfully
used for a correlation of srratigraphic horizons (KOZIN, 1964; NUWLAEV et (/1., 1960).
Ba has been assayed in foemation waecra of a few areas, especially in connecrlon wirh
oil field investigations (AKHUNOOV and SAI'I'O, 1960; DOOONov er (11., 1949; KAT­
CHENKO and FLEGONTOVA, 1955, 1956; Kxvasv and VASIL'EV, 1956; KOROLEV,
1938; KuKAlLI.EV and SYDYKOV, 1962; SJo:kOBOV and S;o.ORNOV, 1939; SUKHAkEV,
1961; Tn.L\.sHeVA, 1963; VAkOV and RaMI>!, 1942).
Mixing of Ba-eontaining formation waters with sulfate waters is often the reason
for a scale formation in oil wells (GATES and CARAWAY, 1965; Tm.lPLEroN, 1960)
and mines (PATIE.ISKY, 1954; ANOERSON, 1945). PUCHELT (1967) presented evidence
for the abundant fcrmaricn of eertain rypes of barite deposies from rhose waters.
v. Brines
Geothermal brines were tapped by deep wells near the Salton Sea, California,
USA, an area characterized by rhyolires and Tertiary sediments. With a total of
319,000 ppm evaporation residue (lBO"C), 200 ppm Ba were reported for a 1963
sample (Wwn:, 1965) whereas 1966 samples from twO wells gave 235 and 250 ppm
Ba (SKINNER II al., 1967). A hot brine from the Atlantis II Deep in the Red Sea
containing more than 300 g dissolved solids per liter had almost 1,100 ppb Ba
(MILLER et st., t 966).
Barium
56-K-1
56-K. Abundance in Common Sediments
and Sedimentary Rock Types
A compilation of data on the Ba distribution in recent and fossil sediments has
been published by PUCHELT (1967). An abbreviated review, bur with the important
new data included, is given below.
I. Recent Sediments
a) Deep Sea Sediments
Deep sea clays were often analysed for Ba in recent years. Generally, they are
enriched in Ba compared [0 shales. WEDEPOHL (1960) found a definite difference
between Atlantic clays (average: 750 ppm Ba) and Pacific clays (average: 4,000 ppm
Be). Since the rare of Ba deposition is about the same in both oceans, he assumed the
difference to be caused by a lower rate of detrital accumulation in the Pacific. GoLD­
BERG and ARRHENIUS (1958) found Ba enrichment in sediments under equatorial
waters and related this observation to the high biological productivity in the surface
layers of the waters. Several planktonic organisms are known to accumulate Ba in
their tests which carry che Ba bottomward after death. They may cause a Ba enrich­
ment in layers dose to the bottom, where (hey dissolve, and may generate local
BaSO"preeipitation.s (PUCHELT, 1967; BRONGERSMA-SANDERS,1967; cf. Table56-L-2).
Barium is not deposited homogeneously on the sea floor. The zones of high biological
activity as well as the ocean ridge systems usually have higher Ba concentrations
(TUREKIAN, 1968) than normal deep sea sediments. The origin of Ba in deep sea
sediments is a matter of discussion.
BOSTROM and PETERSON (1966) determined upto 3.1 % Ba in cores from the
'flanks of (he East Pacific Rise. From additional data for other clements and data
for the heat Bow, it can be concluded that volcanic activity adds several of the
enriched elements. TUREKIAN (1968) concluded from dam of Ba supply to the
oceans by streams, from average Ba content of clays (shales), from the model of
Ba enrichment by plankton and from some additional information, that a volcanic
or hydrothermal Ba supply need not be assumed ro explain the observed Ba data.
Ba concentrations in deep sea matter do not often correlate with any of the major
constituents. It has to be concluded that Ba adsorption on clays is of less importance.
The main Ba carrier is most likely barite. Locally, manganese oxides and phillipsite
will accumulate Ba. Calcium carbonate of organic origin is usually very low in Ba
«100 ppm, often only 10 to 30 ppm). In order ro reach comparable data for clay
sediments, TUREKIAN and TAUSCH (1964) have calculated their Ba determination of
Atlantic cores on calcium carbonate free basis. Because rhc original data are not
given, only these corrected values are included in Table 56-K-1. These authors
found higher Ba values in rhe South Atlantic rhan in the North Atlantic. The areas
Barium
56-K-2
T:lblc: 56-K-1.
Origin
s« ,oIIWIJrdIiOIlS;/1 Jup UQ ItJimmtr
No. of
B,
~:unplc:s
eOIlccl1t
;\Iethod References
ppm
oj Dtrp
1111 dayr
Allallli'
Area nonh of equator
South Atlamit"
Area north of 20° S
Area. north of 10° N
Are::l south of 10· N
Area noeth of equator
North AOlcricm trench,
south pan
Kap Verde Trench
~Iid Atlnntic: Ridge:
1
2
37
62
63
5
15
3
I (9)
200
590
S
S
V. ENGEU..... RDT
(1936)
v. ENGfL,H.RDT (1936)
596-
S
ERICSON (/
1,1002,OOOL
910
S
S
S
X
TUREKUN and Tauscn (1964)
TUUKIAN and TAU5C1I (1964)
X
WEDEPOHL (1960)
TUnEl<UN (1968)
ns
470
4,400'
N/R
EL
ai. (1961)
und RILE"{ (1961a)
(1960)
WAKEI'L
\'(IEDEPOHL
189
1,260
8
5
1,150
5,700
3
5,800
2
4
2
2,450
6,100
2,700
18
610
S
8
2
2,120
1,330
5
S
KATCl-IE}.I\{D end FLEGONTOV....
(1964)
EL WAIC.EEL and RILEY (19610.)
EL WAKEEL end RIUY (19610.)
Area north of equator
Area south of equator
From allover the
Paeific
20
8,050
1
9
300
6,700
S
X
X
YOUNG (1954)
WeoEIIOl-IL (1960)
Wl!OEI'Ol-lL (1960)
Average of Pacific
82
4,160
Avc:rage: of Ailimic
clays
Pariji, ahd 1114iall Ocean
Ato south of equator
Area north of equator
Baja Califemian
seamounts
Nonh Pacinc:
Area nom of equator
Trench NNW Sixry
Mile Bank
Indian Ocean
Area north of equator
Indian Ocean equator
S
S
S
S
W?
W?
GOLDBJ:;RG
and
AP,RHEl-<IUS (1958)
GOLDBERG and AUl-IENIUS (1958)
GOLDBERG
and
AItRHESIlJS (1958)
GOLDBERG and AIlRl-IENWS (1958)
GRIM tt oJ. (1949)
GRUI et a], (1949)
U~
,~,.
h) Dttp ua
AJlo!!lir elld AftdiltnaJlfl1JJ
Caribbean Sea
Mid Atlantic Ridge:
Vnriow pbees
Nonh Atlantic (with
rorhoh<1/n b
2
210
S
1 (9)
689
190
N/R
4
4
840
S
S
ERICSON and WOLLIN (1956)
TUREKIAN (1968)
TUREIUAN and WE1>EI'OHL (1961)
EL WAKEEL and RIL!>t' (19610.)
South Atl:unic off
1
1,900
S
EL WAKEEL and RJLET (19610.)
Mrien
Mediterranean
2
1,600
S
EL WAKE.EL and R.u.&Y (196111.)
PtKi/ft a,ld India!! (Utall
Equatorial area, East
2
Pacific: (manganiferous)
5,000
S
GDLDBERG and ARRHENIUS (1958)
day)
Barium
56-K-3
Table 56-K-l. (Continuc:d)
Origin
No. of
samples
Equatorial area,
Centra.! Pacific
NOM
equator area,
1
,
Ba
eonrenr
ppm
Mc:thod References
080
5
EL \'VAKE.f.L and RILEY (19{i1n)
540
S
YOUNG
(1954)
Central Pacific:
r) Drep Ira Jjfjrr~I'J ",lIds
AI/anti'
Atlamic off African
coast
Equatorial area,
Eentral Pacific
Central nonhern
Patific
Eeotral equatorial
Pacific
,
700
5
EL WAI'EEL and RILI'Y (1961::1.)
3,470
5
EL W.\I'EEI: and RILI'Y (1961a)
6
10,400
5
YOUNG
(1954)
8,100
5
YOUNG
(1954)
,
• Deep-sea clays calculated on Caco~ Ieee basis.
R1w analyses of c:ubonate rich cores but not necessarily indicative of the pure
carbonate fraceion.
b
closer to the continents arc normally lower than the. Central Ocean areas, but just
off the coast of Mrica (20 to 25° S), an area with values of > 4,000 ppm Be was
detected.
TUREKIAN (1968) has analyzed samples from different depths in a deep sea core
for Ba. Concentrations range between 1,700 and 6,700 ppm Ba (calculated Cacon
and salt free); they indicate changes in the rate of Ba deposition within the last
30,000 years. Accumulation rates for Ba reponed by TUiUlKIAN (1968) vary from
<90 Ilg/cm::l per 1,000 yeus to 790 Ilg/cm::l per 1,000 years within the special core
and arc about I,OOO-llg/cm: per 1,000 years in the Antarctic. In Table 56-K-l,
averages for Ba are calculated using the "reduced C.aC0::l free" data. This means
that the actual data may be lower.
Dup sea {arbonalu. Foraminifera ooze high In Cllrhonate contains low Ba concen­
trations (10 to 30 ppm, Table 56-L-2). The barium content in carbonate sediments
is eirher due to BaSO" or to manganese. oxides or clay. Since all rbesc sources
may be active at the same time and do not work coherently, a recalculation to "pure
carbonates" is very difficult. TUREKIAN and TAUSCH (1964) extrapolated deep-sea
cores in the North Atlantic to 100% Cacoa and gor 10 to 30 ppm Be for the pure
carbonate. The availahle data are given in the table. The value of 190 ppm Ba by
TUIlEKIAN and WEDEPOHL (1961) for deep sea carbonates derived from4 globigedna
oozes from Atlantic cores is as yet the best information.
ilfong,anese nodl/les cover wide areas of the deep sea bottom of all oceans and
contain opec 20,000 ppm Ih.. A survey by PUCHELT (t967) of published literature
shows that the Ba means are 4,500 ppm, 5,200 ppm and 3,700 ppm Ba for nodules
56-K-4
Barium-
from the Pacific, Atlantic, and Indian Oceans, respectively. In manganese nodules,
Ell. is either adsorbed, Incorporated in acid soluble compounds (2colites), or occurs
as barite (ARRHE."wS, 1963).
JiHao/1i sedimmls occurring in deep areas of the oceans where carbonates are no
longer stable can locally contain more than 1 % Ea.
b) Shallow Water Sediments
The barium content of near shore and shelf sediments is influenced by the
amount and kind of detrital matter and the badum conrenc of the rivers. A review
of literature by PUCHELT (1967) shows that day sediments of rhesc areas are generally
highcr in Ba than sand and silt fractions. Clays Freen the Nlsslsslppi delta arc
especially high in Ba.
Three studies of reef carbonates (STEllLI and HOWER, 1961; SENAKOLIS, 1964;
FRIJl.OMAN, 1968) demonstrated that reef debris, reef material and oolitic muds
contain only limited amounts of Ea. STEHLI and HOWER (1961) found a range from
10 to 61 ppm in 59 samples and an average of 18.4 ppm Ea. FaIEmu.N (1968)
obtained spectrographically, 18 to 62 ppm Ba in corals with encrusting coralline
algae. and 15.5 to 68 ppm Ell. in carbonate sands from reef aprons. Carbonate sands
with admixed terrigenous debris showed 130 to 280 ppm Ba. In the analysed
samples, Ba conccnrtations change parallel to the "insoluble residue". Similar
observations are reported by SENAKOLIS (1964). Within rhe internal parts of rhe
reef, average Ba content in clastic Jimestonc was 3.1 ppm, peripheral parts of the
reef had 436 ppm Ba.
II. Barium in Consolidated Sediments
a) Sandetcnee, Chens. Graywackee
Pure quart>: sandstones are very low in Ba, but since most sandstones cont:Lin
considerable amounts of feldspars, chesc minerals are the most important Ba carders
besides micas, which occasionally occur. PEiJIJOHN (1963) calculated the proportion
of sandstone rypes to be 34% qceeetee, 26% graywacke. 25% subgraywackc, and
15% arkose. This combination has an average ~O concenr of 1.3%, to which a Ba
content should be proportional. Comparison of the K/Ba ratios in low Ca granites
and in sandstones and graywackes gives additional support to this proportionality.
Single sandstones vary widely in Be content, since even barite coneeo.tration (as
cement) occurs locally (cf. PUCHELT. 1967). If barite is a sandstone constituent,
normally the weight ratio Ba/Sr is greater than 10, for barite generally contains
much Jess than 10% SrSO~. The Ba content of sandsroncs and graywackes ranges
from 5 ro 900 ppm. An average composition calculated from the European, Russian,
and American sandstone and graywacke is 316 ppm Ba. This value is subject to
changes when the individual dam can be properly weighted. Nevertheless it is a
more realistic value than the XO ppm guess of TUREK1AN and WEDEPDHL (1961).
Cherts constitute a special group in silica sediments and always exhibit higher Ba
means.
56-K M5
Barium
Table
Locality
56MK-2. BariunJ IiI qlltlrlz sa,IIhIDnu. (h(rls. a/JdgrQpatku
No. of
samples
Barium concentration
=g'
ppm
Method References
group total
mean mean
ppm
ppm
QIIQrlz lD,/dliom
Germany
Sunda Islands
U.S.A.
U.S.S.R.
73
,
4<>,
50-810
5-900
134
313
X
X
770
5
150
39.
5
280
289
5
1.800
230-820
..
Germany
311
300­ 500
360­ 630
30-1,000
Indonesia
22
50-1,900
C.S.S.R.
Finland
2
SHOEMAKERtt al. (1958)
YOUNG (1954)
24'
340
S
223
5
,4<>
5
5
5
250
290
cu«
B1!.ETSCH (1964)
,WRDEJ>OHL (1961)
ZUELO (1963) see
PUCHELT (1967)
V. TONGEREN (1938)
400
420
495
44<l
5
5
5
5
BABINA and
KOTOROVICH (1966) see
PUCHELT (1967)
LEsEDEV (1967) see
PUCHELT (1967)
Lirvrx (1961)
LJTVIN (1963)
SlNICARENKO (194B)
LEUTWEIN (1957)
SAHAMA (1945)
LEUTWEIN (1957)
PRASHNOWSKY (1957)
AUDL.£,I!-CHARLES
(1965)
350
350
Dilferem
places
MAXWELL (1953) see
PUCHELT (1967)
GrQpatkt and 4nO/~
258
Africa
Europe
51
30-8'0
5
V. ENGEl.HARDT (1936)
KLEIN (1935)
KUENEN (1941)
R!VALENT! and
StGHlNOLFI (1969)
WEDEPOJIL (1961)
WESTERMANN (1961)
ZURLO (1963) see
PUCHELT (1967)
S
5
5
'89
95
DIINCHlN (1970) see
PUCHELT (1967)
370
189-670
290
360
447
Ncreh Americ:l
5
270
33S
X
SOO
5
330
5
5
MACPH2RSON (1958)
WEBER and MIDDLETON
(1961)
Indonesia
}
New Zealand
12
'Q-4BO
252
5
5
McLAUGHLIN (1955)
v , TONGEREN (1938)
Barium
56-K-6
b) Shales
Ba averages for shales reponed in the literature vary from 250 to BOO ppm
(PUCHELT, 1967; VINOGR"DOV, 1956). The average of this p;l,per is 546 ppm (s for
the 25 means used: 212). Individual samples gave values from 10 to 5,000 ppm,
From the data. summarized in Table 56-K-3, it can be observed that especially low
values have been found in shales of the Dnieper-Donees depression (Russia) and ebe
west Siberian depression (LITVIN, 1961, 1963; TOLK"cHEv, 196B). If these low
Table 56·K-3. Barillm i" siJalu
Locality
No. of
samples"
A/tiro:
2
25 (323)
Alia:
Japan
U.S.S.R.
1 (14)
8 (521)
6 (920)
'9
6 (32)
1
5 (185)
Ellropt:
Finland
Germany
1 (36)
17(105)
3
66
Great
3
3
24
(9)
Barium foncemrntion
range
mean
ppm
ppm
Method References
JU~NUl.
and J.~MES (1947)
270-­ 4SO 360
394--1.oo4 b 681
5
540
X
\XtED~OHL
150­ 370 b 270
260­ 520 b 394
30-­ 4SO
83
5
BABIN" lind KOTOROVICIl (1966)
LEBED.f;V (1963)
LITVIN (1961)
188
360
140-­ 220 182
800
9-2,700 654
480-­ 540 513
50-5,000 750
700- 900 824
390-­ 730 b 527
210-2,240 739
DA~CHl:-:
LIT~'IN
140- 230
5
(1970)
(1960)
(1963)
SI:"1I'"RENII:.O (1948)
TOLI'''CflEV (1968)
X
\Vn'EI'OHL (1960)
5
5
5
5
5
5
S.\HA~lA
HEIDI: and CHRIST (1953)
LEUTWI;,N (1951)
PR"SHNDWSI1Y (1957)
ZURLO (1963)
5
5
5
NICHOl.LS and LORl1>:G (1962)
SPENCER (1966)
LA~DERGnEN and MANIlF.UI
(1945)
MOHR (1959)
Brimm
6
27
330-1,050
325-1,280
555
723
SOO
Sweden
(1963)
450-2,150
866
33
250--1,000
31
100­ 750
10-1,020
190­ 610
9
.\"arJh
Amtrira:
41
26
3 (?)
Islands:
2
4
526
393
470
5
5
5
S
FENNER cod HAGNER (1967)
'\[ACPHER,ON (1958)
i\luRR"Y (1954)
StuW (1954, 1957)
TClUR."l'LOT (1957)
YOl!XG (1954)
5
5
EL W"ll:Ul. and RILEY (1961 b)
V. T01'\GEREN (1938)
359
no
17
500-1,050
20-1,800
(1932)
D£C1.N; tl 01. (1957)
580
15
Parifi(
L.~b>ON
5
7"
775
840
" No. nf individual samples used fOI" bulk samples, or for means, an: given in paeantheses.
II Range of me:IfiS, nor of individualsamplcs.
Barium
56-K-7
values for Russia are omitted from avet:lging, the mean is 628 ppm with a standard
deviation of 157 ppm.
Ba does not seem eo be an environmental indicator for shales. VINE (1966) and
LEBEDEV (1967) found a Ba increase in shales from fresh water to marine environment,
while MURRAY (1954) repotts opposite observations from Indiana and Illinois, USA.
In general, shales have higher Ba contents than graywackes or sandstones, but
.locally, siltstones ot sandstones may be higher in Ba (ALANov, 1963).
The mode of Ba binding in shales is complex. Several indications exist which
point to a correlation of Ba with mica; parallelism with the amount of illite ptesent
has been found (FENNER and HAGNER, 1967); and BaS04 was shown to be another
possible carrier. Black shales often contain more Ba than normal shales thus sug­
gesting a connection of Ba with organic mattet. While certain shales retained their
Ba content of deposition, others gained Ot lost some. Redistribution in diageneric
processes is possible.
c) Carbonate Rocks
Literature on Ba in carbonate rocks is summarized by GR.U (1960) and PUCHELT
(1967). The Ba content of carbonate rocks varies from 1 to 10,000 ppm (cf. PUCHELT,
1967). Using the literature cited in Table 56-K-4, an avetage Ba concenuation for
carbonate rocks of 90 ppm was calculated. This value is within the range reported
by GRAF (1960) (150± 110 ppm). TUREKIAN and WEDEPOHL (1961) based their
average Iimesrone value (10 ppm) on the Ba content of modern molluscan shells.
This value seems to be too low even for average carbonate, excluding detrital
material. Means calculated by area as listed in PUCHELT (1967) are plotted in Fig.
56-K-1.
2
S
10 20
So 100 200 soo 1000 2000 SOOO ppm
e..
Fig.5G-K-1. Frequency disteiburion of Ba concerumrions in carbrmates (PUCHEloT,1967)
High average Ba values in relation to the' overall mean ate reported for 10 Ordo­
vician dolomites from Missouri, USA (620 ppm, KaLER er nt., 1950), Cretaceous
limestones, USA (900 and 1,800 ppm, YOUNG, 1954),91 Pennsylvanian limestones
from Illinois, USA (260 ppm, OSTROM, 1957) and 6 limestones from Africa (1,330
ppm, JUNNER and JAMES, 1947).
Ba in carbonate cocks originates mainly from 3 sources or processes:
1. detrital clay material,
2. redistribution during diagenetic processes, in which BaS04 can be precipitated.
3. incorporation of Ba in carbonate minerals.
In most cases [)tOCCSSCS 1 and 2 are quantitatively more lmportanr. Reference is
made here to rhe difference between "pure" caebonares wirhln rccenr reefs and
Barium
carbonate sands from their peripheral parts (cf. chapter 56-K-I). In carbonate sands
wirh detrital clay, FRIEDMAN (1968) observed an increase of Ba concentrations
parallel to «insoluble residue". Fossil carbonate sediments exhibit similar fcatures
(VINOGRADOV" al., 1952).
During evaporation of sea water, Ba is precipitated as barite which usually
occurs disseminated in the calcium carbonate (PUCHELT, 1967). Diagenetic alter­
ations may cause local BaS04 concentrations. Thus CAMERON (1966) found between
1 and 6,100 ppm Ba in a core fcom carbonate rocks within a distance of 80 feet.
This diagenetic harite usually can be recognized under the microscope. Manganese­
containing carbonate sediments are sometimes enriched in Ba, (MOHR and ALI.EN,
1965).
Table 56-K-4. Baril/III hi carJIIJnll1t rOfler
Locality
No. of
samplese
AnD:
Indonesia
U.S.S.R.
,
4
Barium concentration Method References
range
ppm
930-
mean
ppm
450 220
240 65
S
S
v, TONGERRN (1938)
GORLITSKY and
b
K~LT~EV
(1962)
S
59 (2,973)
198
112-
250 36
690 47
S
LEBEDEv (1967)
LITVIN (1963)
RONOV
(1956)
SINKARENKO (1948)
VINOGRAOOV and RONo\'
(1956)
Ellropt:
Germany
Grellt
Britain
Roum;mia
Scandinavia
1-
41 (131)
125
183
300 62
15-- 403
<5-- 8,000 220
"
15
10-
5
3-
300 100
330 78
S
S
S
X
S
v. ENGELI-tARDT (1936)
HETOE and CIIRI~"T (1953)
PRASl-lNOWSKY (1957)
BAIOR (1965)
MUIR tI al. (1956)
S
S
S
S
hlREl-I and ECAT.eRIN( (1965)
S
KELLER tl al. (1950) b
CANNON (1955)
LA.IoIAR and THO.I\PSON (1956)
v,
ENGELH~RDT
(1936)
HENRIQUES (1964)
SAHA~I~
(1945)
Nortb America:
U.S.A.
10
420
200- 2,000 620
2-10,000 lOG
S
MooRE. (1960)
S
S
OSTRO~1
(1957)
RUNNELS and SCHLEICHER
(195Q)
& Number of individual samples used for bulk samples, or for means, are given in
paranrheses.
b Data not included in calculation of average.
Rerited ......n><rip. """'.cd: S<p<cmba 19'72
Barium
56-L-1
56-L. Biogeochemistry
Barium is presenr in recent and fossil plants, in animals:LJld fuels. Ba accumulation
in plants and animals was found by 'several investigators, but there is no evidence
that this element is physiologically necessary. Ba is moderarelv toxic for plants and
sligbtly toxic for mammals. Reviews of barium biogeochemistry are published by
PUCHELT (1967) and BOWEN (1966), who also makes reference to earlier compilations.
BOWEN (1966) summarizes the available literature for Ba content in dry weights
as follows:
30 ppm
marine plants
land plants
14 ppm
0.2-3 ppm (higher in hard tissues)
marine ani mals
land animals
0.75 ppm
I. Plants
In ash of marine plants, Ba varies over a wide range (Table 56-L-l). Coccoliths,
which form the main constituents of marine carbonates, contain 10 to 30 ppm Ba
in ash (TuRI'.K.IAN and TAUSCH, 1964). Ash of phytoplankton species from the
Black Sea (ChaelOuro/ Cumslft! and RhizosDlmia Calcar AlIi.r) is very high in Ba
(4,000 and 20,000--30,000 ppm, respectively; VINQCRAOQVA and KOVAL'SKIY,
1962). Since these diatoms are very abundant in surface waters in summer, they
form a considerable Ba enrichment, which may contribute to the Ba content of
pcl.agie sediments. The tests of thizosolenla and chaetoceros are very delicate and
under marine conditions not stable. Thus they are subject to dissolution and are nor
to be found in sediments, although they certainly serve as barium conveyors to the
sea Hoar (BRONGERSMA-SANOERS, 1967).
BOWEN (1966) reports concentration factors (ppm Ba in fresh organisms!ppm Ba
in sea water) for plankton and brown algae to be 120 and 260, respectively.
AJgae from the coast of Great Britain show seasonal variance in their Ba content
in ash (epee 900 ppm Ba; BLACK and MITCHELL, 1952).
For terrestrial plants, an extensive stud}' exists for bryopbytea (SHAcJ<;.LE:rrE,
1965). Some of the species investigated concentrate Ba considerably. The highest
enrichment factor for Ba in bryophyte ash versus soil is 2,000. Equisetum (hotsetail)
ash was analysed by CANNON et 01. (1968) and BORoVIK-RoMANovA (1939). Ba con­
tent in ash of this plant (70 to 4,500 ppm) resembles approximarely the concentration
in the respective substrata.
Phanerogarnes reabsorb distinct amounts of Ba from the soil. Fir and spruce
have 500 to 6,200 ppm Ba in asb with the highest concentrations in twigs (LOT­
SPEICH and MARKWARD, 1963). Black walnut, hickory, and red-ash leaves contain
870 to 2,570 ppm. Relative Ba enrichment was reponed for oaks, which gave upto
2.30% Ba in the asb of twigs (BLOSS and STEINER, 1960). The average for Ba in
ash of legumes is 1,420 ppm (CANNON, 1964).
56-L-2
Plant
Barium
Ba in drv
tissue
ppm
Schlaophym
Bacteria
Ba in ash
References
ppm
-6'2,000
FOER:ITER and FO:IT£R (1966)
Phycl1phyta
10
Coccollrhs
Diatoms
30
20 --30,000
TUR£l;.II>N
and T'\liSCH (1964)
and KOVAL'SK1Y
VTNOGRAL>OVA
(196'2)
Brown '-'WIf:
Red algae
Bryophyta
0.4--1'20
• 31
50
5-Z00
C'
Prerfdophyra
Equisitinae
Ferns
Angil1sperms
Legumes
B
900
5.'
0.6­
'200 -50,000
150
30 -
4,500
8
Spermatophyta
Conifers
Deciduous trees
Z70
PUCBELT
(1967)"'
Pt:CHELT
(1967)0.
(1967)0.
lJOWEl" (1966)"
PUCHELT
CANNON
BI1\l;£N
10
500 -
100
6,ZQO
14
10 - '2,700
-23,000
average: 1,4'20
il al. (1968)
(1966)"'
(1967)a
and MARl;.WARD (1963)
BOW£N (1966)·
PUCHELT (1967)B
BLOSS and STEINER (1960)
ROB1NSO!'l tloJ. (1950)
C"NNON (1964)
PUCHELT
LOTSP£[CH
Compilations.
II, Animals
Organisms are only important for trace dement geochemistr)" if they occur in
latge amounts. Zooplankton (especially ceuseseees) ftom the Black Sea shows Ba
accumulation upto 2.000 ppm in ash (VINOGRADOVA and KOVAL'SKIT, 1962). Since
these animals constitute nbout 80% of the planktonic population in the survey area,
they may also contribute to the Ba content of marine sediments.
Protozoan skeletons and shells consisting of Caeoa Ot SiO~ contain uprc
270 ppm Ba. They are the source fot Ba in pelagic globigerina and radiolarian oozes.
From investigations of ARRHENIUS (1963) it must be concluded that in Recent
planktonic foraminifera, Ba is mostly bound to organic matter (upto 700 ppm in
ash). In Table 56-L-2 rhc radiolaria Acantharia and the rhizopod Xenophyophora,
which concentrate BaS04 in their skeletons, are listed. After death these skeletons
ace dissolved, but during this process they transport: Ba rewards the sediment. No
fossil skeletons of these species ate reported.
GoLDBERG and ARRHENIUS (1958) assume a certain Ba accumularicn by digcnion
of benthonic organisms, since they found Ba enrichment in fecal pellets from thc
sea floor.
Barium
Table 56·L-2.
Borilml
ill
0Ili11/0(1.
56-L-3
(Compilations by BOWE!>.:, 1966; PUCHl'1.T, 1967)
Ba in
Ba in ash
dry tissue
ppm
ppm
Pratozoa G
Foraminifera
10--270
Coelanterarea
11---450
Ba in
hard ,issue
ppm
180
SOD
8.6---35"
Material in
hard tissue:
oco,
oco,
SiO.
oco,
eo,""
Ctenophora
Echincdermara
Annelida (Vermes)
Tentaculata
Beyoeces
Brachicpodcs
Mollusca
Lamellibranchiarca
Gastropode!
Cephalopooes}
Scaphopoda
Althopoda
Mammalia
40-2,000
20--
5U~
35
17_
CaC0 3
SO'
12-2,000 0
3
4- 75
4- 500
<1-901>
4--75 r
4--50r
CaC0 3
7.2+20
1>- 800
2.3
6.9
upnrite
.. Radiolnria Acantharia contains 5,400 ppm Ba (Alllllu;"n:s, 1963), B:lSO, is the hard
tissue in [he rhizopod Xenophycphora (VINOGIlAOO\" 1953).
b Including data by FlllEmlAN (1969).
c Upro 5,000 ppm Ba were found in dry tissue of Allniol Lillkii from the Barents SC3..
11 High values (1,000 to 1,500 ppm) ere reponed from Black Stc:t plankton (VI:-':OGIlADO"A
and KO~·Al.SKIY, 1962).
" Including data by SCHOPP and MANH.EI~1 (1967).
e With certain species of Anodom:l., Pecten. AMarte and Tcllina, higher Ba concen­
trations (upro 500 ppm) were found.
r Some samples of HclU. species, Llnorins species, and Neptuna species contain upto
500 ppm Ba if> their shells.
Much support for Ba in molluscan shells has been publishcd (cf. PUCHELT, 1967).
u:'UTWEIN (1963) and PILKE'l (1963) found a distinct Be enrichment in Recent mollusc
shells from fresh and brackish water environmenrs. Obviously, the structure of tbe
shells (calcite or aragonite) is of less irnportance as a cause of Ba incorporation than
Ba content in the water and the environment. A reconsrrocricn of palaeoenviron­
ments from Ba coocenrrarions of unaltered fossil shells has been attempted by
PROKOP'EV (1964), FRIEDMAN (1967) and others. TUREKIAN and AIl:l.ISTRONG (1960,
1961), investigating Recent and fossil shells, found Bare be much higher in molluscan
shells of the Fox Hill Formation (Ceeraceous), South Dakota, [han in Rccent species.
According to their studies diagenetic alterations mighr considerably shift the initial
trace clement composition, even with only slightly altered mineralogy of the shell.
Animals do not contain appreciable Ba concentrations. A fcw dam from BOWEN
(1966) arc included in Table 56-L-2. Additional references of detailed investigations
are compiled by G~IEL~ (1960).
BarIum
56-L-4
Table 56-L-3. Barium in flltls
Locality
Strarigraphj­
Ba content
Method References
in ash ppm
8roflJ/I mal
Australia
Czecbosfovakin
Germany
U.S.A.
uptO BOO·
tOO-- 1,000
Tertiary
Tertiary
700- 7,600
200- 2,800
S
Tertiary
tOO--l0,000
S
Crereeeous-
100- 1,000
HONEK and JIRELE (1965),
sec POCHELT (1967)
X
1,000----10,000
20-- 2,200
3Q0-- 1,600
100-27.000
Cacbonifi:rous
BIIEWER and RYER~ON
S
(1935), sec PUCILELT (1967)
DWL and ANNEL (1956)
TKACHEV tf al. (1965)
S
S
S
S
S
CLARK£: and SWAINE (1962)
S
LEUTWEIN and ROSL..EI\
(1956), see PUCHELT (1967)
RAD~IACHER (1965), see
PUCHELT (1967)
LElTt"Wl:':IN and RaSLER
(1956), see PUCH£LT (1967)
LEUTWEtN and RtlsLER
(1956), see PUCHELT (1967)
NICHOLLS and LORING
(1962), see PUCHELT (1967)
GIBSON (1963)
BROWN and TAYLOR (1960)
COAL REs. COMIIANY (1949)
Bun.ER (1953)
liEADI..E.E and HUNTER
(1953), see PUCHELT (1967)
S
Permian
100-
Triassic,
100
500
S
S
Juras~ic
Great Britain
710
S
25D- 8,400
S
S
average: 4,000
270----22,000
S
-10,000
S
X-XOO,OOO
S
Carboniferous
'0­
New Zealand
Norway
U.S.A.
PIETZNEI\ and WOLf (1964)
RtlSLER :lI1d LANGE (1965),
sec PUCHELT (1967)
BREGER tJ 111. (1955),
see PUCIIELT (1967)
S
140------ 2.730
Permian
SWAINE (1967)
BROWN and SWAINE (1964)
U.S.S.R.
Hard coal
Aunralia
Canada
Finland
Germany
S
PermianTertiarv
Tertiary
S
I-Ll.wLEY (1955)
LOKKA (1943)
Y. ENGELHARDT (1936)
TmJ.O (1934), see
PUCHELT (1967)
OiIJ and bill/millQ
Germany
U.S.A.
TriassicCretaceous
Cambrian-cTertiary
S
S
U.S.S.R.
11
Devonian-cTertiary
B:r. conceneeatinn in dried coal.
10D- 3,000
HeIDE (1938), See
PUCKELY (1967)
BELL (1960), see
PUCH£LT (1967)
ERrGKSON d al. (1954),
see PuCH£LT (1967)
HYOEN (1961)
KATCHENKOV (1951), see
PUCHELY (1967)
Barium
56-L-5
III. Fuels (Including Coal)
Fuels of all geologic ages contain Ba in their ashes; often in amounts considerably
above the earth's crust mean (Table 56.L-3).
From Ba data in Recent plants it can be deduced that at least part of the barium
originates from living placu. During diagenetic alteration, humic acids may absorb
additional Ba from the involved solutions. Extremely high Be values of coal ashes
(upto 4.76%), as reported from Great Britain (RE\"NDLDS, 1939), may be caused by
a secondary BaS04 mineralization. No general trend of Ba concentration with
maturity of coal could be observed. In one instance, LWTWEtN (1966) paralleled Be
content with the amount of clays in a brown coal profile. ERSHDV (1958) carried OUt
several electrodialysis experiments on coal samples and concluded that Ba-in
addition to otber clements-was present either as soluble minerals or in weakly
absorbed form. It is nor bound as strongly as Ge, which could not be extracted by
this procedure.
It is to be assumed that Be is incorporated in certain metallic-organic compounds
in oil, but no investigations on the specific tjpes have been published.
----------------_~-~~~~~~_----------.
Barium
56-M-1
56-M. Abundance in Common Metamorphic Rock Types
Barium concentrations in metamorphic rocks exhibit a large variation within
each type (Table 56-M-1). They var}' as widely as do values for all igneous. and
sedimenmry rocks. Consequently, no meaningful Ba averages can be calculated.
The only exception seems to be eclogites which form under special pressure condi­
tions. Comparison of Ba concentrations in typical metamorphic minerals such as
sillimanite. staurolite, guner erc., show that these srrucrures have no appreciable
tolerance for B2.
Data on Ba distribution between coexisting minerals in metamorphic rocks are
included in Table 56-0-5.
Table 56-M·l. Barium ill mrlo11/orphir rodcs
Rock type and
locality
No. of
samples
Gneiss, Randesund,
8
Norway
Slightly altered
10
gneiss, Adirondacks,
U.S.A.
"Grnnirizcd" gneiss.
18
Adirondacks, U.S.A.
Gneiss, Montana. U.S.A. ",
Gneiss, Langcy, Norway 5
Gneiss, Lcwisiau,
Inverness-shire,
Scotland
Basic gneiss, Scotland
s
Gneiss, S. \Y./. Finland
.0
•
G!;ulcophane schist,
11
C:LIifornia, U.S.A.
Pelitic schist,
16
Connemara, Eire
Sillimanite: schist,
2
Montana, U.S.A.
Schist, Moine, Inverness- 5
shire, Scotland
Phyllire, Finland
174
Quartz-alblte-bicriee
8
schist, New Zealand
Greensehisr, New Zea[and
,
/l;' SprinK<r_Vc>b~
8<IIj"
J{<'<klb<...,
J'17~
Barium concentration
:\Ic:thod Reference:
mean
ppm
range
ppm
1,060 <605
X
B.\LL (1966)
1,400
610
S
ENGELend
E:-lGEL (1958)
125- 2,600
980
S
1,800- 3,800 2,580
823- 1,300 1,050
S
ENGEr.. and
ENGEr.. (1958)
FOSTER (1962)
HEIER (1960)
LnrllERT (1964)
<100-
220-
520
5
5
300-
920
20<340-
300
110
5
654
~430
S
7-
300
02
S
COLE)f"'N and
O'HARA (1961)
PARMS (1958)
SSO-
1,850 t,300
S
LEE (1963)
EV"'Ns (1964)
l,300+
1,900 1,600
S
FOSTER (1962)
J,44O
070
S
L.... MBERT (1964)
,0- t,500
450- 1,500
552
690
S
S
LoN" .... (1967)
T HLOR (1955)
125
3'
S
TUUlR (1955)
SOo-
10-
56-M-2
Barium
Tabl~
Rock type and
locality
Hornfels, Connemaea,
Eire
Hornfels, Palaman
district, India
Amphibolite. Rende­
sund, Norway
Amphibolite, Brazil.
Amphibolite, Adiron­
clacks, U.S.A.
Serlcitite and bio­
uee-amphibelhe,
Adirondacks, U.S.A
Amphibolite, Ausrralian
shield
Amphibolite, S. W.
Finland
Granulite, Ausrralian
shield
Metabasite, SaxorW,
Gcnnany
Charnockice, Finland
Paracharnockite,
No. of
samples
56·M-1. (Continued)
Barium concentration
=8'
mesn
ppm
ppm
Metbod Reference
11
670- 2,000 1,210
5
E\'"",IS (1964)
7
160
S
GHOSE (1966)
680 450
X
BALL (1966)
BARROS-GO)IES
(/ a/. (1964)
ENG!!L and
ENGEL (1962)
ENGEL and
E:<IGEl. (1962)
17
260­
2<J
21­
270
67
5
16
42­
14<J
84
5
11
140­
1,650
220
5
<610-> '190
""
X
251
5
72<J
X
110
5
LA)llIERT and
H.F.lER (1968)
MATHE (1969)
570
672
5
5
PARRA~ (1958)
PARRAS (1958)
<5
S
BINNS (1967)
30
~20
S
2
15+ '00
160
S
5
5.6-136
56
18
<100- 355
£190
BRYHNt rt at,
(1969)
COLlUtAN and
LEE (1963)
GRIJ'J'I:<I and
MURTHY (1968)
HAHN-WEIN­
HEI;\rER (1959)
61
2<J
8'
•
<420--->1,090
100-
125
2.
24
LA1.JllERT and
HELER (1968)
PARRAS (195B)
Finland
Eclogite, Naustdal,
Norway
Eclogite, Ncrdfjord,
W. Norway
Eclogite, C:ilifornia,
U.S.A.
Eclogue, different
6
<10-
places
Eclogitic rock. Miinch­
berg, Germany
5
56-N-1
Barium
56-N. Behavior in Metamorphic Reactions
Only very few investigations exist on Be behavior under metamorphism. LONKA
(1967), analyzing Precambrian phyllites of Finland, observed no differences in Sa
concentration between phyllites of lower and higher degree of metamorphism. Trace
element data including Ba concentrations have been used by TAYLOR (1955) ro
discuss the origin of New Zealand metamorphic rocks under the assumption of
isoehemiral metamorphism.
In the Adirondacks, New York, ENGEL and ENGEL (1958) studied progressive
metamorphism and granitizarion of the major pacagneiss. They found Sa [0 decrease
with increasing metamorphism, while the Sa content in biotites increased (580, 717,
888, 1,766 ppm). Granitized gneisses of this area generally sbowed much higher
Sa values than normal gneisses. TUR1!KIAN and PHINNEY (1962) could not detect
characteristic changes of Sa content in garnets and coexisting biotites in a meta­
morphic seguence from Nova Scotia.
A special feature of transport during metamorphism is skarn formation. HIGAZY
(1952) observed an increase of Sa content from epidiorite, 90 ppm (S), to biotite­
epidiorite, 270 ppm, to biotite skarn, 910 ppm. The subsequent alteration to
lcpidomelan-skarn (720 ppm) and chlorite-skarn (270 ppm) caused distinetdecreases
in Be. NESTERJ!NI{O r/ a/. (1958) found Ba to be depleted from biotite hornfels when
this rock was altered to pyroxene-garnet-skarn.
---
------~~~~~---------------
Barium
56-0-'
56-0. Relations to Other Elements, Crustal Distribution,
Economic Importance etc.
I. Inter-element Relationships
In igneous rocks, Ba generally substitutes for K in silicate structures. A certain
correlation of Ba and Ca in igneous rocks with low K was demonstrated in sections
56-0 and E. In the sedimentary cycle, Ba preferencially occurs as barite, in clays and
In feldspar. Presence of barite is dependant on sulfate abundance, whieh in tum
requires suitable redox conditions. In sediments, including evaporites, the correlation
Ba-K is much less pronounced than in igneous rocks. The substitution Ba-Ca
observed in few carbonate minerals is of less genera! importance.
II. Distribution in the Earth's Crust
Details discussed in the preceding sections are summarized in the following table:
Table 56-0-1. Ab,l/ldl1llu 0/ Eo ill imporl/1IfJ mauu 0/ Jh, tanh's ernst; (lIfto"s 'almlal,tf OIl
Ih, halil 0/ WEDEPOHL'S, 1969, tfala 01/ If;, al/llnMI/l' 0/ rock Il/1ill)
Igneous intrusive rocks (mean)
Gabbrolc reeks
Granites
Grancdicrires :lnd quaeradloeites
Diorites
Consolidated sediments (mean)
Sandstones (including graywackes)
Shales
Carbonate reeks
Sea warer
728 ppm
246 ppm
732 ppm
873 ppm
714 ppm
538 ppm
316 ppm
628 pprne­
90 ppm
0.020 ppm
"' 546 ppm, if tbe Russian shales low iu Ba are included.
A discrepancy exists between the Ba means for consolidated sediments and
magmatic rocks. Part of the Ba missing In the fossil sediments is bound in pelagie
clays (mean Ba content 2,000 to 3,000 ppm; cf. Table 56-K-l) which constitute cr
least 10% of the roral sediment mass (WEDEPOHL. 1969). But pan of the discrepancy
may be due to the fact that the individual data used for the avetages could not be
weighted properly for the compilation.
ill. Technical and Economic Importance
Barite and witherite ate the only badum minerals of economic interest. Descdp­
tions of deposits and their ptoduetion ate given by GMELIN (1960), BRODsT (1970)
56-0-2
Barium
and others. World production of barite has been almost constant since 1964 at
about 4 million short [ODS per year (OAA. 1970; for derailed information see U.S.
Geol. Surv. Bulletin 1321).
Barite is used for drilling muds in oil and gas geology (consuming about 75%
of the world's production) and for radlarion-shielding concrete. Chemically treated
BaSO~ of line particle size is an important filling material in the rubber, paper, and
fabric industries. It is one of the components of the white pigment "lithopone".
Ba compounds are used in glass and enamel production as flows and for glasses
with special optical properties. Barium chloride serves as a rat poison and insecticide;
barium chlorate causes the green colour of pyrotechnics; barium titanate is a ferro­
electric substance used in the electro-Industry; certain barium compounds are the
active substances of fluorescent screens.
Reviews on barium eompounds and their industrial uses arc given by STOHl'.
and FLASCH (1953), in GMELIN (1960), in Romp (1966) and in KIRK and OTHMER
(1958). A bibliogtapby on barium chemistry was compiled by SCmVIND (1952).
Aclmowledgements
I am vcry grateful to Dr. MICHAEL FLEISCHER, U.S.G.S., \'7ashington, D.C..
for making available to me his Iirerarure surveys and giving many valuable sug~
gestions. Thanks are also due to Professor WEDEPOHL for his many suggestions for
improvemenr.
R..i",d nunulCrip. n:a:,.<d: xpt<mt.:r 1971
Barium
Rel.rancu
560A 10 5600
I­ 1
References: Section 56-A to 56-0
v., Bar.ov, N. v.: Cryst.al structure of baryllre, BaBC1S~01.
Kristallografija 9, 691 (1964), translated.
AKHUNDOV, A. R., SArpo, P. V.: Distribution of some trace elemenes in fcrmadcn water
of the pay stratum in the Balakhany-Sabunchf-Ramaniask oil pool. kerh. NUt. Khoz.
39,9(1960).
ALANOV, A.: Geochemistry of the Lower Ceereceous deposits in the Gaurdak Region. Izv.
Akad. Nauk. Turkm. SSR, Set. Fiz.c'Tckhn. Khim. i Geol. Nauk 116 (1963).
ALBEE, A. L., CHODOS, A. A.: Microprobe investlgadons on Apollo II samples. Pro­
ceedings of the Apollo 1 t Lcnae Science Conference I, 135 (1970).
ALI..£N, C. W.: Asrrophysical Quantities. London: University ofLondon,AthlonePress 1963.
ALUR, L. H.: The Abundance of the Elements. Inrcescienee Monographs and Texts in
Physics and Astronomy 7 (1961).
- GRE&NSn;rN, J. L.: The abundances of the elements in G-type suhdwarfs. Asrrophys. J.,
SuppL 5, 139 (1960).
ANDERSEN, C. A., HiNTHORNE, J. R., FRlIDRIKSSON, K.: Ion microprobe analysis of lunar
material from Apollo 11. Proceedings of the Apollo 11 Lunar Science Conference I, 159
(1970).
ANDER~, N. R., HU~IE, D. N.: Strontium and barium content of sea water. Adven. Chern.
Ser. 73, 296 (1968).
ANDERSON, A. T., Jr.: Mineralogy of the Labrieville anorthosite, Quebec. Am. Mineralogist
51, 1671 (1966).
ANOERSON, W.: 00. the chloride waters of Great Britain. GeoL Mag. 82, 267 (1945).
ANml.i., C. S., HEU':, A. \'(1.: Emission spectrographic determinacion of trace dements in
lunar samples from Apollo 11. Proceedings of the Apollo 11 Lunar Science Conference
2, 991 (1970).
ARRHENIUS, G.: Pelagic sediments. In: The Sen. Ideas and Obseevedoos on Progress in the
Study of the Seas, voL Ijj.ed. hy M.N. HILL. New York-London: Inrerseience Puh!. 1963.
AsSARSSON, G.: On the winning of salt from the brines in southern Sweden. Svedges
Geol. Undersnkn., See. C SOt (1948).
ATKINS, F. 13.: Pyroxenes of rhe Bushveld Imruaion, South Mrica. J. Petrol. 10, 222 (1969).
BAIIINA, N. M., KDTOROVICH, A. E.: Alkali and alkaline-earth metals in sedimentary reeks
of the Westero Siberia Lowland. Geochem. International, 508 (1966).
BAIIINETS, A. E., RAD'KO, N. I.: Microelemenrs in the mineral waters of the southern
slopes of the Soviet Carpathians. GeoL Zh., Akad. Nauk Ukrain. RSR 16, 21 (1956).
BACCANARI, D. P., BUCK}{AN, B.A., YEVI'TZ, M. M., SWAIN, H. A., J(.: The solubility of
carbon-ta-lahelled barium caebonare in aqueous systems. Talama IS, 416 (1968).
BAILEY, E. H., SNAVELY, P. D., J(., WHITE, D. E.: Chemical analyses ofhrines and erude
oil, Cymric field, Kern County, California. U.S. Gecl. Surv., Profess. Papers 424-D,
306 (1961).
BAJOR, M.: Geochemistry of Tertiary lacustrine beds of the Sreinhelm basin in Steinheim
on Albllch (Wiirttemberg). jahresh. Cecl. Landesamces Baden~Wiirttemhe(g 7, 355
(1965).
BAKER, I.: Petrology 6f the volcanic reeks of St. Helena Island, South Atlantic. Bull. Geot.
Soc. Am. 80, 1283 (1969).
BAKER, P. E.: Petrology ofMt. Misery Volcano, St. Kitts, WestIndles. Lithos 1, 124 (1968).
GASS, I. G., HARRIS, P. G., Ll!.t>'lAITIU!, R. W.: The volcanological report of the Roy:11
Society expedition to Tristan da Cunha, 1962. Phil. Trans. Roy. Soc. London 256, 439
(1964).
ABRASHEV, K. K., ILYUKHIN, V.
(!;l Sprioscr-Vcrbg &rUn· Hddc:lborx 19n
R.r.Jonc..
560A~~
I2
~
Barium
BAll, T. K.: The geochemistry of the Randesund Gneisses. Norsk. Gccl. Tidskr, 46, 379
(1966).
BARAGAR, R. A.: Petrology of basaltic rocks in part of the Labrador Trough. Hull. Geol.
Sec. Am. 71, 1589 (1960).
BAR ""II, F.: Sapphirine-beating rock, Val Codera, Italy. Am..Mineralogist 49, 146 (1964).
BAll.llm GO:\lES. C. 010, SANTrNl, P., DUTJlA, C. V.; Perrochemlstry of a Precambrian am­
phibolite from the jaragua area, Sao Paulo, Br:\2il.]. Geol. 72, 664 (1964).
BARTEL, A. ]., FENNU.LY, E. ]., HtJFDIAN. C, Jr" RADEll, L. F., Jr.: Some. new data on
the arsenic content of basalt. U.S. Geo!. Surv. Profess. Papers 475-6, 620 (1963).
BAllTH, T. F. W.: The: feldspar lattices :IS solvents of foreign ions. lnstiruto Lucas M:illada,
Cursillos y Conferencies B (1961).
BASCHE". e.: Hdufjgkensbescimmung fur Kehleosroff nus CH-Banden irn Umerzwerg HD
140283 und in der SOIUle. Z. Asrrophys. 56, 207 (1962).
B£L'R.E.VICH, P. L, CHISTOVA, L. R., STROGONOVA, L. F.: Effect of temperature and form
of iOD and anion on the iun-eschange equilibrium in peat. vesrsi Ako.d. Nauk Belarcsk.
SSR, Ser, Khirn. Nauk 4, 29 (1(66).
BERLIN, R.• H.END£R~ON, C. M. B.: The distribution of Sr and Ba between the :illI..:Lll feld­
spar, plngloclnse and geoundmass phases of porphyritic trachytes and phonnlites. Geo­
chim. Coereocturo. Acta 33, 247 (1969).
B£RTSCII, W.: Barium in Buntsandsceinen. Master's Thesis, University of Tuhingcn, 26 pp.
1964.
BWEulAN, \'iI. P., KEENAN, P. c., The Ball Slats. Astrophys.]. 114, 473 (1951).
BINNS, R. A.: Barroisire - bearing eclogite fcorn Naustdal, Sogu og Fjordane, Norway.
J. Petrol. 8, 349 (t967).
BLACK, \'iI. A. P., MITCl-lliLL, R. L.: Trace clements in the common brown algae aed in sea
water.]. "brine BioI. Assoc. U. K. 30, 575 (1952).
BLOCI', A., P.ERLOFF, 5.: The crystal structure of barium tetraburate, BaO' 2B!O~. Acta
Cryst. 19, 297-300 (1965).
BLOSS, F. D., ST.EINIOR, R. L.: Biogeochernical prospceting for manganese in north-case
Tennessee. Butl. Geoi. Soc. Am. 71, 1053 (1960).
BOlITTCH£R, A. L.: Vermiculite, hydeobiorire, nod biotite in rhe Rainy Creek igneous
complex ncar Libby, Montana. Clay Minerals BuU. 6, 283 (1966).
BOLTE.R, E., TUREKIAN, K. K., SCHOTZ. D. F.: The distribution of rubidium, cesium and
barium in the oceans, Geochim. Cosrnochim. Acm 28, 1459 (1964).
BOROVU::-RoMA~OVA, M. F.: Spectroscopic dererminarinn of barium in the ash of planes.
're. Biogeokhim. Lab. A.kad. Nauk SSSR 5, 175 (1939).
BOSTROM, K., PET.ERSON, 11. N. A.; Precipitates from hydrothermal exh2.lo.t1ons on the ease
Pacific Rise. Econ. Geol. 61, 1258 (1966).
- FRA.ZI.':R, ]., BLAN~6URG, ].: Suhsolidus phose relations and lattice constants in the
system BaS04-SrS04-PbSO•. Arkiv Mineral. Geol. 4, 477 (1968).
BOUSKA, V., PoVONORA, P.: Correlacion of some physical and chcmieal prnpercies of mojda­
vires. Gecehlm. Ccsmochim. Acta 28, 783 (19M).
Bows», H.]. }of,: Srrondum and haeiurn in sea water and in marine organisms.]. Marine
Blol. Assoc. U.K. 35, 451 (1956).
- Trace Elements in Biochemistry. London-New York: Academic Press 1966.
Baxuea, H.: Spurenelemenrgebalte in Gra.n.iten Thiiringens und Sachsens. Ph. D. Thesis,
Bergakadernie Freiberg, 1965.
BRAY, J. 1\1.: Spectroscopic distribution of minor clements in igneous rocks from ]~mcs­
town. Colorado. Bull. Geol. Soc. Am. 53, 765 (1942).
BROBST, D. A,: Barite: world prcduetlon, reserves and future prospeees. Bull. U.S. Geoi.
Sun. 1321, 46 pp. (1970).
BRONG£RSMA-SANDERS, M.: Barium in pelagic sediments :1nd in diatoms. Proc, Koninkl.
Ned. Akad. \'iIett:llsch~p., Ser. B 70, 93 (1967).
BROWN, P. H., CAJl1,lICHAEL, 1. S. A.: Qoarernary volcanoes of the Lake Rudolf region:
1. The basanire-tephcire series of rhc Korarh Range. Lithns 2, 239 (1969).
Barium
R.r.",nc..
5&-A1<>IoIl.o
I- 3
Baow», G.lL, EMELEVS, C. H., HOLL,\NO, J. G., Pl-llLLlrS, R.: Mlncealoglcal, chemical
and petrological Features of Apollo 11 rocks and thdr relationship to igneous processes.
Proceedings of the Apollo 11 Luoar Science Conference 1,195 (1970).
BaoWN, H. R., SWAINE, D. .l-: Inorganic consciruents of Ausa-alian coals. I. Nature and
mode of occurrence. J. lnst. Fuel 37, 422 (1964).
- T ...n.OR, G. H.: Metamorphosed coal from the Theron Mountains (Falkland Islands
Dependencies). Tmns-Antarcrie Expedition 1955-58, Sci. Repr, 12, 1 (1960).
BIIOWN, J., GRANI', C. L., UGOLINI, F. C., TIlOllOW, J. c. F.: Mineral composition of some
drainage waters from arctic AJaska. J. Cecphys. Res. 67, 2447 (1962).
Baceo, E., GAZzONr, G.: On the system Ba(A1:Si~O").Ca(A.L,.Si..,.Oa) I. Ca-Ba subsrirution
in polymorphic modifications of B~Si~O". Ccnrr. Mineral. and Petrol. 25, 144
(1970).
BRYHNr, I., BOLLINGBERG, H. J., GrtAFF, P. R.: Eclogites in quartzofeldspathic gneisses of
Nmdfjord, \'Vest Norway. Norsk Geo!. Tidsskr. 49, 193 (1969).
BUCKLEY, S. E., Hocos-r, C. R., TAGGART, M.S., Jr.: Distribution of dissolved hydro­
carbons in subsurface wnrers. In: L. G. \'\feeks (ed.), Habitat of Oil. Tulsa: Am. Assoc.
Petrol. Geo!. 1958.
BVRBlDGIl, E. M., BVlUllDGE, G. R.: Chemical composition of the BaII stac HD 46407 and
its beating on clement synthesis in stars. Astrophys. J. 126, 357 (1957).
BIJIITON, J. D., MARSHALL, N. J., PHTLLIl'S, A. J.: Solubility of bacium sulfate in Se3. water.
Nature 217, 834 (1968).
BUTLER, B. C. 11.: Chemical study of minerals from the Moine Schists of the Acdnunurcb:m
Area, Argyllshite, Scotland. J. Petrol. 8, 233 (1967).
BlfTLEll, J. R.: Geochemical affinities of some coals from Svalbard (Spitzbergen). Kong.
Ind._, Handverk, Skips-farrdcpr., Noesk Pclarinst., Skrifrer 96, 1 (1953a).
- The geochemistry and rnincralogy of tack weathering. I. The Lizard area, Cornwall.
Geochim. Cosmochirn. Acta 4, 157 (1953b).
- The geochemistry and mineralogy of rock weathering. II. The Nordrnarka area, Oslo.
Oeochlm. Cosmochim. Acta 6, 268 (1954).
BYERS, F. M., ) r.: Petrology of ehrcc volcanic suites, Umnak and Bngoslof Islands, Alecelcn
Islands, Alaska. Bull. Oeol. Soc. Am. 72, 93 (1961).
CA~1ERMAN, c.: Composition d'une eau 11. forte salure du bassin houiller de Charleroi. Bull.
Soc. Belge G601. 60, 361 (1951).
C"-MfRON, A. G. V.: A revised table of abundance of the clements. Astrophys,). 129,676
(1959).
C'\~II!RON, E. M.: Evaluation of sampling and analytical methods for the regional gee­
chemical study of a subsurface carbonate formation. J. Sediment. Petrol. 36, 755 (1966).
CANNON, H. L.: Geochemistry of rocks and related soils and eegerarion in tbc Yellow Cat
area, Grand County, Utah. U.S. Geo!. Surv. Bull. 1176 (1964).
- SHACKLEITE, H. T., BASTRON, H.: Metal absorption hy equiserum (Horsetail). U.S.
Geo!. Surv. Bull. 1278-A (1968).
CARO K. D.: Metamorphism in the Agnew Lake area, Sudbury District, Onrarlo, Canada.
Bull. Geol. Soc. Am. 75, 1011 (1964).
CARLOS"', R. :M., OVERSTREET, R.: The ion exchange behavior of the alkaline earth metals.
Soil Sci. 103213 (1967).
CARMICHAEL, J. S. E.: Trachytes and their feldspars phenocrysts. Mineral. Mag. 34, 107
(1965).
_ The iron-riranium oxides of salie volcanic rocks and their associated ferromagnesian
silicates. Conrr. Mineral. and Petrol. 14,36 (1967a).
_ The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming.
Conte. Mineral. and Petrol. 15, 24 (1967b).
_ McDo~ALO, A.: The geochemistry of some natural acid glasses from the North
Atlantic Tertiary volcanic province. Geochim. Cosmochim. Acta 25, 189 (1961).
CAYRIlL,R., CATREL Oil STROBEL, G.: Abundance determination from stellar spectra. Ann.
Rev. Astronomy Astrophys. 4, 1 (1966).
CHAO, E. C. T.: The petrographic and chemical characteristics of tckriees, In: J. O'KEEfE
(ed.), Tckdees. Chicago: University Ehlcago Press 1963.
R.r.rence.
56-A lo 56·0
I
~
4
Barium
CHAPMAN, D. R., KEIL. K., ANNELL. C.: Cornparlson of Macedon and Darwin glass. Gee­
chim. Cosmoc:him. Acta 31, 1595 (1967).
CHOW, T. L, GOLDBERG, E. D.: On the: rnarioe gc:ocbcmisrry of barium. Gcochim. COS~
mochim. Aero. 20, 192 (1960).
- PATl'F.:RSON. C. c.: Coocentration profiles of barium and lead in AdUldc W2(Cn; off
Bermuda. Earth Planer. Sci. Lett. 1,397 (1966).
CHURCH, T. M.: Marine: barite. Ph. D. Thesis, University of CaJjfornia, San Diego, 1970.
CLARKE, D. B.: Tertiary basalts of Baffin Bay: possible: primary magma from the: mantle.
Contr, Mineral. and Petro!' 25, 203 (1970).
CLARKE, M. C, SWMNE., D. ].: Trace: elements in coal. I. New South Wales coals. II. Origin,
mode of nccuerence, and eeonomic importance. Fuel RCSClCCh Tccb. Comm. 45, 115
(1962).
CLAtTON, D. D.: Implications of the: snlar-system abundances near atomic weight 90.
J. Geophys. Rcs. 69, 5081 (1964).
CLl....OIlD, T. N., NICOLAY5EN, L. D., BUIlGEIl, A. J.: Petrology and age of the pre-Dtavi
basement granite at Franzfontcin, Northern South Wcst Africa. J. Petrol. 3, 244 (1962).
- Rooxe, J. M., ALLSOPP, H. L.: Petrochemistry and age of the Franzfontein granitic
rocks of Northern South West Africa. Geocbim. Cosmochim. Acta 33, 973 (1969).
Coal Research Committee: D.S.LR. Wellington N. Z., CoaL Report No. 249 (1949).
CoATS, R. R.: Magmatic differenriarion in Tertiary and Quaeremary volcanic rocks from
Adak and Kanaga Islands, Aleutian Islands, Alaska. BulL Ceol. Soc. Am. 63, 485 (1952).
- Gcalogy of Buldir Island, Aleutian Islands, Alnska. Bull. U.S. Gecl. Surv. 989·A, 1
(1953).
- Geologic reconnaissance of Scmisapochnoi Island, Westcrn Alcutian Islands, Abska.
Bull. U.S. Gcol. Surv. 1028-0,477 (1959).
- NELSON, W. H., LEWIS, R. Q., POWEllS, H. A.: Geologie reconnaissance of Kiska Is­
land, Alcutian Islands, Alaska. Bull. U.S. Gecl. Scrv. 1028-R, 568 (1961).
Cocco, G.: Gccesis of the Elba granite rocks: geocilemistry of strontium and barium.
Rend. Soc. Mineral. Ital. 9,-48 (1953).
CoLEMAN, R. G.: Low temperature reaction zones and alpine ultramafic rocks of Cali­
fornia, Oregon and Washington. Bull. Gcol. Soc. Am. 1247 (1967).
- LEE, D. E.: Glaucopbanc becelng metamerpbic rock types of the Cazadero Area,
California. J. Petrol. 4, 260 (1963).
- P Al'IKE, J. J.: Alkali amphiboles from the blueschists of Cazadero, California. J. Pececl.
9, 105 (1968).
COLLINS, A. G.: Chemistry of some Anadarko basin brines containing high concentrarlons
of iodide. Cbem. Gcol. 4, 169 (1969).
ZELINSKI, W. P.; The solubilreies of barium and strontium sulfaees in oil ficld brines.
Am. Chern, Soc. Div. Watcr Air Waste Chcm., Preprints 6, 7 (1966).
CoLVILLE, A., STAUOHAM)I,IEIl, K.: A rdinelJlent of the structure of barite. Am. Mineralogist
52, 1877-1880 (1967).
COMPSTON, W., C~APPELL, B. W., AIlIlIENS, P. A., VERNON, M. J.; Thc cbemistry and :lgc
of Apollo 11 lunar material. Proceedings of the Apollo 11 Lunar Science Conference
2, 1007 (1970).
CoIlLETT, M., RmHE, P. H.: Electron probe microanalysis of minor elements - plagloclase
feldspars. Schwciz. Mincral. Petrog. Mitt. 47, 317 (1967).
CoIlNWALL, H. R.: Calderas and associated volcanic rocks ncar Beatty, Nyc County, Nevada.
Gcol. Soc. Am. Petrologic Studies, Buddingrcn volume, 357 (1962).
- R.OSE, H. J., j r.: Minor elements in Keweenawan lavas, Michigan. Geochim. Cosmo­
chim. Acta 12, 209 (1957).
CORREIA NEVES, J. 11.: Genese dcs zonar gebauren Beryllpegmarits von Vcnturinlu (Viseu,
POrtugal) in geochemischer Siebe. Beier. Mineral, Petrog. 10, 357 (1964).
Cox, K. G., HORNUNG, G.: The peuolcgj- of thc Karroc basalts of Basutclacd, Am.
Mincrn.logur 51, 1414 (1966).
- JOHNSON, R.L., l.ION~MAN, L,j., STILLMAN, C, VAlL, ].R., \'(1'000, D.N.: The
geology of the Nunnetsi Igneous province. Philos. Trans. Roy. Soc. London 257, 71
(1965).
Barium
Rbr.r40CC5
~t4~0
I­ 5
Cox, K. G., MACDONALD, R., HOn.NUNG, G.: Geochemical and petrographic provinces
in the Karroo basalts of Southern Africa. Am. Mineralogist 52,1451 (1967).
Ct.rrrITIA, F., CLARJ.:E, R. 5., j'r., CARRON, M. K., ANNl;LL, C. 5.: Manha's Vineyard and
selected Georgia tektit~: new chemical data. J. Gecphys. Res. 72, 1343 (1967).
DANA, J. D., DANA, E.S.: In: C. PALACI-IE, H. BERMAN, FRONDEL, c.: Tbe System of
Mineralogy, 7th ed. New York: John Wiley & Sons 1951 and 1952.
DANCHIN, R. V.: Aspects of the geeehemlscry of some selected south African fine grained
sediments. Ph. D. Thesis, University of Cape Towo, 1970.
Dj\wsoN, J. B.: Basutoland kimberlites. BulL. Gecl. Soc. Am. 73, 545 (1962).
DEGENS, E. T.: Geochemical invesdgstjons inrc the country rock of the fluorite-baeire­
Co-Ni-Bi-Ag-G- ore veins of the middle Black Forest. Glilckauf 92, 842 (1956).
- WILLUMS, E. G., KEI'1'H, M. L.: Enviconrnenral studies of Carboniferous sediments,
part 1: Geocbemical crireeia for differentiating marine and Fresh water shales. Bull. Am.
Ass. Petrel. Geologists 41, 2427 (1957).
D"LKE5Kncp. R.: Die Schwerspathvorkornmnisse in dee Wetterau und Rheinhesscn und
ihre Enrsrchuog. Ncuabl. geo!. Landesanst. Hessen, IV. F. 21, 47 (1900).
Die weite Verbrelruog des Baryums in Gesteinen und Minemiquellen und die sich
hieraus eegebenden Beweismittel fur die Anwendbarkeit der Lateralsecreticns- und
Thettna.ltheorie auf die Genesis der Sehwersparhgsnge. Z. prake. Geo!. 10, 117 (1902).
DEVILLIERS, P. R.: The chemical eomposidon of the water of the Orange River at Viocls­
drif Cape Province. Rep. Suid-Afrika, Dept. Mynwese Ann. Gecl, Opnnme 1, 197
(1962).
DtnRlCH. R. V., ilium, K. S.: Differentiation of quartz-bearing syenite (nonimarkite)
and riebeckitic-aefvedsonire granite (ekerite) of the Oslo series. Geochim. Cosrnochim.
Acra 31, 275 (1967).
DIXON, J. E., CANN. J. R., RENfR"W, c.: Obsidian and the origins of trade. Sci. Am. 218,
38 (1968).
DODG'" F. C. W., PAPIKE, J. J., MAYS, R. E.: Homblendes Ircm granitic rocks of the·
Central Sierra Nevada Batholitb, Califom..ia. J. Perro!' 9, 378 (1968).
- S~IlTH, V. C. MAYS, R. E.: Biorires from granitic roeb! of the Central Sierra Nevada
Batholith, Cilifomin. J. Petrol. to, 250 (1969).
Doooxov, Ya, Ya., EPERDVA, L. V., KOLOSOVA, V. S.: Ubee die Salze dee Erdalkalimetalle
in den Wiissern der Bohrungen von dec Gaslagerstatte Sararov. Dokl. Akad. Nauk
SSSR G5, 887 (1949).
DOWGrALLO, J.: The occurrence of brines within the Koobreeg Unit, their genesis and
relation 10 tectonics. Bull. Acad. Polen. Sci. S~e. Sci. G~ol. G~ogrnph. 13, 305 (1965),
DRAKE, M. J., MCCALLUM, 1. S., Ml::KAY, G. A., WEILL, D. F.: Mineralogy and petrology
of Apollo 12 sample no. 12013: a progress report. Earth Planet. Sci. Leer. 9, 103 (1970).
DUCHESNE, J. c.: Strontium vs. calcium end barium vs. potassium relations in plaglo­
clasea from southern Rcgaland anorthosites. Ann. Soc. Geol. Bdg. Bull. 90, 643 (1968).
Duh:..l'::, M. B., SILVER, L. T,: Petrology of eueeires, bowardires end mcscslderires. Geoehim.
Cosmochim. Ael:l. 31, 1637 (1967).
DUNHAM, A. C.: The Felaices, gmnophyres, explosion breccias, and ruffisites of the north
em margin of the Tertiary igneous complex of Rhum, Inverness-shire. Quart. J. Geo!.
Soc. London 123, 327 (1968).
DURFOR, G. N., BECKER, E.: Public water supplies foe tbe 100 largest cities in the United
States 1962. U.S. Water Supply Papers 1812 (1964).
DURUU, \VJ. H., Hj\FFTY, J.; Occurrence of minor elements in water. U.S. Geol. Surv.
Circular 445 (1961).
- - Irnpllcanons of the minor element content of some major streams of the world.
Geochim. Cesmochlm. Acta 27, 1 (1963).
- HEJDI'L,S. G., Trsox, L. j.: World wide runoff of dissolved solids. Int. Ass. Sci. Hydro­
logy Gen. Assembly Helsinki 1960, Commission of Surface W:ttet'S, Publ, 51, 618 (1960).
DUVAL, J. E., KUIUIA'1'OV, M. H.: The adsorpdoo of cobalt and barium ions by hydrous
ferric oxide at equilibrium. J. Pbys. Chern. 56, 982 (1952).
Reforonces
5a-A to !i/i.()
I6
-
ECK.ERMA~N.
Barium
H. VON: The distribution of barium in the alkaline rocks lind fcnircs of Alnti
Island (Sweden). Intern. GeoL Conge. Rept. larh Session Gr. Britain, Parr II, 46 (1948).
- Tbcdiscriburion of barium and strontium in In" reeks and minerals of the srcnidt: and
alkaline rocks of Alno island. Arkiv Mineral. Geol. 1, 367 (1952).
- The strontium and barium contents of the Aloe. caehonatites. Min. Soc. of Indi:!, IMA
volume, 106 (1966).
- The strontium and barium concerns of rhe Alno sovires and the: alkaline, carbonadtic.
and ultrabasic rocks. Ark.iv Mineral. Geo!. 4, 417 (1967).
EL~HINNAWJ. E. E.: Trace dement distribution in Chilean ignimbrites. Corne. Mineral.
and Petrol. 24, 50 (1969).
E~IILJANI. F., VE5PIGNANI-BALZANI. G. c.: Sr and Ba distribution in the: Predazzo granite.
Mineral. Pcrrcge. Acta 10, 81 (19M).
EMMERMANN, R,: Differentiation und Mctasomatose des AlbtalgC'llflits (Sttdschwarzwald).
Neece jahrb. Mineral. Abhandl. 109, 94 (1968).
- Genetic relaricns between rwo generations of K feldspar in a granite pluton. Neues
Jabrb. Mineral. Abhandl. 111, 289 {1969}.
Eldl.lONS, R. c.: Selecred petrogenetic relationships of plagioclase. Chemical analyses. Geo!.
Soc. Am. Mem. 52, 11 (1952).
ENGEL, A. E. J., E.'lGEL, C. G.: Progressive metamorphism and granirizaticn of the major
paragneisa, northwest Adirondack Mountains, New York. Bull. Gecl, Soc. Am. 69,
1369 (1958).
- - Progressive metamorphism end granirization of the major paragneiss, ncnhwesc
Adirondack Mountains, New York. Bull. Geol. Soc. Am, 71, 1 (1960).
- - Hornblendes formed during progressive metamorphism of cmphibolires, northwest
Adirondack Mountains, New York. Bull. Geol. Soc. Am. 73, 1499 (1962).
- HAVENS, R. G.: Chemical cbaracterisrics of oceanic basalts and the upper mantle.
Bull. GeQl. Soc. Am. 76, 719 (1965).
ENGEL, C. G.: Igneous rocks and constituent hornblendes of the Henry Mountains, Utah.
Bull. Geol. Soc. Am. 70, 951 (1959).
- SHARP, R. P.: Chemical data on desert varnish. Bull. Geol. Soc. Am. 69, 487 (1958).
ENGI>LHARDT, \'\1. VON: Die Geochemie des Barium. Chern. Erde 10, 187 {1936}.
ERICKSON, R. L., BLAm, L. V.: Geochemistry and petrology of the alkalic igneous complex
at Magnet Cove, Arkansas. U.S. Geol. Surv., Profess. Pnpers, 425 (1963).
ERICSON, D. B., EWtNC, M., WOLLIN, G., H.E.EZEN. B. c.: Atlantic deep-so sediment cores.
Bull. Geo!. See. Am. 72, 193 {1961}.
- WOLLIN, G.: Correlation of six cores from rhe equatorial Atlantic and the Caribbean.
Deep-Sea Res. 3, 104 (1956).
ERSHOV, V. M.: Relation of germanium 10 the organic matter in fossil coals. Geocbemistry,
763 (1958).
EUGSTU" 0., TERA, F., WASSeRHURG, G. J.: Isotopic analyses of barium in meteorites and
terrestrial samples, J. Gcophys. Res. 74, 3897 (1969).
EVANS, B. \'\I.: Fractionation of clements in the pelitic hornfejses of the Casbd-Lougb
\VhCelaUD intrusion, Connemara, Eire. Geochim. Cosmochim. Acta 28, 127 (19M).
EWART, A., TAYLOR, S. R., CApp, A. c.: Geochemistry of the paneelleelr of Mayor Island,
New Zealand, Contr. Mineral. and Petro!' 17, 116 (1968).
FAIRBAIRN, H. W" AHRENS, L. H., GORl'lNKU, L. G.: Minor dement content of Ontario
diabase. Geoehim. Cosmochim. Acta 3, 34 (1953).
- SCHLECHT, W. G., STEVENS, R. E., DENNEN, \'\1. H., AHRENS, L. H., CHATES, F.:
A cooperative investigation of precision and accuracy in chemical, spectrochemical and
modal analysis of silicare rocks. Bull. U.S. Geot. Surv. 980 (1951).
FENNER, P., HAGNRR, A. F.:·Corrclation of variations in trace elements and mineralogy of
the Esopus Fcrmaricn, Kingston, New York. Geochim. Cosmochim. Ace 31, 237
(1967).
FISCHER, K.: Verfeinernug dee Krisrallstruktur voo Beniroir BaTi[Si~09]' Z. Krist. 129,
222 (1969).
FISHER, R. L., ENGEL, C. G.: Ultramafic: and basahic rocks dredged from the near shore
flank of the Tonga trench. Bull. Gco!. Soc. Am. 80, 1373 (1969).
Barium
FLANAGAN, F.].: U.S. Geological Survey standards. II. First compilation of dara for the
new U.S.G.S. rocks. Geochlm. Cosmochim. Acta 33, 81 (1969).
FLEISGHEll, M.: Summary of new dam on rock samples G-l and W~l, 1962-1965. Gee­
chim. Cosmcchim. Acta 29, 1263 (1965).
- U.S. Geological Survey standards. - I. AdditionaL dnta on rocks G~1 and W~I, 1965-­
1967. Gecchim. Cosmochim. Acro 33,65 (1969).
- STEVENS, R. E.: Summary of new data on rock samples G~l and W~1. Geochim, Cosmo­
chim. Acta 26, 525 (1962).
FOEllSTEll, H. P., FOSTEll, I. \'i/.: Endotrophic caLcium, strontium, and barium spores of
bacillus megarerium and bccillus cereus.]. Bacceeiol. 91, 1333 (1966).
FORNASEllI, M., SCHEI\TLLO, A., VE]'ITEIGLlA, U.: La regione vulcanica del Colli Albani.
Consiglio Nazionale delle Rlcerche Centre di Mincralogia c Pctrogrnfia Aziende Tipo­
grnfiche Ercdi Den, G. Bard! (1963).
POSTEll, R. ].: Precambrian corundum bearing rocks, Madison Range, snutbwesrern
Montana. Bull. Geol. Soc. Am. 73, 131 (1962).
FREDRIKSON, K., KEIL, K.: The ligbt-dark structure in the Parnae and Kapoeta stone
meteorites. Geoehlm. Cosmochim. Acta 27, 717 (1963).
FRICKE, K.: Neue hydrogeologiscbe Untersuchungen und Neubohrungen im Heilquellen­
gebier von Bad Hermannsborn, NR W. Das Cas- Wasserfach 109, 251 (1968).
FRIEDMAN, G. 11.: Obtaining paleoenvironmental information. U. S. Patent Office No.3,
343,917 (1967).
.
- Geology and geochemistry of reefs, carbonate sediments, and waters, Gulf of Aqaba
(Elar), Red Sea. J. Sediment. Petrol. 38, 895 (1968).
- Trace dements al> possible environmeural indicators in carbonate sediments. Soc.
Eeon. Paleontologists Mineralogists, Spee. Publ. 14, 193 (1969).
FUJITA, Y., TSUJI, I.: Speerrophotomerry of Y Canum Venatieorum. Publ. Dominion
Astrophys. Obs. 12, 339 (1965).
GANGULY', A. K., MUKJ-IERjF.:e, S. K.: The cation exchange behaviour of hetercicnic and
homoionic cbys of silicate minerals. ]. Phya, and Colloid Chern. 55, 1429 (1951).
GAllI\ELS, R. M., TJ-IOMPSON, 1L E., SIEVEll, R.: StabiLiry of some carbonates at 250 C and
one atmosphere total pressure. Am.]. Sci. 258,402 (1960).
GARSON, M. S.: Carbonatites in Malawi, pp.33--77. In: O. F. TUTrLE, GITrINS, ].
(eds.), Carhonarites. New York: Interseience Publishers 1967.
GAST, P. W.: Limitations on the composition of the upper mantle. J. Geophys. Res. 65,
1287 (1960).
- Terrestrial ratio of potassium to rubidium and the composirlon of the earth's mantle.
Science 147, 858 (1965).
- HUlIBAllO, N. ]., Wll;.5IdANN, H.: Chemical composition and petrogenesis of basalts
from Tranquilliry BMe. Proceedings of the Apollo 11 Lunar Seienee Conferenec 2, 1143
(1970).
GATES, G. L., CAllAWAY, W. H.: Oil-well scale formation in water flood operations using
ocean brines, Wilmington, California. U.S. Bur. Mines, Repr. Invest. 6658 (1965).
GAY, P., RoY', N. N.: The mineralogy of the potasslom-bnrlurn feldspar series. III. Sub­ solidus relationships. Mlneeal. Mag. 36, 914 (1968).
GERASlldovsKn, V. I.: Geochemical features of agpaitic nepheline-syenites, p. 104. In:
VINOGRADOV (ed.), Chemistry of the Eartb'a Crust, I. Jerusalem: 1966.
- BELYAEV, Yu. I: Content of manganese, barium and strontium in alkaline rocks of the
Kola Peninsula. Geochemistry, 1161 (1963).
GHOSE, N. c.: Behaviour of traee dements during thermal metamorphism and (oblique)
or granitization of the metasediments and basic igneous reeks. Geo!. Ruodschau 55,
608 (1966).
GIBSON, ].: Personal communication (1963).
GIUSCA, D., IONBSCU, ].: Geochemistry of volcanic rocks in the Gutai Mountains. Probl.
Geokhim., Akad. Nnuk SSSR, last. Gcokhim. i Analit. Kkim., 436 (1965).
G}IELtN: Gmelins Hnndhuch dee ancrgarrischen Chemic, 8th edit. Barium Erg:inzungsband.
Weinhcim: Verlag Cbemie 1960.
ReforenCDI
5oS.A 10 56-0
I -8
Barium
GOl..D. D. P.: A verage chemical composition of carbonatires. Ee. Geo!. 58, 988 (1963).
- Alkaline ulrrabasic rocks in the: Montreal Area, Quebec, p- 288. In: \V'YLLl£ (ed.),
Ultramafic and Related Reeks. New York: John \\iilcy & Sons 1967.
GOLDBEII,G, E. D., AKKHENltIS. G. O. S.: Chemistry of Pacific pelagic sediments. Geocbce.
Cosmocbim. Acta JJ, 153 (1958).
GOLOllRRG, L., 1WU•.ER. E. A., ALLER, L. H.: The abundances of the: dements in the: solar
atmosphere. Aereopbys. J., Suppl. 5. t (1960).
GOLES, G. G., RANOLE. K., QSAWA, .M., SCH~IlTT. R. A., WAKITA, H., EH~r"NN, \VI, D.,
MORGAN, J. W.: Elemental abundances by instrumental activation analyses in chips
from 'Zl lunar rocks. Proceedings of the Apollo 11 Lunar Science: Conference, 2,
1165 (1970).
GORDON, C. P.: The: Hall and N StArs as a temperature sequence. Astrophys.]. 153, 915
(1968).
GRAF, D.1..: Geochemistry of carbonate: sediments and sedimentary carbonate rocks.
Ill. Minor element distribution. Illinois State: Gcel. Surv. Cue. 301 (1960).
GREEN, D. H.: The: petrogenesis of the higb-tempcraeure peridotite: intrusion in the:
Lizard area, Cornwall (England).]. Petrol. 5, 134 (1964).
GREENLAND, L. P., LOVERING, ]. F.: Minor and trace: dement abu ndnnces in tbe: chondridc
mecccrues. Gcoehim. Cosmochim. Acta 29, 821 (1965).
- - Fractionation of fluorine:, chlorine, and orher ttace: clements during differentiation
of a thole:iitic magma. Ge:ochim. Cosmochim. Acta 3D, 963 (1966).
'
GRESENS, R. L.: Tectonic-hydrctbermal pegmarircs. II. An example. Cootr. Mineral. and
Petrol. 16, 1 (1967).
GRiffIN, WI. 1.., MURTHY, V. R.: Abundances ofK, Rb, Sr, and Ba in ultramafic rocks and
minerals. Earth Planer. Sci. Lett. 4, 497 (1968).
GRT~I, R. E., DILTZ, R. 5., BRAOLEY, \'\1. F.: Clay mineral composition of some: scdime:nts
from the: Pacific Ocean off the Galifornhn coast and the: Gulf of Ca.lifornia. Bull. Ge:o!.
Soc. Am. 60, 1785 (1949).
GROHMANN, H., SCHROLL, E.: Sdte:oe: Elcmente in Granitoide:n dee sudlicheo Bohmischen
Masse. Tschermaks Mine:rnl. Pe:trog. Mitt, 11, 348 (1966).
GROSS, E.: Pabstire, the tin analogue: of benicoire, Am. Mineralogist 50, 1164 (1965).
GROUT, F. F.: The compositions of some African granitoid rocks. I. Geo!. 43, 281 (1935).
GRUSHKO, Ya. M., SHIPITSYN, S. A.: Toxic substances in the drinking waters of Irkutsk
from spectral analyses. Gigie:na i Sanir. 13, 4 (1948).
GUNN, B. M.: KjRb and KIBa ratios in Antarctic and New Zealand tholeiites and alkali
bas:Lits.]. Ge:ophys. Res. 70, 6241 (1965).
- Modal and element variation in Anarctic tholeiite:s. Ge:ochim. Cosmochim. Acta 30,
881 (1966).
HAHN-\'V'EINHU~IER, P.: Geochemische Untersuchungen an den ultrnbasischcn uod basi­
schen Ge:stc:inen der Milnchberger Geelsmasse (Fichrelgehirge). Ncue:s ]ahrb. Mineral.,
Abhandl. 92, 203 (1959).
- LOf:cKE, W.: Garners from the: eclogites of rhe Mucnchberger gneiss massif (N. E.
Bavaria). Gao. Mine:ralogist 7. 764 (1963).
- ACKf:RMANN, H.: Ge:ochemical investigation of differentiated granile: plutons of the
Southern Black Forest - II. The: zoning of tbe: Malsbw:g granite: pluton as indicated by
the elemeou titanium, zirconium, phosphorus, Strontium, barium, rubidium, potassium,
and sodium. Ge:ochim. Cosmochim. Acta 31, 2197 (1967).
HALL, A.: The: variation of some trace elemcors in the: Rosses granite complex, Donegal.
Ge:ol. Mag. 104, 99 (1967).
HA~tAGUCHl, H., REED, G. W., TUIlKEWITSCH, A.: Uranium and barium in stone: mereorices.
Gecchim. Cosmccblm. Acta 12, 337 (1957).
J-L\NOR,]. 5.: Barite earuraticn in sea water. Geochlm. Cosrncchlm. Acta 33, 894 (1969).
HASKtN,1.. A., A~, R. 0., l-IELMKJ>:, P. A., PA~TI:R, T. P., ANDERSON, M. R., KOROTJ.'.V,
R. L., ZWI;lfl'.L., K. A.: Rare: earths and other trace dements in Apollo 1 t lunar samples.
Proceedings of the ApoUo 11 Lunar Science Ccnfeeeoce 2, 1213 (1970).
HASLA~I, H. \VI.: The crystsdlization of iorermediarc MId acid magmas at Ben Nevis, Scot­
land.]. Petrel. 9, 84 (1968).
Barium
Hi\.WLliY,]. E.: Germanium COntent of some Nova Scotian coals. Ec. GeoL 50, 517 (1955).
HEIOE, F., CHRIST, W.: Zur Geccbemie de, Suomiums und Bariums. Chern. Erde 16, 327
(1953).
HEIDEL, S. G., FRENIER, W. W.: Chemical quality of water and trace clements in the
Patuxent River Basin. Maryland Gecl. Surv. Repr, Invest. No. I, 1 (1965).
HEIER, K. S.: Petrology and geochemistry of high-grade metamorphic and igneous rocks
on Langoy, Northern Norway. Norsk Gecl. Unden;5kning 207 (1960).
- The amphibolite-granulite f:l.eies tnlosition reflected in the mineralogy of pOUSliium
feldspars. Institute Lucas Mallada, CursiUos y Conferencias fuse. 8 (1961).
- Trace elements in feldspars - :l. review. Ncrsk Gect. Tidsskr. 42, 415 (1962).
Geochernistryofthe nepheline-syenite on StjernllY, North Norway. Norsk Gcol. Tidsskr.
44, 205 (1964).
A geochemical comparison of the Blue Mountain (Ontario, Canada), and Stjernoy
(Finnmark, North Norway) nepheline syenites. Norsk Geo!. Tidsskr, 45, 41 (1965).
- TA\"LOR, S. R.: Distribution of Ca, Se and Ba in southern Norwegian pre-Cambrian
alkali feldspars. Gcochim. Cosmochim. Acca 17, 286 (1959).
- CHArrELL, B. W., ARRIENS, P. A., MORGi\.NS, J. W.: The geochemistry offour Icelandic
baaalta. Norsk. Gcol. Tidsskr. 46, 427 (1966).
HHNRICH, E..W. M.: Micas of the Brown Derby pegmatnes, Gunnison County. Cojcrado.
Am. Mineealoglsr 52,1110 (1967).
- LEvrNSON, A. A.• LEVANDOWSKI, D. W., HEW1'TI', C. H.: Studies in the natural history
of micas. Univ. Mich., Final Rcpt, Project M 978 (1953).
- - - - Geochemistry of muscovite and related micas. 20th Internar. Geological
Conge. Me~eo 1956.
HELFER. H. L., WALLERSTEIN, G .• GREENSTHN, ]. L.: Meral abundance in the sub-giant
Hercules and three other dG stare. Asrrophys. J. 138, 97 (1963).
HENDERSON, C. M. B.: Minor dement chemistry of leucite and pseudoleuciee. Mineral. lIo-I:l.g.
35. 596 (1965).
HERRMANN, A. G.: Dber des Voekommen elnlger Spurenelemenre in Sabdosungen :l.US
dem deutschen Zechstein. Kali Sreinsalz 3. 209 (1961).
HERZ, N., DUTRi\., C. V.: Minoe clement abundance in a pan of the Brazilian shield. Gco­
, chim. Cosmochim. Aco. 21, 81 (1960).
.
- - Geochemistry of some kyaniees from Beaail. Am. Mlnemlogisr 49,1290 (1964).
- - Trace elements in nlkali feldspars, QU:l.drilarero ferrifero, Minas Genis, Brazil. Am.
Mineralogist 51,1593 (1966).
HEWLETT, C. G.; Optical properties of porassie feldspars. Bull. Geo!. Soc. Am. 70, 511 (1959).
HEY, M. H.: C:ltalogue of Metcorieea, 3rd edit. British Museum 1966.
Herosccaa, H. R., KURODA. P. K.: Natural occurrence of the shnrt-lived barium and
strontium isotopes. I. Inorg. Nuel. Chern. 12. 12 (1969).
HtETANEN, A.: Distribution ofelements in biotite-hornblende pairs end in an orthopyroxene­
clinopyroxene pair from acned plutons, Northern Sierra Nevada, California. Ccnee.
Mineral. and Petrol. 30, 161 (1971).
HIGAZY. R. A.: Petrogenesis of perthite pegmatires in the Black Hills, South Dakota.
]. Geo!. 57, 555 (1949).
_ Behaviour of the trace elements in a front of metasomatic-metamorphism in the Dal­
radian of Co. Donegal. Geoebim. Cosmoehim. ACta 2, 170 (1952).
- Ohservations on the disrrihuticn of trace dentenrs in the perthite pegmatites of the
Black Hills. South Dakota. Am. Mineralogist 38, 172 (1953).
- Trace elements of volcanic ultrabasic potassic rocks of south-western Uganda and
adjoining parts of the Belgian Congo. Bull. Geo!. Soc. Am. 65, 39 (1954).
HIUleR, \YI.: Die Suuktur dee Hochtemperaturform des BaGe03 • Acta Ceyse. 15. 1101
(1962).
HINTZ!!, c.: Handbuch der Mineralogic. Bd. I, 3. Abt., 1. Halfre, Berlin: Walter de Gruyter
1930.
, - Handbuch dec Mineralogie, Bd. I. 3. Abt., 2. Hdlfte. Berlin: \'(falter de Gruyter 1930.
- Handbuch dec Mineralogic. Erganzungsband I. Berlin: Walter de Crcyree 1938.
- Handbuch dee Mlneralogie. Erganzungsband II. Berlin: Walter de Gruyrer 1960.
Relo'"""o'
6!i·A 10 66<1
I - 10
Barium
HrrCHON, S.: The gcocbemlsrry, minc:ralog}', and origin of pegrnacites of three: Scottish
Precambrian metamorphic complexes. Intern. Gc:ol. Congr. Repr. 21st session Copen­
hagen XVII, 36 (1960).
HOLLAND, H. D.: Some applicarions of thermochemical dam to problc:ms of ore deposits.
II. Mineral assemblages and the composition of ore-forming fluids. Ec. Geol, 60, 1101
(1965).
Hosxnes, H. A.: Analyses of West Virginia brines. State of \'\lest Virginia Geol. and Ec.
SUIT. Repe, Invest. 1 (t947).
HD~S, H., Roy, R.: On n.:l.tural phillipsiee, gismondilc:. harmotomc, chabasite, grnelinitc.
Beirr. Mineral. Perrog. 7, 389 (1960).
Ho'rz, P. E.: Petrology of grancphyrc in diabase ncar Dillsburg, Pa. Bll11. Geol. Soc. Am.
64, 675 (t953).
HOWIE, R. A.: The gecehemisrry of the charnockirc series of Madras, India. Trans. Roy.
Soc. Edinburgh 62, 725 (1953----55).
HUSliARO. N. J., G"'ST. P. \\:I.; WrES~lANN, H.: Rare earth, alkaline and alkali mcral and
el!s8Sr data for subsamples of lunar sample 12013. Earth Planet. Sci. Lett: 9, 181 (1970).
- i\h,YER, c., Jr.• G.\ST, P. \VI.: The composition and derivation of Apollo 12 soils.
E:uth Planet. Sci. LeI(. 10. 341 (1971).
HUCJ.:£NllOLZ, G.: Personal communication (1969).
HUGT. 'I'n., SWAINE, D. j.: The geochemistry of some: Swiss granites. J. Proc. Roy. Soc.
New S. Wales 96, 65 (1963).
HUNZICKER, J. C.: Zur Geotogie: und Ge:ochc:mie: des Ge:bie:tes zwischen Valle Antigoro
(Provincia di Novara) und Valle: di Campo (Kt. Tessin). Sehweiz. Mine:ral. Pctrog., Mitt.
46, 473 (1966).
HYO£N, H. J.: Uranium and other metals in crude oils. n. Distribution of uranium and
other metals in crude oils'-U.S. Ge:ol. Surv. Bull, nOO-B. 17 (1961).
IcHl"UNI, L M.: Buium content of barite-Forming hydrothermal waters as exemplified
by Tamagawa Hot Spring; waters. Bull. Chern. Soc. Japan 39, 898 (1966).
hp.M.... J. T.: Etude experirnenrale de fa distribution d'ef~ment e:n traces cmre deux fc:ld­
spatbs. Feldspath porasslque er plagioclase coexistants. L Distribution de: Rb, Cs, Sr
et Ba a 600~ c. Bull. Soc. Franc. Mineral. Crise. 91. 130 (1968).
IKEo.... N.: Chemical studies on the: hot spring:. of Nasu. VII. Spectrocbemical dctermina­
nco of rare:r element contents of Motoyu spring. J. Chern. Soc. japan, Pure Chern. Sect.
76. 711 (1955:\).
Chemical studies on the: hot springs of Nasu, VllI. The spring water of thc Motoyu.
J. Chern. Soc. Japan, Purc Chern. Sect. 76, 713 (1955b).
I~IR};H, J., EC"'TEIUNE, J.: Geochemical stud}' of some: Eocene limestones from the Transyl­
vanian Basin. Romania. Bull. Serv. Carre Ge:ol. Alsai:e Lorraine: 18. 277 (1965).
!sHlO""', K.: A clinopyroxene: granitic rock from Myogcse, japan. Ge:oehem. J. 1. 95 (1967).
Iw",s"'KI, L, K...TSURA, T., T"'RUTANI. T.• OZAW"" T., YOSHIO.... 11:.: Geoehemlcal studies
of Tarnaguwa Hot Spring. Geccbem. Tamagawa Hot Sprmgs, 7 (1963).
J... J.:OBSHAGEN, V., MUNNIClI, K.O.: "C_Altersbestimmung und andere Isoropenurirer­
suchungen an Thermalsolen des Ruhrhrbons. Ne:ues Jahrb. Geol. Palneontol. Monatsh,
9.561 (1964).
] "'~IIBSON, B. G., Cr..ARKE. D. B.: Potassium and associated clements in tholeiitic basalts.
J. Petrol. 11. 183 (1970).
.
JANSE, A.]. A.: Monticellite-peridorite from Air. Brukkaros, South Wcst Africa. Univ. of
Leeds Res. Inst. Afric:uI Ge:ol. 86th Ann. Rcpt., 21 (1962-1963).
J"'S"lUNO. K .• SECK, H. A.: Geochcm;sche Uncersucbuogen an AllsWiirfliIlgen (Gleesiten)
des Laaeber-Sce-Ge:bie:tes. Behr. Mjneeal, Perrog, 10, 275 (1964).
JOHNSON. R. L; The geology of the: Dorowa and Shawa carbonarite complexes Southern
Rhodesia. Trans. Geol. Soc. S. Afeica 64, 101 (1961).
JUNNER. N. R., J....lJES, WI, T.: Chemical analyses of gold coast rocks, ores, and minerals.
Gold Coast Ge:ol. Surv. Bull. 15, 1 (1947).
KASHAlN, A.: Crystal structure of cymrite, Dokl. Akad. Nauk SSSR 169, 201 (1966).
Barium
Flefe,oneu
58·A 10 5G-O
I ­ 11
KATCHENKOV, S. M., FUGONTOVA; E. I.: Trace elements in the Devonian (petroleum)
deposits of the Volga-Ural region, as found by spectral analysis, Tr, Vses. Nefr. Nauchn.,
Issled. Geologoeaaved. Insr., Geol. Sbornik 83, 466 (1955).
- - Distribution of chemical clements in sedimentary rocks, warers, and in the ashes of
the crudes of the Gronznpi-Dagestan region. Tr, Vses. Neft. Nauchn.-Isslc:d. Geolo­
goeazved. Inst., Geol. Sbomik 95, 481 (1956).
- - Treee elements in bottom muds of the Indian Oeean. Tr, Vses. Nefr. Nauchn.,
Issled. Gcologorazvc:d. Insr. 227, 202 (1964).
KATSCHEfl, Ii., LIDlAU, F.: Uhee die Kristallstruktur von Ba~Si308> cin Silikat mit Drei­
fachkctten. Nsturwissenschafren 52, 512 (1965).
- - Triple, quadruple and quinttuple chains in barium sillcares. Acta Crysr. 21, Suppl.,
A 58 (1966).
KAVEEV, 11. S., VASIL'EV, B. V.: Hydrogeology of petroleum formations in Devonian
deposits of southeast Tatar. Tr, Sovesheh. Probl. Ncfreg::tz. Uralo-Volzbskui Oblasti,
Tr. Soveshchaniya 10-15 Maya, 337 (1954, 1956).
KAY, R., HUDDARO, N. .l., GAST, P. W.: Chemical cheracrerisrics end origin of oceanic
ridge volcanic rocks. j. Geophys. Res. 75, 1585 (1970).
KEGEL, W. H. : Die Arrnoephare des F 6 IV- V -Sremes i' Serpcncis. Z. Astrophys. 55, 221 (1962).
KELLER, W. D., KU)!)[E, A. W., PICf'.crT, E. E.: Detailed survey of the chemical compo­
sition of rock layers in en agriculrural Ilmesrone quarry. Ec. Geol. 45, %1 (1950).
KENT, L. E.: The thermal waters of the Union of South Africa and South West Africa.
Trans. Proc. Geol. Soc. S. Mrica 52, 231 (1949).
- RUSSELL, H. D.: The warm spring on BufFc:lshoek, near Thabazimbi, Transvaal. Trans.
Roy. Soe. S. Africa 32, 161 (1949).
KING,B.C., SUTHERLAND,D.S.: The carbonarite complexes of Eastern Uganda. p. 73. In:
TUTTLE, O.F., GITTINS, V.(ech.), Carbonatires. New York: Inrerscienee Publishers 1967.
KIRICHENKO, L. F., CHERTOV, V. !'fL, VYSOTSKll, Z. Z., STRAZIIESKO, D. N.: Sorption of
cedens from acid solutions on silica gels obtained by the hydrothermal method. Dokl.
Aka.d. Nauk SSSR 164, 618 (1965).
KIRK, R. E., OTHMER, D. F.: Encyclopedia ofChemieal Technology. New York: Inter­
science Publishers 1963.
KLE.E~IAN, A. W.: Sampllng error in the ehemic::al analysis of rocks. j. Geol. Soc. Ausrealia
14, 43 (1967).
KODAlRA, K.; Armospharc:nslruktur und chemisehc Zusammenseraung des SehnelL'iufers
liD 161817. Z. Astrophys. 59, 139 (1964).
KOHLRAUSCH, F.: Uber gesattigre waBrige Lcsungen schwerloelicher Salze II. Tell: Die
gelosten Mengen mit ihrem Tcmperarurgang, Z. Physik. Chern. 64, 129 (1908).
KOLBE, P.: Geocbc:rnistry of some Mrican and Australian granitic rocks. Ph. D. Thesis,
Australian National University 1964.
- TATLOR, S. R.: Major and trace clement rclationships in granodiorites and granites
from Austr:alia and South Mrica. Corne. Mineral. end Petrol. 12, 202 (1966).
KOMUV, O. I., TlImA, N. I., ZHERDEVA, N. I.: Tricationic exchange on Transcarparhian
bentonite. Visn. L'viv. Deeeb. Univ., See. Khim. 8, 54 (1965).
KONTOflOVlCH, A. E., SADIKOV, M. A., SHVARTS.EV, S. L.: Abundances of certain elements
in [he surface and ground waters of the northwestern part of the Siberian platform.
Dnkl. Ak:ld. Neuk SSSR 149, 168 (1963).
KOROLEV, A.: The water content of the petroleum deposit of Kala and the chemical classi­
fication of [his warer. Azerb, Nefr, Khoz, 15,35 (1938).
KOZ1N, A. N.: Barium in formation weters of oil pnols in the Volga area near Kuibyshev.
Gc:okhimiya 9, 937 (1964).
KRAVCHENKO, V. B.: Crystal structure of B:J.B:O,· 4H~O=B:l[B(OH)4b. Zb, Strukr.
Khim, 6, 724 (1965), translated.
KIlETZ, R.: Chemical study of garnet, biotite, and bornhlende from gneisses of south­
western Quebec, witb analysis on disttibution of clements in coexisting minerals. j.
Geol. 67, 371 (1959).
- The distribution of certain dements among coexisting calcic pyroxenes, calcic amphi­
boles and biotlres in skarns, Geoehim. Cosmochim. Acta 20, 161 (1%0).
ROM'.Me!
1i6-AIO!.l).O
I - 12
Barium
KUKABAliV, B., SYDnWV, ZH.: Hydrochemistry of subsurface WBII:rs of the Permian­
Triassic deposits in the southwc:stc:rn pan: of the Ural end Emba intc:rfluvc:. Izv. Akad.
Nauk Kaz. SSR, Set. Gcol. 4, 58 (1962).
KliNO, H., YAMAsAKr. K., 110A, CIi., NAGASHlIl.lA. K.: Differentiation of Hawaiian magmas.
Japan. J. Geol. Geography, Trans. 28,179 (1957).
KURODA, P. K., EOW'\RDS, R. R.: Radiochemical me-asurement of the natural fission rate
of uranium and the naruml occueeenee of 11gB:>.]. Incrg. Nucl. Chern. 3, 345 (1957).
LAMBERT. I. B.. HEIER, K. S.: Geochemical lnvestigadons of deep-seared rocks in the
Austr.Llian shield. Litbas 1, 30 (1968).
L.UlBERT. R. ST.: The eel.aticnship of the Moine schists and Lcwlsian gneisses nor Mallaig­
more, Inverness-shire. Proc. Geologists' Assoc. 75, t (I9G4).
WNDRR, J.: The crystal structures of NiO· 3B:l0, NiO· BaO, BaNiO and inrermediarc
races with composition nor Ba~Ni108; '\\lith a note on NiO. Aet::l. Cryst. 4, 148
(1951).
!.ANOERGEEN, ST., MANHEIM, F. T.: Vher die Ahhingigkeic der Ve:rteilung von Schwer­
mereuec von dee Fazies. Fortschr, Gccl. Rheinld. u. Wenf. 10, 173 (1963).
LARSSON, W.: Chemical analyses of Swedish reeks. Bull. Ge:ol. Jose. Univ. Upsala 24, 47
(1932).
I..AVRU}(HINA, A. K., KOLJ!~ov, G. M., KAI.ICHEVA, I. S., AKOL'ZlNA, L. D.: At::tivation
analysis for Ce:, Eu, SCI Be, U, and P in the: dark and light varieties of the Kunashak
and Pervomayskiy Poselok chondrites. Geoehem. Inc., 217 (1966).
LE.8EOEV, B. A.: Trace dements in Jurassic lllld Lower Cretaceous Formations of the:
Caspian depression. Dckl. Ak:td. Nauk SSSR 173, 192 (1967a).
- Comparison of trace: dement cooeenta in marine and fresh water clays. Geocbern. Icc.,
821 (l967b).
LEBLANANDAM, c.: Chemical study of pyroxenes from the charnockinc rocks of Konda­
gu.lli (Andt':th pradesh), India, with emphasis on the distribution of elements in co­
existing pyrOll;eJ1es. Mineral. Mag. 36, 153 (1967).
LEJ.'\U.ITRE, R. \'\t.: Petrology of volcanic roeks, Gougb Island, South Atlantk. Bull. Gecl,
SOt::. Am. 73, 1309 (1962).
LEt1I'W"-IN, F.: Geoebemische Untersuchungen an Alaun- und Kicsdschie:fe:rn Thuringens,
Arch. Lagerstarrenforsch. 82, 1 (1951).
- Spurencicmenre in rezenten Carcli:c:n vcrschledener Fundnrre. Forrschr, Ge:ol. Rheinld.
u. We:stf. 10,283 (1963).
- Geochernische Charakrerisrjca mariner Einfltlsse in Torfcn und andcree quarternaren
Scdimenten. Geol. Rundsehau 55, 97 (1966).
- WEISE, L.: Hydeogeochemisehe Untersuchungen an eragebirgischen Gruhen- und
Oberfliel1enwiisscrn. Ge:ochim. Cosmoeblm. Acro. 26, 1333 (1962).
LEVI, H. W., SCHI:EWI'.R, E.: Bariumaustauseh an Vermikulie und Beneonlr. Z. Anorg.
Allgem. Chern. :H7, 105 (1965).
LIEnAU, F.: Die Sysremadk der 5jlik.o.te. Narurwisaensehafren 49,481 (1962).
- Ein Beirrag zue Kristallchemie dee Scblchtailikare, Acta Ceyee. B 24, 690 (1968).
LU!.BENllERG, C. J.: The trace elements of the rocks of the: Bushveld igneous complex.
Puhlikasies Univ. Pretoria, Nuwe Reeks 12 (1960).
LIN, H. C, FOSTER, \YI. R.: Studies in the syscem BaO-Al"OJ-SiO:. I. The: polymorphism
of eelsian. Am. Mineralogist 53, 134 (1968).
- - Studies in [he system BaO-Al"OJ-SiO~. Ill. The binary system sanbornite-celsian
Miaerel. ~bg. 37,459 (1969).
LIPMAN, P. W.: Alkalic and tholeiitic volcanism related to the Rio Grande: depression,
Southern Colorado and Northern New Mexico. Hull. Geol, Soc. Am. 80, 1343 (1969).
LlPnrANN, F.: Die Kriatallsttukrur dC3 Noeserhlr, BaMg(CO')2' Tschermak's Min. Peer,
Mittei!. 12,299 (1968).
LITVIN, I. I.: Minor elements in Lower Cretaceous rocks of the: Dnlepcr-Donets depression,
Dokl. Akad. Nauk SSSR 139, 450 (1961).
LITVIN, S. V.: Trace elements in the Upper Carboniferous sedimentary rocks of [he Donees
Basin nnd in ncnheasiem part of [he Dnlcper-Donets syncline. Dokl. Akad. Nauk
SSSR 152, 1453 (1963).
Barium
LONK.... A.: Trace dements in the Finnish Precambrian phyllites as indicators of salinity at
the rime of aedimentacion. Bull. Comm. Geol. Flnlande 228 (1967).
LOTSrElcn, F. B., M"'RKW"'RO. E. L.: Minor dements in bedrock soil. and vegetation at an
outcrop of the Phosphoria Formation on Snowdrift Mountain. socrbeesteen Idaho.
U.S. Geo!. Surv. Bull. U81-F, Fl (1963).
LSPET (Lunar Sample Preliminary Examination Te9.JTl): Preliminary examination of lunar
samples from Apollo 11. Science 165, 1211 (1969).
_ Preliminary cxarninaticn of lunar samples from Apollo 12. Science 167, 1325 (1970).
Lunatic Asylum: Mineralogic and isotopic investig;l.Iions on lunar rode. 12013. Earth
Planet. Sci. Lett. 9. 137 (1970).
LlJRYE, L. :M.: Migration of barium and strontium during country rock mecascmadsm in
the Zambarak ore fic:ld. Dokl, Abd. Nauk SSsR 149, 1167 (EngL. tnmslation 185) (t963).
],.I... cDoN.~LD. G. A., EATON, J. P.: Hnwniian volcanoes during 1955. Bull. U.S. Geol. Suev.
1171 (1964).
l\V.CPHf;RSON. H. G.: A chemical and petrographic study of Pre-Cambrian sediments.
Geochim. Cosmochim. Acta 14, 73 (1958).
MALlNlN, S. D.: An experlmeocai investigation of the solubility of calcite and witherite
under hydrothermal conditions. Geochemistry, 650 (1963).
MANonA R. H .• R...M...S:E;S/-IAN, 5.: Crystal coordination of the hariurn ion. Proc. Ind. Acad.
Sci. 60. 317 (1964).
- - The crystal sreucccrc of barium hydroxide ocrahydrare BII (OH)~ ·8HsO. Z. Kirst.
119.357 (1964).
Ml.I'lK"'RT, H., PRELSLNGEIl., A.: ZUT Besnmmung dcr Feldspatc in Gesteinen. Tschermaks
Mineral. Peecog Mitt., 3. F., 315 (1964/65).
1!AIl.KHINrN, E. K., SAPOZHNIKOV.... A. M., STRATlJL..., D. S.: Barium in the volcanic
rocks of Kamchatka and the Kurile Islands. Geochemistry. 933 (1964).
MAkMCI, V.• Srrvor.a , J.: The harium content of some granites of Finland. Bull. Comm,
G':ol. Finlande 222. Hj9 (1966).
MATHE, G.: Die: Metabasite des aachsischen Granulitgebirges, Freiberger Forschungsh.
C 251 (1969).
MAT/-IIAS, M.: The geochemistry of the Messum Igneous Complex. South-West Africa.
Gecchirn. Cosmoehim. Aeta 12, 29 (1957).
],.U.TSlJ~llJkA, T.• ISIllYA.."A, T.: Adsorption of radioactive materials by coal humic aeid.
Ann. Rcpr. Rndiae. Cenree Osaka Prefect 7. 14 (1966).
MATT"'UClI, J. H. E., TmELE, W., \'V'... PSTk.... A. H.: 1%4 atomic mass table. Nucl. Phys,
67. 1 (1965).
MAXWELL. J", PECK, L. c.. WIIK, H. B.: Chemical composition of Apollo 11 lunar samples
10017,10020,10072 and 10084.P~oceedings of the Apollo 11 Lunar Science Conference
2. 1369 (1970).
- WIIK. H. B.: Chemical composition of Apollo 12 lunar samples 12004. 12033. 12051.
12052 and 12065. Earth Planer. Sci. Lett. 10, 285 (1971).
MA.ZZI. F., PABST. A.: Re-examination of cuprorivaire. Am. Mlneralogisr 47. 409 (1962).
- ROSSI, G.: The crystal structure of taramellite B~(Fe. Ti, Mg)aHz[O:(SiI01J]. Z. Krisr.
121, 243 (1965).
MCGR"'IN, P.• THOM"'S. G. R.: Preliminary repcrr on the narural brines of E:l.stem Ken­
tucky. Kentucky Geo!. Surv. Repr, Invest.• Ser. 9 3, 1 (1951).
M.E.LCHER, A. c.: The solubility of silver chloride. barium sulphate and calcium sulphate
at high remperarcres. Am. Chern. Soc. 32, 50 (1910).
;\iELSON. W. G., THOMSON, G., ANOf;L. T. H. VA.N: Vclcanisre and metamorphism in the
Mid-Atlantic Ridge, 22°N latitude. J. Geophys. Res. 73, 5925 (1968).
MICHEL. G.: Untersuchungen tiber die Tiefenbge der Grenze SiiBwasser-Salzwasser im
ncrdllchcn Rheinland und ansehliellenden Teilcn Westfatens, zugleieb etn Beitrag zue
Hydrogeologic und Chemic des tiefee Grundwas~ers. Fersehungsher, Landes Nord­
rhein-Westfalcn 1239 (1963).
- Zur Mineralisation des riefen Grundw:u~ers in Nordchein-Westfalen. j. Hydrology 3,
73 (1965).
Ror.renco.
5erA to 56-0
I
~
14
Barium
C. D., DF.GENS, E. T., HATH,\W,\Y, I. C, M'\'NHEI~I. F. T.,
McFARLTN, P. E, POCKLINGTO~, R" JOKEL,!., A.: Hot brines. and recent iron deposits
in deeps of [he Red 5c:1. Ceocbirn. Cosmochim. Acta 30, 341 (1966).
Muana, J. P.: Solutes in small streams draining single rOl:k types, Sangre de Ceisro Range,
New Mexico. U.S. Gcol. Surv. \'\!:ltcr Supply lS35.F (1961).
MINGUI:ar, C.: Spectrography of some products of Vesuvius fcmaecles. Rend. Soc:. ~Ijnc:­
rat 1tal. 5, 60 (1948).
MOENKE. H.: Trace clements in Variscan and pee-Variscan German granites. A spectro­
chemical analysis of granitic rocks of differeoc age. Chemic Erde 20, 227 (1960).
MOHR, P. A.: Trace dement distribution in a garner-chlcrire-rock from Foci Ddu, ncar
Harlccb, Merionerhsbire. Mineral. Mag. 31, 319 (1956).
- A geochemical study of the sh:Ues of the Lower Cambrian rneoganese shale group of the
Haelech Dome, Noeth W1l1es. Geochim. Ccsmcchim. Act:! 17, 186 (1959).
_ ALLEN, R.: Further considerations 'on the depnshton of the Middle Cambrian manganese
carbonate beds of Wales end New Foundland. Gect. Mag. 102, 328 (1965).
MOORE, C. B., BROWN, B.: Barium in srcny meteorites. J. Gecphye. Rcs. 68, 4293 (1963).
MORRt~ON, G. H., GERARD.]. T., KASHUD,\, A. T., GANG"'DH"'R... ~r. E. V., ROTHENDERG,
A. M., POTTER, N. M., MILLER, G. B.: Eicmernal abundances of lunar soiJ and rocks.
Proceedings of the' Apollo 11 Lunar Science Conference 2, 1383 (1970).
.\[OXH,\~I, R.I..: Minor dement distribution in some metamorphic pyroxenes. Can. Mine­
ralogist 6. 522 (1960).
- Distribution of minor elcmerus in coexisting hcmblendes and bicrires. Can. Mineralc­
gist 8, 204 (1965).
MUIR, A., H,\RDIE, H. G. M., ;',{ITGHELL, R. L, PH~IISTER, ].: Limestones of Scodand:
chemical analyses and petrography. Mem. Geol. Surv. Gt. Brit. Mineral Resources Gr.
Brit. 37. 1 (1956).
MUIR, T. D., TILLEY, C. E., SCOON, J. H.: Basalts from the Northern Parr of the rift zone
of the Mld-Adanrlc Ridge. J. Petrol. 5, 409 (1964).
MUKHERJEE, B.: Genetic slgnifieance of trace clements in certain rocks of Singhlbuen,
India. Minernl. M:Ig. 36, 661 (1968).
.i\[URR...Y, H. H.: Gene.o;is of clay minerals in some Pennsylvanian shales of Indiana and
Illinois. Proc. 2nd Nac. Conf. C!:Iys and Cby Minerals 1953, 47 (1954).
MURTIlY, V. R., EVENS£N, N. M., CoSCIO, M. R.: Distribution of K, Rb, Sr and B1 and
Rb-Sr isotopic relations in Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar
Science CLlnfer"nce 2, 1393 (1970).
NABOKO, S. I.: The sublimates of the Klyuchevskcy volcano. Bull. Aead. Sci. USSR,
Geo!. Ser, I, 50 (1945).
NESl'ERENKO, G. V., STUDENIKOVA, Z. V., SAVtNOVA, E. N.: Rare and disseminated ele­
rnents in skarns of Tyrny-Auz (Sevier Armeni:t). Geochemistry, 287 (1958).
NEU!.IANN, E. W.: Sclchiliry relations of barium sulfate in aqueous solutions of strong
e:1eeu:olyces.]. Am. Chern. Soc. 55, B79 (1933).
NICHOLLS, G. D., LORING, D. H.: The geochemistry of some British CarboniferoLls sedi­
ments. Geochim. Cosrnochim. Acui 26, 181 (1962).
NIKOL,lEV, V. M., SOKIRKO, L. E., PESTOV,\, N. M.: SPC'1:tn! analysis for correlation of
formation waters in Mesozoic deposits of the E:J.Stem Caucasus Region. Tr. Groznensk.
Neft'. Nauchn.cfssled. Inse, 8, 200 (1960).
NIXON, P. H., KNORRING, O. VON, Rooxa, J. M.: Kimbcelites and associated inclusions of
Busuroland: a mineralogical and geochemical srudy. Am. Mineralogisr 48,1090 (1963).
NOBLE, D. c., HAFFTY, J.: Minor-dement and revised major-element contents of some
Mediterranean parttellertres and ccmendhes. J. Petrol. 10, 502 (1969).
NOCKOLDS. S. R., ALLEN, R.: The geochemistry of some igneous rock series. I. Calc­
alkalic rocks. Geochim. Cosmochlm. Acta 4, 105 (1953).
- - The geochemistry of some igneous rock series. ll. Alkalic rocks. Gecchirn. Cosmo­
chim, Am. 5, 245 (1954).
- - The geochemistry of some igneous rock series. HI. Tholeiitic rocks. Geochim.
Cosmochim. Act~ 9, 34 (1956).
MILLER. A. R., DENS~IOkIl.
Barium
RefereneBl
56·A Ig 66-0
I ­ 15
OFTF.OAL. 1.: 00 the developrnece of granite pegmatite in gnelss areas. Norak Geol. Tidsskr,
38, 231 (1958).
- Disu:ibutil1n I1fBa and Sr in micrccline in sections across a granite pegmatite band in
gneiss. Norak Ge:oL Tidsakr, 39, 343 (1959).
- Remarks 00 the: variable conteors of Ba and Sr in microcline from a single pegmatite:
body. Ncrak Ge:oL Tidsakr, 41, 271 (1961).
- Contribution to the geochemistry of nephelineayeniric pegmatite in the aogcsunds­
fjord area. Nccsk Ceol. Tidaekr, 42, 167 (1962).
O'HARA, M. ].: Zoned uheabaslc and basic gneiss masses in the: early Lewislan me:umoqJhic
complex at Scourie, SCl1tland.]. Petrol, 2, 248 (1961).
OKRUSCH, M., RICH'l'"2.R. P.: Zur Geoche:mie: dee Dioritgruppe. verglelcheade Untee,
suchunge:o an Geseetcee des Bayeriscben \'<.'alde.s, des Spcssans und des Odc:nwaldes
(Sud-Deursehland). Ccce. Mineral. and Petrol, 21, 75 (1969).
ONU/oJA, N., HIGUCHI, H., \"'A!tITA, H., NAGASAWA, H.: Trace element partition between
tWO pyroseoes and the host lava. Earth Planer, Sci. Le«. 5, 47 (1968).
ORR, A. R.D.: Barytes. Mining Annual Review, London 108 (1970).
OSTRO», M. E.: Trace: dements in Illinois Pennsylvanian Iimesrcoes. Illinois State Gecl,
Sun. Cire:. 243, 1 (1957).
OSTROU~IOV> V. M., RussKIKH, A. M.: Sarazon spring. Izv, All:l.i. Gc:ogr. Ohshe:he.st.
SSSR 6, 45 (1965).
PABST, A.: Structures of some: tetragonal sheer silicates. Acta Cryee. 12, 733 (1959).
PAPEZIK, V.S.: Geochc:mistry of some Canadian anorthosites. Ge:ochim. Cosmochim.
Acta 29, 673 (1965).
PARRAS, K.: The: chamoekites in the: light of II. highly metamorphic rock complex in south­
western Finland. Bull. Comm. Cecl. Plnlande 181 (1958).
PATTl!ISKY, K.: Die: tberrnalen Solen des Ruhrgebietes und we [uvenllen Quellgase. Glilc:k­
auf 90, 1334, 1508 (1954).
PATTERSON, E. M.: A petrochemical study of the Tertiary lavas of oorth-ea..stlreland. Gee­
chim. Ccsmcchlm. Acta 2, 283 (1951).
_ Petroehemieal data for some nerd intrusive rocks from the:Mourne: Mouoroins and Stieve
Gullion. Proe. Roy. Irish Acad., Sect B 55,171 (1953).
- MrTCliELL, \\;/". A., SWAINE, D. J.: Tertiary volcanic succession ill the western part of
ehe Anuim Plateau. Proc. Roy.lrish Aecd., Seer. BS7, 155 (1955).
- SWAlNE, D. J.: A perrnchemical study of Tertiary tholeiitic basalts: the middle Ieves of
the Antrim Plateau. Geochim. Ccsmochirn. Acta S, 173 (1955).
PATTIARATCHI, D. B., SAARJ, E., SAHAMA, TH. G.: .Anandite:, a new barium iron silicate
from Wilage:dera. North Western Province, Ceylon. Mine:ral. Aug. 36, 1 (1967).
PECK, D. L., WRIGHT, T. L., MOORE, J. G.: Cty.I;t:illization oftholditie basalt in Alae: Lava
Lake, Hawaii. Bull. VolcanoL 29, 629 (1966).
PECORA, W. T.: C3rbonatite: problem in tbe Bearpaw Mountains, Montana. Bull. Gecl. Soc.
Am., Buddington Volume: 83 (1962).
PENCHEV. N. P., P£NCHRVA, E. N., BONcnEV, P. R.: Specreographlc investigation of rbe
trace elemems in Bulgarian mineral waters. Ccmpr. Rend. Aced. Bulgare Sci. 11, 375
("58).
_ - - Specerographic inve:stigatiom of tbe microcornponenrs of Bulgarian mineral
waters. n. Compr. Rend. Acad. BuIgare: Sci. 13, 55 (1960).
PERCHUC"', L. L., RYABCHIl.:OV, 1. D.: Mineral equilibria in the: system nephelloe-alkali
fdd.5par.plngioclase: and their petrological significance. -J. Petrel. 9, 123 (1968).
psraov, V. P., PR£OOVSKtI, A. A., SEllGEEV, A. S., G.tLrnIN, V. A.: Some: peculiarities in
the distribution of trace: elements in blotltes from crystalline schists and gneisses in the
Northern Ladoga Region. Vestn. Lcningr, Univ. See. Geol. i Geogr, 4,5 (1965).
P:ETT1jOJ.IN, F. ].: Dam of Geochemistry, 6th ed. U.S. Geo!. SUIT., Profess. Papers 440-8
(1963).
PHiLPOTTS, J. A., SCHNETZLER, C. c.. Phenocryst-matrix partition coefficients for K, Rb,
Sr and Ba, with applications to anorthosite and b:rsalt genesis. Gecchlm, Cosmcchlm.
Aero. 34, 307 (1970a).
R~lG""oao
SG-AIoM-O
I ­ 16
Barium
PaIlJ>()T'!S,]. A., SCHN/>TZl.J!R, C. c.; Apollo 111uD3.t samples: K. Rb, Se, Ba and rare-earth
concenreations in same rocks and separated phases. Proceedings of the: Apollo 11 LUJ13r
Science Conference 2,1471 (197Gb).
- - THOMAS, H. H.: Rare-earth and barium abundenees in the Bununu howardite.
Earth Planer. Sci. Lett. 2, 19 (1967).
PtE1'ZNI'.R, H., WOLF. 1L:: Geochemical study of brown coal esbes, and ccal-perrographic
study of brown coals from [he: Lower Rhine district. Pcetscbr, Geol. Rheinland Wc:st­
falm 12, 517 (1964).
PlLKEY, O. H.: Trace elemecrs in Recent marine mollusk shells. Thesis, Ann Arbor, Michi­
gan, 1963.
Prssox, W. H., AHRENS, 1.. H., FR"'NC~, M. L.: The abundance of Li, Se, Sr, Ba Rod Zr
in chondrites and some ultramafic rocks. Gcochim. Cosrnochim. ACI3. 4, 251 (1953).
PlRANI. R., Sn.lUOLI, G.:: Genesis of Sardinian granlce of the Buddoso platea. Geochemistry
and structure of the chid mineralogical components. 1. K-fddspar. l\lineml. Petrogr.
Acla 9, 179 (1963:l).
- - Plagioclase and the use of the 2 coexisting feldspars in geothermal determinations.
Minem.l. Peeoge. Acta 9, 211 (1963b).
PL"S, L. VAN DER, HUGI, T.; A ferrian sodium-amphibole from Vals, Switzerland. Schwela.
Mineral. Perrog. Mitt. 41, 371 (1961).
­
POTH, CII. N.: The occurrence of brine in Western Pennsylvania. Pennsylv. Bull. Geo!.
Sutv.,4th See, M 47 (1962).
PUSHNOWSKY, A. A.: Sedlmenrperrographische und geochernische Untersuchungen im
audliehen Rheinischen Schiefergebirge. Neues Jamb. Geo!. Palaeontol. Abhandl. lOS,
47 (1957).
PREUSS, E.: Spekeralanalyrlsche Unteesuchung der Tektite. Chern. Erde 9, 365 (1935).
PRICE, P. H., H"RE, C. E., MCCUE, J. B., HOSKINS, H. A.: Salt brines of West Virgini:l.
WeSt Virgo Geo!. Sutv. Repr. 8 (1937).
Pll.lNZ, M.: Geologic evolution of the Beartooth Mountains, Moorana, and Wyoming.
Part 5. Mafie Dike Swums of the Southern Beartooth Mountains. Bull. Geel. Soc. Am.
75,1217 (1964).
- Geochemistry of basaltic rocks: trace elements. In: HESS, H. H., POLOI'.RVAAIl.T, A.
(cd.), Basalts. The Poldervaart Treatise on Rocks of Basaltic Composition, vol. T, New
York: Interseienec Publishers 1967.
PIl.OKOF'SV, V. A.; Elcrneotal chemical compositloo of shills of the Paleozoic brachiopods
from spectral analysis data, Geokhimiya, 75 (1964).
PUCHELT, H.: Zuc Geoehemie des Grubenwassers im Rubrgebiet. Z. Deceseh. Geo!. Ges.
116, 167 (1964).
- Zur Ceochemre des Bariums im exogenen Zyklus. Sitzungsber. Heidclb. Akad. Wiss.
Math.-nat. KL 4. Abh. (1967).
R.E.Ao, H. H., H"Q, B. T.: The distribution of rraee clements in the dunlre-eyecire differen­
tiated series of the Inselr Compla. Aberdeenshice. Peoe. Geologists' Assce. 74, 203
(1963).
- SAO"-SH1V"I"H, M.S., HAQ, B. T.: The hypcntene-gabbro of the lnseh Complea,
Aberdeenshirc. Proc, Geologists' Assoc. 76, 1 (1965).
RUD, G. W.: Heavy clements in the Pantar meteorite. J. Geopbya. Res. 68, 3531 (1963).
RENFREW, c., D1XON, J. E., CANN, J. R.: Obsidian and early Cultural contact in the Near
East. Proc. Prehistoric Soc. 32, 30 (1966).
- - - Further analysis of near eastern obsidians. Proc. Prehistoric Soc. 34, 319 (196B).
REYNOLDS, F. M.: Bcmedrungen uber daa Vorkornmen von Ba in der Kohle. J. Soc. Chern.
Ind. 58, 64 (1939).
RHODIlS, J. M.: On the cbemletry of potassium feldspars in granitic reeks. Chern. Geo!.
4, 373 (1969).
RICHTER, W.: Die Feldspate des Granices von Eisenkappel (Karnten) und seines Rand­
porphyres. Tschermaks Minernl_ Perrog, Mitt., 3. F. 11, 439 (1966).
R!OLEY. W. I.: The petrology of the Las OlOsdas volcanoes, Tenerife, Canary Islands.
Coote. Minerak and Petrol, 26, 124 (1970).
Barium
Ralanm"".
56-A to &6-0
I - 17
RUiSAITE, J. H. Y.: On micas from magmatic and metamorphic roeks. Beitr, Mineral.
Petrog. 10, 152 (1964).
RiVALENTI, G., SIGHlNOLFI, G. P.: Geochemical study of graywackes as 0 possible starting
material of para-ampblbolires. Corne. Mineral. and Petrol. 23, 173 (1969).
ROlliNSON, W.O., WHETSTONE, R. R., EDGINGTON, G.: Barium in soils and pb.nts. U.S.
Dept..Agr. Tech. BuU. 1013 (1950).
R6l.1PP, H.: Cbemie Lexikcn, vol. I. Srurrgart . Francksche Verlagsbuchh.andlung 1966.
ROGERS, J. J. W.: Textural and spectrochemieal arudies of the White Tank quartz monzo,
nire, C:ilifOrnil1. BuU. Gcol. Soc. Am. 69, 449 (1958).
ROSENQVIST, I. TH.; Note on leaching of granite whh special reference to lead, radium and
barium. Ncesk Geol. Tidsskr, 19, 110 (1939).
ROSSEINSI.:Y, D. R.; The solubilities of sparingly soluble: salts in water. Trans. Faraday Soc.
54, 116 (1958).
.
RoY, N. N.: Tbe miner:ilogy of tbc potassium-barium fddspar series. I. The dererminatlon
of the optical properties of natural members. Mineral. Mag. 35, 50B (1965).
- II. Studies on hydrothermally synthesized members. Mineral. Mag. 36, 43 (1967).
RUllliSKA, I., MIKSOVSKY, M.: Strontium and barium in plain and mineral waters of me
Karlovy Vary and 'Teplice erces and tbeir determination. Vesm. Usrrcdcekc Ustavu
GeoL 38, 153 (1963).
RUDERT, V.: Phasenbezlehungen im System Nl1AJSisOI·B~Si~OI·H~O. Fortschr, Minc­
ral. 48, 86 (1970).
RUSSELL, H. D., HIEMSTRA, S. A., GRQliN£VELD, D.: The mineralogy and petrology of tbe
carbonatite ac Loolelcp, eastern Transvaal. 'Trans. Proc. Geol. Soc. S. AfriC3 58, 197
(1954).
RYBACH, L., NISSEN, H. U.: Zerstdrungsfreie Simulranbestinunung von N:L, K und Bl1 in
Adular rnittels Neucronenaktivierung. Schweia. Mineral. Petrog. Mitt. 47, 189 (1967).
SAtlINF., P. A., YOUNG, B. R.: Cell size and composition of the baryte-celestire isomorphous
series. Acta Crysr, 7, 630 (1954).
SAHA!dA, TH., G.: Spurenelemenre der Gesteine im sudlicben Finnisch-Lappland. Bull.
Ccrnm. ceei. Finlandc 135 (1945a).
- On the chemistry of east Fennoscandian Rapakivi granites. Bull. Comm. Gl!ol. Finlande
136,15 (1945b).
SAHL, K.: Die Verfeinerung der Krlstallsrrukruren von PhC~ (Corunnir), Ba4, PbS04
(Anglcsir) und BaSO, (Baryr). Beier, Mineral. Petrcg. 9, 111 (1963).
SAVELLI, c.: The problem of rock assimilation by Summa-Vesuvius magma. 1. Composielon
of Somma and Vesuvius lavas, Contr. Mineral. and Perrol, 16, 328 (1967).
SCHARB£RT, S.: Mineralhestand und Geoesis des Eisgarner Granics im niedcrOsterrc:ichi­
schen Waldvierrd. Tscheemsks Mineral. Petrog, Mitt. 3. F. 11, 388 (1966).
SCHNEI'ZLER, C. C, PHILroTT~,]. A., BOTIINO, M. L.: Li, K, Rb, Sr, Ba and rare-earth
concenrratinns, and Rb-Sr age of lunar rock 12013. Earth Planet. Sei. Lett. 9, 185 (1970).
- - THOMAS, H. H.: Rare earth and barium abundances in Ivory Coast tektites and rocks'
from me Bosumtwi Crater area, Ghana. Geochim. Cosmoehim. Acta 31, 1987 (1967).
SCHOPF, T.]. M., MANHEIM, F. T.: Chemical composition of Ectoprocta (Bryozoa). ].
·PaleomoI. 41, 1197 (1967).
SCHWANDER, H., HUNZICKER, ]., STell.N, \VI.: Zur Mineralehemie in HeUglimmern in den
Tessmer AIpen. Schweiz. Mineral. PeU"Og. Mitt. 48, 357 (1968).
SCHWAII.CZ, H. P.: Chemical and mineralogic variations in an arkosic quartzite during
progressive regional metamorphism. Bull. Geol, Soc. Am. 77, 509 (1966).
SCHWINn, S. B.: Barium. A bibliography of unclassified literature. U.S. Arcmic Energy
Comm. Nat. Sci. Foundation \'Quh. TID-369 (1952).
SEN, N., NOCXOLD5, S. R., ALLEN, R.: Trace clements in minerals from reeks of the S.
O:J.1ifornian batholith. Geochim. Cosmochim. Acta 16, 58 (1959).
.
SEN, S. K.: Some aspects Qf the distribution of barium, strontium, iron, and titanium in
plagioclase feldspars. J. Geol. 68, 638 (1960).
SENAKOLlS, A. F.: Lithology and geochemistry of tbe Cambrian carbonate rocks in some
sections of the Sayan-Altai territory. Marerialy po Geo!. i Polcan. Iskcp, Zapadn.
Sibiri 193 (t964).
Rolo"'ocu
tJ6.Alo~
I ­ 18
Barium
SHACIU..En'E. H. T.: Element comeoe of bryophyees, Conee. Gc:oc:hc:rn. Prcsp. Minerals,
Geol. Surv. Bull. 1198-D (1965).
SHAW, D. hi.: Trace elements in pelitic rocks I, II. Bull. Geo!. Soc. Am. 65, 1151, 1167
(1954).
- Some aspects of rbe determination of barium in silicate rocks. Specteochlm. Aetll 10, 125
(1957).
- MOXHAM; R. L., FILllY, R. R., LAl'.ItOWSKY, W. \VI.: The: petrology aod gecchcmlseey
of some Grenville skarns.ll. Geochemistry. Can. b1iaccalogist 7,578 (1963).
SHCHE.RBA, G. N., GUKOVA, V. D., KUORYA5HOV. A. V., SENClilLO, N. P.: Alkali feldspars
from feldspar-quartz veinlets in molybdenum-tungsten deposits, Kazakhstan. IV. QuatU
and feldspar-quartz veins and velcteu. Gcoclu:m. Int, t, 141 (1964).
SHELTON, J. S.: Glendcve volcanic: rocks, Los Angeles Basin, Cal. Bull. Geo!. Soc. Am. 66,
45 (1955).
SI-lIIdA, M., HONDA, M.:: Distributions of alkali, alkaliee e:uth and rue: earth elements in
component minerals of chcndricea. Ge:oe:him. Ccsrnocbrcc. Acta 31, 1995 (1967).
Sml.lER, J. A.: Spectrographic analysis of New England granites 'lad pegmatiees. Bull. Gco!.
Soc. Am. 54, 1049 (1943).
SHINKARl;NKD, A. L.: The: gas eornpcueuc and content of mlcroelemems in mineral springs
of the Caucasian mineral wucera. Tr, Lab. Gidrogeol. Prob!' 3, 253 (1948).
SHirABARA, M. N.: On the mineralogy of wellslrc. Ze:ntc. Mlneralogie, 180 (1950).
SIEDNER, G.: Geochemical features Df n strongly Ieacdonared alkali igneous suite. Geot:him.
COSrIloe:him. Actn 29, 113 (1965).
SIEGERS, A., P'CIU.ER, H., Zau., \'7.: Traee element abundances in the "andesite" formation
of rrorthern Ehile, Geocblm. Ccsmocblm, At:la 33, 882 (1969).
SIJ.nlSON, E. S. W.: The Okonjeje igneous complex, southwest Mrica. Trans. Prne, Genl,
Soc. S. Mric:l. 57, 125 (1954).
SINHA, R. C, KAR}(ARE, S. G.: Distribution and behavior of trace: elements in somt: of the
Deccan basalts. Geot. Soc. India Bull. I, 21 (1964a.).
- - Geocheeusrey ofDeccan basalre. a.study of the behaviour of major and trace:elements
in tbe basaltic flows of India. Inrem. Gecl, Congress, Rt:p. 21, Session India, Part VII,
85 (1964b).
- TIWARI, B. D.: Geochemisuy of the volcanic racks of Pavag:uh. Intern. Geo!. Coogr.
Rep, 21, Session India, Pact VII, 104 (1964).
SXINNER, B. J., WnnE, D. E., ROSE, H. J., 1uYs, R. E.: Sulfidc:s associated with the Sahnn
Sea ge:otht:rmal brine. Ee. Gecl. 62, 316 (1967).
SKRODOV, A. A., Sl.lIRNOV, V. J.: Die narilrlichen Mineralwasaer des ncrdlichen Gebiets,
Ncedl. Gecl. Verw. Arcbaagelsk (1939).
Sl\lAl..ES, A. A., WEBB, M. S. W., WEBSTEIl, R. K., WU.sON, J. D.: Elemental composition
of lunar surface material, Proceedings of the Apollo 11 Lunar Science Conference 2,
1575 (1970).
SmTH, A. L., UR.IouC:HA.EL, 1. S. E.; Quaternary trachybasalts from scutheasrern Cali­
fornia. Am. Minaalogist 54, 909 (1969).
S~nTH, G. J.: Geology and volcanic perrologp of the Lava Mountains, San Beenardinc
County, California. U.S. Geol. Surv. Profess. Papers 457 (1964).
SUITH, J. V., RmBE, P. H.:X-cay-emission microanalysis of ruck-forming minerals. 1lI. Al­
kali feldspars. J. Gecl. 74, 197 (1966).
SNAVELY, P. D., Jr., MACLEOD, N. S., WAGNER, H.
Tholeiitic and alkalic basalts oftbe
Eocene Siletz river, Am. J. Sci. 266, 454 (1968).
SNET5lNGER. K. G.: Barium-vanadium muscovite: and vanadium tourmaline: from Mariposa
County, Callfcmia. Am. Mineralcgisr 51, 1623 (1966).
SOLOUON, M.: Origin of barite: in the North Pcnnine oct: field. Insr. Mining Mer., Trans.
75, 230 (1966).
SPENCER, D.: Factnes affecting element distribution in a Silurian graprollte hand. Chern,
Geol. I, 221 (1966).
SYAIUTSIN, F. V.: Sceadgeaphlc subdivision cr Sresoeolc extrusives of eastern Transbaik2.Liya
by trace elements. Geochemistry 83 (1964).
c.:
-------------------------------_._. --
Barium
STARfC, J. T., TIlACZ;;Y, J. T.: Petrology of volcanic rocks of Guam. U.S. Geol. Surv. Profess.
Papers 40J-C (1963).
STARK"_ R.: Die: Strontiumgehaltc: der Baeyee. Freiberger Fcrschungsh, C 150 (1964).
STEULr, F. G., HOWER, ).: Mineralogy nnd early diagenesis of carbonate sediments. J.
Sediment. Petrol. 31, 358 (1961).
ST1'.RN, ,'V. S.: Zue Miaeralchemie von Glimmc:m aus Tc:ssinc:r Pegmaelrcn. Schwei z
Mineral. Perrog, Mice. 46, 137 (1966).
STEVENS, R. E., Fl.I;lSCHE.R, M., Nnzs, W.
\~ .• CHOQOS, A. A., FILBY, H., LEINrNG:ER,
R. K., FLA.~AGAN, F. ].: Second report on II cooperative investigatioo of the compo­
sition of two silicate: rocks. Bull. U.S. Geol. Surv. 1113 (1960).
STOHR, B., FLASCH, H.: Barium und Baeiumverbinducgenv In: Ullmanns Encyklepndie dec
rechnlschen Chemic, vel. IV, Muncben-Berlin i Urbcn & Schwerzenberg 1953.
STRAUB, J.: Chemical ecmposirlon of mineral waters of Tronsylvanin: their rare: ccnsriruems
and the biochemical Importance, Magy. A.Uami Foldt Inc. Evkonyve: 39 (1950).
STROMING£R, D .• HOLLANDER. J. M., SEABORG. G. T.: Table: of isotopes. Rev. Mod. Phya.
30 (1958).
STRUBEL. G.: Zur Kenntnia und generlscben Bedeunmg des Systems BaSOt-NaCI-H:p.
Necee jshrb, Mineral. Monatsb.• Z23 (1967).
STRUNZ, H.: Mineralogische Tabellen, 4. AufI. Leipzig: Akademlsche Ve:rl:tgsgescllscWt
Geese & Bcnlg 1966.
Sesss, H. E., UJt.eY. H. c.: Abundance:s of the elemencs. Rev. Mod. Phps, 28, 53 (1956).
SUKHAREV, G. H.: The composition of connate waeees in Mesozoic deposits in the Cau­
Cll5U.1l re:gion and their connection with thc prospecting for oil and gas. Gecl. Nefti i
Gaza 5, 17 (1961).
SWAINE., D.].: The tmce-element coneenr of soils. Commonwealth Agr. Bur. Tech. Com.
48, 16 (1955).
- Inorganic constituems in Austr:tlian coals. Mitt. Naturforsch, Ges. Bern (N. P.) 24. 49
(1967).
SZABO. B. J .• JOENSUU. 0.: Emission spectrographic determination of barium in sea water
using a cation-exchange coocentration procedure. Environ. xi. Technol, 1, 499 (1967).
TADZHIEV. F. KJ-l .• Muxsneov, T. KH.: Change in the: thermodynamic fucctfons of some
ion-exchange reactions on Oglanly bemorure. Uzbeksk. Kbim. Zh. 11. 49 (1967).
TAKUlIO, J.. TATEICAWA, M.: Distribution of minor dements in pegtnlltites and granites
from Oku-Tango District, Kyoto Prefeeruee, Japan, I. Distribution of barium and
strontium. Kobursugaku Zasshi J, 301 (1954).
TAYLOR, S. R.: The origin of some New Zealand metamorphic: rocks as shown by their
major and trace dement composition. Geochim. Eosmochim. Acta 8. 182 (1955).
Consequences for rektite: composition of an origin by mcteorlrie splash. Gccchlm.
Cosmccjam. ACCl 26, 915 (1962).
Similarity in composition between Henbury impact glass and ausrraiirea, Ge:ochim.
Cosmochirn. Acta 29, 599 (1965).
- Tbe application of trace dement data to proble:ms of petrology. Pbys. Chern. Earth
6. 133 (1965).
- Ausrealites, Henbury impact glass and subgrc:yw:tcke: a comparison of the ahcndanees
of 51 elements. Geccblm. Eosmochim. Acta 30. 1121 (1966).
- <:Au, A. E,; GRAHAM, A. L.: Trace dement abundances in andeelees. II. Saipan, Bou­
gninville: and Fiji. Contr. Mineral. and Petto!' 23, 1 (1969).
- EWART, A.• Cfll>J', A. c.: Leuc;ogranites and rhyolites: trace element evidence for
fractional crystillisation and parcial. melting. Lithos 1, 179 (1968).
_ Haran, K. S.: The petrologic;::U aignificance of trace element variations in feldspars.
Proc. XXI. Inter. Gecl. Congr. Norden 47 (1960).
- JOHNSON, P. H., MARTIN, R., B£NNETr. D.,.A1.LEN, J.• N.u.CE, W.: Prc:1irninsuy chemi­
cal analyses of Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar Science
Ccnfeeence 2, 1627 (1970).
KOLBE, P.: Henbury impact glass: patent material and behaviour of volatile elements
dUting mdting. Nature: 203, 390 (1964).
Barium
TAYLOR, S. R•• SACHS. M.: Gecchemleal evidence for the origin of australires. Geochim.
Cosmochim. Acta 28, 235 (1%4).
- SOLO~/ON. M.: The geochemistry of Darwin glass. Geochim. Cceooceiei. Aeta 28, 471
(1964).
-
- SVJ:;llDll.l1P, T. L:: Cooerihuricns to th" mineralogy of Norway. V. Traee dement
variations in three generations of feldspars from the Landsverk I pegmatite Evje,
Southern Norway. Ncrsk Geo!. Tidsskr. 40. 133 (1960).
- WHIrE, A.]. R.: Trace element abundances in andesites. Bull. Volcanol, 29, 177 (1966).
TEMPLE. A. K., GIlOGAN, R. M.: Carhcnadre and related alkalic rocks at Powder Born,
Colorado. Ec. Geology 60, 672 (1965).
TEMPLETON. CH. C: Solubility of barium sulfate in sodium chloride solutions from 25" co
95" C ]. Chern. Eng. Data 5, 514 (1960).
'rEM, P., EtlGSTEIl, 0., BtlRNElT, D. S.• W.... sscnauac, G. ].: Compararive study of Li, Na,
K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples.
Proceedings of the Apollo 1t Lunar Science Conference 2. 1637 (1970).
TII.tASHEV..... E. E.: Distribution of trace elements in formation WlI.letll of the Carpathian
syncline and in southwestern boundaries of the Russian Platform. Tr. Ukr, Naucbn.,
Issled. Geo!. Reeved. Inst. 3, 344 (1963).
TKACHJN. Yu. A., SKU"'. N.S., BONtl....RENI:O. C. P.: Distributions of strontium and
barium in "oals of Kirgizia. Litol., Geokhim. i Polezn, Iskop, Osad. Obraeov. Tyan­
Shanya. Akad. Nauk Kirg. SSR, Inst. Geol., 24 (1%5).
TOLKACHEV. M. V.: Alkaline-c:u:th dements in sedimentary rocks of the west Siberian
depression. Geokhimiya 4, 489 (1968).
TOOKER. E. W.: Altered wallrocks in the ccmral part of the Front Range minenl belc,
Gilpin and dear Creek Counties, Colorado, U.S. Gecl. Surv. Profess. Papers 439 (1963).
TOIJR"l'ELOr, H. A.: Chemical composition of the Piette shale and equivalent rocks of late
Cretaceous age, Great Plains region. Bull. Geo!. Soc. Am. 68, 1806 (1957).
TOWNEND, R.: The geology of some geanlre plutons from \'i/estem Connemarn, Co. Galway.
Roy. Irish Aced. Proc. 65, 157 (1966).
TOWNLEY. R. N., WHrTNEY, W. n., FELSING, W. A.: The solubilities of barium and etron­
dum caebonetcs in aqueous solutions of some alkali chloride. J. Am. Chern. Soc. 59,
631 (1937).
TUREKIAN, K. K.: Deep-sea deposition of barium, cobalt. and silver. Geochim. Cosmochim.
Acta 32, 603 (1968).
- ARM5'TIlONG, R. L.: Magnesium, erronrium, and barium concentrations and calcite­
aragonite ratios of some Recent molluscan shells. J. Marine Res. 18. 133 (1960).
- - Chemical and mineralogical composition of fossil molluscan shells from the Fox
Hills formation. South Dakota. Bull. Gecl. Soc. Am. 72, 1817 (1961).
- HARRISS, R. C. JOHNSON, D. G.: The variations of Si, 0, Na, Ca, Sr. Be, Co, and Ag
in the Neuse River. North Carolina. Limnol. Oceanog. 12, 702 (1967).
- JOHNSON, D.].: The barium distribution in seawater. Geocbim. Ccsmochim, Acta
30, 1153 (1966).
- PnINNEY. \'iI. C: The distribution ofNi, Co, Cr. Cu, Ba, and Sr between biotite-garnct
pairs in a metamorphic seqceoee. Am. Mineralogist 47, 1434 (1962).
- T .... USCH, E. H.: Barium in deep-sea sediments of the Atlantic Ocean. Nature 201.
696 (1964).
- WEDEPOHL, K. H.: Distribution of the dements in somc major units of the earth's
crust. Bull. Gecl, Soc. Am. 72, 175 (1961).
UCHAMEISHVIU, N. E., MALININ, S. D., KH1T.... ROV, N.].: Solubility of barite in concen­
traced solutions of chlorides of some metals at elevated temperatures in relation to tbe
genesis of barite deposits. Gcochemimy, 951 (1966).
U~tEMOTO, 5.: Isotopic composidoo of barium and cerium in stone meteorites. J. Geophys.
Res. 67. 375 (1962).
UNSOLD, A.: Der neue Kosmos. Heidelberger Tascbenbiicher 16/17 (1967).
Ursu~u. K.: Specrml analysis of some carbon stan in the visual region. Pub!. Astron. Soc.
Japan 19. 342 (1967).
Barium
References
56-A \0 56-0
I ­ 21
YAROY, A. A., RO~I!.I, 1. F.; Occurrence of strontium and barium in oilField water:; of the
Ural-Volga-Region. Dokl. Akad. Nauk. SSSR 35, 114 (1942).
VINE, J. D.: Elemental distribution in some shdf lind eugeosyncljnel black shales. U.S.
Cccl. Surv. Bull. 1214-E (1966).
VII'.:OCRI\OOV, A. P.: The Elementary Chemical Ccmposirlon of Marine Organisms. New
Haven: Memoir Sears Foundation for Marine Research, No. II, Yale University 1953.
- Regularity of distribution of eeemlcal clements in the earth cruse. Geochemistry, 1 (1956).
- Rouov, A. B.: Composition of sedimentary rocks of the Russian platform in reladon
to the history of their tectonic movements. Geochemistry, 533 (1956).
_- - RATYNSKY, V. M.: Changes of chemical composition of carbonate rocks of the
Russian Platform. Akad. Nauk SSSR Izv. Geol. See. 1, 33 (1952).
VnWGRADOViI, Z. A., KOYAL'SIUY, V. V.; Elemental composidon of the Black Sea plank­
ton. Dokl. Akad. Nauk SSSR 147, 1458 (1962).
VLASOY, K. A., KIJZMENKO, M. Z., ES'KOVA, E. M.: The Lcvoaerc Alkali Massif. Edin­
burgh-London. Oliver & Boyd Publishers 1966.
VOLBORTH, A.: Rapakivi-type geanlres in the Precambrian complex of Gold Butte, Clark
County, Nevada. Bull. Geol. Soc. Am. 73, 813 (1962).
VOROB'EV, G. G.: Compositioo of tektites. I. Indochinites. Mereoridka 17, 64 (1959).
- Composition of tektites. II. Mcldavlres. Mereoridka 18, 35 (1960).
WANKE, H., RU'.IlER, R., BADO~HAIJSEN, H., SPETl"EL, B., T:ESCHIt-E, E, QUIJANO-RICO, ~I.,
BALACESco, A.: Major and rraee dements in lunar material. Proceedings of the Apollo 11
Lunar Science Conference 2, 1719 (1970).
WAGER, L R., MnCK£LL; R. L. The distribution of trace dements during strong frac­
tionation of basic magma. - a further study of the Skaergaard intrusion, East Green­
land. Geochim. Ccsmochim. Acta 1, 129 (1951).
- - Trace elemenea in a suite of Hawaiian lavas. Gcocbtee. Cosmochim. Acta 3, 217
(1953).
WAKEEL, S. K. EI, RILEY, J. P.: Cbemical and mineralogical studies of deep-sea sediments.
Geochim. Cosmochim. A<:la 25, 110 (1961 b).
- - Chemical and mineralogical studies of fossil red clays from Timor, Gecchim. Cosmo­
chim. Acta 24, 260 (1961a).
WAKlTA, H., SCHMITT, R.A.: Elemental abundances in seven fragments from lunar rock
12013. Earth Planet. Sci. Lett. 9, 169 (1970).
-- - HEY, P.: Elemeotai abundances of major, minor and trace clements in Apollo 11
lunar rocks, soil and core samples. Proceedings of theApollo 11Lunar Scienee Coefeeence
2, 1685 (1970).
WALLERSTEIN, G., GRE.l!:!olSTEIN, j. L.: Chemical composition of twO CH stars, HD 26 and
HD 626. Astrophys. j. 139, 1163 (1964).
- - P"'nu:R, R., HELFER., H. L., A.t.u.E., L. H.: Red giants witb extreme mew defi­
ciencies. AstrophY3. j. 137, 280 (1963).
\'(fARNER, B.: The barium stars. Monthly ootices of the Roy. Amon. Soc. 129, 263 (1965).
WEDEPOHL, K. H.; Der tracbydolerinsche Basalt (O!ivin-Andesin-Basalt) des Backen­
berges bei Gtlntersen, wesdicb von Gi5tting~. Heidelberger Beirr, Mineral. Perrcg,
4, 217 (1954).
Sporenanalyrlscbe Untersuchungen an Tiefseetcnen aus dern Atlantik. Geochim.
Cosmochim. Acu 18, 200 (1960).
- Written communication August 1961.
- Composition and abundance of common igneous rocks, p. 227. In: K. H. \'(fEOEPOHL,
Handhook of Geocbernlsrry, I. Beelin-Heidelbeeg-New York: Springer 1969.
WElReL, M.; Zurn Chemismus alpiner Adulace (II). Schwc:iz. Minenl. Pctrog. Mitt. 37, 545
(1957).
- Cbcmismus und Mineralausamrnensetzung von Gesteinen des nordlichen BergcUcr
Massivs. Schweia, Mineral. Peerog. Mitt. 40, 69 (1960).
- MEYER, F.: Zum Chemismus a1piner Adulace (1). Schweiz, Mineral. Peerog, Mitt. 37,
153 (1957).
WEISKIRCIINER, \'(1'.: Personal comrnunieacion 1969.
7
Roforoncn
5G-Atow.-o
I 22
-
Barium
WHrn:, A. J. R.: Genesis of migmarlres from the: Palmer region of south Australia. Chern.
Gee!. I, 165 (1966).
WHITE,D. E.: Saline w::ItI::(5 of sedimentary rocks. In: Fluids in subsurface environments.
Am. Ass. Pete. Gecl. Memoir 4, 342 (1965).
- Hzxr, J. D., WAlnNG, G. A.: Data of Gc:ochcmistry. 6th Edition. Chapter F.: Chemical
composition of subsurface: waters. Geol. SUIT. Profess. Papers 440~F (1963).
WHITE, R. W.: Ultramafic inclusions in basa.ltit rocks from Hawaii. Cone. Mineral. and
Petrel. 12, 245 (1966).
WILKlNSOI'I, J. F. G.: The geochemistry of a differentiated tescbenire sill near Gunncdah,
New South Wales. Geocbim. Cosrnochim. Act:iI 16, 123 (1959).
- Mineralogical, geochemical, and pl:teOgcnedc aspects of an anaIcite-b:ualt from" the
New England district of New South Wales.]. Petrol. 3, 192 (1962).
- Analdmcs from some POras3!C igneous rocks and aspects of analcime ricb igneous
assemblages. Contr. Mineral. and Petrol. 18, 252 (1968).
- Y£Rl"ON, R.H., SHAW, S. E.: The petrology of an adamellite-porphyrite from the
New England Bathylith (New S. Wales).]. Petrol. 5, 461 (1964).
WILSKA, S.: Trace c!emcna in Finnisb ground and mine waters: 11 spcctroanalytical study.
Ann. Aced. Sci. Fennic:u: Set. A II. Chern. 46, 7 (1952).
WOLGEMUTH, K.: Barium enalpses from the first gecseca eesr cruise.]. Geophys. Res. 75,
7686 (1970).
- BRo:EI:K£l\, W. S.: Barium in sea water. Earth Planet. Sci. Lett. 8, 'Sl2 (1970).
WYI:KOFF, R.: Crystal Structures, 2nd ed., vo!. 4. New York and London: Inrerscience
Publlibers 1968.
WYNNE-EnWARDS, H. R., HAy, P. W.: Conistiog cordierire and garnet in regionally
met:amorpbosed rocks from the Westport area, Ontario. Can. Mineralogist 7, 453 (1962).
YOUNG, E.].: Studies of trace elecoenea in sediments. Thesis, Mass. Inn. Techn. 1954.
YUSUROVA, S. M.: Geochemistry of the mineral W3[Cr of thermal springs of T:l<uhilUstan
(rare clements in thermal waters of 'Tadahiklsean). Dokl. Akad. Nauk Tadah. SSR
21, 19 (1957).
ZOLTAI, T.: Chw.ifieation of silicates and other minerals with tecrahcdeal structures. Am.
Mineralogist 45, %0 (1960).
ZURJ.O, P.: Geochc::m1scbc Untersuchungen im Unterkarbon von Dobedug und im Obee­
karbon von Zwickau. Geologie 9, 1112 (1963).
Fly UP