Comments
Description
Transcript
56 Barium (Lehrstuhl Kristallographie,
Barium 56 A K.FISCHER (Lehrstuhl ftlr Kristallographie, Universi lal des Saatlandes, Saarbriicken, Germany) B---O H. (Mineralogisch-Petrographisches Institut der Universltat, Tubingen, Germany) PUCHELT --_._-~--~~--~~~--~~--- Barium 56-A-1 56-A. Crystal Chemistry I. General In the crystal structures of barium minerals, Ell. is surrounded by O. OH, H:P or a halogen ion as nearest neighbors. Its valency is two and the bond type is pte dominantly ionie. Of the divalent positive ions, Ba2 + has the largest ionic radius (except Ra 2+). Isostructural replaeement of, Or by, other large canons such as Pb:l+ and Sr2+ is frequently observed. Less common is replacement of K + and of the smaller ion Ca2+. A few examples of crystal chemical relations which are not listed in the tables below are the following synthetic compounds: BaPC;201D> BaAlu018 , SrFC;Z019' StAln.Oul etc. in the magnetoplumhitc series; pandaite with Ell. partiaUy replacing ell. in the pyroehlorc group; isotypy of K[N03l and witherite Ba[C031; Ca-Ba-mimerisitc; heinrichite and meta-uranocircite in the torhernite and meta-torbemire group. The coordination of Ba has been reviewed by ~fANOHAR and RAMASESHAN (1964). The coordination number ranges from 6 to 12 for 0, OH, HIlP- The existence of a large variety of coordination polyhedra is illustrated in Tables 51-A-1, 51-A-2, and 5t·A-3 in which crystal structures of Ba minerals and a few selected synthetic compounds are listed. In general, oxygen atoms with disrances larger than 3.3 A are not considered as sharing one coordination polyhedron (exception: barite). This limitation appears to be justilied as in the majority of the structures the distance of the" next-nearest" 0 neighbors is substantially larger than the range of distances attributed ro the first-order coordination. In other cases. however, the distances show a broad and rather: uniform range of variation (e.g. Ba, in taramellite) so that it is difficult to define the coordination number. The type of coordination polyhedron of Ba apparently has a minor influence on the energy balance of these structures. Nevenheless it can control the structure type as has been demonstrated for silicates by LIEBAU '(1962, 1968). The following :averages for atomic distances were ohtained for the different coordination numbers indicared: Cccedl uarion number 6 7 S 9 10 12 Atomic distance. A. 2.78 2.7 8 2.1\ 2.8 s 2.8, 2.9, _ (BaD, BaZn02 , benitoite) (paeacelsian, BarGeO,] high) (BaNiO:, Ba(OH), . 8HIO, BaUO.. gillespire, t:U':l!rlellite) (Ba[SPe]· 2H:O, Ba[B(OH),]2. Ba[BIO,], eelsian, sanbomite) (BaOh BaTi.O•• Ba[B,O,l, Ba,[pO.J.J (psilomelane, high BaTiO" nitrobarite, barite, noeseehlre, B3.t[P04JI> "hexagoeel" Ba[AI,;Si:20el, ¢.BaO, . 2H,Oij 56-A-2 Barium These data demonstrate a general increase of distance with increasing coordination number. This can be considered only as a first approximation because of the restricted selection of minerals and artificial compounds; (for some other compounds used for the computation of the averages, which are not listed in Tables 56-A-l, 56-A-2 and 56-A-3, sec MANOHAR and RAMASP.SHAN, 1964). D. Crystal Chemistry of Some Minerals and Synthetic Compounds a) Oxides. Halides The structure of psilomel.ane (Ba., H,O)IMnSOlO consists of MoDe octahedra and (Ba., HP)Ol:l cube-octahedra (only oxygen atoms with distances ~3.16 A ace considered]. Ba and H 20 occupy the same eqcipoine (partial ordering assumed), probably because of very similar distances of Ba-Q and O-H20 atoms and mole cules (Hcbddgea ?). The crystal structure of hollandite BaMna01B has the same coordination polyhedron for Ba (BYSTROM and BYSTROM, SR 13, 1950, 186). In synthetic oxides and hydroxides almost all coordination numbers from 6 to 12 occur; Table S6·A-1. CoordinaJion of Ea in ro",~ oxidu and halidu Mineol or synthetic compound Coordin:ued atoms, distanees co BainA Coordination polyhedron Ba[llo[al 60 60 (20 80 octahedron octahedron, aeveeely distorted quadratic prism, severely distorted distoered quadratic antipriam irregular teeecgonal prism with reeagonal pyramids on two base faces pentagonal prisrn dis toned cubo octahedron cube-octahedron Ba[alZntIJO~ • Ba(IJNi[6lO. 2.76 2.64-2.97 3.36) 2.80; 2.84 Ba[ll{OH)~' 8~O 80H 2.69-2.77 Ba(llUtllOI Ba(1010. 80 80 20 2.71-2.99 2.79 2.68 100 80 2.81-3.09 2.85-3.16 2.78; 2.88 2.83 Ba[lOlTi 111O, psilomelane, (Ba, ~0)~IJ1fn~110l. Ba[UllTi[llO~ [high-temp. phase) BarIJF{'l Bat llCI2 • 2H.O 4H1O 120 6F 7Q 2H~O 2.68 3.14-3.38 2.76 eube distorted rrigonal prism with 2Cl and 1H~0 on top of prismatic faces Reftt· mo~ 1 2 3 4 5 6 7 8 9 10 11 References: L GeRLACH (SB 1913-1928, 119). 2. V. ScHNl>RING, HOPPE and ZE.l.IANN (SR 24, 1960, 454). 3. LAND£R (SR 15. 1951, 180); for srrucrurc, see LANOER (1951). 4. MANOHA1\. and RAMASESHAN (1964). 5. SAI>fSON and SILLtN' (SR 11, 1947-48, 441). 6. AlIRAHoUIS end IGu.NAJS (SR 18, 1954;364). 7. TJ;;MP1E1'ON and DAUBEN (SR24, 1960, 326).8. WADSU;Y (SR 17,1953,429).9. GOLOSCHMIIJT (SB I, 1913-1928. 333). 10. DAVEY (SB I, 1913-1928, (87). 11. JENSEN (SR 10, 1945-19~, 95). Barium 56-A-3 halides and hydrated halides are known with coordination numbers of 8 and 9. A selection of these eompccnds (especially oxides and hydroxides with coordination polyhedrons not described for minerals in this section) is included in Table 56-A-1. b) Nitrates, Catbonates, Borates The BaO lS icosahedron found in nitrobarite Ba[N0312 was also observed in Da[OO.l.· 3~0, a-BaO.· 2H20 2 , Ba[SiFnl lind Ba[GcFnl (MANol-lAR and RA MASESHAN, 1964). In the carbonate minerals, Ba replaces Ca in the aragonite series (witherite and solid solutions) with a coordination polyhedron which can be described as a distorted cube with one of its edges elongated f01: housing the 9th atom above its centre: the same coordination polyhedron is also reponed for sanbomite B~[Si~qol. Barytocalciee BaCa[COJl a has an independent structure also with a coordination number of 9 (two distances of 3.28 and 3.30 A are not included). In norsethite, BaMg[Cq,lllJ Ba has a 6+6 coordination forming a distorted ditri gonal prism (LIPPMANN, 1968). No barium berate mineral structures are known at present. Of the synthetic berates, Ba[B(OH),h is Isostructural with the correspond ing Sr borate (see subsection 38.A-II), whereasBa[B,O,] is not (coordination numbers 9 and 10). c) Sulfates, Phosphates Barite Ba[SO,] is isostructural with anglesite Pb[SO,] and celestite Sr[SO.]. (Solid solutions are known as anglesa-barite, baryta-celestite and calcio-barite.] ° Table 56-A-2 Coordif/llJion rifBa in some OXD-~QIII Mineral or synthe:tic compound Nitrobarite, Coordinate:d atoms, dlacaeees to Ba in A Ba[1.2J[NO~h 6+60 90 90 (20 Witherite:, BaC1J[C03l Barytocalcite, BaEllCaJ6l[C03h Norsethite, Ba[l.RlMg(6J[CO~h Ba(·l[B(OH).ll 6+60 Bal: 90H 2.73-2.90 90H 90 100 100 (20 B3.t: 6 +60 100 2.71-2.83 Bal: B~: Barite, Ba[llJlSO.J BaEl.RlBa.pol[pO.ll 0..2.8 2.56--2.99 3.28; 3.30) 2.72; 3.18 2.77-2.99 2.61-3.08 2.71-3.12 2.76--3.08 3.30) 2.80; 3.23 B~: Bsl'lBaE10J[Bi~IBl'JOI.l 2.86; 2.95 I B•• , Coordination polyhedron distorted icosahedron see text Refet" ences 1 2 3 distorted ditrigon:J.1 prism trigonal prism wi'" 4 5 centered filcc::l Ireegular , see [CJtr 7 distorted Icosahedron see text 8 Referenees r 1. VEGAllD and BILBERG (SB 2, 1928--1932,386); cf. LUTZ (SR 24, 1960, 421). 2. CoLBY and LA Cosra (SB 3, 1933-35, 407). 3. ALu (SR 24, 1960, 425). 4. LlPP· :l.rANN (1968). 5. KRAVCHENKO (1965). BLOCK and PERLOPP (1965). 7. SAHL (1963); see also CDLVlLLE and STAUDHAWoIRR (1967). 8. ZACHARlASEN (SR 11, 1947--48, 388). 56-A-4 Barium The coordination polyhedron based on a coordination number of 12 consists of two nearly parallel rings of 5 and G oxygens on both sides of the Ba atom, with on top of the 6-ring (for an alternative description, see MANOHAR and a 12th RAMAsESHAN, 1964). In this coordination polyhedron, 20 with distances of 3.30 A are included. Omitting them From the 5-ring would lead to a rather one-sided coordi nation pclyhedrcc (SAHL. 1963). Ba,[PO.h, Isostructural with SrS[pO.]1, b:LS two coordination polyhedra for Ba with coordination numbers of 12 and 10; the latter One consists of a distorted "besagccal" pyramid (symmetry 3m) sligbtly above the Ba atom and a triangle below. ° d) Silicates 6l[SiO.] and Sr~61[SiO.] are isostrucrural with olivine (O'DANIEL and Ba.1: TSCHEISCHWILJ, SR 9, 1942--44, 261). Another silicate with isolated tetrahedra, BaO . SiO~ . GH!O. bas two different coordination polyhedra with coordination numbers of8 and 10 whicb share faces with eaeb other.bur have no common corner with the [SiO.1 teerahedrou. The ten-fold coordination can be described :LS a penta gonal pyramid above a square. In benitoite BaTi[SisOo1 (isomorphous to pabstite BaSn[Si30oD, the coordination polyhedron is severely distorted. (The next 60 atoms beyond the nearest ligands are not eonsidered because of their distance of 3.43 A.) Taramellire B~(Fe, Ti, MgMSiPI21(0H),. with rings of 4[SiO.J tetrahedra, has three different coordination polyhedra for Ba with a coordination number of 6, 6 and 7 (?). The Iaar coordination polyhedron can also be describcd as having a coordinarionnumher of9 (two additional O's at a distance of3.12 A) or with a coordi nation number ofl1 (two additional oxygen atoms at a distance of3.21 A). Ba[GeOsl, with a germanare chain of the "Zwcierketten"-type, is one of the few examples for a coordination number of7. (Higbee condensed silicate chains with Ba as cations have been investigated by KATSCHER and LIDMU (1965, 1966». In the sheet silicates, small percentages of Ba have been found in some muscovires. The mineral anandite (Ea, K)(Fe, MgJa[(Si, Al, Fe)Plo1(0, 0H)2 was recently described as a member of rhe rrioctahedral mica family (PATrIARATCHI, SAA:RI lind SAHAMA, 1967). Other Ba silicates with single sheer structures do not have the usual plane silicate sbeet of tbe mica. type and do nor contain DR or H,D (LIEBAU, 1968). Sanbornite, Ba[Si 2D61, with undulating sheets built of 6-membered rings has the same coordina tion polyhedron for a coordination number of 9 as described for witherite. In the structure of gillespite BaFe[Si.,'olo1 (with folded sheers of 4- and Bcmemhered rings of [SiO.) tetrahedra), the coordination polyhedron of Ba can be derived from a cube whose faces are each divided into 2 triangles to form a triangular dodecahedron of symmetry 4: (cf also cupecnvelee: PABST, 1959; MAzzI and PABST, 1962). Ba replaces Sr or Ca in synthetic compounds of the melilite series (B~[Fe['lSj~O,l. B~[Mo['lSi20,], cf. WYCKOFF, 1968, P' 22S--227)1. For the non-feldspar form of Ba[~Si:lDJ. containing double sheets, a besegonal (or pseudo-bexagonal) prism has heen described :LS the coordination polyhedron (on the orthorhombic distortion, cf. TAKE.UCHI, SR 22, 1958, 501). The same coordination polybedton bas been found in cymrite Ba[AlSiPa(DH)J. In the Ba-feldspar celsian Ba[~Si:0s]. the coordination polyhedron is si.mila.r to that in witherite (if a tenth oxygen atom at a 1 The classification of tetrahedral structures follows ZOLTAt'S suggestion (1960). 56-A-5 Barium Table 56-A-3. CoordinaHan of Ba in Jomt silirafu Mineral or synthetic compound Cccedlnated atoms, distances to Ba in A Coordination polyhedron 2.83-2.90 distorted quadratic antiprism B:l:ll:, 10aH, Hp 2.83-2.90 see text heavily distorted 60 2.77 Benitoite, BllJ6ITi\5J(Si~OgJ octahedron or trigonal prism 2.83; 2.90 distorted hexagon Taramellitc, B~: 60 2.73; 2.75 distorted tdgonnl prism Ba:(Fe, Ti, Mg)~·l(OHMSiPIZ] Bil:!: 60 2.71-3.00 see text Ba3 : 70 3.12;3.21) (2+20 2.62-2.94 irregular 70 .i.Ba[·1[Ge[410~1 (high) 2.74--2.94 see text Saaborahe, 70 3.14 20 ~Ihl'J[Si!Os] 2.73; 2.98 heavily distorted ~Gillcspite. Bo,l8JFdtI>:I{Si,0Io] '0 cube or trigonal dcdeeahedeon hexagonal prism 120 ~2.89 Bal1.2J [A1:Si:O.l ("hexagonalce1sian") hexagonal prism 120 3.05 Cymrite. 3.39) Ba[l l l [AlSi~09(OH)J (2 xtH:O 2.67-3.14 see text Celsian, '0 Ba[·J[A.I,;Si.O.] (10 3.42) 70 2.73-2.83 see text Paracelsian, (20 3.32~3.37) Ba111CA4SiPul 2.82-3.12 distorted cobo 110 Barylice, 3.34) octahedron BIIJ1.21J[B4~JSip,l (10 (minus one?) 80,HzO 2.77-3.08 see (ext Harmotome, 3.26 20 Ba[lOlfAl.SieOll]·6Hp BaO • SiO~ . 6 H:O Ba l: 80H,HP R<f. 1 2 3 4 5 6 7 , , 10 11 12 Referenees : 1. HOt-rNElUId DORNll.ERGER-SCHlFF (SR 26,1961.513).2. Frscnae (1969). 3. MAZZI and ROSSI (1965). 4. Hn•.'I.ER (1962). 5. DOUGlASS (SR 22, 1958. 490). 6. PABST (SR 9. 1942-44. 249); d, Mazzr and PABST (1962), PABST (SR 23. 1959. 486). 7. MATSUMOTO (SR 15. 1951, 304); ef. TAKEUCHI (SR 22.1958,501).8. KASlIAJiV (1966). 9. Nr.WNliAM and MEG... w (SR 24, 1960, 491). 10. B...iCAtuN and Beccv (SR 24,1960,492); cr. SMTm (SR 17. 1953. 556). 11. ARR"'SHE"W. ILYUKltrN and BELOV (1964). 12. S...O...N...G.... M"'RuMo and T...KEUClH (SR 26, 1961. 532). distance of 3.42 A is nee counted), with one surprisingly short distance of 2.67 A (see NEWNHAl.{ and MEGAW, SR24, 1960. 491). In the framework structure of paracelsian (with the same chemical composirion as celeien), which has a structure closely related to danburite Ca[B~4ISi20B]' a similar coordination polyhedron with a coordination number of 9 has been described, including two distances larger than 3.3 A. Omitting these latter two oxygen atoms, the coordination polyhedron con sists of a distorted rectangle with Ba nearly in its plane plus twO oxygen atoms forming a gable-roof on top of it and the seventh oxygen below its centre. The 56-A-6 Barium distorted cuba-octahedra around Ba in barylite Ba(Be"S4,O,l (with one distance Iargee than 3,3 A), form chains by linked triangles. Two crystal structures of natural Ba-eecliees, edicgtonite Ba[Al~Si301()] . 4Hp (TAYLOR and JACKSON, SB 3, 1933 to 1935,529) and barmorome BaIA4Si,018]' 6HP are known. In bannotome, Ba is surrounded by ten 0 or HiD in a coordination polyhedron similar to that of BaD· SiDl! . 6 H 20. Two of the 6 distances from Ba to framework oxygen atoms are rather long (3.26 A). Barium 56-8-1 56-B. Isotopes in Nature Natural Ba is a mixture of seven stable isotopes (Table 56-B-l). The atomic weight is 137.34 (Atomic Weight Conference of the IUl'AC, 1961, Butterworth Scientific Publications, 1962), calculated on the basis that 12C=12.00000000. (ST>l.O~IINGEU tJ Table 56-B-1. Sli1b/~ lJo i/()/()pu in I/o/un oJ., 1958; MAl"rAUCH ~/ 01.,1965; EUGSTER ~/ 01., 1969) Stable isotopes % in natural mixtures Isotope masses »c = 12.00000000 l:IuBa 0.1056± 0.0002 0.1012± 0.0002 2.417 ± 0.003 6.592 ± 0.002 7.853 ±0.004 11.232 ± 0.004 71.699 ± 0.007 129.9062 131.9051 133.9046 134.9056 135.9043 136.9055 137.9050 "'j" lUBa '"B, nUBa U7Ba l:18Ba Measurements (I) made hy UMEMOTO (1962) indicate an enrichment of the lighter Ba isotopes in the Pasamnnre and Nuevo Laredo achondrites and Broder heizn chondrite with a maximum of 2.5% for l30Ba in the Bruderheim achondrite. This potential accumulation decreases almost linea.cly to mass l38Ba. Recent investigations of Ba isotope distribution in meteorites (EUGS'rnR et al., 1969) showed that differences in isotopic composition between meteoritic and terrestrial samples are always < 0.1 % for all isotopes. A very small amount of the short-lived BOBa occurs in nature as a fission product of 138U (KURODA and BowARDS. 1957; HEYDEGGER and KURODA, 1959). Itt..lc<d monulCrip. reccivttl' Scp.<",be< 1911 Q Sprlogo<-V<rl.p; Ilulin· Hdddbert: 1972 Barium 56-C-1 56-C. Abundance in Cosmos, Meteorites, Tektites, and Lnnar Samples I. Cosmos Ba bas been detected spectroscopically in sears of all spectral classes except classes 0 and B. These classes correspond to such high temperatures that all reso nance transitions of the highly ionized atoms fall Inro the ultraviolet range, whlcb is inaccessible for terrestrial observation. Ba abundances are normally given as atomic ratios per 10(2 H atoms or 10e Si atoms, or as ratios of Ba acorns/Fe atoms. Atmosphercs of main sequence stars always seem to contain Ba in similar eODM centraticns. In Table 56-C-1, the sun is given ;'IS one example. Pronounced differ enees of Ba concentrations have been reported for twO other groups of stars which do not belong to the main sequcnee. BaIT stars, whicb arc considered to be carbon StaIS with higbcr temperatures than N stars (GORDON, t %8), exhibit an overahun dance of s process clements, including Ba (BIOELMJu'l and KEENAN, 1951; DUR~ BIDGE and BURBIDGE,1957; WARNER. 1965). FUJITA and TSUJI (1965) found s process Table 56·C~1. Baril/m abll/ldallu insrarr Type of star Name: Hijl,b IIdo&iJy starr: F 6 IV~V Subdwarf Horizontal branch Subdwarf Subdwa.r;f Afain Itql/tiltt Jog Ba for log H = 12.00 Reference Serpends 2.09 KEGEL HD 140283 HD 161817 0.11 0.94 BASGHEK HD 19445 HD 122563 0.35 -2.65 i' (1962) (1962) KODAIRA (1964) ALLER, GREEN5TEiN (1960) \'(fALLERSTEIN. PARKER, GJU:ENSTEIN. HELfER, ALLER (1963) 1101'S.' G2V sun et 01. (1960) 2.10 GOLDBERG 2.01 CAYREL. C.l.TII..EL OJbn liars G B III 11 Virginis (1966) (log Ba{1og Fe).... -(log 8:1/log Pe:)."" ,}foin ItqtltlllilJort: GV cv GV pCom 99 He:rA 8SPe:gA et 01. (1963) il 01. (1963) HELFER l/ 01. (1963) 0.06 ± 0.20 0.11 ±0.20 -0.10 ± 0.20 HELFER 0.02±0.15 H.E.r.FER HELFER Ol,"r Ilarl (Jllbgio!/I).' GIV CHe:r iJ 01. (1963) Barium 56-C-2 elements in N star Y evn to be overabundant by factors ofl0~ to lQ3 when compared to main sequence stars. Strong enhancement of Ba lines in N stars has been detected by GORDON (1968) and UTSUMI (1967). A certain relationship of BaIT stars to S type stars was observed (WAR..~ER, 19(5) whereas R stars show normal Ba abundances. CLATION (1964) bas developed the idea that in a special type of s process nucleo synthesis, the elements heavier than Zr are favored and this process is assumed to work in Ban stars. Population IT stars which arc characterized by their high velocity sbow higber atomic ratios, H/Ba., than main sequence stars. Nevertheless, the abundance ratios of elements heavier than carbon are similar to main sequenee stars (UNSOLD, 1967). BURDIDGE and BURnlDGE (1957) found that the subdwarfs HD 106223 and A Bootis are depleted in Be by factors of 20 to 30. ALLER (1961) gives the logarithms of the ratio, number of Ba atoms in the sun/number of Ba atoms in the star, in the subdwarf for three typical subdwarfs: HD 140283, log (NsunlNmr) =2.59; HD 19445, log(N,uJNm,)=2.15; HD 219617, 10g(N.unlNstar) = 1.4(). Spectral measurements for the CH stars HD 26 and HD 626 (WA.LLERSTElN and GRH.NSTEIN, 1964) and comparison to the G 8ID star e Virginis sbowed them to be Ba deficient by a factor of 30 to 50. HELPER e/ al, (1963) gave the logarithms of atomic ratios (Naa/NyJ.tar---(Nsa/NpJ.un for four a:G stars: CHerculis (+0.02± 0.15), PComae Berenicis (+0.06 ±0.20), 99 Herculis (+0.11 ± 0.20),85 Pegasi (-0.10± 0.20). Logarithms of atomic abundances of Ba in cosmos are published by ALLEN (1963) as 2.11 for H = 12. The welgbe ratio is 4.25. SUESS and UREY (1956) and CAMERON (1959) calculated the ratio of Ba aroms per 1(}l1 Si atoms as 3.66; in the sun the same ratio is 3.978 (ALLER, 19(1). rr, Meteorites The published data are summarized in Tables 56~C2 and 3. Distribution pattems of Ba are plotted in Figures 56-C-ta through d. Generally meteorite "finds" show higber Ba values than "fulls"> indicating a probable terrestrial contamination of the c,finds ", Thus a log of the normal distribution of Be can be observed only in chrmdrire falls, whereas the "finds" of the same class exhibit a random distribution. A C H 0 s o N D R T " E , ppm Bil CALCIUM POOR ACHONDRITES [ZICALCILt-4 RICH .I010NDRITES [SJ FtNDS Fig. 56-C-b. Di$tribution of Barium in achondrfrea Barium 56-C-3 c H o o o 0 o o o o 0 o 0 H o T R E . 5 o u lOOI0200ppmBa 181 CLA:>s SYMBOLS eel" Cc2 l2Jct.ASS SYMBOLS CHL.CLl. t2I AHOS (Q.L OHL'I1 DCLASS SYMBOL Ccl Fig. 56-C-l b. DUitribution of Barium in carbonaceous and enstatite chondrites etc. c H 0 H o T R E 5 - FALLS -f- II 1 a , 10 ,0 F!NDS z s 10 o 00 00 ppm Ba Fig. 56-C-I c. Distribution of Barium in ordinary chondrites, Class symbol CH 56-C-4 Barium CliO T NOR E S FAll.S s te ppm" FfNOS - ~ , , ~ f- ~ - f- I S " ~ '00 150 200 ppmBa Fig. 56·C-1d. Distribution of Barium in ordinary chondrites, Crass symbol CL Calcium rich acbcudrites are also high in Ba, whereas Ca-pece achondrites show low Ba values, close to chondrites. In calculations of Ba averages in meteorites, the finds have to be omitted. The few data available for nonsilicate meteorite phases (all < 9 ppm) indicate that Ba is definitely a Jithophilic element. Table 56-C-4 lists the mean concentrations of Ba in individual meteorite gtoups. Numbers of analyses used are given in brackets. Class CH and CL meteorites are by far the most Frequent stony meteorites and by using thcir data, the Ba average for ebondrites is calculated as 6.3 ppm. Barium 56-C-5 Table 56-C-2. Barium Name of rneceorite Ba content ppm Refer I Name of meteorite cnee St. Marks Cahill," poor (uhondrilu A. (fall1): Cumberland Falls Norton County ,. 2 10 10 Ah (falls): 2.5 5 Johnstown • Shalka 10 12 10 18.5 11 Ab (faHI): juvinas 9-27 2G 30.2 Moore County Paaamcnre Sioux County 17 22 2G 28.6--29.8 3B 28.2 20 25 2 1 15 1 5 1 15 , 5 1 5 27.2 15 Srannern 62 Bereba ]onzac 53 28.6 29-29.3 1 2 15 Angra des Reis 21.5 48 Ap /if/dr): Binda Nuevo Laredo 2 40 46 44 39.3 39.3 15 15 15 1 1 7 13 , 15 Chondrilu Crt (falls): Abee 11.8 1.8 1.G 2.41 2.25 Indareb G•• 1.9 Crt (jallr): Hvlnls Khaiepur Pillistfcc Ba content ppm G 5.9 G G G G.' 5.5 CH (jimu): Acme 120 Alamagocdc 2G Aurora 20 Colby (Kamas) Coldwater Cook Coolidge Covert Dimbool.a Estacsdo Farley Gladstone Hugoton Kaldccnera Hill Kansas City • 15 6 13 170 10 20.3 32 115 12.8 6 290 17 200 16.8 • 5 3 3.6 5 3.8 5 Kissij Marsland Modoe Morland Morven 10.1 Nerdcc Orlovka 12.9 18 Peuopavlovka Plainview 4 10 28 Ransom 7 Seibert Texline TutU Wilmot CH (falh) Alc.xandrowsky All.gm 6 13 14 3 Refer cnee 34.6 Cavour Cokilfnl lith QfbOlfdriJu Ao, (Jll/It): Bununu ill /fOJ!] 111rflOriJu Aviles Barbotan Beardsley Beaver Creek Cangas de Oais Erxleben 125 13 120 82 10 4.6 4 <1 1-3 5 3 5 5 1-3 10 10 10 10 10 10 G 10 10 G 12 10 10 10 6 10 8 10 7 10 13 10 6 G 10 10 10 10 12 10 10 10 10 10 6 10 2 2 10 13 12 12 2 56-C-6 Barium Table 56-C-2. (Continued) Name of meteorite Fore!' City Forest Vale Hessle IehkaIa xercoeve K~," Lumpkin Monroe Mount Browne: Nanjemoy Ocha.nsk (1) Ochansk (2) Olmedilla de Alaceon Pantar Pultusk Richardton Uberaba \\'I'es(on Yarnor Zbovtnevyi Ba content ppm 3.37 3.7 4 9 3.3 3.30-3.37 4.3 8 4 6 4 6 5 7.9 4 13 5 2 5 4 3 5 3.2 2.9 3 7 3.2 4 4 6 6 11.3 6 Reference 3 7 " 13 12 15 6 12 " 16.0 11.3 Am'" 53 Becoham Berdyansk Bluff Brisco Cadcll Cocunda Cook Cool:lmon De Nova Good1:Lnd Harrisonville Refer ence Hayes Center 32 3. 52.4 5 21.2 94 8.4 21. 12 Herlmlrage Plains Kingfisher Kulnine Ladder Creek Lake Brown La Lande Long Island " 12 12 6 "" "" "4 4 " 12 "7 " 1"0 13 13 ,. 10 Loongaca (Forese McKinney Melrose Nardoo (2) Ness County (1894) Otis Potter Rawlinna Roy Rush Creek Silverton (N. S. Wales) Tryon Vincent Wacondlt. Yalgoo CL (11111J): AlMndlo Bjurbole 0 B 6.6 7 34 7 3 15'5.B 10.0 40.0 46.5 115 10 7 6 6 " 12 0 12 """ " 6 6 6 6 10 10 10 ChateaURenard Chantonn:ly Colby (Wisconsin) DhurmsaIa Elenovka F"rmington Holbmok " " 6 6 "6 " 100 12 190 13.1 "6 6 155 15.5 2' 7 "" "" Lok,) Bruderheim Accalana Addie Land Barratta Ba content ppm 12 CL (finds): Asson Name of meteorite I 155 15 7Z 5 10.3 19. 15.8 7 18.2 3 <1 8 5 14.2 3.37; 3.4 4.3 3.37 6 1 (03 4.5 6 5 10.5 9.1 2.7-9 5.B 12.2 4 26 9 3.6 6 10 """ 6 " 6 12 0 " "63 2 12 14 15 10 2 " 10 10 6 6 2 3 6 7 10 12 13 Barium 56-C-7 Table 56-C-2. (Continued) NllnIC: of meteorite: Ba content ppm Homestead Khohac Knyahinya Krasnol-Ugol Kuleschovka Kunaahak (light) (wk) L'Ajgle Leedey Marion Maziba Moa Narelian New Concord Ni Koiskoje Olivenza P""",,, Pavlograd Paperi Pccvomaisky Saint Michel 53C1.tov 5tavropol Refer enee 12 6 6 2 10 10 10 10 9 9 2.7-9 2 3.76; 3.85 3 3.64-3.76 15 3 10 4 10 21.7 6 5 10 6 12 7.6 6 4 10 2 10 16.4 6 3.5 10 6.5 10 8.6 6 5 10 133 6 4 10 10 22 10 2.5 11.0 5.1 13.8 1-3 5 5 3.5 4 4.8 5.2 Name of meteorite: Refe-r BOl content ppm ence 'Tane Tc:nham Tc:nnasilm 5 15.8 10 10 6 12 eLL (foJIJ): Ecelsbeim (light) (dark) Mangwc:ndi Olivenu Savt.5chen kojc 6.9 7.1 12.3 6 4 13 13 165 9.9 26 10 6 10 4 11.9 21.8 8.2 9.5 10.5 10 6 6 13 6 9.8 <1 2.4 8 2.5 4 6 12 13 12 12 10 6 10 10 eLL (filltU) ; Kill, Lake Labyrinth Sb>w CHL: Fdix Karoonda Lane Mokoia Warrenton etJ : Orguc:il Hessle Mighci Murray County 6 Rifmnm (mtlhDdJin brothll): 1. DUKE and SILVEIt, 1967 (?); 2. VON ENGELKAIlOT. 1936 (5); .3.EUGSTER tlal.•1969(I); 4.FREDRtKSON andKEIL,1963(S); 5. GhsT,1965 (I); 6.GREEN LAND and LovERING, 1965 (5); 7. H.wAGUCHI efaL, 1957 (N/R); 8. HEY, 1966 (?); 9. UVRUKHINA Ii al., 1966 (N/R); 10. MOORE and BROWN, 1963 {S}; 11. PHIU'OTTS Ii IJ/., 1967 (1); 12. PINSON tid., 1953 (S); 13. Raao, 1963 (N/R); 14. SHilolA lind HONDA, 1967 (N/R); 15. TERA ti IJ/., 1970 (1). Table 56-C-3. Barium ill ItfJlI} irons alld ironl Namc of meteorite . Ba content Refa'- I N ame 0 f mC[CO(J[e ppm ence M (fill), Esthcrvillc M (find), Pallasitc olivine Og (find): Canon Diablo (troilite) 5 1 7 12 0.4 <0.006 <0.3 RiftrtnCtl: see Table 56-C-2. 13 13 13 Ba eoneent ppm 0", (find): Ni poor aU%itc <0.1 Toluca (uoi!itc) 2.37 E1 Tac:o Octahedrite, \'(feckc(oo 8.70 Station Refer ence 13 3 3 Barium Table 56-C-4. Average Ba (onmllralio/u 56-C-B rif slanynuleoritu Falls A, Ab Ap Co, Ce2 CH a 8 (2) 3.B (3) 30.0 (11) 8.6 (7) 5.9 (3) 4.9 (42) 7.2 (53) Enstatite achondrites Beonaire achondrites Pigeoniee-plagioclase achondrites (eucrites) Enstatite chondrites Enstatite chondrites Higb iroo (H)-group chondrites Low iron (L)-gmup chondrites Finds 34.2 (5) 43 (33) 47.1 (42) All calculations of Ba averages in meteorites suffer from one or both of the following uncertainties: inhomogeneity of the samples and difficulties in analytical methods. The first point was demonstrated by MOORE and BROWN (1963), when they analyzed dlffercnt pam of the Holbrook chondrire, which was a fall. They got a range of 8 to 110 ppm Ba for the different parts of the specimen. ill. Tektites Ba concentrations' in tektites are reponed to be in the range of 300 to 7,700 ppm (Table 56-C-5. Fig. 56-C-2). Olde.r data. which, are generally lower, are reviewed by GMELIN (1960). All the more recent papers show Ba values to he much higher in tektites than in any meteoritic material. Whereas most investigators found Ba conTable 56-C-5. Bari/lm in leklilu alld otber natural glaJlu Locality Be concentration =g' No. of Method Reference anal. m~ Tektitu Afrka Ivory Coast Alia Indornalaysia Philippines Indochina Atutralia Australi:l Eurape Czechoslovakia North Anltrita Tens Georgia Martha's Vineyard ........" 657 2 I SCHNErZLf;;1l tt at. (1967) 300-320 310 420 2 1 900--2,000 1,300 6 S S S PINSON el al. (1953) PINSON tl al. (1953) VOROB'EV (1959) 340--420 54O---llOO 540---'00 375 6 620 630 43 24 S S S CHAO (t963) TAnORand SACHS (1964) TAYJ..01l (1962) 2,000--7,700 3,600 10 S VOROB'EV (1960) 610 580 21 566 7 1 S S S S 370--1,100 380--1,100 340-715 390 10 CH"O (1963) Ccrrrr..... H til. (1967) CUITI"CT" # til. (t967) CUITlrr" (I al. (1967) Barium 56-C-9 Table 56-e.-5. (Continued) Locality No. of Method Reference Ba concentration =.' anal, mean Nil/lira! glauu TaS/1tIl11;a 290-360 Darwin Glass 340 8 5 T AnoR and SOLOMON (1964) Darwin Glass, dark Darwin Glass, light 1 1 M M CHAPMAN~' 400 1 200 M M 5 d al. (1967) al. (1967) T A'nOR. and KOUlE (t9~ 1 SCtrnETZLER 5'" 300 hU/To/ia Macedon, dark Macedon, light Hc:nbury impact glass 600-700 650 1 2 Ajri'Q Bosumtwi Crater 53>-<;24 579 2 Ill. (1967) (1967) CHAP~AN tID/. CHAPMAN CHAPMAN tJ d al. (1967) Tektites Africa Ivery COOSl Asia Imlomaloysio IndochinQ Philippines Australia Europe Czechoslovakia North·AmericQ Tl'~Q5 Georgia Martha's Vineyard Other natural glasses Tasmania Darwin Gloss dark light Australia Macedon dark light Henbury rrnpcct Glass I ",I 10'o" .-'~~~~-'-';~.--=::O;::'-~~ 1000 ppm Ba 10000 I I r ." ! ! ! ! Fig. 56-C-Z. Barium in tektites and other natural glasses Barium 56-C-,O centrations in the range of 330 to 1,100 ppm, the values of VOROB'EV (1959, 1960) both fat moldavites and indochinites are higber by a factor as great as ten, compared with tektite values from the same areas investigated by other scieneisrs. PIlEUSS (1935) gives a mean of 450 ppm Ba fat 36 tektites, 14 of which were moldavites. BOUSKA and POVONDRA (1964) published semiquantitative spectrographic data for mcldavites showing that six OUt of seven samples had 100 to 1,000 ppm Ba, and the otbee hadless than 100 ppm Ba. 'rhus, it cannot be excluded that VOROB'EV'S values are tOO higb due to a systematic error, especially slnce no simple parent material can be imagined whieh would provide so much Ba. TAYLOR (1965, 1966) could relate acsrralites by their Ba concentration and the content of othet clements to Henbury impact glass and Henbury gteywacke as parent materials. Similar investigations of SCHNETZLER el at. (1967) showed the consistency of Ba and RE concentrations in Ivory Coast tektirea and Bosumtwi Crater impact glasses and strong similarities to Bosumtwi phyllites. Calculations by TAYLOR (1962) made it obvious that no meteo rite splash could affect the Ba concentrations of the eesulticg impact glasses and tektites. IV. Lunar Samples Considerable effort bas been expended on analytical investigations of lunar samples ftom Apollo 11 and 12 missions. From data of the individual investigators, averages were calculated for the different types of material according to the classifica tion established by the Lunar Sample PreJimifJaty Examination Team (1969, 1970), (Table 56~C-6). The overall unwelgbted average for Apollo 11 marerial calculated from the means of the partieular batches (33) is 240 ppm Ba., s = 76. The range of data for Table 56-C-6. Baril/m ill IlIJIar rod:z Sample type Bariwn eomenr (ppm) arith. mean ApeI/o 11 (Mare TranquilliJa#s): Type A: line grained vesicular rocks 251 Type B: medium gnined vuggy igneous rocks 176 Type C: breech 230 Type D: "lunar soU" (fines) 169 Apoll() 12 (D&tan of Slorms) Basaltie rocks Breccia Fines Sample 1201.3 72 420 stand. dcv. No. of analyses 130 72 37 66 4<1 37 16 50 13 3 7 24 210 586 189 3,088 2,256 23 &ftrtmufor Apello 11 /amplu (mtl!Jadrin brod:tls): ANNELand HSLZ (1970)(5); BROWN et at, (1970) (X); CoMPSTON tJ al, (1970) (X); GAST eral. (1970) (1); GaLES et at. (1970) (N/R); HASl(]N el aI. (1970) (N/R); MAxw:ELLti al. (1970) (5); MORRISON el al. (1970)(N/R, M); MUR~ THY tI al. (1970) (I); PHlLl'OTTS and SCHNETZLER (1970) (I) ; SMAl"ES tf al. (1970) (I) ; T AnoR elal. (1970) (S); TERA tl al. (1970) (I); WAKITA tt al. (1970) (NfRh WXNx.e tI 01. (1970) (N/R). RifereNt for Ap()IIo 12 samplu: DRAx.e tJ 01. (1970) (M); HUBBARn er al. (1970) (1): HUBBARD tlol. (1971) (I); LSPET (1970) (5); MAxwELL and WIIK (1971) (S); SCHNE'ttLER elo/. (1970) (I); WAKITA nnd Scrnrrrr (1970) (N/R). Barium 56-C-11 total rock analyses covers 10 to 370 ppm Ba, but values of cprc 55,900 ppm and 24,400 ppm have been found (M) in interstitial K rich (9.4 and 10.9% K~O) phases From a 4 mm frngment from lunar soil (toOaS-LR-I) (ALBu and CHODDS, 1970). These K rich phases consist predominantly of glass and exeeemely fine-grained crystalline material. Tbelr chemical composition approaches but does DOt reach K feldspar composition. The K rich phase, which is present in about 6 vol.-% in sample lOOBS-LRRI, may also be responsible for Ba, Rh, and K concentrations in other samples, where a dose relationship between these dements was observed. For several samples. a grouping to separate high K, Rb, Ba material from low K. Rb, Ba material has been tried. A few samples do nor fit this separation. Still, the K/Ba ratios are rather eonstanc in general. Inhomogeneities of Ba content in different chips o(one sample have been reponed, especially by WAKITA eta/., N/R, (1970). Different ebips of their batch 10019 differ hyas mueh as 210 ppm in their Ba conrenr (130 and 340 ppm). Analyses (N/R) of size Fractions of lunar soil showed a Ba enrichment in the finer fraction (WAKITA el 01.• 1970). Enrichment of Ba in moon rocks from Mare Tranquillitatis is 26 to 110 times (GAST et 01., 1970) compared to cbondritie abundances. Within a single rock, concen tration factors are similar for the "Incomparable elements" Ba, U, Th, Zr, and REE e.'(eepr Eu. Several individual minerals have been analyzed for Ba. The results are given in Table 56-C-7. Apollo 12 samples from the OCC3!l of Srorms show lower Ba content in the basaltic rocks (average 72 ppm), bee higher values for breccia (average 420 ppm) and for "fines" (average 586 ppm). A most unusual roek is sample 12013 with 61 % sio., 2% KzO and an average of 3088 ppm Ba. Microprobe investigations of individual points in alkali feldspars of this sample gave upto B% BaO and 13.1 % KzO, i.e., compositions of celsian-orthoclase solid solution series (L/lnati& Asyl/lm, 1970). In rock 12013, Be is enriched upro mote man 2,000 times compared to chondrites (HUBBARD el (II., 1970). Table 56-C-7. B(I ,on/enlof ;ndMdll~1 m;lItr(l!J from Apollo 11 and 12 st1111plet Minernl Lunar sample Ba concentration Method Reference ppm A/J611t1 1': Plagioclsse Plagioclase Plagjoclase Oinopyroxene Pyroxene Pyroxene 10085 10044-24 10062-29 10085 10044-24 10062-29 Ilmenite <1; < 1; 15; 1,500 M I Z71 70.1 I <1; 45 M 93.7 I 30.9 I 81.2 I ANDERSEN d ~1. PHILl'OITS el t1/. PHILl'OITS d t1f. ANDERSEN d (II. PHiLPOITS el t11. PHiLPOITS el t1/. (1970) (1970) (1970) (1970) (1970) (1970) MURTHY tl t11. (1970) Apollo 12: Plagioclase AIk. feldspar AIk. feldspar 12013 12013 12013-10 (40) Ruised f'I\StI\lJCripl .. ~""': Scp«mbcr 1\171 910 10650 895; 910; 8,680; 20,400 M M M DRAKE tlol. (1970) DRAJU: tlof. (1970) LUNATIC ASYLUM (1970) Barium 56-0-1 56-D. Abundance in Rock-Forming Minerals (I) and Barium Minerals (II) I. Rock-Forming Minerals In igneous rocks of the earth's crust Ba usually does not form minerals of its own, but is distributed among a number of silicate structures, mainly feldspars and micas. The most Important substitution is for potassium due to tbe neady identical ion sizes, even wjth the somewhat more covalent cbacacter of the Ba-O bond. Substitution fot Ca is observed in plagioclases, pyroxenes and amphiboles. Apatire and calcite are the most important rock forming non-silicates containing Ba, a) Feldspars K feldspars are the most important Ba carriers. Investigations by Roy (1965, 1967) and G,-\T and Roy (1968) with synthetic rnembets have shown that a continuous series of solid solutions exist at high temperatures between K feldspars and ceisian. In me subsolidus region, rwo gaps of miscibility seem to exist, one close to the microcline composition and me other between hyaJopbane and celslan (Fig. 56-D-1). Tbc system BaO-~Oa-SiO~ was recently investigated by LIN and FOSTER (1968,1969). In nature, K feldspars with BaO >2% are rare. They are mostly restricted ro alpine type fissures (adularia) and deposits of manganese oxide. Be concentrations upto 9.5 % in feldspars of me orthoclase-ee1sim series are reponed from the alkalic rock complex, Magner Cove (ERICr.:SON and BLADE, 1963) and from phonolites in Sourh West Germany (\'l7EISKIRCHNER, 1969). Be distri-. burien in K feldspars has been investigated by many authors. As a general pattern, it was found that .in magmatic sequences the early crystallized K feldspars show the higbest Ba concentrations, whereas mlcrcclincs from pegmatircs were low (S) in this clement (SHIMER, 1943j BRAY, 1942). Metasomatic alteration of a g eanlre body (BJa.ck Forest, Germany) was discussed as a cause of abundant K feldspar pheno crysts wlrh a high and rather homogeneous Ba distribution by E~UfERMANN ([968), (X). Dlsrribution of Ba abundances in K feldspars is shown for igoeous rocks, peg_ matires, and alpine fissures in Fig. 56-0-2 using the data of Table S6-D~1. The histo grams clearly demonstrate that, in general, average pegmatitie K feldspars contain Jess Ba than those from granitic rocks. Ba may enter the plagioclase structure depeoding on composition in the An-Ab series, temperature and pressure, of competing elements. DUCHESNE (1968) found a correlation between potassium and Ba concentrations. Many indications exist supporting me view that all the Ba in feldspars can be plotted in the four compo~ nent system Ab, An, Or, Cn. Plots of Ba concentrations for different members o Springcr-Vcrbg Bera.. • Hcid<lb<rg 1m 56-0-2 Barium SANlDJNE HVALO~HANES "O"OCU.thC7N) " wl.%Cn O:IJ---r., i n _ _ '5'SllOO,......" 2IXD 6(XD 10::00 lIDXl IlIl1D Z2DOO 25DOO JOOXl Sa IN 56 K FElDSPARS fll:lM ALPlNE FISSURES 1000 3000 5000 7lJOO !llXI) nooo l3000 !!lOOO Ba. IN 320 KFEl..l:lSAI.RS I'iQol PEG/oWlTES DOD 500.) 7CKXl 9000 1100:1 tlOOO 1500l 17000 6'1 IN 317 K FEI..JlSFI'.RS FJb,4 ROCKS Fig.56-D-2. Distribution of Ba eeeeenceatlons in K feldspars (see Table 56-D-1 references) fOf BarIum 56-D-3 Table 56-D-1. BariJlI11 ronunfraf;ons ;11 KjeJdspart Rock type No. of analyses PtgmaJitu 7 36 6 5 44 17 15 5 9 11 40 44 16 64 11 4 Alpine fismru 13 3 15 33 1 Barium eecceceedcn range ppm 79 19 ' 209 59 20- 109 43S 199 arith. reean 1,130 27. 100 6,000 3,400 10,000 1,700 5,620 4,750 1,600 45' 47' 159 159 <19 600 76 27 397 1,000 9,000 171- 10,525 3,550 236-->6,000 11 4 3 2 10 Granite'" 150 Gnnjte·!nvikite 5 Alkalic rock 4 Monzonite, 25 132 710 911 2,408 1,290 355 436 1,660 4,581 251 495 5 X 5 5 5 5 5 5 X 5 5 5 5 5 5 5 <10- 10,525 863 220- 55,800 2,400 3,270 7,730 2,690 X 2,600- 29,000 14,050 630- 15,300 5,000 1,970 1,970 5 5 5 220-- 55,800 19ntolu ro~Ju Granite Granodiorite Quartzmonwnite Trachyte Granite Method Reference' avtragtjar 320 Jamplu N 7,481 162- 2,340 1,150 322- 1,440 810 BRAT (1942) CoRRJ>lA NlN£S (1964) VON ENGELHARDT (1936) ERICKSON and Bung (1963) HEIER and T"'Tl.OR (1959) HIGA'l:Y (1953) HiGAn (1949) HiTCHON (1960) MARKART and PJ\EISINGER (1964) OPTEOAL (1961) OPTEDAL (1962) OPTEDAL (1958) PIRANI and 5mBoLI (1963) SHCH.ERlIA tf oj. (1964) TATl.OR ttal. (1960) TOWNeND (1966) RTBACH and NISSeN (1967) MARKART and l'RI>ISINGER (1964) W£lBl'.L (1957) Wtillll'.L and MEYI!.R (1957) Hswnsr-r (1959) averagt for 65 sampl,'s 361 201 809- 5,4()0 4,700 3,920 2,475 X 5 5 5 BRAY (1942) BRAY (1942) BRAY (1942) CAJlIdICHlLEL (1965) EMILIANI and VE.SPIGNANI (1964) EMMER1rIANN (1968) VON ENGELHARDT (1936) ERIGKSON and BLADn(1963) HEmR (1960) 1,000- 9,500 ,9- 5,480 3,84() 2,765 5 5 HnmR and TAYLOR (1959) Hnu and DUTRA (1966) 360- 13,600 3,370 (1959) (1959) HOWIE (1955) JAsMUNn and StiCK (1964) MARKART and P8b:JJ:NGER (1964) 1,080- 1,260 5,100- 8,600 108- 90- 14,300 909- 4,000 130- 12,000 1,170 6,850 5 5 5 5 5 g=i", Granite, gneiss Gmnite, grano diorite, gneiss Trachyte Granite Cbarnockite Monwnitic :1.I:C\1 mulatew Granite, gneiss 41 12 10 3 4 16 2.500- 5,000 1.070- 12,100 5,000 5 5 5 X 19 364- 4,620 2,220 X 429- 2,700 1,550 fuwLEry fuwLEry Barium 56-D-4 Table 56-D-1. (Continued) Rock type No. of analyses Alkalic rock Granite Granite Quartz, monzon- Barium concentration Method Reference arith. range ppm meen 4 63D- 5,900 314 X 70 9 29 2<;- 9,480 4,35Q-..- 4,770 3- 3,000 2,124 4,560 X X S PERCHUCK and RYA.BCHIKOV (1968) RHODES (1969) RICHYER (1966) ROGER~ (1958) S S S S S S S S M M S X SCHARBER"l' (1966) SU'l" tJ oj. (1959) SHClIERBA. tlol. (1964) SHCHJlRBA. dol. (1964) SlIClIJ!RBA. d oj. (1964) SHClIER.6A. tl 01. (19G4) SHCHERBA. elol. (1964) SHCHEIl.lIA. e/ 01. (1964) S~II"l'H and RIDSE (1966) SlJITH and RISSE (1966) TOW~E~D (1966) WHITE (1966) 990 iric Granire 4 Geanite-ronalite 5 Gran.ite Granodiorite Adamellite Syenite Monzonite Syenodiorlte Different rocks Different rocks" Granite Granite II 91 14 1,020 3,000 2,500 45- 392 176 836 3 4 2 6 32 23 12 7 950 8352,000- 460 162 ISS 595 < 200- 18,000 <200- 6,200 277->6,000 76<;- 1,526 3,559 1,183 J- 18,000 2,626 1,240 averoge!IJr 598 samplu Sanidine. of the plagioclase solid solution series show that the pure components contain less Ba than the intermediate plagicclases (Table5G-D-2, Fig. 56-D·3). This may be due to the fact that the pure end members are mostly very late or secondary crystals which formed from a Ba-pcor liquid. Distribution of Ba between coexisdng K feldspars and plagloclases is discussed 3S a potencial geothermorneter by HEIER (1960, 1961). BARTH (1961) showed that a straight line relation exists between log rarios of Ba in coexisting feldspars and log inverse absolute temperatures. He deduced that below 2500 C, plagioclase is the preferred host mineral for Ba. IIYAMA (I96B) studied Ba distribution between potassium feldspars and plagloclases experimentally by hy drothermal runs at 600~ C and 1,000 bars. His results contradict the observedo»s in natural rocks as he finds higher B::I incorporation in the plagiccleses than in the coexisting K feldspars. RUDERT (1970) experimentally found an incorporation of Ba in albite at 930~ Cf1 kb, upro 3Dweight % of cclslan molecules; BRUNO and GAZ ZONr (1970) substituted large amounts of Ca in the modifications of Ba.A1:lSi20 g • In the hexagonal modification synthesized by solid stare reaction at 1,200~ C, Ca. replaces Ba upto 37% (atomic fmction); in ebe hexagonal modification obtained by ccyscallleaeicc of a melt, the replacement is limited to 25 % ; the same value was found for the monoclinic modificarioc by heating the mentioned modifications to 1,450n C. Barium 56-0-5 24ANORTH ITES 32 BYTOWNITES 'J9 LABRADORITES 131ANDESINES 3500 780LJGOCLASES 55ALBITES o 200 400600BOO XXXlt1OO1f.OO IiOOBXl2lXXlppm Fig. 56-0-3. Distribution of B1 concentrations in plagioclases (see Table 56-D-2 for references) 56-D-6 Berfurn Table 56-D-2. Barium cDllun/ratiollF ill plagiodolu from ;gmoliT al/d nulamorpJII& roth Qnd r~/u of bydrofh"I1lQ/ origin Rock type No. of Barium concentration analyses Anorlhilu from~ Basalt Pumice Anorthosite, gabbro and others Metam. rock (amphi bolite facies) ~euun. rock (granu lite facies) Dache-andeshe Norire ByJoI1lniJu!rom: Anorthosite, norite and ethers Gabbro-anorthosite: Basalt Meteen. rock (ampbibo lite f:tcies) Gabbro LabrtuloriJujrom: Anonhodte, gebbeo and others Basalt Gabbro-anonbcsire Anorthosite: Metam. rock (amphi oolite facics) Meeam. rock (gr.mulite facies) Ncrhe Gabbro Teechenite-basalr, gabbro Anduinu from: Anorthosite Granite, granodiorite Gneiss, anorthosite and others Gnnodiorite-anortho ppm arirb. mean 60 10 60 10 range 1 1 13 <100 3 <45 2 3 Method Reference Brass (1961) 500 <217 S S M Cokl£.TT and RIeBE <45 S SEN (1960) <45 80 <60 S SEN (1960) 1 <45 10 '0 <63 10 S S SEN (1960) SEN el <1/. (1959) 12 , <100 tOO < 100 M CoRllTT 40 320 2 270 7 22 <45 2 80+ B5 38 <100 CoATS (1952) (1967) , , and RIBBE (1967) 130 146 54 <46 S S S MUIR tJ 82 5 SEN If 300 <195 M E'!ofldONS (1952) al. (1964) SEN (1960) 01. (1959) CORUl"r and RUIIIs (1967) 200 800 400 5 2 3 130 85+ 115 580 347 160 122 150 160 5 5 S 4 270 480 295 S SEN (1960) 3 2 45 50 130 80 75 S 5 WAGNl>R , ,s so- 65 ColUlWALL :md ROSE (1957) EMMONS (1952) PAPEZIK (1965) SEN (1%0) SEN rJ 41. (1959) and MrrCHELL 1,500 451 S (1951) WILKINSON (1959) 630- 3,500 1,250 370- 1,000 310 M ANDERSON 5 Buy (1942) COlllEIT and R1BBE 19 <100 GOO <177 M 5 ,0 330 224 5 (1966) (1961) EmlONS (1952) site: Mnnzonitic accumulates 12 440-- 1,020 735 X ]umrND end SECK (1964) Gneiss Pegmadre Anorthosite 11 12 10 900-18,000 6,100 300 150- 1,075 384 10- 1,430 S 5 5 OFTWAL (1958) OFnDAJ.. (1958) PAPEZIK (1965) Barium 56-D-7 Tahle S6·D-2. (Continued) Rock typc No. of Barium coocentracion ana lyses Mctam. rock (amphi bolire facies) Metam. rock (geanu lite fades) arith. mean =8 0 ppm 15 <4> 12 4> 450 Method Refereocc 990 <224 S SEN (1960) 700 380 S SEN (1960) 560 205 174 390 S S SEN (1960) SEN (1960) SEN a al. (1959) \'7AGER and MITCHBf.L (1951) WILKINSON (1959) Geanlee Tonalite, granodiorite G:1hbro 4 2 250+ 6 6 80 200 870 320 255 600 Teschenlee, gabbro 2 350+ 600 475 S 3,4tI0 3.4tI0 <100- 1.100 <134 M M 850 S Daclre-andeske 5 S OJig{)CJa1tJ jrom: Anoethosite Pegmatite. granite and others 1 43 ANDERSON (1966) COIU.ErI' cad RmBE (1967) CORNWALL and ROSE B""" 2 700+ 1.000 Granite Pegmatite Granite 4 1 2 70 365 150 380 132 365 268 20. S S S Granite: Merem, rock (amphi bcllec facies) Metam. rock (gCWlU' lite: facics) Rhyolite-rhyodacitc 4 5 180 4> 250 210 540 205 S S E},l},lONS (1952) l!rrCHON (1960) PIRANI and SrIdBOf.I (1963) SCHARBERT (1966) SEN (1960) <90- 1.170 <425 S SEN (1960) 922 380 155 235 175 S S S S£N (1960) SEN (1960) SE;N tl oj: (1959) 650 <145 M Granirc Granite, granodiorite 7 2 5 2 (1957) 45- 1,800 6> 120+ AJlJilujt'Dm: Pegmatite, alpine fissure Ba!l:ll.t Pegmatite: Pegmatite Pegmatite Pegmatiee: Metam. rock (green schist facies) DiB"ecent rocks Pegmatite: Granophyre 36 <100 CORLl'.TT and RmBE; (1967) 1 700 S 69 X S S CORNWAW. and ROSE (1957) CoRIU':LI. NEVES (1964) EMMONS (1952) VON ENGEf.HAROT (1936) HtGAZY (1953) SEN (1960) 6 54- 1 1 1 2 1 2 1 5 <45 5 <45 S S 4' _24 <200 30 M S S SMITH and RnlBE (1966) TAYLOR tl ai. (1960) WAGER and MrrCtfll,LL (1951) 1.000+ 1.100 1,050 2,160 2,160 S S WILIGNsON (1962) Hswrsrr (1959) I 2 5 I <200 12 30 80 700 AJwrlhodaJujt'D",: Basalt, t:r:I.chyte Phonolite 2 1 56-D-8 Barium b) Micas and Other Important Rock Forming Minerals Micas are the next important Ba carriers in rocks. Ranges of Ba concentrations in these and other minerals are given in Table 56-D-3 and in Fig. 56-D-4. Ba is a concentrated in blotires as in muscovites. Only lepidolites have much lower Ba val ues. Generally micas from pegmatites show lower Ba values than those from the adjacent country cocks (TAKUBO and TATEKAWA, 1954). but each pegmatite may have its own "Ba level". Extensive material on Ba contents, mainly from peg matite muscovites, was published by HElNRICH~1 01. (1956). These authors found Ba concenrradona from Ito9,900pprn in 162 samples, predominandy pegmatite mus covites, They calculated an avemge of 1,020 ppm Ea. PeTRQV et at. (1965) found that the relative concenerations of Ba in biotires in crease with metamorphic grade. In rocks free of K feldspars, biotite is often the main Ba carrier, sometimes rogetber with pyroxenes and amphiboles. In skams • K-feldspar (983) Plagioclase {3771 923 , Nepheline (\8 1 , 1186 Leucitel7) 1198 Biotite (352) "1<" !; Muscovite (263) Lepidolite (3S) ,4 , quartz (16) tcurmcunetrcj Sphene 1191 Beryl (5J.) . '14, 7S ~ ~ T "<-x ,~ X_-----l 248 T , liO • T '24 TI • IT Olivine (19) ~ T Amphibole (187) f .<--< 83 , 10T Pyroll:ene 1m] B200 . '057 .-><----<--< Chlorite (26) Apalile(91] ~ , Phlogopitel261 I Gl:lrnel (lSI) 79 12 T Kyonitel26) Sillimanile{5J u ,. T ' I T r Ando.lusite 19l '36 T Scapo.lite( 1.2) Calcite 11.7) • 60 • _ _ .T , I 0 10 --< ! '00 ! 1000 ppmBa , 10000 Fig. 56-D-4. Ba ccncenrearions in rock forming minerals (see Table 56-0-4 for references). " Indit.:lccs total averages. x Indicates group averages Barium 56-0-9 Table 56-0_3. Bar;'11l/ rO/Jrel1fmfiol/l ill rork jumillg mil/erall Rock rype No. of Barium ccncenrrarlcn ana arith. range lyses mean ppm of igmolfl IIlId 111tlllm~rphir for}:1 Method Reference Ntphtlillt Alk.wc cock Alkalic cock 3 5 <45- 3,320 100- 3,000 1,270 1,200 5 5 Pegmatite Alkalic rock 6 4 <10 20 <100- 3,400 20 1,670 5 X < 10-- 3,400 923 VON ECKER~rANN(1952) Earcxscx and BUDE (1963) OFTEOAL (1962) PEllCHUCK and RYABCHTKOV (1968) m'uogtjor 181amplu Ltllrift Leucite-basanire 2 1,160- 1,250 1,200 5 Leueleepbyee-leuelre hasanirc 5 710- 2,250 1,180 5 710-- 2,250 1,186 VON E1'.lGEl.lIARllT (1936) H.J'.NDER~ON (1965) m',ragtjar 71amplu Biofift Paragneiss Alkalic roek Quaetzdiodce-granlre Chamnckire Pegmatite Gneiss, schist, amphibolite Gneiss, amphibolite Goc:iss, schist Pegmatite Quarnmonzonite, granodineite Goeiss, schist Mcoadcose Granite, norite Pegmatite, wallroek Metamorphic rock (staurolite zone) Migmatire, granite Basalt Cordierire-biorire, gneiss 67 103 600--5001,430240-1,700- 720 470 .1,100 2,000 6,730 5,000 6,360 294 241 7'0 1,500 5,200 1,405 4,065 84+ lOll '0 5 25 300- 2,200 ·930 5 4 900---12,000 4,500 5 13 2 7 35 4QO..... 2,700 900+ 2,300 45- 2,320 100- 1,200 1,830 1,600 717 750 5 5 5 5 BRAY (1942) Buy (1942) BUTLER (1967) CAllO (1964) CAll~fICHA..EL (1967a) DOOGE tf 01. (1969) VON ECKER}lANN (1952) E~IILlANI and VESI'IGNANI (1964) ENGEL and ENGEL (1960) ERICKSON and BL<l.OE (1963) HASLAM (1968) HEIER (1960) HITCHON (1960) HUN21CKER (1966) 8 20 3 24 900- 3,180 120- 2,450 200 400 450--- 8,500 -2,400 5 5 5 X KRETZ (1959) MOXHAM (1965) OFTEOAL (1962) RIMSAITE (1964) RmSAlTE (1964) SCHWARCZ (1966) SEN eJ 01. (1959) STERN (1966) TUREKIAN and PHINNEY (1962) WHITE (1966) W'LKlNSON (l962) WYNNE-EDWARDS and HAT (1%2) QlltrQJjtjof J52 Jan/plu Granite, granodiorite 12 Pegmatite 3 18 Schist 5 Metapelite 8 Rhyolite GC21litic rock 34 Alkalic rock (carbon 8 atire) Granite 2 17 7 10 48 22 8 1 8 810 300 1,212 5 5 5 5 .1\1 5 5 2,700 1,086 2,500 2,000 1,410 808 780 1,822 873 BOO X 5 5 5 5 240- 1,335 2,500 60 530 880 2,500 290 X 5 5 42- 8,500 1,198 900472500<15042- Barium 56-D-10 Table 56:-0-3. (Coorinued) Roek type No. of ana- IYSl:s Phlogopi/t Wyomingite, orendire 12 Wolgiditl:, wyomin. 9 gite, .6u:royill: Alkalic rock 2 Lamprophyre, b:l5alt Mwmvile Granite Pegmatite Schist Granire Pegmatite Pegmatite Pegmatite Goei5s, schist Alpine fiSllu.re Metameephie rock Pegmatite , 7 5 22 2 168 I B 14 2 I 2B Barium conceeeeadon range arith. ppm mom 3,670-10,100 3,140-14,300 7,350 12,000 M M C!.RMICI-IAEL (1967b) CARMICHAEL (1967b) 1,000+ 4,000 2,500 5 2,700- 4,850 4,016 X 1,000-14,300 8,202 ERICKSON and BLADE (1963) RIJdSAn'E (1964) avrrage for 26 [ampler 900 490 125 lOB- 23- 360 1,400-- 2,900 1,000+ 1,100 1,930 1,050 2- 9,BaO 1,020 36 110- 1,200 250+ '00 ss 160 850 265 21,400 180- 1,650 21,4<10 2-21,400 1,057 797 >- 9 , 18 7 2_ f8 4 , 20- '00 10- I! 17- L~pidolill Pegmatite Pegmatite 26 9 Method Reference 2- 5 5 5 5 5 5 5 S S \'<f S BRAY (1942) .BRAY (1942) BUTLER (1%7) E~IIL[ANr and VliSI'IGNANI (1964) HEINRICH et st. (1953) HEINRICH (1967) Hrrcno» (1960) HUNZICXER (1966) SCHWANDER ela1. (19GB) SNETSINGER (1966) S"I'EIlN (1966) aprrage jor 26J lampler S S HEINRICH tl al. (1953) HEINRICH (1967) avtragejor J5 lal1Jp/~1 120 5 SO 25 5 148 36 S CoRNWALL and ROSE (1957) E~IILtANI and VESPIGNMolI (1964) GIU.SENS (1967) >58 5 MoHJt (1956) Chlori/~ Basalt Granite Sehisc I! (2,100) Garnet, chloeire, schist Quartz Granite Pegmatite Basic intrusion Amphibole Metamorphic rock (amphibolite) \Xlolgidite, orendite 1 358 10- 2,100 8J SSO 50 410 4 ,.().... I! ,().... 1 7 , 4 I! 7 average jor 26 lal1Jplu 5 5 5 BIl.AT (1942) Hn'CHON (t960) \'1AGe" and MrrCHELL (1951) Qt·tragejor 161amplu 7- 550 112 <5().... 200 100 5 CARO (1964) 1,800- 5,400 3,700 M C"'R~lJCI-lAEL (1967b) Barium 56-D-11 Table 56·Dv3. (Continued) Roek type No. of analyses Barium concentration Method Reference urith. range ppm meao Schist, glaucophane 9 2- 120 20 5 Schist, riebeckite 4 <4- 140 74 5 Schist, actinolite 2 12+ 410 211 5 Granite 17 Granodior-ite, quartz- , 715- 50 95 30 5 60 S diorite Metamorphic rock (amphibolite) 24 24- 320 100 S Dicrirc, porphye 15 100- 13 6 44- 300 104 36 36 150 Schist Quartzdiorite Granite Rhyodacite Gneiss, schist Monzoniric accumulate 4 1 a 11 Gneiss, amphibolite 16 AmphiboLite 9 Gneiss, schist 20 2 Nep beliuc-ayenite , pegrnarirc 1 Ophiolite Tonalite, granodiorite 12 Essexire 2 Basalt 1 PyrtJXtJlt Basic layered rock Basalt Basalt etc. COl£lotAN and P APIKE (1966) COLE!>tAN and P APIKE (1966) COLEloCAN and PAPIKE (1966) DODGE 11 .. l. (1968) DODGE er at. (1968) ENGEL and ENGEL (1962) ENGEL (1959) GRESENS (1967) HASLAM (1968) HASLAM (1968) HASLA~1 (1968) HUNzlCKER (2966) 195 60 5 5 5 5 5 5 (1,200) 90- 1,780 7S5 X 160 230 150 15 5 5 5 5 JMMUND and SEC~ (1964) KRETZ (1959) KRETZ (1960) MOXHAM (1965) OFTEDAL (1962) 27 5 5 5 5 PLAS and HUm (1961) S,E;N,t 0/. (1959) SnIP~ON (1954) WILKrNsON (1962) 1010180 <10- <90[010+ 20 27 lO- 2S-100 20 20 180 300 360 485 <90- 66 BO 150 40 90 100 2~ 5,400 12- 22 18 S 214- an'a.!,' for /87 JO"lpltl 5 5 s ,0- BOO 60 195 Alkalic rock Alkalic rock 9 32 <4S-- 540 160 300 5 5 Peridotite Quarrzdioritc 2 4 1 10 10510 <90- 18 27 14 16 360 <145 5 5 5 5 ATKINS (1969) BrERs (t961) CORNWALL and ROSE (1957) VON EcKER~{ANN(1952) ERICl'SON and BLAOE (1963) GREEN (1964) HASLAM (1968) ISHLOKA (1967) KIl,E;T2; (1960) 20 <S-10+ <1- 22 ~11 5 5 5 LEELA.NANDA~I (1967) LEMAITllli (1962) MOXIIA~( (1960) S MUIR It 0/. (1964) NIXON It 0/. (1963) Granite Mccamcrphic rock (skarn) Chemcckire Basalt, trachyte Metamorphic rock (skarn) B:lS:Uc Kimberlite 14 1 2 38 60 <10- 5,000 10 SO 44 s 5- 4S 9 <10- [SO 30 12 21 33 5 56-0-12 Barium Table 56-0-3. (Continued) Rock type No. of Barium concentrations ana range arirh. lyses ppm mean Method Reference Pegmatite Olivine b:L5a1t Metamorphic cock (skun) Syenire, gabbro, - esscxite Oahbro 1 1 38 10 1.5 S 1 65 5 <1<> 30 <21 S SIMPSON (1954) 9 <5 60 16 S WAGER and MITCHUL 'Teschenltc, basalt, gabbro 11 <5 60 11 S (1951) Wn.KINSON (1959) < 1- 5,000 75 10 1.5 N/R 15 S OI'TEOAL (1962) (I 0/. (1968) ONUMA SBAW d oj. (1963) aPlrogr for 221 JOl1lplu from the Greenville province, KRETZ (1960) reports that the Be content decreases in the following sequence: biotite> amphibole> pyroxene. The structure of chain silicates, where Ba occupies Ca positions, seems to accept more Ba at higher tern perature of formation; ENGEL. and ENGEL (1962) found an increasing Ba content (9, 18, 86, 106 ppm) in hornblendes from metamorphic rocks formed at 400, 500. 525, and 6250 C Quartz has a rather low Ba content, and it is not certain whether contamination by other minerals was avoided in all analyses published. From minerals of metamorphic origin, garnets exhibit the highest Ba values. Kyanites, sillimanlres, and andalusites arc much lower and always contain less than 100 ppm Ba. Calcite from alkalic rocks in the form of carbonadtes is somewhat enriched in Ba. Crystals from hydrothermal veins generally have very low Ba conceorrations. The vcry rare Ca-Ba-carhonates, alstonite, baryeocalcire, and bensronire are of no Importance in rock formation and do not form solid solution series with the end members. Depending on type and ecvimnment of formation, zeolites contain different amounts of Ba in their structures. Upto 300 ppm Ba were found in analcime sed natrolire (ERICJ.:SON and BLADE, 1963; WJLKIN'SON, 1959). In srilbitc, thomsonire, cbabasite, gmelinice, and gismancline, concentrations between 600 and 5,200 ppm Ba were reported (Hess and RoY, 1960). Phillipaites, or constituents of the series pbillipsue-harmotome, which occur In manganese nodules and in larger amounts in certain deep sea sediments. may be extremely enriched in Bs, upto 44,500 ppm (SHKABARA, 1950; Hoss and RoY, 1960). c) Barium Partition between Mineral and Host Rock and Between Coexisting Minerals During the first stages of differentiation of basaltic magmas, Ba is enriched in the liquid phase. Witb progressing crystallization Ba is incorporated, especially in K feldspars and micas, which extract chis element from the melt. Pcgmeddc stages of differcntiation series are consequently often impoverished in Ba. Table: 56-0-4. Barimll dirJribllliOll b(/IJ'w/mil/(rals alld IMal ro(k, Pair mineral rock No. of pairs 7 5 Barium concentration range: mineral 120-1,800 770-1,100 1,100--1,400 400-1,100 1.17- 8.95 0.723.98 2,14- 2.37 1.6 15 M <10-1,140 0,13->16.3 5 .8 140--6,900 560-3.500 2,600-3,000 1,400-6.700 Gnnc:t tracbyre Eclogite: 11 150- 165 Amphibole: Biotite Psc:udoJeucitc Leueice Rhyodacite: Metllllrkose Juvite:. tinguaitc Leueire-porphyre, Ieucite-basanite Biotite: Arnphibclite Biottre Gneiss Arnphibolite:s Grn:iss Granulite Gronitic gneiss Granitic gneiss Biotite gneiss Muscovite: Museovite Plagioclase: Orrhoclcse Biotite: Biotite: 1 180 7 7 5 472-1,086 50--4,000 710-2,250 1,190-1,730 50--6,500 1,950--2,250 9 575-1,150 290-1,150 1,000--1,200 390-1,100 110- 475 3,330-5.380 847-1,110 60- 530 270- 760 250--1.050 270-- 760 310--1,050 160--2,500 706- 731 706- 730 103- 380 19 5 9 12 5 2 8 5 5 5 rock ppm Trachyte: Trachyte Phonolite Dacite.Yhyolire 2 Mc:thod Reference ppm Plagioclase Anorthocl:m: Biotite Sanidine Distribution coefficient Bamla/Barock 580 0.31 0.290.230.361.22- OAO1.330.850.114.671.200.41- 5 0.65 5 1.00 X 0.81 X 5 5 4.08 5 3.55 5 3.37 5 4.60 2.44 7.38 1.52 3.95 X X 5 BERLIN and HENDERSON (1969) BERL1N and HJlNDEnSON (1969) BERLIN and HENDIlnsoN (1969) C... UlIC.,,,,EL (1967a) HAIIN-\'V"IlINUElUI:R and LUel.:E (1963) HASL... M (1968) H",SL...}! (1968) HENDERSON (1965) HENDERSON (1965) ,•'". "3 HUNZICl.:JlR (1966) HUNZICIo:ER (1966) HUNZ1CKER (1966) HUNZ1Cl.:ER (1966) SIiN (1960) WmTE (1966) WHlTl;; '(1966) \'V"YNNE-EDW...RDS rt al. (1962) ~ m , -"'" , ¥: tJ ' Table 56-0-5, Eori"m tliJ/ribtl/io/l bdw/lIl eo/xiI/bIg mi/leroh ~ Pnirs mineral I mineral II Biotite Muscovite No. of Rock rype pain 5 12 18 Biotite Biotite Oonocfase Gamet 7 8 22 Biotite Biotite Hornblende Pyroxene 5 20 2 (phlogoplre) Biotite Alk. feldsp. Snnidine Sanidine Orthoclase Plaglocl. Plagiocl. Pyrolto;no; Pyroxene Ciinopyrox. Ilmenite Plagioclase Plagioclase Amphibole Nepheline Amphibole Clinopyroxene Amphibole Sea polite Olivine 7 4 12 11 3 10 3 5 19 2(6) Gnci~~, migmarite Schist, paragneiss Schist Migmadre, gneiss paragneiss Memm. sequence (42) Metamorphic rock Gneiss, schist Phonolite, rhyo dacite Metaarkose Trachyte Monz. eumularcs Monz. cumulates Alkalic rock Monz. cumulates Dceanire, andesite Sk:lm Skarn Ankoranite, alknli basalr Range mineral I ppm Ba Range 1,250" 1,525 11 600 240 350 580 1,000 120 2,480 + 630" 1,970 11 1,400 -2,900 1,176 -6,718 35 -1,100 1,100 1,335 2,200 1,410 3,000 2,450 4,670 mineral II Range of discrib. ppm B:I coestc. 11 15 10 21.3 + 38 60 485 55.0 472 - 1,086 7 132 2,700 - 6,900 560 -3,500 -12,100 394 -1,165 90 -1,770 900 -12,100 100 -3,400 990 - 2,300 -415 -1,780 395 - 1,170 23 1.26 10.2 58.2 2.6 12 ->500 26 1 14 210 31 4.9- 175 1.9 5.1 '00 1.98 0,80 0.31- 0.56 0.20- 0.25 2.00-15.0 21.0 -75.8 33 -68 2.50-60 116 +85 0.01 - 0.28 0.93 -10.8 2.30 -15.9 1.50 -22.1 0.38 -25.0 0.51 - 1.69 4.75 -18.7 <0.016-- 2.00 0,013- 0.20 2.59 -34.5 Method Ref erence x X 1 1 S X 3 5 5 4 5 2 6 S I s s X X X X 7 8 , 10 11 11 12 11 J 8 S S I 13 13 8 R,jtrMU: 1. RUISA1TE (1964); 2. BUTLER (1967); 3. WHITE (1966); 4. ENGEL and E:-:GEL (1960); 5. Tt:n.EKlAN and PHINNEY (1962); 6. HIETANEN (1971); 7. 1IoXHAM (1965); 8. PH1LPOTTS and SCHNETZLER (1970a); 9. SClIWARCZ (1966); 10. B.r:n.U:-l and HE:-lI)ERSO:-l (1969); 11. JAS~IUND and SEC~ (1964); 12. PEI1.CHUCl.: :lnd RYAilCHiI.:DV (1968); 13. SHAW dol. (1963). II average. tn m e· ~ 3 Barium 56-0-15 The degree of relative incorporation of an dement into a specific mineral is given by the ratio: D __ concentra~j.~of Ba in the I?~~~cry---=~ concentration of Ba in the: melt This distribution coefficient can be calculated if equilibrium phenocrysts are corn pared with total ground mass, for instance, of volcanic rocks. If the amount of phenocrysts is low, the Ba content of the total rock can be used in the denominator of the above given equation. Distribution coefficients can also be calculated for metamorphic rocks, which constitute equilibrium mineral assemblages. A number of these coefficients have been calculated from published data (Table 56-04). It must be mentioned that the distribution coefficients depend on several factors: pressure, temperature, the amount of Ba available, presence of competing dements, etc. BULIN and HENDERSON (1969) determined Ba in sanidine and plagioclase crystals, and the embedding ground mass of eraebyees and phonolites. They could reconstruct, by Ba and Sr determinations, the sequence of crystallization (sanidlne or plagioclase 6rst) and even detected in one case indications for secondary redis tribution. PHlLl'OTIS and SCHNE'rZLER (1970a), analyzing (I) phenocrysts and a matrix of basic to intermediate volcanic rocks, calculated partition coefficients (Ba concen nation in mineral/Ba concentration in matrix) for: plagioclases, 0=0.0537 to 0.589 (9 pairs); K feldspars,O =6.12; clinopyroxenes, D = 0.0129 to 0.388 (10pairs); ortbopyroxenes, D =0.121 ?-ad 0.141; micas (biotite-phlogopite), D=I.09, 6.36 15.3; homblendes, D =0.0996, 0.417, 0.731; garnet, D =0.0172; and olivines, 0=0.00864 and 0.0112. Only K feldspars and micas concenerare Ba relative to the matrix. They observed a strong coherence of Ba and K in almost all phenocrysts. The D-value of the K/Ba ratio is within the range of 0.5 to 2.0 in nearly all their examples. Since this K/Ba ratio is found to be extremely consistent in basic rock types, these authors recommend it as an "indexing criterion" for solar systems. Ba distribution coefficients herween coexisting minerals (Table 56-0-5) give some idea of the relative importance of minerals for the Ba ccnreor of a rock. It must be kept in mind that analyses of mineral phases isolated from a certain rock do not necessarily represeor equilibrium conditions. Ba concentration in a definite mineral is affected. by pressure, temperature, Ba availability, structure and position in the sequence of separation from the melt, and other parameters. A useful index of fractionation is the ratio Ba/Rb. Be has a tendency to be captured in early K minerals, whereas Rb is enriched in the residual melts due ro its smaller charge and larger ion size. TAYLOR and HEmR (1960) report a variation of the Ba/Rb ratio in feldspars from gneisses, granites and pegmatites from 54 to 0,04. II. Barium Minerals Because of their abundance, the most important Ba minerals and consequently the main Ba carriers in the earth's cruse are: in Igneous rocks. K feldspars, whirh contain a certain percentage of celsian molecules; and in sedimentary rocks and hydrothermal deposits, barite. Under special conditions, a large number of well Barium 56-D-16 defined Be minerals can form. Sometimes they arc reported from only one locality. In Table 56-D-6 the nonsilicates and silicates are listed. Criteria for me presentation in these lists have been: (1) reported by STRUNZ (1966), and/or (2) approved by the Commission on New Minerals of IMA. Table: 56-D-6. Barium mintrall Mineral Formula Oxidu Bitlictite Hollandite Pandnirc Prldcrlre Psilornelaoe Rijkeboerirc Todnrokire (BaO·6UO~·11Hp Ba:Mns0 16 (Ba,Sr, Ca)(Nb, Ti, Ta)P.·H~O (K, Ba)l.a(Ti, FC)P'I (Ba, H:0)Mns010 Bat_,,(Ta, Nb):PiH:O) (Mn, Mg, Ca, Ba, Na, K):Mn sO n ·3H,O Carb(Jrloftl Alstonite (Ba-aregeaire) Barytncnlcite Bennonne Burbankire Esrbocemaire Ewaldire Hu=ghoitc Kordylite Mckelveyice Ncrseehiee Srencnicc Witherite BaGi.{COah BaCa[CO~h (Ca, Mg, !l1nMBa, S~).[COs]u (Na, Ca, Sr, Ea, CcMCOsl~ (Ca, RE, Na, Sr, Ba)[CO~] Ba(Gl, RE, Na, K, Sr, U, O)[COsJ. BaCe(COa ]2F. Ba(Cc, La, NdhFJ{COah Na2Ba~CaY:[CO~]g·Hp BaMg[COa ]: (Sr, Ba, Na)2A1[CO~]F BaCO~ Nitra" Niuobadte Sulfa/e"' Barite Stlmifl Guilleminite Pbosphalu. Arsena/a. Vonadares Babefphire Bergenirew Dueserme Feeeaairec Fnncevillite Gam:agarite Gorceixire Hcinrichite Metaankoleire Metaheinrlchitc Metauranocircirc 1 Meteuranocireitc 1I Strcnriumapatireb Uranocircite: I Uranocircite: 1I Vesignictite: Weileritc d Be:$Ba,fPO,],O F,·O.35H 20 Ba(UO,J,[PO.M°H).·SH,O BaFe~+,H[AsO.MOH). (Pb, Ba),[PO,kSH20 (Ba, Pb)(UO,J,[VO.Ja·SH20 Ba,(Fe, Mn)IU,Ol$(OH): BaAJ,(OH)&[PO.],·Hp Ba(UO,J,[AsO.J,·10Hp (K, Ba)(UO,J:[PO.k6H:O Ba(UO"2[AsOt]2· SH P Ba(UOal:[pO, la·SH20 Ba(UO~2[PO,]:·6Bp (Sr, Ba).(D., RE, ;\Ig, Nalt[POIMF, OH)s Ba(UOal.[pO,J:·12H:O Ba(UO~.[PO']2·10Hp BaCu,[VO,].(OH): BaAI)Ho-IIAsO" 50,]:(01-1),_. Barium 56-D-17 Tablc 56-0-6. (Continued) Mineral Formula NuoJilkaJu Bariumuranophane Garrclsite BnH[U0:JSiO{l.· 5HP (Ba, Ca)4H6SiJ110~O SoronlkaJes Bnferrishe Barylite Hyalorekritc Innelite L:l.buotsovite Nenandkevlchiee Shcherbakovite Yoshimuraire Ring JilkaJu Armeni[e Baotire Benitoke Cappclenite Muirice Papsrite Taramdlite Traskite Verplanckire BaF~TiSi~Os BaBe~Si~O~ (Pb, Ca, Ba)IB[Sig01?](F, OH) Ba.(Na, K. Mn, Ti)~Ti(O, OH, F),(S. Si)O~/Si"O?] (K, Ba. Na)(Ti, Nb)(Si, AlMO, OH)7·Hp (Na, K, o, Ba)(Nb, Ti)[Si,071'ZH,O (K, Na, BaMTi, Nbl:[SL;,07h (Ba. Sr),(Mn, Fe. Mg),(Ti, Fe)(OH, Q),{(S, p. Si)O,JSiP?] BaCa~ISi801S·2H!O B~{Ti. Nb)8Si,O:,Q BaTiSi 3 0 S (Ba, Ca. NaMY, Ce, La>s[BO.MSiPs] BaIDuy,fnTiSilo03S(OH, Q, F)IO Ba(Sn. Ti)Si 309 B~{Fc3+. rt, Fel+M0H),lSi{Ol:] B8tFe~Ti.Si1l038(OH,a, F)6·6H.O Bag(Mn, Fe, Ti)SiP.(O, ox. C1, F)~' 3H,O ce, Cbaill Jiliralu Batisite Krauskopfiee W:alsuomice Shed Jiliralu Arumdite Baelumphlogoptee Barium vll.n2dium-muscovite Gillespite Oellaclrerlre Sanbornite (Ba, K)(Fe, MgMSi, AI. Fe)4010(O, OH)2 (K, Ba)Mg 3<F, OHMAISi30 ID] (K, Na, Ba)(Al, 'rt, V, MgMOHJ.[AISi:O'Dl BaFe[Si"O,oJ (K, Ba)(Al, Mgh (OH, F).[AISi,olol Ba.[Si"O,.l Trr/ruilirales (Wi/bolll z~olilu) Baaalshe BaN:l:![AI.SitO I] Cdsian Ba[AItSi.Ds] Paracelsian Ba[AI.Si,Os] Bariumafbire solid solution Ab-Or-Ce Bariumpl:rgiodasc solid solution Ab-An·C.. solid solution Ce-An Calciocebian . solid solution Or-Ce Hyalophane solid solution Hariurnsanidine B:tAISi~08(OH) Cymelre Wcnkite (Da,GiMSOll.A1tSinOu(OHh 56-D-18 Barium Table 56-0-6. {Continued} Mineral Zeoli/a Barium heulandire Brewstedee Edingtonire Harmotome Wellsite Formula (Cll,Ba){AI1SiPls] -6H ,O (Sr, Ba, Cl\)~ Al.Sil10,~ ·10H.O Ba A1~Si,Olo -3H~O B~ AI.Si 120,,-12H.O solid solution phillipaite-harrnotornc Vl/dassift:J silica/a Fresnoire joaquinite Leukosphenite Macdonaldite Tiensharrire B:l.tTiSiP. NaBa(Ti, FehSiPII BaNa.(TiO),{SiP41J BaCa...SiaO,.-11H,O N~BllMnTiB.Si80.o Calciobarite (C.'\), Beriroceleseite, Cclcsrobarirc (Sr), Barltoangleslte, Anglesobaeirc, Hokutolite,·Weisb;u:hite (Pb), Radicbarkc (Ra). Reviews on composition, occueence, and crystallographic and phvaieal properties are given by DANA (1951), HINT'.t:E (1930, 1938, 1960). X-ray evidence for the exiscenee of a barlre-celcsrhe isomorphous series has been obtained by SABINE aod YOUNG (1954). BOSTRthl e/ 01. (1%8) studied subsolidus phase relations and Iautee constants in the system BaSO.-SrSO••PbSO•. • Barite Forms more or less continuously, solid solutions with Ca, Sr, Ra, and Pb ~ulfates. In keeping with respective compositions, different names are used for the members of the series: b No decisive vote of the IMA new mineral commission. e Doubtful mineral species. a Not yet approved by IMA new mineral commission, Barium 56-E-l 56-E. Abundance in Common Igneous Rock Types A survey of Ba concentrations of rocks published by v. ENGELHARDT (1936) showed that Ba content in igneous rock series normally increases with increasing SiD: concentration. Recent data of Ba concentrations in common igneous rocks are summarized in Tables 56-E-l and 2. The grouping follows the outlines of WEDE 1"0HL in volume 1 of this handhook. The listing contains the range of individual values, the arirhmcue means and the standard deviation (s) of these means. Ba distribution in the main rock types is briefly discussed, as well as its bearing on genetic interpretations. I. Ultramafic Rocks The most important ultramafic rocks in the development of magmatic series are dunltea and peridotites. From the available data, mostly spectrographic, an average of 8.8 ppm for dunite and of 25 ppm for peridotite was calculated. In their table of elemental distribution in the earrb's crust, TUREKIAN and WEDEl"OHL (1961) preferred a neutron activation value of 0.4 ppm Ba for dunire rather than a spectrographic determination average of 6 ppm. All data for these rocks suffer from potential contamination (sec discrepancy between finds and falls of chondrites) and from analytical difficulties oceurring close to the detection limit of Ba. Pyroxenitcs contain a little more Ba (average 23 ppm); biotite pyeoxenitcs have concentrations upto 3,200 ppm Ba (HIGAZY, 1954), as do kimberlites, where phlogopite is the main Ba carrier. Very high values are also reported for carbonatires (average 3,520 ppm) which sometimes even contain barite. n. Gabbroic and Basaltic Rocks Gabbroic rocks of intrusive occurence (average Ba content 246 ppm) closely resemble continental tholeiitic basalts (average Ba eonrent 246 ppm). Basalts can be divided iuro three groups according ro their trace element concen tration (Fig. 56-E-l). The averages for Ba arc as follows: Oceanic tholeiitic basalts Tholeiitic basalts of continents and oceanic islands Alkali basalts 14.5 ppm Ba 246 ppm Ba 613 ppm Ba. All trace element data for oceanic tholeiitic hasahs indicate a general uniformity for widely separated parts of the oceans. MUlIl ell/I. (1964), however, determined Ba front the rift zone of the Midatlantic Ridge, at 450 N, and found 55 to 220 ppm (S). The continental tholeiitic basalts contain more Si, K, Ba, Cs, Pb, and Rb than oeeanie tholeiitic basalts (GAST, 19(0). 56~E~2 Barium Table: 56-E-1. BarilUJI in Rock type Alka1i granite Granite Granodiorite Quartadiorite Quartzmonzonite Alkali syenite Syenite No. of local ilies cr No. of mean values used " References b in ppm in ppm 19 28 22- 2,100 22- 3,000 857 732 7 5 3 53 400-- 1,815 18 18 150-- 1,250 888 811 233-- 6,000 1,605 12,87, 124 , to 300-- 2,070 1,067 21,34,75, t09 30 230--18,000 2,753 24,34,44,58,63,97, 100, 109, 111 4 2S 148 7,500--14,000 10,360 4 Diorite 10 Anorthosice 3 4 12 Nepheline syenite Arith. mean of means grouped by locality 608 Gabbro Norire rocks 3 1 3 Mom:ogabbro No. of Range of iedi individual vidual values values illtrllJi~~ 66 18 524 126-- 1,150 S-- 1,250 655- 475 310 714 246 11, 12, 73 453 6,73,83,87, 124, 131 87,90,131 100 75.87, 90 228 171 78 10-- 6,300 1,427 6,17,21,24,26,31, 32,49,50,54,55,57, 62,67,72,73,75.80, 83, 85. 87, 89, 93, 106, 121, 126 4,21,75,87,91, tOO, 101, 109, 111, 127 75,91 75,87,99 1.206 Z1, 34, 35, 43, 44, 58, 59, 61, 75, 111, 125 3 1 5 8 3 850-- 2,800 1,598 64,88,111 650-- 2,000 1.500 63 66 88-- 2,430 973 Dunitc , 18 Peridotite 6 Pyroxenite 2 Kimberlite , Essexire Tesehenitc ljolite. meltcigicc, jaccpyraegiee Corbccadre 4 , 0.>-- 40 70 15.5- 67 27, 35, 43, 44, 75 8.8 38 34.39,56,75,98.100 23 75,98 13 35 20- 2,860 847 215 88--54.000 3,799 38, 39. 64, 75, 98 23,29,53.68 23,27-29, 35, 41, 46, 64, 69, 105, 123 .. s is the standard deviation of the mean values of the difl'ereot authors, srcndsed devlatioos are given omy when 10 or more mean values wete available. " Foe list of references sec Page 56-E-4. / 56-E-3 Barium Table 56·E-2. Bariu/1/ ill lJoka/lie rock! Rock type No. of local- ides 0' No. of individual values Range of individual values Arith. mean of means grouped by locality in ppm in ppm " References b No. of rnean values used 8 126 1- 700 118 20 153 5- 3.650 1,127 Rhyodacite 3 12 7 22 550- 1,800 150- 1,250 1,210 Dacite Quartz larlte Alkali trachyte AlkaJi rhyolite Rbyolite Trachyte 632 629 550 1 2 10 2 30 800+ 1,500 20- 3,000 1,150 1,177 3 2 4 1,379 7 841 703 475 25.30,36,86,102, 103, 109 8.9,18,25,26,30,74, 79,88,89,92,103, 108, 109, 112,121 18,30,89 87,89,118,122 112 667 88, 128 3,36,71,88,92, 107,128 18, 88, 112 88, 112 2, 3, 8, 39, 45, 51, 74,79,88, 89, 108, 110, 112, 115, 118, 120, 122, 128 3,5,8,10, 13-16, 19,20,22,37,48,51, 52,60,65,74,76,77, 81, 87-89, 92, 94 96,99,113,114,117, 119, lZ7, 128 I, 3, 33, 51, 66, 76, 78,81,88,116,117, 129, 130, 132 33, 42, 70, 82, 84 27, 71, 88, 104 Lame minette Latire andesite Andesite 23 185 137- 2,500 3DO- 2,250 80- 2,700 Tholeiitic 51 555 20- 1,160 246 197 Alkali basalt 16 tOO 3Q.- 1,350 613 223 OCC3nic tholeiite Phonolite Nepheline basanite Nepheline 41 5 41 42 lQ.- 2,000 999 8 95 250- 9,360 1,976 7.40,64,88, 104, 107, 130, 133 2 1 1 1 2 5 2 9 2 600- 5,900 1,800+ 4,000 l,8DO- 7,000 2,200+10,000 45Q.- 6,930 3,444 64, 130 64 basalt cephrirc Leucire 3- 46 14.5 basanite Leucice cepheitc Nepbelinice Ankaratrite Leueime hfclilitite Alntriee 22 2,900 3,510 6,100 1,890 11.3 «, 64 64 27-29,47 .. s is the standard deviation of the mean values of the different authors, st:lnd3.td deviations are given only when 10 or more rnecn values were available. b For list of references sec Page 56-E-4. 56-E-4 Barium Ry(rtllCU (/l/d!xJ,IJ ill bracJ:f/~): 1. BAKER. 1969 (X); 2. B"'KER. 1968 (5); 3. U.\I\ER rJ 01.• 1964 (5); 4. BARAGAR, 1960 (S): 5. BARThL dol.• 1963 (5): 6. BRXl!ER. 1965; 7. BROWN and CARMICH"'EL, 1969 (X); 8. Bvexs, JR., 1961 (5); 9. CARMICHAEL and McDoNALD, 1961 (S); 10. CL"'RKE, 1970; 11. CLlI'l'ORD (J 01.• 1962 (5); 12. CLII'I'ORO rJ 01., 1969 (5); 13. CO"'TS, 1952 (S); 14. Co...'rs, 1953 (S); 15. COATS, 1959 (5); 16. Co...-rs flal.• 1961 (5); 17. Cocco, 1953 (5); 18. CORNW"'LL, 1962 (5): 19. CORNW"'LL and ROSE JR .• 1957 (S); 20. Cox and HORNUNG. 1966 (5, X); 21. Cox rl oj., 1965 (S); 22. Cox el 01., 1967 (5); 23. D"'WSON, 1962 (5); 24. DU:TRICH and Hsree, 1967; 25. DIXON elal., 1968 (5); 26. DUNIIA~I, 1968 (5): 27~ v. ECI\ER)IANN,1948(S), 28. v. ECKERM"'NN,1966(S); 29. Y. ECKER_ ~I"'NN, 1967 (S); 30. EL-HINN",WI. 1969 (S); 31. zaur...NI and VESPIGN"'NI. 1964 (5); 32. E)IMERMANN, 1968 (X); 33. ENGEL etaJ.• 1965 (S); 34. v. ENG£LH"'ROT.1936(S); 35. ERICKSON and BuoE, 1963 (5); 36. EWART rJal., 1968 (S); 37. FlI.IRBAIRN elal.• 1953 (5), 38. FISHER and ENGEL, 1969 (5); 39, FL...N"'GAN, 1969 (S. NjR. X);40. FORN"'SERI et al., 1963 (\XI); 41. G",RSON. 1967; 42. GAST, 1965; 43. GERAS(~IOVSKJI. 1966 (5); 44. GERASIMOIISKII and BJ;UA£II, 1963 (5); 45. GWSCA and IONEscu, 1965; 46. GOLD, 1963; 47. GOLD, (967; 48. GRlOJ;NLAND and LOIIERJNG. 1966 (S); 49. GROH~lANN and SCflROLL. 1966 {SJ; 50. GROUT. 1935 (\XI); 51. GUNN. 1965 (X); 52. Gmm, 1966 (X); 53. H"'HN WEINHUMER. 1959 (5); 54. HAHN-\VJ;INHEIMI:R and ACKERMANN. 1967 (X); 55. HALL, 1967 (X); 56. l!A)IAGUCHI (Jal.• 1957 (N/R); 57. HUJ;R, 1960 (5); 58. HUf;R, 1964 (5); 59. HEIER, 1965 (S); 60. HEIJ;R (Jal., 1966 (S); 61. HENDHSON. 1965 (S); 62. HERl. and DVTlu, 1960 (5); 63. HIG... ZY, 1952 (5); 64. HIG"'l.T, 1954 (S); 65. Hcrz, 1953 (S); 66. HUCKENHOLZ. 1969 (X); 67. HUG! and 5WAINf;, 1963 (5); 68. JAN~E, 1962, 69. JOIl:<~ON, 1961 (5): 70. K... y (laJ.• 1970 (I); 71. KING and SUn-IERLAND, 1967; 72. KOLBE, 1964; 73. KOLBlO and TATLOR. 1966 (5); 74. KUNo elal.• 1957 (5); 75. LU;BENDERG, 1960 (S); 76. LIPMAN. 1969 (S): 77. ,MACDoN"'LO and EATON. 1964 (5); 78. LE M"'ITRlO, 1962 (S); 79. MARKHJNIN ,I oj.. 1964 (S); 80. MAR).!O and SUIIOU., 1966 (5); 81. M"'TJ-H.l5, 1957 (S); 82. MELSON et 01.,1968 (S); 83. MOENK&, 1960 (S); 84. MUIR tJ 01.• 1964 (5); 85. MUKIJE.RJlOl', 1968 (S); 86. NOBLE nnd HAFi'TI'. 1969 (S); 87. NOCJ.:OLDS and ALLJON. 1953 (5); 88. Nocsouos snd ALI.f;N. 1954 (S); 89. NOCKOLDS and ALLEN. 1956 (5); 90. O~RUSCH and Ricnraa, 1969 (X); 91. r ...ruzIK. 1965 (5): 92. P.lITlORSON. 1951 (S); 93. PATT£RSON. 1953 (S); 94. P",TTERSON and SW.\JNf;, 1955 (5); 95. PAITERSON elal.• 1955 (S); 96. PECK rIal., 1966 (5); 97. PlOCOI\ s, 1962 (S); 98. PINSON rtal., 1953 (5); 99. PRINZ, 1964 (5); 100. Re cn and H"'Q, 1963 (S); 101. READ dol., 1965 (X); 102. RENF/l.r;w dol., 1966 (S); 103. RENFRew rial., 1968 (5); 104. R,oux. 1970 (S,X); 105. RUSSJ3LL dol.• 1954 (5); 106. S"'HAMA, 1945 (S); 107. S"'VELLI. 1967 (X); 108. SHELTON. 1955; 109. SIEONER. 1965 (S); 110. SmGERS dol., 1969 (X); 111. SIMPSON, 1954 (5); 112. 51NHA and TIW"'RI. 1964 (S); 113. SINH'" and K"'RI\ARE, 1964a (5); 114. $,NH... and KARK"'Re, 19Mb (5); 115. SMITH, 1964 (5); lt6. SmTU and C"'R)IICII"'lOL, 1969 (X); 117. SN"'VELT JR. do!., 1968 (S); 118. 5TARITSIN. 1964 (5); 119. STARK 3.Jld TRACEY. 1963 (5); 120. T"'YLOR and WHrtE, 1966 ($); 121. T...YLOR rtaJ., 1968 (S); 122. TAYLOR dol., 1969 (5); 123. TE~lPLf; and GROG"'N, 1965 (X); 124. TOWNEND, 1966 (S); 125. VL"'SOV nat., 1966 (S); 126. VOL aORTu. 1962 (W); 127. WI.\GJ;R and MITCHELL. 1951 (S); 128. WAGER end MITCHELL, 1953 (5); 129. WWEJlOHL, 1954 (5); 130. \'V'EDu>OllL. 1961 (S); 131. \V'lOIDEL, 1960 (S); 132. \\'ILKINSON, 1959 (5); 133. WILI.:INSON, 1968. Differences in Ba concemration among tholeiitic basalts of particular rcglcns were found in South Africa, where Rhodesian tholeiites show unusually high mean Ba values upto 1,020 ppm (Cox rt fll., 1967), while the basalts of Basutoland and Swaziland arc of normal tholeiitic geochemistry. GRJ::ENLAND and LOVERING (1966)" studied differentiation within a tholeiitic sill in Tasmania (Australia). Ba concen trarions increase here, from the bottom to the 1735 It-high tOP of the £Jow, from 160 to 500 ppm. Elements with similar enrichment trends ate F and Ga, whereas nonparallel behavior was found for Ni, Co. Cr and Sc. Barium _ _ 56-E-5 l:f~~~~~il:I:L_O:C:E:ANIC (SINGLE VALUES) THOLEIITIC BASALTS _ "" "00 THOLEIITIC BASALTS OFCONTINENTS ANO OCEAHIC ISLANOS (AVERAGES I 2 5 la 20 so m zoc SOO 1000 ALKALI BASALTS (AVERAGES) '00 "00 ppm Ba Fig. 56-E-1. Barium distribution in basaltic: racks ENGEL et al, (1965) gave the ratio of the masses of alkali olivine basalts to tholei itic basalts as 2:98. Consequently. an average of 253 ppm Ba is to be assumed for average continental basaltic rock. P.lUNZ (1967), in his summary of rrace elemem data for basalts. found an arithmetic mean for all basalts of303 ppm and a geometric mean of 220 ppm for 253 analyses. From the wide range of Be concentrations within similar petrographic types and. from similar Ba values for different petrographic types within any region. it is indicated that differences in the initial abundance of Ba in basaltic magmas exist (PRINZ. 1967). The generation of such differences is attributed to different degrees of partial melting. mantle inhomo geneity or wall rock reactions U.. .MIESON and CL....RKE. 1970). Anorthosites and norires arc both lower in Ba than tholeiitic basalts. The normally observed relationship between K and Ba is not found in Canadian anorthosites. In Barium 56-E-6 these rocks, which are rich in Ca, the Ba-Ca dbdochy is superimposed on the more common Ba-K relation. ill. Granitic Rocks a) High Ca Content Granitic reeks with a high Ca content, 2.S in granodiorites and quartz-diorites, are usually high in Ea. Avemges are 888 ppm and 81t ppm, respectively; within particular areas the Ba content may vary considerably. An avcmge for both rock types, calculated with the percentages of WEVl!POHL (1969), is 873 ppm. b) Low Ca Content Granitic rocks with low Ca content, which are represented by granites and quanzmonzonites, show extremely different Ba values (Fig. 56-E-2). This may be soo 1000 1S<JO 2000 ppm Ba Fig. 56-E-2. B:l distribution in grmitc:s (28 local means, sec Table 56-E-l) partly due to origin and to differences in [he respective processes of formation. Metasomatical alterations may also have changed the Ba content in some granites (d. EM~mR;o,IANN, 1969). The granlre average from 28 regional mean values is 732 ppm. Within certain granite bodies, the Ba concentration may exhibit a narrow spread, while the means are low or high. Gradational change of Ba content was also observed (EmtERMANN, 1969). For three qcurtzmonzonire areas, an avernge of 1,605 ppm was calculated. The effusive equivalents of granitic cocks contain more Ba (average 1,127 ppm) than grantees. The single quartz Jarite value, however, is much lower than the average quartzmonzonire content, IV. Intermediate Rocks Intermediate rocks, such as syenites and trachytes, ate strongly enriched in Ba. While the syenite average is 2,753 ppm, the effusive equivalent avemges only 1,177 pp~. TUREKIAN and WEDEl'OHL (1961) gave a value of 1,600 ppm, which was calculated from data of v, ENGELHAROT (1936) and SAHAloIA (1945). V. Alkalic Rocks Alkalic rocks are all considerably enriched in Ba. All averages are higher than 1,000 ppm, with nepheline-syenite showing 1,427 ppm, phonolire 1,000 ppm and nepheline-basanite 1,976 ppm Ba. In rocks of the Lovozero alkali massif (USSR), Ba is enriched upto 3,300ppm (VLAsOV et 01., 1966). The Kola alkali complex (USSR) eonrains UpIO 1,600 ppm Ba in its nephellne-syenlres and upro 1,350 ppm Ba in rhe foyahes (GER.....SIMOVSKll and BELYAEV, 1963). Barium 56-E-7 BAAIlJ.4 CONCENTRATIONS IN DIFFERENTIATES FRC*! S1. HELENA ISLAND ae pp 1500 • • .. . - - • • o 45 " 55 " a 65 'IoSIOz BARIUM COMCENTRATIOMS IN OIFFERENTlATES FROM ST,HELENA ISLAND 8a. pp • 1500 • • "00 soo • • -, .. ·2 , a 5 b Fig. 56-E-3. Correlation of Ba concemraucn and SiO~ (upper plot) cod K 20 ccnrene in a differentiation series (I3A,um., 1969) Many investigators (v. ENGE.LJ-lAIlDT. 1936; WAGER and MITCHELL, 1951; NOCKOLDS and ALLEN, 1953, 1954, 1956; WILKINSON, 1959; MARKHININ ef ai., 1%4; P. E. BAKER, 1%8) found that Ba concenrradons increase during progressing differentiation. One example of correlation between concentrations of Ba and Si02 and ~O (as parameter of differentiation) is given for volcanic rocks of Saint Helena island, South Atlantic (Fig. 56-E-3). Sometimes Sr shows the same trend, while a nonparallel behavior is observed for Ca, V, Co, Co, Ni, and Sc. In several instances the relation between Be and other Barium 56-E-B dements is not as simple; plotting versus differentiation, solidification, mafic index or Larsen factor provides a better insight into dijlesencaeicn behavior. In series which proceed far in dlfferenriarlon, Ba concentrations normally pass a maximum. Since Ba substitutes mostly for K, this indicates that a distribution coefficient (~ )crystal/(~)mc:lt' larger than unity is effective in acid magmas for ac least one major mincral mostly potash feldspar or mica. This type of Ba distribution prevails in the example given in Fig. 56-E-3, in the Scottish Caledonian rocks, and the East Central Sierra Nevada rocks analyzed by NOCKOLDs and ALLEN (1953). As a consequence of this differentiation behavior, Ba is always very low in pegmatites of ttuly magmatic origin (cf. Table 56-0-1 and v, ENGELHARDT, 1936). A trend of KfBa rados to increase from 26 to 36 in a tholeiitic scquence was found by GUNN (1965).. Data. for averages of Ba concentration in igneous rocks have been subject to changes in the last year due to the fact that more and better data. bave been published. Consequently. the mean calculated Sa content in igneous crustal rocks lias changed, 3inCC better insight into the relative abundance of rock types was obtained. With the Ba concentrations of Table 56-E-l, one arrives at a Ba average of 728 ppm for the upper continental crust of the earth, using the data for the relative amounts of intrusive rocks by WJ'.DEJlOHL (1969, handbook; Tables 7--8). Esamples for Ba dUttibution between minerili of certain rocks are given in Table 56-E-3. Compilation and interpretation of Ba data from Iirerarure suffer somewhat from the difficulties in analytical determination. This is shown graphically by the Be values for the standard rocks Gl and WI (Fig. 56-E-4). The considerable spread of values - - even wirh the sarne analytical method - cannot be explained by too coarse grain size of me reference samples (KLEEMAl'lN, 1967), since similar observations were made with the much more finely ground new standard rocks of the USGS (FLANAGAN, 1969). As the individual authors use tbeir own different values for luecmal reference, difficulties arise when results from different sources are compared. This must be considered when the data from these paragraphs are evaluated. c-. Table 56-E-3. Bari/lm diJlrib/l/iol/ Rock type Horconctke ferro gabbro Olivine ncrite Quartz bicrite norhe Granodiorite G~[C Predazzo granite Adamdlile porpllyrice Adamcllite Spben pyeoxeniee Teschenire - Quartz and plagioclase. Total rock 13a ppm Quartz Ortho- Plagio- Biotite Ba pprn clese Ba ppm cl"", Ba ppm Ba ppm 50 5 300 20U 10 1,000 1,000 70 3,000 2,500 108 600 110 500 275 1100. 1,600 90' 2,500 2,000 125- 6' 275 225 100 100 1,250 120 900 350 Barium 56-E-9 ., STANDARD GRANITE ... 1000 "" __ __ . ". " " . 3000 .1050 2000 ppm Sa STANa&.RD DIABASE WI '00 o SOOppm Ba Q"lTIC6.L SPECTROSCOPY IZI NlAY lSJ NASS SPECTROSCOPY Fig. EJ ISOTOPE DILUTION I8l GRAVllo4ETRIC FLUORfSCENCE 56-E-4. Sa determinations on standard rocks (FAIlUlAIRN a at., 1951; STE.VE.NS tlai., 1960; FLEISCHER and STEVENS, 1962; FLEISCIIRR, 1965, 1969; FL,I.:-;OAGAN, 1969) ill rotlu Muskovire Amphibole Pyroxene Ba ppm Ba ppm Ba ppm 10 10 15 5 Olivine 5 Method References S S S S S S WAGE/t and MlTCHELL se» tf ai. (1959) SI!N tt SEN tf (1951) ai. (1959) se» tt ai. (1959) ai. (1959) EllILrAl'Or and VESPIGNANI (1964) 120 35 10 20 10 /t"";oet! "..nuocrip< ~""': S<pt<:mbcr l!7T1 et. (1964) (1953a) EII'CK'SON and BLADE (1963) WILKINSON (1959) WILKlNSON (f S S S BU'T't.E1I 56-F-1 Barium 56-F. Behavior during Processes Connected with Magmatism I. Pegmatites Pegmarltes of magmatic origin generally contain less Ba rhan their embedding wallrocks of magmatic or metamorphic origin. This feature is most apparent in the main Ba carriers, feldspar and mlca. By analytical studies of alkali feldspars from rhe South Norwegian Precambrian basement complex, HEIER and TAYLOR (1959) found that the concentration of Ba in potash feldspars decreases with increasing ditTer eneiation. The K feldspars of large pegmatires in the surveyed area always contain less Ba than the hosr cock. This general trend was diagramarically shown by HEIER (1962) and can also be seen in Fig. 56-D-2, for which additional analyses were used. TAUOR and HEIER (1960) stressed the importance of the Ba/Rb ratio in feldspars for judging the degree of fractionation. Since Rb is more discriminated against in the K feldspar structure than Ba, Rb is continuously enriched in the fluid dnring crysta1.lization. Under the assumption of constant distribution coefficients for both elements, this leads to the highest Rb values in the last crystallization. Low Be values in granite-pegmatite feldspars are also reporred by v. ENGELHARDT (1936), OFTEDAL (1958), and TAKUBO and TATEKAwA (1954). Within a pegmatite body, OFTEOAL (1959) found the younger microcline to be poorer in Ba than the older one. Similar Ba impoverishment was found in nepheline-syenite pegmatites (v. ENGEL HARDT, 1936; OFl'EDAL, 1962) as compared to the lardallte and larvlklrc from which they are supposed to be derived. Biotite from granite pegmatite also is impoverished in Ba compared to the biotite from the mother granite (TAKUBO and TATEKAWA, 1954), Ba behavior is different in the small pegmatite bodies which sometimes form by metamorphic processes. In the plagioclase gneiss area of JUSter, Norway, small pegmatiric veins occur with high Ba values. HrrcHON (1960) investigated pegmarires of three metamorphic complexes in Scotland. While two complexes showed the usual Ba relation between pegmatite and country rock, pegmatites of the third complex (Laxfo[dian) were markedly enriched in Ba in all minerals [microcline perthite 3,785 and 5,620 ppm; oligoclase 365 ppm; biotite 900 ppm, 760 ppm, 1,100 ppm and 2,320 ppm Ba). In these pegmatites, the Ba concece of the individual minerals Inerecses towards the core of rhe respective body. It is possible that in the case of Laxfocdian pegmatites metasomatic proccsses caused a later Ba enrichment in the pegmatite minerals. ll. Metasomatism, Wallrock Alteration, Greisenization Metasomatic changes of Ba content of rocks occur sometimes with emplacement of pegmarites. Evidence for a large scale metasomatic Ba addition in a rock body @ 5pri~K',.V.,lag Bodi~ 'll.i,ldbo'!l 1972 Barium 56-F-2 was found for the Albtal granite, Germany, by EMMERMANN (1968, 1969). This author investigated the distinct diB'ererlces in the distribution patterns of Ba in the rwo occurring K feldspar generations and reached the conclusion that the potash feldspar megacrysts (mean Ba content 4,600 ppm) had grown during a postmagmatic srage from a merasomanc, Ba rich fluid, whereas the groundmass K feldspar (mean Ba conrenr 1,600 ppm) represents the first generation. Metasomatic alterations in granodiorite, dacite, and gabbro related to serpen tinization of ultramafic rocks in the Western United States, generally resulted in a distinct Ba impoverishment. In a few cases, small intermediate zones with Ba enrichment were observed (COr.m.tAN, 1967). LUR'YE (1963), analyz:ing spectrographically the silicic wallrocks of Zambarah xlnc-Iead ore deposit, Central Asia, found a pronounced decrease in the concen tration of Ba and Sr towards the veins. The Ba content drops from 3,000 to 6,000ppm, in fresh tack conmitting abundant K feldspar, to 300 ppm as a maximum in com pletely sericitized, feldspar free rocks close [Q the ore. He concludes that all barite and its Sr content originates from the feldspar deeomposition in the wall rocks. Granitic wallrocks of hydrothermal veins in the Black Forest, Germany, were analysed for Ba distribution by OF-GENS (1956). Extensive studies of w:a.Ilrock alterations were carried out by TOOKER (1963) in the Freer Range Mineral Belt, Colorado, USA. His spectrographic analyses showed that Ba, as with other large ions, normally tends to be removed veinward from all Precambrian and Tertiary metamorphic and igneous rocks he investigated. During alteration in the rock, pH drops along with the decrease of K, Ba ere. Greiseni.zation normally proceeds with the removal ofBa from the affected rock. In a mixture of samples from 24 greisen, v, E."lGELHARl)T (1936) found an abundance of 160 ppm Ba. This value is far below rhe content in the respective unaltered igncous silicic rocks. SOLOMON (1966) reports Ba removal from granites (430 ppm and 250 ppm) by greisenization (Ba In the altered rocks: 160 ppm -and 105 ppm respec tively) in the North Penninc ore field, Great Britain. ill. Ore Deposition Probably, magmatic-hydrothermal fluids originally do not contain any significant amount of Ba, but obtain this element by leaching suitable wallrocks. The im portance of chis meehanlsm, mentioned in the previous paragraph, was already stressed by v. E.'1GELHARDT (1936). Another mechanism working in sedimentary environments is dissolution of barite from the sediment by bacterial sulfate reduc tion in suitable diagenetic environment (PUCHELT, 1967). As a third way of peoducing Ba containing fluids, certain metamorphic reactions may give off Ba because struc tures which had iacorpceeed high Ba concentrations become unstable. The most common Ba ore is barite. It is deposited hy fluids with a high oxidation porential, where sulfur is present as sulfate. Suitable conditions of this kind occur close to the earth's surface or in subsurface areas wbere sulfate solutions mix wirh reduced Ba containing waters (d. Subsection 56-I-IV). In solution, Ba migrates to the region of sulfate stability and thus is often bound to a narrow zone close to the earth's surface. 56-F-3 Barium Modes of barite formation and possibilities of BaS04 transport in solution are discussed by PUCHELT (1%7). Barite contains, in all cases, certain amounts of Jso morpbous Sr. Concentrations of this element in marine barites (upto 3.36%) are summarized by CHURCH (1970). STARKE (1964) analysed a largc number of vein barites which contain uptc 12% 5r504 • The condiricns necessary for witherite formation from ore forming fluids are not often fulfilled. Calculacions for BaC03 formation, at 250~C and COr fugacides of 0.1,1.0 and 100atm" were carried our by HOLlAND (1965) for varying sulfur and oxygen fugacities. Products of hydrothermal activities are also the alpine fissure type minerals of which adularia are sometimes most apparently enriched in Ba (cE Table 56-D-1). IV. Volcanic Exhalations, Gas Transport The possibility of Be transport through hydrous gas phases was demonstrated by the experiments of Sn.tlIlEL (1967). Results are dlsccsscd in chapter 56-H. Naaoxo (1945) found traces of Ba in fumarole subllrnatcs (mostly NaCl, KG and NH~O) of Klyuchcrskoy volcano, USSR. MINGUZZI (1948) determined traces of Ba in fumarole products of Vesuvius, Italy. 56-G-l Barium 56-G. Behavior during Weathering aod Alteration of Rocks Expcrimental weatbering of K feldspar in distilled water (PVCHELT, 1967) showed that Ba is preferentially released from this silicate structure into the solution. The weight ratio K~O/BaO, being 18.9 in the mineral, is much lower in the weather ing solution (8.1). In the naturally occurring wcatbering series biotite - hydro biotite - ver miculite, BOETTCHER. (1966) observed, by spectrographie analysis, a decrease of the Baa content from 4,500 ppm co 300 ppm. ROSENQUIST (1939) leached a granite powder (0.11% Baa) with distilled water. In the residue of the weathering solution Baa was enriched to 0.91%_ Extensive studies on diffcrent rocks and their weathering products were carried our by BUTLER. (1953b, 1954) (Table 56.G-l). In three types, Ba is enriched in the silt and clay fraction of tbe weathered material, while in a fourth example even the weathering residue is leached with respect to Ba. Table 56-G~1. Bon/1m di//dbution during red R!{o/btri/lg (BUTl.l;It, 1953b, 1954) Roek type Ba content (ppm) fresh ,~k Granite Hornblende schist Quam free syenite Hypersthene monzonite 110 10 1,000 1,000 Reference: from weathered rock (Analytic::al method) silt C:l saruraeed fraction clay fracrion 180 190 500 500 300 45 870 BUTLl;It, 1953b (5) BUTLEIt, 1953b (5) Bcrr.sa, 1954 (5) 15 Bcrr.ea, 1954 (5) Both Ba increase and Ba decrease have been observed in the weathering products in studies by a great number of investigators. Among the factors whlcb inHuence Ba behavior in this process are: climate; type of clay minerals, which form during the dccompcsidoc , amount and kind of organic material present; and sulfur or sulfate content. Since barium sul..&tc is a compound of very low solubility, this last factor predominates in sequences originally rich in sulfides. A survey of Ba content of soils was published by SWAINE (1955). Most soils contain 100 to 3,000 ppm Ba of which only trace amounts can normally be extracted by means of INNH.. acetate. The highest value which SWAINE reports (3.3% Be) comes from Tennessee, USA, from areas where barite had been mined. Older literature is Jisted in G~{EUN (1960). Under special acid conditions of weathering in deserts, varnishes form, which always show Ba enrichment (ENGEL and SHARP, 1958) (5). R.criocd........-ripe r=i=l: S<lI""mbcr Inl <0 SpriJlga-Vcri>R Beolin· H.idolbc'l( 1972 Barium 56-H-1 56-H. Solubilities of Compounds which Control Concentrations of Barium in Natural Waters (I), Adsorption Processes (II) I. Solubilities Only rwo Ba compounds exist which can control the Ba content of natural waters: BaSO, - barite, and BaCO, - witherite. a) Solubility of BaSO, BaSO, is the least soluble and most abundant Ba mineral in the earth's cruse. Its solubility in water upto 100"C has been repeatedly determined. Some of the available data are given in Pig. 56-H-1. STROBEL (1967) published data for BaSO~ solubility in rhe hydrothermal range upro 600"e. At this temperature and 1,084 bars, he obtained a solubility of 9.61 ± 1.95 mg BaSO,/l,OOOg Hp. a : ,. ( :<. Fig. 56-H-1. Solubility of barium sulfate in distilled Water (KOHLR!..USCH, 1908; i\IELCIiER. 1910; N.EU~IANN. 1933; ROSSIiINSItT. 1958; T.E~rPLEToN. 1960; BURTON tlal.• 1968) Elecreclyees considerably increase the BaSO, solubility. TEMPLETON (1960) has investigated sodium chloride influence upto 95"C with solutions upto 5 moW NaG. PUCIreLT (1~67) radiochemically determined BaSO, solubility at 25 and 50"C in upto 6.08 molal NaG solutions. Experiments upm 350"C were carried out by UCHAMEYSHVIU dol. (1966) with O.25N, 1.0N and 2.0N sodium chloride solutions. Investigations uprc 600"C with epee 2 molal (or 11.69~;' ?) NaG solutions were Barium performed by STltUBEL (1967). Solubility data upto the. boiling point are plotted versus N2Q molality in Fig. 56-H-2. For 600° C, 1,990 bars and 2N (?) N2Q solutions, STRUBRJ. repom a solubility of 971 mg/kg HIIO. In the hydrothermal range, BaS04 solubility sensitively increases with pressure. STROBEL'S investigations show that an area of retrograde B2S0~ solubility exists between 350 and 450°C. lIli 8&50(, pe 10009 H20 90 " " , 90'" a 2 " z , a s 6 mol NaO Fig. 56-H-2. Solubility of barium sulfate in NaCl solcdon. + TEMPLETON, 1960; X 1967; 0 PUCl-IEU. 1967 STRUIIEL, Influences of other electrolytes on BaSO.. solubility in aqueous solutions were studied by: NEUMANN (1933), KCI, KNO a, :Mg~ Mg(NO.J... La0a' La{N0.J3; UCHlr.MElSHVILl ~f af. (1966), KG, MgCl" CaC):; and PUCHF.LT (1967), KCI, MgCJ 1, Ca~. COUINS and ZELlSSKI (1966) investigated the effect of synthetic brines containing N2Cl, MgCI" CaCl" and NaHC03 . The results of PuCHELT are: Solution Muimum solubility found at BaSO. solubility mg/l,OOO g HzD temperature ionic strength KG KG 25· C 50° e 5 .e 5.o 54.0 csci, 25° e 50° e 5.5 5.5 42.4 59.8 ~IA 25° e MgCI, 50 6 .o 6 .o 47.2 71.6 Cad, 0 e 40.8 UCHAMEJSHVlLI ef 01. (1966) found a strong increase in BaSO.. solubility in Cae]z solutions with tcmpeearures bceween 100 and 255°C. In MgOI solutions, too, a barium sulfate solubility higher than that in NaO and KO solutions was observed by tbese investigators. Barium sulfate solubility in sea water was calculated by CHOW and GOLDBERG (1960), and experimentally studied at one atmosphere pressure by PuCHELT (1967), Barium 56-H-3 who also made investigations regarding the kinetics of BaSa, precipiration in sea water. The solubility of 89!J.g BaSO"/! (at 20°C), found by PUCHELT agrees well with the value of 87.9!J.g BaS04/1 (at 25<>C) of CHOW and GOLDBP.RG. Recently, BURTON et al. (1968) obtained a mean value of 81lJ.g/J. Close to saturation, complete equilibrium is reached slowly. Despite seeding. PUCHJ'.LT (1967) needed about 80 days. He also made experiments to study the influence of salinity of sea water on solubility and covered the range upto 87.5°/00 salinity. HANOR (1969) and CHURCH (1970) calculated the effect of aqueous complexing and presence of Sr, Ce, and K on the solubility of BaSO~~S[S04 mixed crystals in sea water. Pressure increases the solubility ofBaS04 . ln pure water the solubility product is, by a factor of 5.4, larger at 1 kilohar than at 1 atm. pressure. In a sodium chloride solution of 0.727 molality rhe same rario is only 4.2. b) Solubility of BaC0:J, Barium carbonate solubility depends largely on rhe CO 2 partial pressure of equilibrium atmospbere. At 25°C and 1 arm. CO 2 pressure. GARRELS et al. (1960) determined a dissociation constant of to- 8 •84 for witherite. The solubility product of ltC_labeled BaCO J in basic aqueous solutions at 25°C was found to be 4.0' 1O-10 ± 0.5· 10-10 by BACC.... NARI et al. (1968). Increase in carbon dioxide pressute causes an increase in BaC03 solubility. This effect is much smaller at higher remperatures than at lower temperature (M.... LININ. 1963), (Fig. 56-H-3). TOWNLEY et al. (1937) showed that increased B~C03 solubility according to centrations investigated (uptO 3 molal) solubility. The effect of KO in the same LiG. NaG. and KO at 25°C and 40°C. tbeir respective eoncentration. In all con LiCI produced the strongest increase in molality was the least. '00 "00 150"C o U.SOC so Fig. 56-H-3. Solubility of BaCO~ " ee in water wirh increasing "0 aim ~ PRES5URE CO~ pressure (MALlNIN, 1963) Barium 56-H-4 rn, Adsorption Processes Be is adsorbed from solutions by clays, hydroxides, and organic matter. In addition to BaS04 solubility, these processes control the amount of Ba present in natural waters. a) Clays Ba adsorption on the sodium charged form of standard montmorillonite, illite, and kaolinite, at 25°C was studied by PUCHELT (1967) for pur~ and electrolyte containing solutions. Ba adsorption decreases witb ionic strength of the exchange solution. In rivers, the ratio of Ba which is adsorbed by suspended matter depends on the type of suspension and the concentration of ions competing for adsorption sites. Ba exchange on vermiculite and bentonite was investigated by LEVI and SCHIE WER (1965). Bentonite adsorbs Ba more strongly than NHt, Mg-t, and Ca++ (KOMUV U ill., 1965). CARLSON and OVERSTREET (1967) found a high adsorption of incompletely dissociated Ba hydroxide by bentonite at pH 6. The heat of exchange of Ba ions on bentonite with H+, Na-, and K+ were calorimetrically determined by Txnztav and MUKSINOV (1967). GANGULY and MUKHERJEE (1951) investigated Ba exchange on bentonite, kaolinite, illite, and mica. b) Hydroxides Ba adsorption by hydrous ferric oxide was investigated by DUVAL and KURaATOV (1952). PUCHELT (1967) studied, experimentally, Ba adsorption on y MnO(OH) and found that NaG concentrations upto 3.5 % do ncr influence the amount of Ba adsorption. y MnO(OH) em adsorb as much as 20% (by weigbt) of its Mn content of Ba, These results probably can explain the Ba content of deep sea manganese nodules. PUCHELT also observed that y MnO(OH) adsorbs more than 85% of the Ba concentration which exists in equilibriu m with a BaS04 preclpitare. Adsorption of Ba ions on silica gels from acid solutions depends on time of exchange, specific surface, and pore size of the gel (KIRICHENKO et al., 1965). c) Organic Substances BEL'KEVICH et ill. (1966) equilibrated 0.05 to O.2N earth alkali solutions with the H-form of peat. They found Ba to have the strongest tendency to substitute for H in peat. Adsorption of 131Ba by coal humic acid was studied by MATSUl>1AilA and ISHIYAlllA (1966). PUCHELT (1967) observed that bacteria may extract Ba from solutions, but it is not yet dear, whether this happens by adsorption or incorporation. 56-1-1 Barium 56-I. Abundance in Natural Waters I. Springs and Fresh Water Wells Only ,-cry few spring and fresh waters are free of sulfate. Thus the solubility product of BaSOt is the limiting factor for the Ba concentration. As spring waters normally have only low amounts of dissolved solids and moderate temperatures, no considerable increase ofBaSO... over the distilled water solubility is to be expected. These waters originate normally from rain water which had only a limited time for equilibration in sediments and soils. The Ba content is mainly controlled by the solution of Ba compounds (mostly barite), and exchange of Be from silicate struc tures. Several analyses are published for water whiclt served medical purposes. A survey of older data (methods: W) is given by DELKESKAMP (1900, 1902); some values published before 1949 are tabulated by GME!.n'I (1960). PUCHELT (1967) surveyed the more recent literature grouping the waters in hydrocarbonare, chlo ride, sulfide and sulfate rypes according to their prevailing anion, Table 56-1-1. BII l011wllrllliolu ill Type of waree Europran spring /JIa/us. (PUCHELT. 1967) No. of Ba range Arich. mC3Jl springs ppb ppb Standard deviation Hydrocarbonare 16 Chloride 22 4-22.900 12- 9,500 ISO 750 1 230 1,757 1,340 5,672 2,681 Sulli<k 3 Sulfate 9 In very few cases of spring water, higbee values were observed than were expecrcd from the BaS0t solubility product. Their existence is explained by supersaturaeion which sometimes occurs for a short time after adding sulfate to Be solutions. Drinking water from fresh water wells was analysed in the USA by DORFOR and BECKJ!R (1964). Fer 10 wells from all parts of the country rhey found 4.6 to 34 ppb B. (S). Additional new data. for ground and spring waters were published for: South Africa. (KENT, 1949; KE.NT and RUSSELL, 1949), BuJgaria (PENCHliV et al., 1958, 1960), Czechoslovakia (RuBESKA and MIKSOVSKY, 1963), Finla.nd (WILSKA, 1952), Germany (FRICkE!., 1968), Hungary (STRAUB, 1950), Japan (IKEDA, 1955afb; IcmKUNI. 1966; IWASAKI ef 0/.,1963), and the Sevier Union (BABtNETS and RADKO, 1956; GRUSHKO and SHlPITSYN, 1948; KONTOROVICH tl 01.,1963; OSTRDUMOV and ROSSK.IKH, 1965; SHtNKARENIW, 1948; YUSUROVA, 1957). The highesr value reported comes from a Japanese warm spring of sodium chloride type and is 62 ppm :&.L Barium n. Rivers and Lakes Only North American rivers have been exrensivelv analysed for -Ba. The in cesdgaeicns of DURml et ttl. (1%0) and DURVAl and HAHn" (1961) covet long periods of time, climacic conditions and disebarge for a number of riven. In all cases they found, over a year, a considerable and complex variance of Ba ccnrenr. One example is given in Table 56-1-2. Table 56-1-2. Variation oj Ba tOl/wllralio/l in Mi.uiuippi J/·"lrr lltar Baloll RO/18f, Lemtana, U.S.A. Dare of sampling :May 10, 1958 Oct. 14. 1958 i\Iarch 13, 1959 :\olay 18, 1959 Run-off m3/sec Di5501ved solids B. ppm ppb 24.550 7.400 18.600 H.800 160 223 78 127 72 84 184 255 DURUM et ttl. (1960) covered 30% of the total ron-err of the Nonh American rivers with their analyses, and DUlWM and HAFFTY (1963) found a median Ba concentration of 45 ppb from the available clara. Ba/Sr ratios (by weight) vary be tween 0.2 and 3.9 (PUCH£.LT, 1967), but give a geometric mean of 0.87 for North American rivers (DVRUAl and HAFFn', 1963), whicb may be compared with 0.78· IQ-S in the oceans. A number of rivers and lakes being used as drinking water resources have been analysed for Ba by DUIlPOR and BECKER (1964). By spectro graphic analyses, they determined a range of Ba contenr in rivers between 3.1 and 340 ppb (arithmetic mean: 75.7 ppb). Lakes and brackish water in North America and Europe ranged from 3 to 140 ppb Ba (DURFOR and BECKER, 1964; BROWN et ttl., 1962; WILSKA, 1952; LANDERGREN 2.Od MANHEIM, 1963). Coneenrrarion ranges for severn! rivers JUe plotted in Fig. 56-I-I. Local variations of Be content due to rock composition of the drained area were found by MILLER (1961) in New Mexico and Baowx d nl. (1962) in Alaska. They observed the highest Ba values from regions with sediments (sandstone, slates), less from granites, and obtained the lowest means from quaraite. The disrribution of Ba along a river was studied by UUTWEIN and WEISE (1962) for the Mulde in Germany. They observed values of 5 [0 100 ppb Ba in rrue solution in the river itself but upto 730 ppb in certain adjoining creeks which drained mining areas. According ro these authors, in the upper pan of the river 70% and more of the Ba is transported in true solution as che ion. On Howing into the Elbe afrer 245 km, only 20% of the Ba is srill in the ionic form, 80% having been adsorbed onto days and organic matter. In regions wirh extreme sulfare concentrations, Ba content is low in accord with the BaS04 solubility product. TUREKIAN et 01. (1967) describe rhe Ba varlazicn of rhe Neuse river (North Carolina, USA). Ba concentration decreases in the upper part of the river, (16 to 5.7 ppb) in slate and granite areas, but Increases regularly downstream to 22 ppb in slate, schist, sand and limestone Barium 56-1-3 -"=' Or,."g.. I" A .. ia MekC"<1 (C.. mbod.) Can.. da Chul'l:hill ill {J}(I,l (3}(4) Fraser Slla"",,,,,,,e MatXe"z,e Nelso" - Europ .. G\omma Muld.. - {3,(4} (JJ[4) (J}(q 13) I" iJltl,l Apalachicola A lchafalaya Colorado Columbia Hudson ....(J}(4) Mfnlnlppi ---.. (3)(6) (J) ......P)(4) (J) Mobile Palu..."l (J)(4) ~~=====~ (8) (J) en "eun Sacram.. ere SO'.Ilh Plale Riv.... ...... (6) Su~quehi."nil. ,,<J) Yukon (3) • Pig. 56-1-1. Ba concentration ranges of rivers (all data obtained by specrrographlc methods). 100 ppb ail. 1. DEVILUER5 (1962); 2. DURU~[ and HuFTY (1963); 3. DURmllIQI. (1960); 4. DURU.\! and HAPFTY (1961); 5. LWTWEl:-' and Wf.ISE (1962); 6. DURFOR and BECKER (1964); 7. TUREKlAN II QI. (1967); 8. HEIDEL and FRE:-:lER (1965) areas. Where the petrographic composition influences the drainage waters of a certain area distinctly, no general conclusion can be drawn from trace elemecc data from large civet basins regarding the origin of the particular trace element. m, Oceans From all oceans, Ba determinations are available in surface to bottom profiles. The concentration ranges upto 78 ppb Ba and the estimated mean is about 20 ppb (TuiLEKlAN and JOHNSON, 1966). Analytical data are compiled in Table 56-1-3. In general, the Ha concentration seems to be lower in the Atlantic than in the Pacific. In most cases the surface Jayers are depleted in Ba. Special features have been observed for tbe distribution of Ba in the Pacifie dose to the equator; CHOW and GoLDBERG (1960) have found a steady increase of Ba concentration with depth in the respective profiles (Fig. 56-I-2a). They explained this by high biological aetivity in the surface ayers of this region, incorporation or adsorption on organic matter, and a downward transport with the organic debris. They found Ba to resemble radium in distribution with depth. WOHLGEMUTH and BROECKER (1970) could also correlate Ba content with concentrations of other blo-Importanc elements and found parallels wirh Ra distribution. These authors sampled from very deep 56-1-4 Barium Table 56-1-3. 1hz {ollwllraliollJ ill thr oualls Maximum No. of sampling samples depth (m) Ba range ppb 4,752 \8 10 4,350 4 Philippine SOl 4,000 10 II -33 AnrarcTic 5,120 125 8 Sourh E:J.st Pacific 1,500 8 , -56 South West P:Il;ific 5,000 5 19 -78 Esse Pacific 4,580 13 8.5 -31.2 Easr Pacific 4,000 \3 6.1 -23.5 Locality Padfi' OIMII Central part, close rc equator fm/iall :Metood References -63 19 -33 I N/R --17 I CttOW and GOLDBERG (1960) TUIlEKr.-I.N end JOHNSO:-; (1966) TUilEKTA:-l and JOHr-;50~ (1966) TUREKIAN and JOH:-SO~ (1966) TURF;KIAN and JOHNSO:-l (1966) TUIlF;/UA:-l and JOHNSO~ (1966) WOLGDIUTH and BROECKER (1970) \'(.'OLCEMUTII (1970) O'lQI/ Central part Wcst Indian Ocean South Indian Ocean .~urface 1 14 400 3 2\ --46 4,500 3 10 -IS N/R 39 60 , -32 (65) N/R AI/ailli' Ottan Long Island Sound N/R Caribbean, Gulf of Mexico South Atlantic 3,019 17 5 -23 5,000 3 \5 -21 Norrb .Adannc 5,061 21 4,100 3,000 3 12.9 -13.1 8 '2 2,098 16 0.04--22.8 Equatorial 4,387 35 0.80--37.5 English. Channel Oaribbr::an Puerto Rico Trench and off Barbados surface 4,729 7,540 20 1 2B , -31 -18 N/R 1 F 6.3 NtR 7 -23 7.9 -19.1 I S TUREIo:.IAN and JOHNSON (1966) TUIlEKIAN and JOHNSON (1966) HOl.TF;R II at. (1964) TUREKIAN and JOJINSON (1966) TUltEKIAN and JOJINSON (1966) TUREKtAN and JOIIN~O:"l (1966) TURF;KIAN and JOHNSON (1966) BOLTLR rt a/. (1964) CItOW and PATTERSON (1966) ANOERSEl'ol and HUSIE (1968) ANDERSEN and HU~IE (1968) BOWEN (1956) Szxao nnd JOF;NSUU (1967) WOLGEllU'TH end BIl.OF;CKER (1970) ocean regions but did not find a marked Be increase rowaeds the sea floor. TUREKIAN and JOHNSON (1966) observed, in some places, a maximum of Ba concentration in depths of 600 to 1,200 m (Fig. 56-I~2b) which, however, coincides with the region of lowest Ba sulfate solubility (35 fLgfl) in agreement with the interaction of rem 56-1-5 01 Barium ,, . (/ ;~~., \ 1- 2 - o \ "i • \ " I t i, 3 , \ ; j I I I ~, 2 . 1 \ 3 ,, ': \ . 5 - , : \ : 10 / . " : t ,: I : \ \ I I. " \ \ 1 " 50 6'Jp.g Bc/! perature decrease and pressure increase (CHOW and GOLOBERG, 1960). One possible explanation for these high values could be that microcrystals of barite have contam inated the samples. SZ.\BO and JOENSUU (1967) found in profiles in the Caribbean the lowest concentration in the depths of about 1,000 In (Fig. 56-1-2a). In two areas, the equatorial Pacific and the Atlantic off southwest Africa, high values for Ba were found both in the sediments and in St:3. water, whereas in other places no cor reladon could be detected. From the Ba supply of the streams, saruraeicn of Ba sulfate should almost be reached in the oceans. From strewn discharge (3.6' 101 kma/yr) and Ba concen tration of 45 ppb (DURUM and fuFFTY, 1963), ocean-mass of 1,372.108 km3, and Ba content of 20 [J.g/l (TUll.EKIAN and JOHNSON, 1966), the residence time of Ba in rhe sea can he calculated to be 17 . llP yean. Using a sedimentation rate of 0,05 g SiOJyr for diatomaceous ooze (based on ~~Si), a Ba conrenr of 6,000 ppm and a mean ocean depth of 5,000 m, TUREKIAN and JOHNSON computed a residence time of only 33 years ahove this particular sediment. Possibly chis low value and the observed increase of Ba content with depth indicate an additional supply of Ba from some volcanic source on the ocean floor. With an average of 20[J.g/l Ba, the tow content of the oceans is 27.4 . 10D tons of Ba. 56-1-6 Barium Table 56-1-4. Ba"il1lJ mllUllfratioli illJormatioll Jl'afrfl Period Counrry TOb! No. of samples No. of MC2ll Ba samples cone. of >1 ppm samples B, with Ba Maximum An:l. Reference B:l cone. Iyti ppm cal method >1 ppm Precambrian Ordovician U.S.A. U.S.A. Silurian U.S.A. Devonian Un.... Germany U.S.A. Carboni fercus [Missis sippian, [Pennsyl vanian) Permian jurassic Ceecaceous Tertiary Quarternary 1 4 2 1 3 4 61 4 100 S 1 320 320 S 2 1 2 2 5 1.1 \Y,' 13 21 7 69 12 37 218 1,140 205 700 '" 2,000 971 5 S W,S S S U.S.S.R. 73 " Belgium Germany 1 4 1 3 1,007 1,260 5 5 24' 225 «; 1,006 69 832 2,860 2,806 \VI \'V,S 152 38 798 2,000 \,\', S Great 38 Britain U.S.A 152 77 22 l12 34 447 265 5,530 1,080 72 36 20 23. 1,980 11 ·190 21 U.S.S.R. 111 Gcrn:w.ny U.S.A. U.S.S.R. 4' Germany 26 Sweden U.S.A. , )a.pan U.S.A. Pobnd U.S.A. 3 4 3 ;'5 7 2 24 1 2 2 2 347 5,100 ~3(j 15 • 347 5.2 600 ,.. 73 14.8 1 14 " 37 3.' 16 W,S 5 30 1 5 5 S S S 5, \VI S 72 " 150 S S 4 28 5 WHITE (1965) MCGRAIN and THOMAS (1951) MCGRAIN and THOMAS (1951) Wi'llTE (1965) FIU'.SENlUS (see MTCHEL. 1963) POTH (1962) ParCE tl al. (1937), WHlTE rt al. (1963) HOSJrINS (1947) KOZTN (1964) CAMER)IA.'-l (1951) )AJrOJl5HAGEN and MilNNlCH (1964) MICHEL (1963) PUCHELT (1964), (1967) WasJtrwirllfbajls sIdle (in PUCHEL.T, 1967) ANDERSON (1945), GIBSON (1963) PRICE tl al. (1937) POTH (1962), HOSXINS (1947) COL.LlNS (1969) MCGRAIN and THOMAS (1951) KOZIN (1964) fuRll!>lANN (1961) WHIn; tf ai. (1963) KOZIN (1964) PUCH£LT (1967) ASSARSON (1948) BucxL.EY tl at, (1958), WHITE tt al. (1963) BAIL£Y tf al. (1961) BAlI.n et 61. (1961), WHCTE (1965) DOWGIALW (1965) WHCTE et al. (1963) 56-1-7 Barium IV. Formation Waters Feeqcecdy, Ba was discovered in formation waters which had lost their initial sulfate consent through bacterial activity during diagenesis. As these bacteria require a reducing environment and organic substances to live on, their areas of activity and tbus high Ba ccncencrations in formation waters, are always connected with occurences of organie matter (oil, bitumen, coal, or gas). Ba bas been found in such waters from beds of all geological ages from all over the world. The Ba concen tration may reach 5,500 ppm, but no correlation of the Ba concentration with any other parameeer of the solutions (dissolved solids, Sr, Ca, K concentration) could be found. Often the BatSr weighr ratio is larger than unitj·. An extensive survcy of data is given by PUCHELT (1967). A more condensed compilation was prepared for chis chapter (Table 56-1-4). In the Sevier Union, Ba ccnceneraricns in formation waters have been successfully used for a correlation of srratigraphic horizons (KOZIN, 1964; NUWLAEV et (/1., 1960). Ba has been assayed in foemation waecra of a few areas, especially in connecrlon wirh oil field investigations (AKHUNOOV and SAI'I'O, 1960; DOOONov er (11., 1949; KAT CHENKO and FLEGONTOVA, 1955, 1956; Kxvasv and VASIL'EV, 1956; KOROLEV, 1938; KuKAlLI.EV and SYDYKOV, 1962; SJo:kOBOV and S;o.ORNOV, 1939; SUKHAkEV, 1961; Tn.L\.sHeVA, 1963; VAkOV and RaMI>!, 1942). Mixing of Ba-eontaining formation waters with sulfate waters is often the reason for a scale formation in oil wells (GATES and CARAWAY, 1965; Tm.lPLEroN, 1960) and mines (PATIE.ISKY, 1954; ANOERSON, 1945). PUCHELT (1967) presented evidence for the abundant fcrmaricn of eertain rypes of barite deposies from rhose waters. v. Brines Geothermal brines were tapped by deep wells near the Salton Sea, California, USA, an area characterized by rhyolires and Tertiary sediments. With a total of 319,000 ppm evaporation residue (lBO"C), 200 ppm Ba were reported for a 1963 sample (Wwn:, 1965) whereas 1966 samples from twO wells gave 235 and 250 ppm Ba (SKINNER II al., 1967). A hot brine from the Atlantis II Deep in the Red Sea containing more than 300 g dissolved solids per liter had almost 1,100 ppb Ba (MILLER et st., t 966). Barium 56-K-1 56-K. Abundance in Common Sediments and Sedimentary Rock Types A compilation of data on the Ba distribution in recent and fossil sediments has been published by PUCHELT (1967). An abbreviated review, bur with the important new data included, is given below. I. Recent Sediments a) Deep Sea Sediments Deep sea clays were often analysed for Ba in recent years. Generally, they are enriched in Ba compared [0 shales. WEDEPOHL (1960) found a definite difference between Atlantic clays (average: 750 ppm Ba) and Pacific clays (average: 4,000 ppm Be). Since the rare of Ba deposition is about the same in both oceans, he assumed the difference to be caused by a lower rate of detrital accumulation in the Pacific. GoLD BERG and ARRHENIUS (1958) found Ba enrichment in sediments under equatorial waters and related this observation to the high biological productivity in the surface layers of the waters. Several planktonic organisms are known to accumulate Ba in their tests which carry che Ba bottomward after death. They may cause a Ba enrich ment in layers dose to the bottom, where (hey dissolve, and may generate local BaSO"preeipitation.s (PUCHELT, 1967; BRONGERSMA-SANDERS,1967; cf. Table56-L-2). Barium is not deposited homogeneously on the sea floor. The zones of high biological activity as well as the ocean ridge systems usually have higher Ba concentrations (TUREKIAN, 1968) than normal deep sea sediments. The origin of Ba in deep sea sediments is a matter of discussion. BOSTROM and PETERSON (1966) determined upto 3.1 % Ba in cores from the 'flanks of (he East Pacific Rise. From additional data for other clements and data for the heat Bow, it can be concluded that volcanic activity adds several of the enriched elements. TUREKIAN (1968) concluded from dam of Ba supply to the oceans by streams, from average Ba content of clays (shales), from the model of Ba enrichment by plankton and from some additional information, that a volcanic or hydrothermal Ba supply need not be assumed ro explain the observed Ba data. Ba concentrations in deep sea matter do not often correlate with any of the major constituents. It has to be concluded that Ba adsorption on clays is of less importance. The main Ba carrier is most likely barite. Locally, manganese oxides and phillipsite will accumulate Ba. Calcium carbonate of organic origin is usually very low in Ba «100 ppm, often only 10 to 30 ppm). In order ro reach comparable data for clay sediments, TUREKIAN and TAUSCH (1964) have calculated their Ba determination of Atlantic cores on calcium carbonate free basis. Because rhc original data are not given, only these corrected values are included in Table 56-K-1. These authors found higher Ba values in rhe South Atlantic rhan in the North Atlantic. The areas Barium 56-K-2 T:lblc: 56-K-1. Origin s« ,oIIWIJrdIiOIlS;/1 Jup UQ ItJimmtr No. of B, ~:unplc:s eOIlccl1t ;\Iethod References ppm oj Dtrp 1111 dayr Allallli' Area nonh of equator South Atlamit" Area north of 20° S Area. north of 10° N Are::l south of 10· N Area noeth of equator North AOlcricm trench, south pan Kap Verde Trench ~Iid Atlnntic: Ridge: 1 2 37 62 63 5 15 3 I (9) 200 590 S S V. ENGEU..... RDT (1936) v. ENGfL,H.RDT (1936) 596- S ERICSON (/ 1,1002,OOOL 910 S S S X TUREKUN and Tauscn (1964) TUUKIAN and TAU5C1I (1964) X WEDEPOHL (1960) TUnEl<UN (1968) ns 470 4,400' N/R EL ai. (1961) und RILE"{ (1961a) (1960) WAKEI'L \'(IEDEPOHL 189 1,260 8 5 1,150 5,700 3 5,800 2 4 2 2,450 6,100 2,700 18 610 S 8 2 2,120 1,330 5 S KATCl-IE}.I\{D end FLEGONTOV.... (1964) EL WAIC.EEL and RILEY (19610.) EL WAKEEL end RIUY (19610.) Area north of equator Area south of equator From allover the Paeific 20 8,050 1 9 300 6,700 S X X YOUNG (1954) WeoEIIOl-IL (1960) Wl!OEI'Ol-lL (1960) Average of Pacific 82 4,160 Avc:rage: of Ailimic clays Pariji, ahd 1114iall Ocean Ato south of equator Area north of equator Baja Califemian seamounts Nonh Pacinc: Area nom of equator Trench NNW Sixry Mile Bank Indian Ocean Area north of equator Indian Ocean equator S S S S W? W? GOLDBJ:;RG and AP,RHEl-<IUS (1958) GOLDBERG and AUl-IENIUS (1958) GOLDBERG and AItRHESIlJS (1958) GOLDBERG and AIlRl-IENWS (1958) GRIM tt oJ. (1949) GRUI et a], (1949) U~ ,~,. h) Dttp ua AJlo!!lir elld AftdiltnaJlfl1JJ Caribbean Sea Mid Atlantic Ridge: Vnriow pbees Nonh Atlantic (with rorhoh<1/n b 2 210 S 1 (9) 689 190 N/R 4 4 840 S S ERICSON and WOLLIN (1956) TUREKIAN (1968) TUREIUAN and WE1>EI'OHL (1961) EL WAKEEL and RIL!>t' (19610.) South Atl:unic off 1 1,900 S EL WAKEEL and RJLET (19610.) Mrien Mediterranean 2 1,600 S EL WAKE.EL and R.u.&Y (196111.) PtKi/ft a,ld India!! (Utall Equatorial area, East 2 Pacific: (manganiferous) 5,000 S GDLDBERG and ARRHENIUS (1958) day) Barium 56-K-3 Table 56-K-l. (Continuc:d) Origin No. of samples Equatorial area, Centra.! Pacific NOM equator area, 1 , Ba eonrenr ppm Mc:thod References 080 5 EL \'VAKE.f.L and RILEY (19{i1n) 540 S YOUNG (1954) Central Pacific: r) Drep Ira Jjfjrr~I'J ",lIds AI/anti' Atlamic off African coast Equatorial area, Eentral Pacific Central nonhern Patific Eeotral equatorial Pacific , 700 5 EL WAI'EEL and RILI'Y (1961::1.) 3,470 5 EL W.\I'EEI: and RILI'Y (1961a) 6 10,400 5 YOUNG (1954) 8,100 5 YOUNG (1954) , • Deep-sea clays calculated on Caco~ Ieee basis. R1w analyses of c:ubonate rich cores but not necessarily indicative of the pure carbonate fraceion. b closer to the continents arc normally lower than the. Central Ocean areas, but just off the coast of Mrica (20 to 25° S), an area with values of > 4,000 ppm Be was detected. TUREKIAN (1968) has analyzed samples from different depths in a deep sea core for Ba. Concentrations range between 1,700 and 6,700 ppm Ba (calculated Cacon and salt free); they indicate changes in the rate of Ba deposition within the last 30,000 years. Accumulation rates for Ba reponed by TUiUlKIAN (1968) vary from <90 Ilg/cm::l per 1,000 yeus to 790 Ilg/cm::l per 1,000 years within the special core and arc about I,OOO-llg/cm: per 1,000 years in the Antarctic. In Table 56-K-l, averages for Ba are calculated using the "reduced C.aC0::l free" data. This means that the actual data may be lower. Dup sea {arbonalu. Foraminifera ooze high In Cllrhonate contains low Ba concen trations (10 to 30 ppm, Table 56-L-2). The barium content in carbonate sediments is eirher due to BaSO" or to manganese. oxides or clay. Since all rbesc sources may be active at the same time and do not work coherently, a recalculation to "pure carbonates" is very difficult. TUREKIAN and TAUSCH (1964) extrapolated deep-sea cores in the North Atlantic to 100% Cacoa and gor 10 to 30 ppm Be for the pure carbonate. The availahle data are given in the table. The value of 190 ppm Ba by TUIlEKIAN and WEDEPOHL (1961) for deep sea carbonates derived from4 globigedna oozes from Atlantic cores is as yet the best information. ilfong,anese nodl/les cover wide areas of the deep sea bottom of all oceans and contain opec 20,000 ppm Ih.. A survey by PUCHELT (t967) of published literature shows that the Ba means are 4,500 ppm, 5,200 ppm and 3,700 ppm Ba for nodules 56-K-4 Barium- from the Pacific, Atlantic, and Indian Oceans, respectively. In manganese nodules, Ell. is either adsorbed, Incorporated in acid soluble compounds (2colites), or occurs as barite (ARRHE."wS, 1963). JiHao/1i sedimmls occurring in deep areas of the oceans where carbonates are no longer stable can locally contain more than 1 % Ea. b) Shallow Water Sediments The barium content of near shore and shelf sediments is influenced by the amount and kind of detrital matter and the badum conrenc of the rivers. A review of literature by PUCHELT (1967) shows that day sediments of rhesc areas are generally highcr in Ba than sand and silt fractions. Clays Freen the Nlsslsslppi delta arc especially high in Ba. Three studies of reef carbonates (STEllLI and HOWER, 1961; SENAKOLIS, 1964; FRIJl.OMAN, 1968) demonstrated that reef debris, reef material and oolitic muds contain only limited amounts of Ea. STEHLI and HOWER (1961) found a range from 10 to 61 ppm in 59 samples and an average of 18.4 ppm Ea. FaIEmu.N (1968) obtained spectrographically, 18 to 62 ppm Ba in corals with encrusting coralline algae. and 15.5 to 68 ppm Ell. in carbonate sands from reef aprons. Carbonate sands with admixed terrigenous debris showed 130 to 280 ppm Ba. In the analysed samples, Ba conccnrtations change parallel to the "insoluble residue". Similar observations are reported by SENAKOLIS (1964). Within rhe internal parts of rhe reef, average Ba content in clastic Jimestonc was 3.1 ppm, peripheral parts of the reef had 436 ppm Ba. II. Barium in Consolidated Sediments a) Sandetcnee, Chens. Graywackee Pure quart>: sandstones are very low in Ba, but since most sandstones cont:Lin considerable amounts of feldspars, chesc minerals are the most important Ba carders besides micas, which occasionally occur. PEiJIJOHN (1963) calculated the proportion of sandstone rypes to be 34% qceeetee, 26% graywacke. 25% subgraywackc, and 15% arkose. This combination has an average ~O concenr of 1.3%, to which a Ba content should be proportional. Comparison of the K/Ba ratios in low Ca granites and in sandstones and graywackes gives additional support to this proportionality. Single sandstones vary widely in Be content, since even barite coneeo.tration (as cement) occurs locally (cf. PUCHELT. 1967). If barite is a sandstone constituent, normally the weight ratio Ba/Sr is greater than 10, for barite generally contains much Jess than 10% SrSO~. The Ba content of sandsroncs and graywackes ranges from 5 ro 900 ppm. An average composition calculated from the European, Russian, and American sandstone and graywacke is 316 ppm Ba. This value is subject to changes when the individual dam can be properly weighted. Nevertheless it is a more realistic value than the XO ppm guess of TUREK1AN and WEDEPDHL (1961). Cherts constitute a special group in silica sediments and always exhibit higher Ba means. 56-K M5 Barium Table Locality 56MK-2. BariunJ IiI qlltlrlz sa,IIhIDnu. (h(rls. a/JdgrQpatku No. of samples Barium concentration =g' ppm Method References group total mean mean ppm ppm QIIQrlz lD,/dliom Germany Sunda Islands U.S.A. U.S.S.R. 73 , 4<>, 50-810 5-900 134 313 X X 770 5 150 39. 5 280 289 5 1.800 230-820 .. Germany 311 300 500 360 630 30-1,000 Indonesia 22 50-1,900 C.S.S.R. Finland 2 SHOEMAKERtt al. (1958) YOUNG (1954) 24' 340 S 223 5 ,4<> 5 5 5 250 290 cu« B1!.ETSCH (1964) ,WRDEJ>OHL (1961) ZUELO (1963) see PUCHELT (1967) V. TONGEREN (1938) 400 420 495 44<l 5 5 5 5 BABINA and KOTOROVICH (1966) see PUCHELT (1967) LEsEDEV (1967) see PUCHELT (1967) Lirvrx (1961) LJTVIN (1963) SlNICARENKO (194B) LEUTWEIN (1957) SAHAMA (1945) LEUTWEIN (1957) PRASHNOWSKY (1957) AUDL.£,I!-CHARLES (1965) 350 350 Dilferem places MAXWELL (1953) see PUCHELT (1967) GrQpatkt and 4nO/~ 258 Africa Europe 51 30-8'0 5 V. ENGEl.HARDT (1936) KLEIN (1935) KUENEN (1941) R!VALENT! and StGHlNOLFI (1969) WEDEPOJIL (1961) WESTERMANN (1961) ZURLO (1963) see PUCHELT (1967) S 5 5 '89 95 DIINCHlN (1970) see PUCHELT (1967) 370 189-670 290 360 447 Ncreh Americ:l 5 270 33S X SOO 5 330 5 5 MACPH2RSON (1958) WEBER and MIDDLETON (1961) Indonesia } New Zealand 12 'Q-4BO 252 5 5 McLAUGHLIN (1955) v , TONGEREN (1938) Barium 56-K-6 b) Shales Ba averages for shales reponed in the literature vary from 250 to BOO ppm (PUCHELT, 1967; VINOGR"DOV, 1956). The average of this p;l,per is 546 ppm (s for the 25 means used: 212). Individual samples gave values from 10 to 5,000 ppm, From the data. summarized in Table 56-K-3, it can be observed that especially low values have been found in shales of the Dnieper-Donees depression (Russia) and ebe west Siberian depression (LITVIN, 1961, 1963; TOLK"cHEv, 196B). If these low Table 56·K-3. Barillm i" siJalu Locality No. of samples" A/tiro: 2 25 (323) Alia: Japan U.S.S.R. 1 (14) 8 (521) 6 (920) '9 6 (32) 1 5 (185) Ellropt: Finland Germany 1 (36) 17(105) 3 66 Great 3 3 24 (9) Barium foncemrntion range mean ppm ppm Method References JU~NUl. and J.~MES (1947) 270- 4SO 360 394--1.oo4 b 681 5 540 X \XtED~OHL 150 370 b 270 260 520 b 394 30- 4SO 83 5 BABIN" lind KOTOROVICIl (1966) LEBED.f;V (1963) LITVIN (1961) 188 360 140- 220 182 800 9-2,700 654 480- 540 513 50-5,000 750 700- 900 824 390- 730 b 527 210-2,240 739 DA~CHl:-: LIT~'IN 140- 230 5 (1970) (1960) (1963) SI:"1I'"RENII:.O (1948) TOLI'''CflEV (1968) X \Vn'EI'OHL (1960) 5 5 5 5 5 5 S.\HA~lA HEIDI: and CHRIST (1953) LEUTWI;,N (1951) PR"SHNDWSI1Y (1957) ZURLO (1963) 5 5 5 NICHOl.LS and LORl1>:G (1962) SPENCER (1966) LA~DERGnEN and MANIlF.UI (1945) MOHR (1959) Brimm 6 27 330-1,050 325-1,280 555 723 SOO Sweden (1963) 450-2,150 866 33 250--1,000 31 100 750 10-1,020 190 610 9 .\"arJh Amtrira: 41 26 3 (?) Islands: 2 4 526 393 470 5 5 5 S FENNER cod HAGNER (1967) '\[ACPHER,ON (1958) i\luRR"Y (1954) StuW (1954, 1957) TClUR."l'LOT (1957) YOl!XG (1954) 5 5 EL W"ll:Ul. and RILEY (1961 b) V. T01'\GEREN (1938) 359 no 17 500-1,050 20-1,800 (1932) D£C1.N; tl 01. (1957) 580 15 Parifi( L.~b>ON 5 7" 775 840 " No. nf individual samples used fOI" bulk samples, or for means, an: given in paeantheses. II Range of me:IfiS, nor of individualsamplcs. Barium 56-K-7 values for Russia are omitted from avet:lging, the mean is 628 ppm with a standard deviation of 157 ppm. Ba does not seem eo be an environmental indicator for shales. VINE (1966) and LEBEDEV (1967) found a Ba increase in shales from fresh water to marine environment, while MURRAY (1954) repotts opposite observations from Indiana and Illinois, USA. In general, shales have higher Ba contents than graywackes or sandstones, but .locally, siltstones ot sandstones may be higher in Ba (ALANov, 1963). The mode of Ba binding in shales is complex. Several indications exist which point to a correlation of Ba with mica; parallelism with the amount of illite ptesent has been found (FENNER and HAGNER, 1967); and BaS04 was shown to be another possible carrier. Black shales often contain more Ba than normal shales thus sug gesting a connection of Ba with organic mattet. While certain shales retained their Ba content of deposition, others gained Ot lost some. Redistribution in diageneric processes is possible. c) Carbonate Rocks Literature on Ba in carbonate rocks is summarized by GR.U (1960) and PUCHELT (1967). The Ba content of carbonate rocks varies from 1 to 10,000 ppm (cf. PUCHELT, 1967). Using the literature cited in Table 56-K-4, an avetage Ba concenuation for carbonate rocks of 90 ppm was calculated. This value is within the range reported by GRAF (1960) (150± 110 ppm). TUREKIAN and WEDEPOHL (1961) based their average Iimesrone value (10 ppm) on the Ba content of modern molluscan shells. This value seems to be too low even for average carbonate, excluding detrital material. Means calculated by area as listed in PUCHELT (1967) are plotted in Fig. 56-K-1. 2 S 10 20 So 100 200 soo 1000 2000 SOOO ppm e.. Fig.5G-K-1. Frequency disteiburion of Ba concerumrions in carbrmates (PUCHEloT,1967) High average Ba values in relation to the' overall mean ate reported for 10 Ordo vician dolomites from Missouri, USA (620 ppm, KaLER er nt., 1950), Cretaceous limestones, USA (900 and 1,800 ppm, YOUNG, 1954),91 Pennsylvanian limestones from Illinois, USA (260 ppm, OSTROM, 1957) and 6 limestones from Africa (1,330 ppm, JUNNER and JAMES, 1947). Ba in carbonate cocks originates mainly from 3 sources or processes: 1. detrital clay material, 2. redistribution during diagenetic processes, in which BaS04 can be precipitated. 3. incorporation of Ba in carbonate minerals. In most cases [)tOCCSSCS 1 and 2 are quantitatively more lmportanr. Reference is made here to rhe difference between "pure" caebonares wirhln rccenr reefs and Barium carbonate sands from their peripheral parts (cf. chapter 56-K-I). In carbonate sands wirh detrital clay, FRIEDMAN (1968) observed an increase of Ba concentrations parallel to «insoluble residue". Fossil carbonate sediments exhibit similar fcatures (VINOGRADOV" al., 1952). During evaporation of sea water, Ba is precipitated as barite which usually occurs disseminated in the calcium carbonate (PUCHELT, 1967). Diagenetic alter ations may cause local BaS04 concentrations. Thus CAMERON (1966) found between 1 and 6,100 ppm Ba in a core fcom carbonate rocks within a distance of 80 feet. This diagenetic harite usually can be recognized under the microscope. Manganese containing carbonate sediments are sometimes enriched in Ba, (MOHR and ALI.EN, 1965). Table 56-K-4. Baril/III hi carJIIJnll1t rOfler Locality No. of samplese AnD: Indonesia U.S.S.R. , 4 Barium concentration Method References range ppm 930- mean ppm 450 220 240 65 S S v, TONGERRN (1938) GORLITSKY and b K~LT~EV (1962) S 59 (2,973) 198 112- 250 36 690 47 S LEBEDEv (1967) LITVIN (1963) RONOV (1956) SINKARENKO (1948) VINOGRAOOV and RONo\' (1956) Ellropt: Germany Grellt Britain Roum;mia Scandinavia 1- 41 (131) 125 183 300 62 15-- 403 <5-- 8,000 220 " 15 10- 5 3- 300 100 330 78 S S S X S v. ENGELI-tARDT (1936) HETOE and CIIRI~"T (1953) PRASl-lNOWSKY (1957) BAIOR (1965) MUIR tI al. (1956) S S S S hlREl-I and ECAT.eRIN( (1965) S KELLER tl al. (1950) b CANNON (1955) LA.IoIAR and THO.I\PSON (1956) v, ENGELH~RDT (1936) HENRIQUES (1964) SAHA~I~ (1945) Nortb America: U.S.A. 10 420 200- 2,000 620 2-10,000 lOG S MooRE. (1960) S S OSTRO~1 (1957) RUNNELS and SCHLEICHER (195Q) & Number of individual samples used for bulk samples, or for means, are given in paranrheses. b Data not included in calculation of average. Rerited ......n><rip. """'.cd: S<p<cmba 19'72 Barium 56-L-1 56-L. Biogeochemistry Barium is presenr in recent and fossil plants, in animals:LJld fuels. Ba accumulation in plants and animals was found by 'several investigators, but there is no evidence that this element is physiologically necessary. Ba is moderarelv toxic for plants and sligbtly toxic for mammals. Reviews of barium biogeochemistry are published by PUCHELT (1967) and BOWEN (1966), who also makes reference to earlier compilations. BOWEN (1966) summarizes the available literature for Ba content in dry weights as follows: 30 ppm marine plants land plants 14 ppm 0.2-3 ppm (higher in hard tissues) marine ani mals land animals 0.75 ppm I. Plants In ash of marine plants, Ba varies over a wide range (Table 56-L-l). Coccoliths, which form the main constituents of marine carbonates, contain 10 to 30 ppm Ba in ash (TuRI'.K.IAN and TAUSCH, 1964). Ash of phytoplankton species from the Black Sea (ChaelOuro/ Cumslft! and RhizosDlmia Calcar AlIi.r) is very high in Ba (4,000 and 20,000--30,000 ppm, respectively; VINQCRAOQVA and KOVAL'SKIY, 1962). Since these diatoms are very abundant in surface waters in summer, they form a considerable Ba enrichment, which may contribute to the Ba content of pcl.agie sediments. The tests of thizosolenla and chaetoceros are very delicate and under marine conditions not stable. Thus they are subject to dissolution and are nor to be found in sediments, although they certainly serve as barium conveyors to the sea Hoar (BRONGERSMA-SANOERS, 1967). BOWEN (1966) reports concentration factors (ppm Ba in fresh organisms!ppm Ba in sea water) for plankton and brown algae to be 120 and 260, respectively. AJgae from the coast of Great Britain show seasonal variance in their Ba content in ash (epee 900 ppm Ba; BLACK and MITCHELL, 1952). For terrestrial plants, an extensive stud}' exists for bryopbytea (SHAcJ<;.LE:rrE, 1965). Some of the species investigated concentrate Ba considerably. The highest enrichment factor for Ba in bryophyte ash versus soil is 2,000. Equisetum (hotsetail) ash was analysed by CANNON et 01. (1968) and BORoVIK-RoMANovA (1939). Ba con tent in ash of this plant (70 to 4,500 ppm) resembles approximarely the concentration in the respective substrata. Phanerogarnes reabsorb distinct amounts of Ba from the soil. Fir and spruce have 500 to 6,200 ppm Ba in asb with the highest concentrations in twigs (LOT SPEICH and MARKWARD, 1963). Black walnut, hickory, and red-ash leaves contain 870 to 2,570 ppm. Relative Ba enrichment was reponed for oaks, which gave upto 2.30% Ba in the asb of twigs (BLOSS and STEINER, 1960). The average for Ba in ash of legumes is 1,420 ppm (CANNON, 1964). 56-L-2 Plant Barium Ba in drv tissue ppm Schlaophym Bacteria Ba in ash References ppm -6'2,000 FOER:ITER and FO:IT£R (1966) Phycl1phyta 10 Coccollrhs Diatoms 30 20 --30,000 TUR£l;.II>N and T'\liSCH (1964) and KOVAL'SK1Y VTNOGRAL>OVA (196'2) Brown '-'WIf: Red algae Bryophyta 0.4--1'20 • 31 50 5-Z00 C' Prerfdophyra Equisitinae Ferns Angil1sperms Legumes B 900 5.' 0.6 '200 -50,000 150 30 - 4,500 8 Spermatophyta Conifers Deciduous trees Z70 PUCBELT (1967)"' Pt:CHELT (1967)0. (1967)0. lJOWEl" (1966)" PUCHELT CANNON BI1\l;£N 10 500 - 100 6,ZQO 14 10 - '2,700 -23,000 average: 1,4'20 il al. (1968) (1966)"' (1967)a and MARl;.WARD (1963) BOW£N (1966)· PUCHELT (1967)B BLOSS and STEINER (1960) ROB1NSO!'l tloJ. (1950) C"NNON (1964) PUCHELT LOTSP£[CH Compilations. II, Animals Organisms are only important for trace dement geochemistr)" if they occur in latge amounts. Zooplankton (especially ceuseseees) ftom the Black Sea shows Ba accumulation upto 2.000 ppm in ash (VINOGRADOVA and KOVAL'SKIT, 1962). Since these animals constitute nbout 80% of the planktonic population in the survey area, they may also contribute to the Ba content of marine sediments. Protozoan skeletons and shells consisting of Caeoa Ot SiO~ contain uprc 270 ppm Ba. They are the source fot Ba in pelagic globigerina and radiolarian oozes. From investigations of ARRHENIUS (1963) it must be concluded that in Recent planktonic foraminifera, Ba is mostly bound to organic matter (upto 700 ppm in ash). In Table 56-L-2 rhc radiolaria Acantharia and the rhizopod Xenophyophora, which concentrate BaS04 in their skeletons, are listed. After death these skeletons ace dissolved, but during this process they transport: Ba rewards the sediment. No fossil skeletons of these species ate reported. GoLDBERG and ARRHENIUS (1958) assume a certain Ba accumularicn by digcnion of benthonic organisms, since they found Ba enrichment in fecal pellets from thc sea floor. Barium Table 56·L-2. Borilml ill 0Ili11/0(1. 56-L-3 (Compilations by BOWE!>.:, 1966; PUCHl'1.T, 1967) Ba in Ba in ash dry tissue ppm ppm Pratozoa G Foraminifera 10--270 Coelanterarea 11---450 Ba in hard ,issue ppm 180 SOD 8.6---35" Material in hard tissue: oco, oco, SiO. oco, eo,"" Ctenophora Echincdermara Annelida (Vermes) Tentaculata Beyoeces Brachicpodcs Mollusca Lamellibranchiarca Gastropode! Cephalopooes} Scaphopoda Althopoda Mammalia 40-2,000 20-- 5U~ 35 17_ CaC0 3 SO' 12-2,000 0 3 4- 75 4- 500 <1-901> 4--75 r 4--50r CaC0 3 7.2+20 1>- 800 2.3 6.9 upnrite .. Radiolnria Acantharia contains 5,400 ppm Ba (Alllllu;"n:s, 1963), B:lSO, is the hard tissue in [he rhizopod Xenophycphora (VINOGIlAOO\" 1953). b Including data by FlllEmlAN (1969). c Upro 5,000 ppm Ba were found in dry tissue of Allniol Lillkii from the Barents SC3.. 11 High values (1,000 to 1,500 ppm) ere reponed from Black Stc:t plankton (VI:-':OGIlADO"A and KO~·Al.SKIY, 1962). " Including data by SCHOPP and MANH.EI~1 (1967). e With certain species of Anodom:l., Pecten. AMarte and Tcllina, higher Ba concen trations (upro 500 ppm) were found. r Some samples of HclU. species, Llnorins species, and Neptuna species contain upto 500 ppm Ba if> their shells. Much support for Ba in molluscan shells has been publishcd (cf. PUCHELT, 1967). u:'UTWEIN (1963) and PILKE'l (1963) found a distinct Be enrichment in Recent mollusc shells from fresh and brackish water environmenrs. Obviously, the structure of tbe shells (calcite or aragonite) is of less irnportance as a cause of Ba incorporation than Ba content in the water and the environment. A reconsrrocricn of palaeoenviron ments from Ba coocenrrarions of unaltered fossil shells has been attempted by PROKOP'EV (1964), FRIEDMAN (1967) and others. TUREKIAN and AIl:l.ISTRONG (1960, 1961), investigating Recent and fossil shells, found Bare be much higher in molluscan shells of the Fox Hill Formation (Ceeraceous), South Dakota, [han in Rccent species. According to their studies diagenetic alterations mighr considerably shift the initial trace clement composition, even with only slightly altered mineralogy of the shell. Animals do not contain appreciable Ba concentrations. A fcw dam from BOWEN (1966) arc included in Table 56-L-2. Additional references of detailed investigations are compiled by G~IEL~ (1960). BarIum 56-L-4 Table 56-L-3. Barium in flltls Locality Strarigraphj Ba content Method References in ash ppm 8roflJ/I mal Australia Czecbosfovakin Germany U.S.A. uptO BOO· tOO-- 1,000 Tertiary Tertiary 700- 7,600 200- 2,800 S Tertiary tOO--l0,000 S Crereeeous- 100- 1,000 HONEK and JIRELE (1965), sec POCHELT (1967) X 1,000----10,000 20-- 2,200 3Q0-- 1,600 100-27.000 Cacbonifi:rous BIIEWER and RYER~ON S (1935), sec PUCILELT (1967) DWL and ANNEL (1956) TKACHEV tf al. (1965) S S S S S CLARK£: and SWAINE (1962) S LEUTWEIN and ROSL..EI\ (1956), see PUCHELT (1967) RAD~IACHER (1965), see PUCHELT (1967) LElTt"Wl:':IN and RaSLER (1956), see PUCH£LT (1967) LEUTWEtN and RtlsLER (1956), see PUCHELT (1967) NICHOLLS and LORING (1962), see PUCHELT (1967) GIBSON (1963) BROWN and TAYLOR (1960) COAL REs. COMIIANY (1949) Bun.ER (1953) liEADI..E.E and HUNTER (1953), see PUCHELT (1967) S Permian 100- Triassic, 100 500 S S Juras~ic Great Britain 710 S 25D- 8,400 S S average: 4,000 270----22,000 S -10,000 S X-XOO,OOO S Carboniferous '0 New Zealand Norway U.S.A. PIETZNEI\ and WOLf (1964) RtlSLER :lI1d LANGE (1965), sec PUCHELT (1967) BREGER tJ 111. (1955), see PUCIIELT (1967) S 140------ 2.730 Permian SWAINE (1967) BROWN and SWAINE (1964) U.S.S.R. Hard coal Aunralia Canada Finland Germany S PermianTertiarv Tertiary S I-Ll.wLEY (1955) LOKKA (1943) Y. ENGELHARDT (1936) TmJ.O (1934), see PUCHELT (1967) OiIJ and bill/millQ Germany U.S.A. TriassicCretaceous Cambrian-cTertiary S S U.S.S.R. 11 Devonian-cTertiary B:r. conceneeatinn in dried coal. 10D- 3,000 HeIDE (1938), See PUCKELY (1967) BELL (1960), see PUCH£LT (1967) ERrGKSON d al. (1954), see PuCH£LT (1967) HYOEN (1961) KATCHENKOV (1951), see PUCHELY (1967) Barium 56-L-5 III. Fuels (Including Coal) Fuels of all geologic ages contain Ba in their ashes; often in amounts considerably above the earth's crust mean (Table 56.L-3). From Ba data in Recent plants it can be deduced that at least part of the barium originates from living placu. During diagenetic alteration, humic acids may absorb additional Ba from the involved solutions. Extremely high Be values of coal ashes (upto 4.76%), as reported from Great Britain (RE\"NDLDS, 1939), may be caused by a secondary BaS04 mineralization. No general trend of Ba concentration with maturity of coal could be observed. In one instance, LWTWEtN (1966) paralleled Be content with the amount of clays in a brown coal profile. ERSHDV (1958) carried OUt several electrodialysis experiments on coal samples and concluded that Ba-in addition to otber clements-was present either as soluble minerals or in weakly absorbed form. It is nor bound as strongly as Ge, which could not be extracted by this procedure. It is to be assumed that Be is incorporated in certain metallic-organic compounds in oil, but no investigations on the specific tjpes have been published. ----------------_~-~~~~~~_----------. Barium 56-M-1 56-M. Abundance in Common Metamorphic Rock Types Barium concentrations in metamorphic rocks exhibit a large variation within each type (Table 56-M-1). They var}' as widely as do values for all igneous. and sedimenmry rocks. Consequently, no meaningful Ba averages can be calculated. The only exception seems to be eclogites which form under special pressure condi tions. Comparison of Ba concentrations in typical metamorphic minerals such as sillimanite. staurolite, guner erc., show that these srrucrures have no appreciable tolerance for B2. Data on Ba distribution between coexisting minerals in metamorphic rocks are included in Table 56-0-5. Table 56-M·l. Barium ill mrlo11/orphir rodcs Rock type and locality No. of samples Gneiss, Randesund, 8 Norway Slightly altered 10 gneiss, Adirondacks, U.S.A. "Grnnirizcd" gneiss. 18 Adirondacks, U.S.A. Gneiss, Montana. U.S.A. ", Gneiss, Langcy, Norway 5 Gneiss, Lcwisiau, Inverness-shire, Scotland Basic gneiss, Scotland s Gneiss, S. \Y./. Finland .0 • G!;ulcophane schist, 11 C:LIifornia, U.S.A. Pelitic schist, 16 Connemara, Eire Sillimanite: schist, 2 Montana, U.S.A. Schist, Moine, Inverness- 5 shire, Scotland Phyllire, Finland 174 Quartz-alblte-bicriee 8 schist, New Zealand Greensehisr, New Zea[and , /l;' SprinK<r_Vc>b~ 8<IIj" J{<'<klb<..., J'17~ Barium concentration :\Ic:thod Reference: mean ppm range ppm 1,060 <605 X B.\LL (1966) 1,400 610 S ENGELend E:-lGEL (1958) 125- 2,600 980 S 1,800- 3,800 2,580 823- 1,300 1,050 S ENGEr.. and ENGEr.. (1958) FOSTER (1962) HEIER (1960) LnrllERT (1964) <100- 220- 520 5 5 300- 920 20<340- 300 110 5 654 ~430 S 7- 300 02 S COLE)f"'N and O'HARA (1961) PARMS (1958) SSO- 1,850 t,300 S LEE (1963) EV"'Ns (1964) l,300+ 1,900 1,600 S FOSTER (1962) J,44O 070 S L.... MBERT (1964) ,0- t,500 450- 1,500 552 690 S S LoN" .... (1967) T HLOR (1955) 125 3' S TUUlR (1955) SOo- 10- 56-M-2 Barium Tabl~ Rock type and locality Hornfels, Connemaea, Eire Hornfels, Palaman district, India Amphibolite. Rende sund, Norway Amphibolite, Brazil. Amphibolite, Adiron clacks, U.S.A. Serlcitite and bio uee-amphibelhe, Adirondacks, U.S.A Amphibolite, Ausrralian shield Amphibolite, S. W. Finland Granulite, Ausrralian shield Metabasite, SaxorW, Gcnnany Charnockice, Finland Paracharnockite, No. of samples 56·M-1. (Continued) Barium concentration =8' mesn ppm ppm Metbod Reference 11 670- 2,000 1,210 5 E\'"",IS (1964) 7 160 S GHOSE (1966) 680 450 X BALL (1966) BARROS-GO)IES (/ a/. (1964) ENG!!L and ENGEL (1962) ENGEL and E:<IGEl. (1962) 17 260 2<J 21 270 67 5 16 42 14<J 84 5 11 140 1,650 220 5 <610-> '190 "" X 251 5 72<J X 110 5 LA)llIERT and H.F.lER (1968) MATHE (1969) 570 672 5 5 PARRA~ (1958) PARRAS (1958) <5 S BINNS (1967) 30 ~20 S 2 15+ '00 160 S 5 5.6-136 56 18 <100- 355 £190 BRYHNt rt at, (1969) COLlUtAN and LEE (1963) GRIJ'J'I:<I and MURTHY (1968) HAHN-WEIN HEI;\rER (1959) 61 2<J 8' • <420--->1,090 100- 125 2. 24 LA1.JllERT and HELER (1968) PARRAS (195B) Finland Eclogite, Naustdal, Norway Eclogite, Ncrdfjord, W. Norway Eclogite, C:ilifornia, U.S.A. Eclogue, different 6 <10- places Eclogitic rock. Miinch berg, Germany 5 56-N-1 Barium 56-N. Behavior in Metamorphic Reactions Only very few investigations exist on Be behavior under metamorphism. LONKA (1967), analyzing Precambrian phyllites of Finland, observed no differences in Sa concentration between phyllites of lower and higher degree of metamorphism. Trace element data including Ba concentrations have been used by TAYLOR (1955) ro discuss the origin of New Zealand metamorphic rocks under the assumption of isoehemiral metamorphism. In the Adirondacks, New York, ENGEL and ENGEL (1958) studied progressive metamorphism and granitizarion of the major pacagneiss. They found Sa [0 decrease with increasing metamorphism, while the Sa content in biotites increased (580, 717, 888, 1,766 ppm). Granitized gneisses of this area generally sbowed much higher Sa values than normal gneisses. TUR1!KIAN and PHINNEY (1962) could not detect characteristic changes of Sa content in garnets and coexisting biotites in a meta morphic seguence from Nova Scotia. A special feature of transport during metamorphism is skarn formation. HIGAZY (1952) observed an increase of Sa content from epidiorite, 90 ppm (S), to biotite epidiorite, 270 ppm, to biotite skarn, 910 ppm. The subsequent alteration to lcpidomelan-skarn (720 ppm) and chlorite-skarn (270 ppm) caused distinetdecreases in Be. NESTERJ!NI{O r/ a/. (1958) found Ba to be depleted from biotite hornfels when this rock was altered to pyroxene-garnet-skarn. --- ------~~~~~--------------- Barium 56-0-' 56-0. Relations to Other Elements, Crustal Distribution, Economic Importance etc. I. Inter-element Relationships In igneous rocks, Ba generally substitutes for K in silicate structures. A certain correlation of Ba and Ca in igneous rocks with low K was demonstrated in sections 56-0 and E. In the sedimentary cycle, Ba preferencially occurs as barite, in clays and In feldspar. Presence of barite is dependant on sulfate abundance, whieh in tum requires suitable redox conditions. In sediments, including evaporites, the correlation Ba-K is much less pronounced than in igneous rocks. The substitution Ba-Ca observed in few carbonate minerals is of less genera! importance. II. Distribution in the Earth's Crust Details discussed in the preceding sections are summarized in the following table: Table 56-0-1. Ab,l/ldl1llu 0/ Eo ill imporl/1IfJ mauu 0/ Jh, tanh's ernst; (lIfto"s 'almlal,tf OIl Ih, halil 0/ WEDEPOHL'S, 1969, tfala 01/ If;, al/llnMI/l' 0/ rock Il/1ill) Igneous intrusive rocks (mean) Gabbrolc reeks Granites Grancdicrires :lnd quaeradloeites Diorites Consolidated sediments (mean) Sandstones (including graywackes) Shales Carbonate reeks Sea warer 728 ppm 246 ppm 732 ppm 873 ppm 714 ppm 538 ppm 316 ppm 628 pprne 90 ppm 0.020 ppm "' 546 ppm, if tbe Russian shales low iu Ba are included. A discrepancy exists between the Ba means for consolidated sediments and magmatic rocks. Part of the Ba missing In the fossil sediments is bound in pelagie clays (mean Ba content 2,000 to 3,000 ppm; cf. Table 56-K-l) which constitute cr least 10% of the roral sediment mass (WEDEPOHL. 1969). But pan of the discrepancy may be due to the fact that the individual data used for the avetages could not be weighted properly for the compilation. ill. Technical and Economic Importance Barite and witherite ate the only badum minerals of economic interest. Descdp tions of deposits and their ptoduetion ate given by GMELIN (1960), BRODsT (1970) 56-0-2 Barium and others. World production of barite has been almost constant since 1964 at about 4 million short [ODS per year (OAA. 1970; for derailed information see U.S. Geol. Surv. Bulletin 1321). Barite is used for drilling muds in oil and gas geology (consuming about 75% of the world's production) and for radlarion-shielding concrete. Chemically treated BaSO~ of line particle size is an important filling material in the rubber, paper, and fabric industries. It is one of the components of the white pigment "lithopone". Ba compounds are used in glass and enamel production as flows and for glasses with special optical properties. Barium chloride serves as a rat poison and insecticide; barium chlorate causes the green colour of pyrotechnics; barium titanate is a ferro electric substance used in the electro-Industry; certain barium compounds are the active substances of fluorescent screens. Reviews on barium eompounds and their industrial uses arc given by STOHl'. and FLASCH (1953), in GMELIN (1960), in Romp (1966) and in KIRK and OTHMER (1958). A bibliogtapby on barium chemistry was compiled by SCmVIND (1952). Aclmowledgements I am vcry grateful to Dr. MICHAEL FLEISCHER, U.S.G.S., \'7ashington, D.C.. for making available to me his Iirerarure surveys and giving many valuable sug~ gestions. Thanks are also due to Professor WEDEPOHL for his many suggestions for improvemenr. R..i",d nunulCrip. n:a:,.<d: xpt<mt.:r 1971 Barium Rel.rancu 560A 10 5600 I 1 References: Section 56-A to 56-0 v., Bar.ov, N. v.: Cryst.al structure of baryllre, BaBC1S~01. Kristallografija 9, 691 (1964), translated. AKHUNDOV, A. R., SArpo, P. V.: Distribution of some trace elemenes in fcrmadcn water of the pay stratum in the Balakhany-Sabunchf-Ramaniask oil pool. kerh. NUt. Khoz. 39,9(1960). ALANOV, A.: Geochemistry of the Lower Ceereceous deposits in the Gaurdak Region. Izv. Akad. Nauk. Turkm. SSR, Set. Fiz.c'Tckhn. Khim. i Geol. Nauk 116 (1963). ALBEE, A. L., CHODOS, A. A.: Microprobe investlgadons on Apollo II samples. Pro ceedings of the Apollo 1 t Lcnae Science Conference I, 135 (1970). ALI..£N, C. W.: Asrrophysical Quantities. London: University ofLondon,AthlonePress 1963. ALUR, L. H.: The Abundance of the Elements. Inrcescienee Monographs and Texts in Physics and Astronomy 7 (1961). - GRE&NSn;rN, J. L.: The abundances of the elements in G-type suhdwarfs. Asrrophys. J., SuppL 5, 139 (1960). ANDERSEN, C. A., HiNTHORNE, J. R., FRlIDRIKSSON, K.: Ion microprobe analysis of lunar material from Apollo 11. Proceedings of the Apollo 11 Lunar Science Conference I, 159 (1970). ANDER~, N. R., HU~IE, D. N.: Strontium and barium content of sea water. Adven. Chern. Ser. 73, 296 (1968). ANDERSON, A. T., Jr.: Mineralogy of the Labrieville anorthosite, Quebec. Am. Mineralogist 51, 1671 (1966). ANOERSON, W.: 00. the chloride waters of Great Britain. GeoL Mag. 82, 267 (1945). ANml.i., C. S., HEU':, A. \'(1.: Emission spectrographic determinacion of trace dements in lunar samples from Apollo 11. Proceedings of the Apollo 11 Lunar Science Conference 2, 991 (1970). ARRHENIUS, G.: Pelagic sediments. In: The Sen. Ideas and Obseevedoos on Progress in the Study of the Seas, voL Ijj.ed. hy M.N. HILL. New York-London: Inrerseience Puh!. 1963. AsSARSSON, G.: On the winning of salt from the brines in southern Sweden. Svedges Geol. Undersnkn., See. C SOt (1948). ATKINS, F. 13.: Pyroxenes of rhe Bushveld Imruaion, South Mrica. J. Petrol. 10, 222 (1969). BAIIINA, N. M., KDTOROVICH, A. E.: Alkali and alkaline-earth metals in sedimentary reeks of the Westero Siberia Lowland. Geochem. International, 508 (1966). BAIIINETS, A. E., RAD'KO, N. I.: Microelemenrs in the mineral waters of the southern slopes of the Soviet Carpathians. GeoL Zh., Akad. Nauk Ukrain. RSR 16, 21 (1956). BACCANARI, D. P., BUCK}{AN, B.A., YEVI'TZ, M. M., SWAIN, H. A., J(.: The solubility of carbon-ta-lahelled barium caebonare in aqueous systems. Talama IS, 416 (1968). BAILEY, E. H., SNAVELY, P. D., J(., WHITE, D. E.: Chemical analyses ofhrines and erude oil, Cymric field, Kern County, California. U.S. Gecl. Surv., Profess. Papers 424-D, 306 (1961). BAJOR, M.: Geochemistry of Tertiary lacustrine beds of the Sreinhelm basin in Steinheim on Albllch (Wiirttemberg). jahresh. Cecl. Landesamces Baden~Wiirttemhe(g 7, 355 (1965). BAKER, I.: Petrology 6f the volcanic reeks of St. Helena Island, South Atlantic. Bull. Geot. Soc. Am. 80, 1283 (1969). BAKER, P. E.: Petrology ofMt. Misery Volcano, St. Kitts, WestIndles. Lithos 1, 124 (1968). GASS, I. G., HARRIS, P. G., Ll!.t>'lAITIU!, R. W.: The volcanological report of the Roy:11 Society expedition to Tristan da Cunha, 1962. Phil. Trans. Roy. Soc. London 256, 439 (1964). ABRASHEV, K. K., ILYUKHIN, V. (!;l Sprioscr-Vcrbg &rUn· Hddc:lborx 19n R.r.Jonc.. 560A~~ I2 ~ Barium BAll, T. K.: The geochemistry of the Randesund Gneisses. Norsk. Gccl. Tidskr, 46, 379 (1966). BARAGAR, R. A.: Petrology of basaltic rocks in part of the Labrador Trough. Hull. Geol. Sec. Am. 71, 1589 (1960). BAR ""II, F.: Sapphirine-beating rock, Val Codera, Italy. Am..Mineralogist 49, 146 (1964). BAll.llm GO:\lES. C. 010, SANTrNl, P., DUTJlA, C. V.; Perrochemlstry of a Precambrian am phibolite from the jaragua area, Sao Paulo, Br:\2il.]. Geol. 72, 664 (1964). BARTEL, A. ]., FENNU.LY, E. ]., HtJFDIAN. C, Jr" RADEll, L. F., Jr.: Some. new data on the arsenic content of basalt. U.S. Geo!. Surv. Profess. Papers 475-6, 620 (1963). BAllTH, T. F. W.: The: feldspar lattices :IS solvents of foreign ions. lnstiruto Lucas M:illada, Cursillos y Conferencies B (1961). BASCHE". e.: Hdufjgkensbescimmung fur Kehleosroff nus CH-Banden irn Umerzwerg HD 140283 und in der SOIUle. Z. Asrrophys. 56, 207 (1962). B£L'R.E.VICH, P. L, CHISTOVA, L. R., STROGONOVA, L. F.: Effect of temperature and form of iOD and anion on the iun-eschange equilibrium in peat. vesrsi Ako.d. Nauk Belarcsk. SSR, Ser, Khirn. Nauk 4, 29 (1(66). BERLIN, R.• H.END£R~ON, C. M. B.: The distribution of Sr and Ba between the :illI..:Lll feld spar, plngloclnse and geoundmass phases of porphyritic trachytes and phonnlites. Geo chim. Coereocturo. Acta 33, 247 (1969). B£RTSCII, W.: Barium in Buntsandsceinen. Master's Thesis, University of Tuhingcn, 26 pp. 1964. BWEulAN, \'iI. P., KEENAN, P. c., The Ball Slats. Astrophys.]. 114, 473 (1951). BINNS, R. A.: Barroisire - bearing eclogite fcorn Naustdal, Sogu og Fjordane, Norway. J. Petrol. 8, 349 (t967). BLACK, \'iI. A. P., MITCl-lliLL, R. L.: Trace clements in the common brown algae aed in sea water.]. "brine BioI. Assoc. U. K. 30, 575 (1952). BLOCI', A., P.ERLOFF, 5.: The crystal structure of barium tetraburate, BaO' 2B!O~. Acta Cryst. 19, 297-300 (1965). BLOSS, F. D., ST.EINIOR, R. L.: Biogeochernical prospceting for manganese in north-case Tennessee. Butl. Geoi. Soc. Am. 71, 1053 (1960). BOlITTCH£R, A. L.: Vermiculite, hydeobiorire, nod biotite in rhe Rainy Creek igneous complex ncar Libby, Montana. Clay Minerals BuU. 6, 283 (1966). BOLTE.R, E., TUREKIAN, K. K., SCHOTZ. D. F.: The distribution of rubidium, cesium and barium in the oceans, Geochim. Cosrnochim. Acm 28, 1459 (1964). BOROVU::-RoMA~OVA, M. F.: Spectroscopic dererminarinn of barium in the ash of planes. 're. Biogeokhim. Lab. A.kad. Nauk SSSR 5, 175 (1939). BOSTROM, K., PET.ERSON, 11. N. A.; Precipitates from hydrothermal exh2.lo.t1ons on the ease Pacific Rise. Econ. Geol. 61, 1258 (1966). - FRA.ZI.':R, ]., BLAN~6URG, ].: Suhsolidus phose relations and lattice constants in the system BaS04-SrS04-PbSO•. Arkiv Mineral. Geol. 4, 477 (1968). BOUSKA, V., PoVONORA, P.: Correlacion of some physical and chcmieal prnpercies of mojda vires. Gecehlm. Ccsmochim. Acta 28, 783 (19M). Bows», H.]. }of,: Srrondum and haeiurn in sea water and in marine organisms.]. Marine Blol. Assoc. U.K. 35, 451 (1956). - Trace Elements in Biochemistry. London-New York: Academic Press 1966. Baxuea, H.: Spurenelemenrgebalte in Gra.n.iten Thiiringens und Sachsens. Ph. D. Thesis, Bergakadernie Freiberg, 1965. BRAY, J. 1\1.: Spectroscopic distribution of minor clements in igneous rocks from ]~mcs town. Colorado. Bull. Geol. Soc. Am. 53, 765 (1942). BROBST, D. A,: Barite: world prcduetlon, reserves and future prospeees. Bull. U.S. Geoi. Sun. 1321, 46 pp. (1970). BRONG£RSMA-SANDERS, M.: Barium in pelagic sediments :1nd in diatoms. Proc, Koninkl. Ned. Akad. \'iIett:llsch~p., Ser. B 70, 93 (1967). BROWN, P. H., CAJl1,lICHAEL, 1. S. A.: Qoarernary volcanoes of the Lake Rudolf region: 1. The basanire-tephcire series of rhc Korarh Range. Lithns 2, 239 (1969). Barium R.r.",nc.. 5&-A1<>IoIl.o I- 3 Baow», G.lL, EMELEVS, C. H., HOLL,\NO, J. G., Pl-llLLlrS, R.: Mlncealoglcal, chemical and petrological Features of Apollo 11 rocks and thdr relationship to igneous processes. Proceedings of the Apollo 11 Luoar Science Conference 1,195 (1970). BaoWN, H. R., SWAINE, D. .l-: Inorganic consciruents of Ausa-alian coals. I. Nature and mode of occurrence. J. lnst. Fuel 37, 422 (1964). - T ...n.OR, G. H.: Metamorphosed coal from the Theron Mountains (Falkland Islands Dependencies). Tmns-Antarcrie Expedition 1955-58, Sci. Repr, 12, 1 (1960). BIIOWN, J., GRANI', C. L., UGOLINI, F. C., TIlOllOW, J. c. F.: Mineral composition of some drainage waters from arctic AJaska. J. Cecphys. Res. 67, 2447 (1962). Baceo, E., GAZzONr, G.: On the system Ba(A1:Si~O").Ca(A.L,.Si..,.Oa) I. Ca-Ba subsrirution in polymorphic modifications of B~Si~O". Ccnrr. Mineral. and Petrol. 25, 144 (1970). BRYHNr, I., BOLLINGBERG, H. J., GrtAFF, P. R.: Eclogites in quartzofeldspathic gneisses of Nmdfjord, \'Vest Norway. Norsk Geo!. Tidsskr. 49, 193 (1969). BUCKLEY, S. E., Hocos-r, C. R., TAGGART, M.S., Jr.: Distribution of dissolved hydro carbons in subsurface wnrers. In: L. G. \'\feeks (ed.), Habitat of Oil. Tulsa: Am. Assoc. Petrol. Geo!. 1958. BVRBlDGIl, E. M., BVlUllDGE, G. R.: Chemical composition of the BaII stac HD 46407 and its beating on clement synthesis in stars. Astrophys. J. 126, 357 (1957). BIJIITON, J. D., MARSHALL, N. J., PHTLLIl'S, A. J.: Solubility of bacium sulfate in Se3. water. Nature 217, 834 (1968). BUTLER, B. C. 11.: Chemical study of minerals from the Moine Schists of the Acdnunurcb:m Area, Argyllshite, Scotland. J. Petrol. 8, 233 (1967). BlfTLEll, J. R.: Geochemical affinities of some coals from Svalbard (Spitzbergen). Kong. Ind._, Handverk, Skips-farrdcpr., Noesk Pclarinst., Skrifrer 96, 1 (1953a). - The geochemistry and rnincralogy of tack weathering. I. The Lizard area, Cornwall. Geochim. Cosmochirn. Acta 4, 157 (1953b). - The geochemistry and mineralogy of rock weathering. II. The Nordrnarka area, Oslo. Oeochlm. Cosmochim. Acta 6, 268 (1954). BYERS, F. M., ) r.: Petrology of ehrcc volcanic suites, Umnak and Bngoslof Islands, Alecelcn Islands, Alaska. Bull. Oeol. Soc. Am. 72, 93 (1961). CA~1ERMAN, c.: Composition d'une eau 11. forte salure du bassin houiller de Charleroi. Bull. Soc. Belge G601. 60, 361 (1951). C"-MfRON, A. G. V.: A revised table of abundance of the clements. Astrophys,). 129,676 (1959). C'\~II!RON, E. M.: Evaluation of sampling and analytical methods for the regional gee chemical study of a subsurface carbonate formation. J. Sediment. Petrol. 36, 755 (1966). CANNON, H. L.: Geochemistry of rocks and related soils and eegerarion in tbc Yellow Cat area, Grand County, Utah. U.S. Geo!. Surv. Bull. 1176 (1964). - SHACKLEITE, H. T., BASTRON, H.: Metal absorption hy equiserum (Horsetail). U.S. Geo!. Surv. Bull. 1278-A (1968). CARO K. D.: Metamorphism in the Agnew Lake area, Sudbury District, Onrarlo, Canada. Bull. Geol. Soc. Am. 75, 1011 (1964). CARLOS"', R. :M., OVERSTREET, R.: The ion exchange behavior of the alkaline earth metals. Soil Sci. 103213 (1967). CARMICHAEL, J. S. E.: Trachytes and their feldspars phenocrysts. Mineral. Mag. 34, 107 (1965). _ The iron-riranium oxides of salie volcanic rocks and their associated ferromagnesian silicates. Conrr. Mineral. and Petrol. 14,36 (1967a). _ The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Conte. Mineral. and Petrol. 15, 24 (1967b). _ McDo~ALO, A.: The geochemistry of some natural acid glasses from the North Atlantic Tertiary volcanic province. Geochim. Cosmochim. Acta 25, 189 (1961). CAYRIlL,R., CATREL Oil STROBEL, G.: Abundance determination from stellar spectra. Ann. Rev. Astronomy Astrophys. 4, 1 (1966). CHAO, E. C. T.: The petrographic and chemical characteristics of tckriees, In: J. O'KEEfE (ed.), Tckdees. Chicago: University Ehlcago Press 1963. R.r.rence. 56-A lo 56·0 I ~ 4 Barium CHAPMAN, D. R., KEIL. K., ANNELL. C.: Cornparlson of Macedon and Darwin glass. Gee chim. Cosmoc:him. Acta 31, 1595 (1967). CHOW, T. L, GOLDBERG, E. D.: On the: rnarioe gc:ocbcmisrry of barium. Gcochim. COS~ mochim. Aero. 20, 192 (1960). - PATl'F.:RSON. C. c.: Coocentration profiles of barium and lead in AdUldc W2(Cn; off Bermuda. Earth Planer. Sci. Lett. 1,397 (1966). CHURCH, T. M.: Marine: barite. Ph. D. Thesis, University of CaJjfornia, San Diego, 1970. CLARKE, D. B.: Tertiary basalts of Baffin Bay: possible: primary magma from the: mantle. Contr, Mineral. and Petro!' 25, 203 (1970). CLARKE, M. C, SWMNE., D. ].: Trace: elements in coal. I. New South Wales coals. II. Origin, mode of nccuerence, and eeonomic importance. Fuel RCSClCCh Tccb. Comm. 45, 115 (1962). CLAtTON, D. D.: Implications of the: snlar-system abundances near atomic weight 90. J. Geophys. Rcs. 69, 5081 (1964). CLl....OIlD, T. N., NICOLAY5EN, L. D., BUIlGEIl, A. J.: Petrology and age of the pre-Dtavi basement granite at Franzfontcin, Northern South Wcst Africa. J. Petrol. 3, 244 (1962). - Rooxe, J. M., ALLSOPP, H. L.: Petrochemistry and age of the Franzfontein granitic rocks of Northern South West Africa. Geocbim. Cosmochim. Acta 33, 973 (1969). Coal Research Committee: D.S.LR. Wellington N. Z., CoaL Report No. 249 (1949). CoATS, R. R.: Magmatic differenriarion in Tertiary and Quaeremary volcanic rocks from Adak and Kanaga Islands, Aleutian Islands, Alaska. BulL Ceol. Soc. Am. 63, 485 (1952). - Gcalogy of Buldir Island, Aleutian Islands, Alnska. Bull. U.S. Gecl. Surv. 989·A, 1 (1953). - Geologic reconnaissance of Scmisapochnoi Island, Westcrn Alcutian Islands, Abska. Bull. U.S. Gcol. Surv. 1028-0,477 (1959). - NELSON, W. H., LEWIS, R. Q., POWEllS, H. A.: Geologie reconnaissance of Kiska Is land, Alcutian Islands, Alaska. Bull. U.S. Gecl. Scrv. 1028-R, 568 (1961). Cocco, G.: Gccesis of the Elba granite rocks: geocilemistry of strontium and barium. Rend. Soc. Mineral. Ital. 9,-48 (1953). CoLEMAN, R. G.: Low temperature reaction zones and alpine ultramafic rocks of Cali fornia, Oregon and Washington. Bull. Gcol. Soc. Am. 1247 (1967). - LEE, D. E.: Glaucopbanc becelng metamerpbic rock types of the Cazadero Area, California. J. Petrol. 4, 260 (1963). - P Al'IKE, J. J.: Alkali amphiboles from the blueschists of Cazadero, California. J. Pececl. 9, 105 (1968). COLLINS, A. G.: Chemistry of some Anadarko basin brines containing high concentrarlons of iodide. Cbem. Gcol. 4, 169 (1969). ZELINSKI, W. P.; The solubilreies of barium and strontium sulfaees in oil ficld brines. Am. Chern, Soc. Div. Watcr Air Waste Chcm., Preprints 6, 7 (1966). CoLVILLE, A., STAUOHAM)I,IEIl, K.: A rdinelJlent of the structure of barite. Am. Mineralogist 52, 1877-1880 (1967). COMPSTON, W., C~APPELL, B. W., AIlIlIENS, P. A., VERNON, M. J.; Thc cbemistry and :lgc of Apollo 11 lunar material. Proceedings of the Apollo 11 Lunar Science Conference 2, 1007 (1970). CoIlLETT, M., RmHE, P. H.: Electron probe microanalysis of minor elements - plagloclase feldspars. Schwciz. Mincral. Petrog. Mitt. 47, 317 (1967). CoIlNWALL, H. R.: Calderas and associated volcanic rocks ncar Beatty, Nyc County, Nevada. Gcol. Soc. Am. Petrologic Studies, Buddingrcn volume, 357 (1962). - R.OSE, H. J., j r.: Minor elements in Keweenawan lavas, Michigan. Geochim. Cosmo chim. Acta 12, 209 (1957). CORREIA NEVES, J. 11.: Genese dcs zonar gebauren Beryllpegmarits von Vcnturinlu (Viseu, POrtugal) in geochemischer Siebe. Beier. Mineral, Petrog. 10, 357 (1964). Cox, K. G., HORNUNG, G.: The peuolcgj- of thc Karroc basalts of Basutclacd, Am. Mincrn.logur 51, 1414 (1966). - JOHNSON, R.L., l.ION~MAN, L,j., STILLMAN, C, VAlL, ].R., \'(1'000, D.N.: The geology of the Nunnetsi Igneous province. Philos. Trans. Roy. Soc. London 257, 71 (1965). Barium Rbr.r40CC5 ~t4~0 I 5 Cox, K. G., MACDONALD, R., HOn.NUNG, G.: Geochemical and petrographic provinces in the Karroo basalts of Southern Africa. Am. Mineralogist 52,1451 (1967). Ct.rrrITIA, F., CLARJ.:E, R. 5., j'r., CARRON, M. K., ANNl;LL, C. 5.: Manha's Vineyard and selected Georgia tektit~: new chemical data. J. Gecphys. Res. 72, 1343 (1967). DANA, J. D., DANA, E.S.: In: C. PALACI-IE, H. BERMAN, FRONDEL, c.: Tbe System of Mineralogy, 7th ed. New York: John Wiley & Sons 1951 and 1952. DANCHIN, R. V.: Aspects of the geeehemlscry of some selected south African fine grained sediments. Ph. D. Thesis, University of Cape Towo, 1970. Dj\wsoN, J. B.: Basutoland kimberlites. BulL. Gecl. Soc. Am. 73, 545 (1962). DEGENS, E. T.: Geochemical invesdgstjons inrc the country rock of the fluorite-baeire Co-Ni-Bi-Ag-G- ore veins of the middle Black Forest. Glilckauf 92, 842 (1956). - WILLUMS, E. G., KEI'1'H, M. L.: Enviconrnenral studies of Carboniferous sediments, part 1: Geocbemical crireeia for differentiating marine and Fresh water shales. Bull. Am. Ass. Petrel. Geologists 41, 2427 (1957). D"LKE5Kncp. R.: Die Schwerspathvorkornmnisse in dee Wetterau und Rheinhesscn und ihre Enrsrchuog. Ncuabl. geo!. Landesanst. Hessen, IV. F. 21, 47 (1900). Die weite Verbrelruog des Baryums in Gesteinen und Minemiquellen und die sich hieraus eegebenden Beweismittel fur die Anwendbarkeit der Lateralsecreticns- und Thettna.ltheorie auf die Genesis der Sehwersparhgsnge. Z. prake. Geo!. 10, 117 (1902). DEVILLIERS, P. R.: The chemical eomposidon of the water of the Orange River at Viocls drif Cape Province. Rep. Suid-Afrika, Dept. Mynwese Ann. Gecl, Opnnme 1, 197 (1962). DtnRlCH. R. V., ilium, K. S.: Differentiation of quartz-bearing syenite (nonimarkite) and riebeckitic-aefvedsonire granite (ekerite) of the Oslo series. Geochim. Cosrnochim. Acra 31, 275 (1967). DIXON, J. E., CANN. J. R., RENfR"W, c.: Obsidian and the origins of trade. Sci. Am. 218, 38 (1968). DODG'" F. C. W., PAPIKE, J. J., MAYS, R. E.: Homblendes Ircm granitic rocks of the· Central Sierra Nevada Batholitb, Califom..ia. J. Perro!' 9, 378 (1968). - S~IlTH, V. C. MAYS, R. E.: Biorires from granitic roeb! of the Central Sierra Nevada Batholith, Cilifomin. J. Petrol. to, 250 (1969). Doooxov, Ya, Ya., EPERDVA, L. V., KOLOSOVA, V. S.: Ubee die Salze dee Erdalkalimetalle in den Wiissern der Bohrungen von dec Gaslagerstatte Sararov. Dokl. Akad. Nauk SSSR G5, 887 (1949). DOWGrALLO, J.: The occurrence of brines within the Koobreeg Unit, their genesis and relation 10 tectonics. Bull. Acad. Polen. Sci. S~e. Sci. G~ol. G~ogrnph. 13, 305 (1965), DRAKE, M. J., MCCALLUM, 1. S., Ml::KAY, G. A., WEILL, D. F.: Mineralogy and petrology of Apollo 12 sample no. 12013: a progress report. Earth Planet. Sci. Leer. 9, 103 (1970). DUCHESNE, J. c.: Strontium vs. calcium end barium vs. potassium relations in plaglo clasea from southern Rcgaland anorthosites. Ann. Soc. Geol. Bdg. Bull. 90, 643 (1968). Duh:..l'::, M. B., SILVER, L. T,: Petrology of eueeires, bowardires end mcscslderires. Geoehim. Cosmochim. Ael:l. 31, 1637 (1967). DUNHAM, A. C.: The Felaices, gmnophyres, explosion breccias, and ruffisites of the north em margin of the Tertiary igneous complex of Rhum, Inverness-shire. Quart. J. Geo!. Soc. London 123, 327 (1968). DURFOR, G. N., BECKER, E.: Public water supplies foe tbe 100 largest cities in the United States 1962. U.S. Water Supply Papers 1812 (1964). DURUU, \VJ. H., Hj\FFTY, J.; Occurrence of minor elements in water. U.S. Geol. Surv. Circular 445 (1961). - - Irnpllcanons of the minor element content of some major streams of the world. Geochim. Cesmochlm. Acta 27, 1 (1963). - HEJDI'L,S. G., Trsox, L. j.: World wide runoff of dissolved solids. Int. Ass. Sci. Hydro logy Gen. Assembly Helsinki 1960, Commission of Surface W:ttet'S, Publ, 51, 618 (1960). DUVAL, J. E., KUIUIA'1'OV, M. H.: The adsorpdoo of cobalt and barium ions by hydrous ferric oxide at equilibrium. J. Pbys. Chern. 56, 982 (1952). Reforonces 5a-A to !i/i.() I6 - ECK.ERMA~N. Barium H. VON: The distribution of barium in the alkaline rocks lind fcnircs of Alnti Island (Sweden). Intern. GeoL Conge. Rept. larh Session Gr. Britain, Parr II, 46 (1948). - Tbcdiscriburion of barium and strontium in In" reeks and minerals of the srcnidt: and alkaline rocks of Alno island. Arkiv Mineral. Geol. 1, 367 (1952). - The strontium and barium contents of the Aloe. caehonatites. Min. Soc. of Indi:!, IMA volume, 106 (1966). - The strontium and barium concerns of rhe Alno sovires and the: alkaline, carbonadtic. and ultrabasic rocks. Ark.iv Mineral. Geo!. 4, 417 (1967). EL~HINNAWJ. E. E.: Trace dement distribution in Chilean ignimbrites. Corne. Mineral. and Petrol. 24, 50 (1969). E~IILJANI. F., VE5PIGNANI-BALZANI. G. c.: Sr and Ba distribution in the: Predazzo granite. Mineral. Pcrrcge. Acta 10, 81 (19M). EMMERMANN, R,: Differentiation und Mctasomatose des AlbtalgC'llflits (Sttdschwarzwald). Neece jahrb. Mineral. Abhandl. 109, 94 (1968). - Genetic relaricns between rwo generations of K feldspar in a granite pluton. Neues Jabrb. Mineral. Abhandl. 111, 289 {1969}. Eldl.lONS, R. c.: Selecred petrogenetic relationships of plagioclase. Chemical analyses. Geo!. Soc. Am. Mem. 52, 11 (1952). ENGEL, A. E. J., E.'lGEL, C. G.: Progressive metamorphism and granirizaticn of the major paragneisa, northwest Adirondack Mountains, New York. Bull. Gecl, Soc. Am. 69, 1369 (1958). - - Progressive metamorphism end granirization of the major paragneiss, ncnhwesc Adirondack Mountains, New York. Bull. Geol. Soc. Am, 71, 1 (1960). - - Hornblendes formed during progressive metamorphism of cmphibolires, northwest Adirondack Mountains, New York. Bull. Geol. Soc. Am. 73, 1499 (1962). - HAVENS, R. G.: Chemical cbaracterisrics of oceanic basalts and the upper mantle. Bull. GeQl. Soc. Am. 76, 719 (1965). ENGEL, C. G.: Igneous rocks and constituent hornblendes of the Henry Mountains, Utah. Bull. Geol. Soc. Am. 70, 951 (1959). - SHARP, R. P.: Chemical data on desert varnish. Bull. Geol. Soc. Am. 69, 487 (1958). ENGI>LHARDT, \'\1. VON: Die Geochemie des Barium. Chern. Erde 10, 187 {1936}. ERICKSON, R. L., BLAm, L. V.: Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas. U.S. Geol. Surv., Profess. Pnpers, 425 (1963). ERICSON, D. B., EWtNC, M., WOLLIN, G., H.E.EZEN. B. c.: Atlantic deep-so sediment cores. Bull. Geo!. See. Am. 72, 193 {1961}. - WOLLIN, G.: Correlation of six cores from rhe equatorial Atlantic and the Caribbean. Deep-Sea Res. 3, 104 (1956). ERSHOV, V. M.: Relation of germanium 10 the organic matter in fossil coals. Geocbemistry, 763 (1958). EUGSTU" 0., TERA, F., WASSeRHURG, G. J.: Isotopic analyses of barium in meteorites and terrestrial samples, J. Gcophys. Res. 74, 3897 (1969). EVANS, B. \'\I.: Fractionation of clements in the pelitic hornfejses of the Casbd-Lougb \VhCelaUD intrusion, Connemara, Eire. Geochim. Cosmochim. Acta 28, 127 (19M). EWART, A., TAYLOR, S. R., CApp, A. c.: Geochemistry of the paneelleelr of Mayor Island, New Zealand, Contr. Mineral. and Petro!' 17, 116 (1968). FAIRBAIRN, H. W" AHRENS, L. H., GORl'lNKU, L. G.: Minor dement content of Ontario diabase. Geoehim. Cosmochim. Acta 3, 34 (1953). - SCHLECHT, W. G., STEVENS, R. E., DENNEN, \'\1. H., AHRENS, L. H., CHATES, F.: A cooperative investigation of precision and accuracy in chemical, spectrochemical and modal analysis of silicare rocks. Bull. U.S. Geot. Surv. 980 (1951). FENNER, P., HAGNRR, A. F.:·Corrclation of variations in trace elements and mineralogy of the Esopus Fcrmaricn, Kingston, New York. Geochim. Cosmochim. Ace 31, 237 (1967). FISCHER, K.: Verfeinernug dee Krisrallstruktur voo Beniroir BaTi[Si~09]' Z. Krist. 129, 222 (1969). FISHER, R. L., ENGEL, C. G.: Ultramafic: and basahic rocks dredged from the near shore flank of the Tonga trench. Bull. Gco!. Soc. Am. 80, 1373 (1969). Barium FLANAGAN, F.].: U.S. Geological Survey standards. II. First compilation of dara for the new U.S.G.S. rocks. Geochlm. Cosmochim. Acta 33, 81 (1969). FLEISGHEll, M.: Summary of new dam on rock samples G-l and W~l, 1962-1965. Gee chim. Cosmcchim. Acta 29, 1263 (1965). - U.S. Geological Survey standards. - I. AdditionaL dnta on rocks G~1 and W~I, 1965- 1967. Gecchim. Cosmochim. Acro 33,65 (1969). - STEVENS, R. E.: Summary of new data on rock samples G~l and W~1. Geochim, Cosmo chim. Acta 26, 525 (1962). FOEllSTEll, H. P., FOSTEll, I. \'i/.: Endotrophic caLcium, strontium, and barium spores of bacillus megarerium and bccillus cereus.]. Bacceeiol. 91, 1333 (1966). FORNASEllI, M., SCHEI\TLLO, A., VE]'ITEIGLlA, U.: La regione vulcanica del Colli Albani. Consiglio Nazionale delle Rlcerche Centre di Mincralogia c Pctrogrnfia Aziende Tipo grnfiche Ercdi Den, G. Bard! (1963). POSTEll, R. ].: Precambrian corundum bearing rocks, Madison Range, snutbwesrern Montana. Bull. Geol. Soc. Am. 73, 131 (1962). FREDRIKSON, K., KEIL, K.: The ligbt-dark structure in the Parnae and Kapoeta stone meteorites. Geoehlm. Cosmochim. Acta 27, 717 (1963). FRICKE, K.: Neue hydrogeologiscbe Untersuchungen und Neubohrungen im Heilquellen gebier von Bad Hermannsborn, NR W. Das Cas- Wasserfach 109, 251 (1968). FRIEDMAN, G. 11.: Obtaining paleoenvironmental information. U. S. Patent Office No.3, 343,917 (1967). . - Geology and geochemistry of reefs, carbonate sediments, and waters, Gulf of Aqaba (Elar), Red Sea. J. Sediment. Petrol. 38, 895 (1968). - Trace dements al> possible environmeural indicators in carbonate sediments. Soc. Eeon. Paleontologists Mineralogists, Spee. Publ. 14, 193 (1969). FUJITA, Y., TSUJI, I.: Speerrophotomerry of Y Canum Venatieorum. Publ. Dominion Astrophys. Obs. 12, 339 (1965). GANGULY', A. K., MUKJ-IERjF.:e, S. K.: The cation exchange behaviour of hetercicnic and homoionic cbys of silicate minerals. ]. Phya, and Colloid Chern. 55, 1429 (1951). GAllI\ELS, R. M., TJ-IOMPSON, 1L E., SIEVEll, R.: StabiLiry of some carbonates at 250 C and one atmosphere total pressure. Am.]. Sci. 258,402 (1960). GARSON, M. S.: Carbonatites in Malawi, pp.33--77. In: O. F. TUTrLE, GITrINS, ]. (eds.), Carhonarites. New York: Interseience Publishers 1967. GAST, P. W.: Limitations on the composition of the upper mantle. J. Geophys. Res. 65, 1287 (1960). - Terrestrial ratio of potassium to rubidium and the composirlon of the earth's mantle. Science 147, 858 (1965). - HUlIBAllO, N. ]., Wll;.5IdANN, H.: Chemical composition and petrogenesis of basalts from Tranquilliry BMe. Proceedings of the Apollo 11 Lunar Seienee Conferenec 2, 1143 (1970). GATES, G. L., CAllAWAY, W. H.: Oil-well scale formation in water flood operations using ocean brines, Wilmington, California. U.S. Bur. Mines, Repr. Invest. 6658 (1965). GAY, P., RoY', N. N.: The mineralogy of the potasslom-bnrlurn feldspar series. III. Sub solidus relationships. Mlneeal. Mag. 36, 914 (1968). GERASlldovsKn, V. I.: Geochemical features of agpaitic nepheline-syenites, p. 104. In: VINOGRADOV (ed.), Chemistry of the Eartb'a Crust, I. Jerusalem: 1966. - BELYAEV, Yu. I: Content of manganese, barium and strontium in alkaline rocks of the Kola Peninsula. Geochemistry, 1161 (1963). GHOSE, N. c.: Behaviour of traee dements during thermal metamorphism and (oblique) or granitization of the metasediments and basic igneous reeks. Geo!. Ruodschau 55, 608 (1966). GIBSON, ].: Personal communication (1963). GIUSCA, D., IONBSCU, ].: Geochemistry of volcanic rocks in the Gutai Mountains. Probl. Geokhim., Akad. Nnuk SSSR, last. Gcokhim. i Analit. Kkim., 436 (1965). G}IELtN: Gmelins Hnndhuch dee ancrgarrischen Chemic, 8th edit. Barium Erg:inzungsband. Weinhcim: Verlag Cbemie 1960. ReforenCDI 5oS.A 10 56-0 I -8 Barium GOl..D. D. P.: A verage chemical composition of carbonatires. Ee. Geo!. 58, 988 (1963). - Alkaline ulrrabasic rocks in the: Montreal Area, Quebec, p- 288. In: \V'YLLl£ (ed.), Ultramafic and Related Reeks. New York: John \\iilcy & Sons 1967. GOLDBEII,G, E. D., AKKHENltIS. G. O. S.: Chemistry of Pacific pelagic sediments. Geocbce. Cosmocbim. Acta JJ, 153 (1958). GOLOllRRG, L., 1WU•.ER. E. A., ALLER, L. H.: The abundances of the: dements in the: solar atmosphere. Aereopbys. J., Suppl. 5. t (1960). GOLES, G. G., RANOLE. K., QSAWA, .M., SCH~IlTT. R. A., WAKITA, H., EH~r"NN, \VI, D., MORGAN, J. W.: Elemental abundances by instrumental activation analyses in chips from 'Zl lunar rocks. Proceedings of the Apollo 11 Lunar Science: Conference, 2, 1165 (1970). GORDON, C. P.: The: Hall and N StArs as a temperature sequence. Astrophys.]. 153, 915 (1968). GRAF, D.1..: Geochemistry of carbonate: sediments and sedimentary carbonate rocks. Ill. Minor element distribution. Illinois State: Gcel. Surv. Cue. 301 (1960). GREEN, D. H.: The: petrogenesis of the higb-tempcraeure peridotite: intrusion in the: Lizard area, Cornwall (England).]. Petrol. 5, 134 (1964). GREENLAND, L. P., LOVERING, ]. F.: Minor and trace: dement abu ndnnces in tbe: chondridc mecccrues. Gcoehim. Cosmochim. Acta 29, 821 (1965). - - Fractionation of fluorine:, chlorine, and orher ttace: clements during differentiation of a thole:iitic magma. Ge:ochim. Cosmochim. Acta 3D, 963 (1966). ' GRESENS, R. L.: Tectonic-hydrctbermal pegmarircs. II. An example. Cootr. Mineral. and Petrol. 16, 1 (1967). GRiffIN, WI. 1.., MURTHY, V. R.: Abundances ofK, Rb, Sr, and Ba in ultramafic rocks and minerals. Earth Planer. Sci. Lett. 4, 497 (1968). GRT~I, R. E., DILTZ, R. 5., BRAOLEY, \'\1. F.: Clay mineral composition of some: scdime:nts from the: Pacific Ocean off the Galifornhn coast and the: Gulf of Ca.lifornia. Bull. Ge:o!. Soc. Am. 60, 1785 (1949). GROHMANN, H., SCHROLL, E.: Sdte:oe: Elcmente in Granitoide:n dee sudlicheo Bohmischen Masse. Tschermaks Mine:rnl. Pe:trog. Mitt, 11, 348 (1966). GROSS, E.: Pabstire, the tin analogue: of benicoire, Am. Mineralogist 50, 1164 (1965). GROUT, F. F.: The compositions of some African granitoid rocks. I. Geo!. 43, 281 (1935). GRUSHKO, Ya. M., SHIPITSYN, S. A.: Toxic substances in the drinking waters of Irkutsk from spectral analyses. Gigie:na i Sanir. 13, 4 (1948). GUNN, B. M.: KjRb and KIBa ratios in Antarctic and New Zealand tholeiites and alkali bas:Lits.]. Ge:ophys. Res. 70, 6241 (1965). - Modal and element variation in Anarctic tholeiite:s. Ge:ochim. Cosmochim. Acta 30, 881 (1966). HAHN-\'V'EINHU~IER, P.: Geochemische Untersuchungen an den ultrnbasischcn uod basi schen Ge:stc:inen der Milnchberger Geelsmasse (Fichrelgehirge). Ncue:s ]ahrb. Mineral., Abhandl. 92, 203 (1959). - LOf:cKE, W.: Garners from the: eclogites of rhe Mucnchberger gneiss massif (N. E. Bavaria). Gao. Mine:ralogist 7. 764 (1963). - ACKf:RMANN, H.: Ge:ochemical investigation of differentiated granile: plutons of the Southern Black Forest - II. The: zoning of tbe: Malsbw:g granite: pluton as indicated by the elemeou titanium, zirconium, phosphorus, Strontium, barium, rubidium, potassium, and sodium. Ge:ochim. Cosmochim. Acta 31, 2197 (1967). HALL, A.: The: variation of some trace elemcors in the: Rosses granite complex, Donegal. Ge:ol. Mag. 104, 99 (1967). HA~tAGUCHl, H., REED, G. W., TUIlKEWITSCH, A.: Uranium and barium in stone: mereorices. Gecchim. Cosmccblm. Acta 12, 337 (1957). J-L\NOR,]. 5.: Barite earuraticn in sea water. Geochlm. Cosrncchlm. Acta 33, 894 (1969). HASKtN,1.. A., A~, R. 0., l-IELMKJ>:, P. A., PA~TI:R, T. P., ANDERSON, M. R., KOROTJ.'.V, R. L., ZWI;lfl'.L., K. A.: Rare: earths and other trace dements in Apollo 1 t lunar samples. Proceedings of the ApoUo 11 Lunar Science Ccnfeeeoce 2, 1213 (1970). HASLA~I, H. \VI.: The crystsdlization of iorermediarc MId acid magmas at Ben Nevis, Scot land.]. Petrel. 9, 84 (1968). Barium Hi\.WLliY,]. E.: Germanium COntent of some Nova Scotian coals. Ec. GeoL 50, 517 (1955). HEIOE, F., CHRIST, W.: Zur Geccbemie de, Suomiums und Bariums. Chern. Erde 16, 327 (1953). HEIDEL, S. G., FRENIER, W. W.: Chemical quality of water and trace clements in the Patuxent River Basin. Maryland Gecl. Surv. Repr, Invest. No. I, 1 (1965). HEIER, K. S.: Petrology and geochemistry of high-grade metamorphic and igneous rocks on Langoy, Northern Norway. Norsk Gecl. Unden;5kning 207 (1960). - The amphibolite-granulite f:l.eies tnlosition reflected in the mineralogy of pOUSliium feldspars. Institute Lucas Mallada, CursiUos y Conferencias fuse. 8 (1961). - Trace elements in feldspars - :l. review. Ncrsk Gect. Tidsskr. 42, 415 (1962). Geochernistryofthe nepheline-syenite on StjernllY, North Norway. Norsk Gcol. Tidsskr. 44, 205 (1964). A geochemical comparison of the Blue Mountain (Ontario, Canada), and Stjernoy (Finnmark, North Norway) nepheline syenites. Norsk Geo!. Tidsskr, 45, 41 (1965). - TA\"LOR, S. R.: Distribution of Ca, Se and Ba in southern Norwegian pre-Cambrian alkali feldspars. Gcochim. Cosmochim. Acca 17, 286 (1959). - CHArrELL, B. W., ARRIENS, P. A., MORGi\.NS, J. W.: The geochemistry offour Icelandic baaalta. Norsk. Gcol. Tidsskr. 46, 427 (1966). HHNRICH, E..W. M.: Micas of the Brown Derby pegmatnes, Gunnison County. Cojcrado. Am. Mineealoglsr 52,1110 (1967). - LEvrNSON, A. A.• LEVANDOWSKI, D. W., HEW1'TI', C. H.: Studies in the natural history of micas. Univ. Mich., Final Rcpt, Project M 978 (1953). - - - - Geochemistry of muscovite and related micas. 20th Internar. Geological Conge. Me~eo 1956. HELFER. H. L., WALLERSTEIN, G .• GREENSTHN, ]. L.: Meral abundance in the sub-giant Hercules and three other dG stare. Asrrophys. J. 138, 97 (1963). HENDERSON, C. M. B.: Minor dement chemistry of leucite and pseudoleuciee. Mineral. lIo-I:l.g. 35. 596 (1965). HERRMANN, A. G.: Dber des Voekommen elnlger Spurenelemenre in Sabdosungen :l.US dem deutschen Zechstein. Kali Sreinsalz 3. 209 (1961). HERZ, N., DUTRi\., C. V.: Minoe clement abundance in a pan of the Brazilian shield. Gco , chim. Cosmochim. Aco. 21, 81 (1960). . - - Geochemistry of some kyaniees from Beaail. Am. Mlnemlogisr 49,1290 (1964). - - Trace elements in nlkali feldspars, QU:l.drilarero ferrifero, Minas Genis, Brazil. Am. Mineralogist 51,1593 (1966). HEWLETT, C. G.; Optical properties of porassie feldspars. Bull. Geo!. Soc. Am. 70, 511 (1959). HEY, M. H.: C:ltalogue of Metcorieea, 3rd edit. British Museum 1966. Herosccaa, H. R., KURODA. P. K.: Natural occurrence of the shnrt-lived barium and strontium isotopes. I. Inorg. Nuel. Chern. 12. 12 (1969). HtETANEN, A.: Distribution ofelements in biotite-hornblende pairs end in an orthopyroxene clinopyroxene pair from acned plutons, Northern Sierra Nevada, California. Ccnee. Mineral. and Petrol. 30, 161 (1971). HIGAZY. R. A.: Petrogenesis of perthite pegmatires in the Black Hills, South Dakota. ]. Geo!. 57, 555 (1949). _ Behaviour of the trace elements in a front of metasomatic-metamorphism in the Dal radian of Co. Donegal. Geoebim. Cosmoehim. ACta 2, 170 (1952). - Ohservations on the disrrihuticn of trace dentenrs in the perthite pegmatites of the Black Hills. South Dakota. Am. Mineralogist 38, 172 (1953). - Trace elements of volcanic ultrabasic potassic rocks of south-western Uganda and adjoining parts of the Belgian Congo. Bull. Geo!. Soc. Am. 65, 39 (1954). HIUleR, \YI.: Die Suuktur dee Hochtemperaturform des BaGe03 • Acta Ceyse. 15. 1101 (1962). HINTZ!!, c.: Handbuch der Mineralogic. Bd. I, 3. Abt., 1. Halfre, Berlin: Walter de Gruyter 1930. , - Handbuch dec Mineralogie, Bd. I. 3. Abt., 2. Hdlfte. Berlin: \'(falter de Gruyter 1930. - Handbuch dec Mineralogic. Erganzungsband I. Berlin: Walter de Crcyree 1938. - Handbuch dee Mlneralogie. Erganzungsband II. Berlin: Walter de Gruyrer 1960. Relo'"""o' 6!i·A 10 66<1 I - 10 Barium HrrCHON, S.: The gcocbemlsrry, minc:ralog}', and origin of pegrnacites of three: Scottish Precambrian metamorphic complexes. Intern. Gc:ol. Congr. Repr. 21st session Copen hagen XVII, 36 (1960). HOLLAND, H. D.: Some applicarions of thermochemical dam to problc:ms of ore deposits. II. Mineral assemblages and the composition of ore-forming fluids. Ec. Geol, 60, 1101 (1965). Hosxnes, H. A.: Analyses of West Virginia brines. State of \'\lest Virginia Geol. and Ec. SUIT. Repe, Invest. 1 (t947). HD~S, H., Roy, R.: On n.:l.tural phillipsiee, gismondilc:. harmotomc, chabasite, grnelinitc. Beirr. Mineral. Perrog. 7, 389 (1960). Ho'rz, P. E.: Petrology of grancphyrc in diabase ncar Dillsburg, Pa. Bll11. Geol. Soc. Am. 64, 675 (t953). HOWIE, R. A.: The gecehemisrry of the charnockirc series of Madras, India. Trans. Roy. Soc. Edinburgh 62, 725 (1953----55). HUSliARO. N. J., G"'ST. P. \\:I.; WrES~lANN, H.: Rare earth, alkaline and alkali mcral and el!s8Sr data for subsamples of lunar sample 12013. Earth Planet. Sci. Lett: 9, 181 (1970). - i\h,YER, c., Jr.• G.\ST, P. \VI.: The composition and derivation of Apollo 12 soils. E:uth Planet. Sci. LeI(. 10. 341 (1971). HUCJ.:£NllOLZ, G.: Personal communication (1969). HUGT. 'I'n., SWAINE, D. j.: The geochemistry of some: Swiss granites. J. Proc. Roy. Soc. New S. Wales 96, 65 (1963). HUNZICKER, J. C.: Zur Geotogie: und Ge:ochc:mie: des Ge:bie:tes zwischen Valle Antigoro (Provincia di Novara) und Valle: di Campo (Kt. Tessin). Sehweiz. Mine:ral. Pctrog., Mitt. 46, 473 (1966). HYO£N, H. J.: Uranium and other metals in crude oils. n. Distribution of uranium and other metals in crude oils'-U.S. Ge:ol. Surv. Bull, nOO-B. 17 (1961). IcHl"UNI, L M.: Buium content of barite-Forming hydrothermal waters as exemplified by Tamagawa Hot Spring; waters. Bull. Chern. Soc. Japan 39, 898 (1966). hp.M.... J. T.: Etude experirnenrale de fa distribution d'ef~ment e:n traces cmre deux fc:ld spatbs. Feldspath porasslque er plagioclase coexistants. L Distribution de: Rb, Cs, Sr et Ba a 600~ c. Bull. Soc. Franc. Mineral. Crise. 91. 130 (1968). IKEo.... N.: Chemical studies on the: hot spring:. of Nasu. VII. Spectrocbemical dctermina nco of rare:r element contents of Motoyu spring. J. Chern. Soc. japan, Pure Chern. Sect. 76. 711 (1955:\). Chemical studies on the: hot springs of Nasu, VllI. The spring water of thc Motoyu. J. Chern. Soc. Japan, Purc Chern. Sect. 76, 713 (1955b). I~IR};H, J., EC"'TEIUNE, J.: Geochemical stud}' of some: Eocene limestones from the Transyl vanian Basin. Romania. Bull. Serv. Carre Ge:ol. Alsai:e Lorraine: 18. 277 (1965). !sHlO""', K.: A clinopyroxene: granitic rock from Myogcse, japan. Ge:oehem. J. 1. 95 (1967). Iw",s"'KI, L, K...TSURA, T., T"'RUTANI. T.• OZAW"" T., YOSHIO.... 11:.: Geoehemlcal studies of Tarnaguwa Hot Spring. Geccbem. Tamagawa Hot Sprmgs, 7 (1963). J... J.:OBSHAGEN, V., MUNNIClI, K.O.: "C_Altersbestimmung und andere Isoropenurirer suchungen an Thermalsolen des Ruhrhrbons. Ne:ues Jahrb. Geol. Palneontol. Monatsh, 9.561 (1964). ] "'~IIBSON, B. G., Cr..ARKE. D. B.: Potassium and associated clements in tholeiitic basalts. J. Petrol. 11. 183 (1970). . JANSE, A.]. A.: Monticellite-peridorite from Air. Brukkaros, South Wcst Africa. Univ. of Leeds Res. Inst. Afric:uI Ge:ol. 86th Ann. Rcpt., 21 (1962-1963). J"'S"lUNO. K .• SECK, H. A.: Geochcm;sche Uncersucbuogen an AllsWiirfliIlgen (Gleesiten) des Laaeber-Sce-Ge:bie:tes. Behr. Mjneeal, Perrog, 10, 275 (1964). JOHNSON. R. L; The geology of the: Dorowa and Shawa carbonarite complexes Southern Rhodesia. Trans. Geol. Soc. S. Afeica 64, 101 (1961). JUNNER. N. R., J....lJES, WI, T.: Chemical analyses of gold coast rocks, ores, and minerals. Gold Coast Ge:ol. Surv. Bull. 15, 1 (1947). KASHAlN, A.: Crystal structure of cymrite, Dokl. Akad. Nauk SSSR 169, 201 (1966). Barium Flefe,oneu 58·A 10 5G-O I 11 KATCHENKOV, S. M., FUGONTOVA; E. I.: Trace elements in the Devonian (petroleum) deposits of the Volga-Ural region, as found by spectral analysis, Tr, Vses. Nefr. Nauchn., Issled. Geologoeaaved. Insr., Geol. Sbornik 83, 466 (1955). - - Distribution of chemical clements in sedimentary rocks, warers, and in the ashes of the crudes of the Gronznpi-Dagestan region. Tr, Vses. Neft. Nauchn.-Isslc:d. Geolo goeazved. Inst., Geol. Sbomik 95, 481 (1956). - - Treee elements in bottom muds of the Indian Oeean. Tr, Vses. Nefr. Nauchn., Issled. Gcologorazvc:d. Insr. 227, 202 (1964). KATSCHEfl, Ii., LIDlAU, F.: Uhee die Kristallstruktur von Ba~Si308> cin Silikat mit Drei fachkctten. Nsturwissenschafren 52, 512 (1965). - - Triple, quadruple and quinttuple chains in barium sillcares. Acta Crysr. 21, Suppl., A 58 (1966). KAVEEV, 11. S., VASIL'EV, B. V.: Hydrogeology of petroleum formations in Devonian deposits of southeast Tatar. Tr, Sovesheh. Probl. Ncfreg::tz. Uralo-Volzbskui Oblasti, Tr. Soveshchaniya 10-15 Maya, 337 (1954, 1956). KAY, R., HUDDARO, N. .l., GAST, P. W.: Chemical cheracrerisrics end origin of oceanic ridge volcanic rocks. j. Geophys. Res. 75, 1585 (1970). KEGEL, W. H. : Die Arrnoephare des F 6 IV- V -Sremes i' Serpcncis. Z. Astrophys. 55, 221 (1962). KELLER, W. D., KU)!)[E, A. W., PICf'.crT, E. E.: Detailed survey of the chemical compo sition of rock layers in en agriculrural Ilmesrone quarry. Ec. Geol. 45, %1 (1950). KENT, L. E.: The thermal waters of the Union of South Africa and South West Africa. Trans. Proc. Geol. Soc. S. Mrica 52, 231 (1949). - RUSSELL, H. D.: The warm spring on BufFc:lshoek, near Thabazimbi, Transvaal. Trans. Roy. Soe. S. Africa 32, 161 (1949). KING,B.C., SUTHERLAND,D.S.: The carbonarite complexes of Eastern Uganda. p. 73. In: TUTTLE, O.F., GITTINS, V.(ech.), Carbonatires. New York: Inrerscienee Publishers 1967. KIRICHENKO, L. F., CHERTOV, V. !'fL, VYSOTSKll, Z. Z., STRAZIIESKO, D. N.: Sorption of cedens from acid solutions on silica gels obtained by the hydrothermal method. Dokl. Aka.d. Nauk SSSR 164, 618 (1965). KIRK, R. E., OTHMER, D. F.: Encyclopedia ofChemieal Technology. New York: Inter science Publishers 1963. KLE.E~IAN, A. W.: Sampllng error in the ehemic::al analysis of rocks. j. Geol. Soc. Ausrealia 14, 43 (1967). KODAlRA, K.; Armospharc:nslruktur und chemisehc Zusammenseraung des SehnelL'iufers liD 161817. Z. Astrophys. 59, 139 (1964). KOHLRAUSCH, F.: Uber gesattigre waBrige Lcsungen schwerloelicher Salze II. Tell: Die gelosten Mengen mit ihrem Tcmperarurgang, Z. Physik. Chern. 64, 129 (1908). KOLBE, P.: Geocbc:rnistry of some Mrican and Australian granitic rocks. Ph. D. Thesis, Australian National University 1964. - TATLOR, S. R.: Major and trace clement rclationships in granodiorites and granites from Austr:alia and South Mrica. Corne. Mineral. end Petrol. 12, 202 (1966). KOMUV, O. I., TlImA, N. I., ZHERDEVA, N. I.: Tricationic exchange on Transcarparhian bentonite. Visn. L'viv. Deeeb. Univ., See. Khim. 8, 54 (1965). KONTOflOVlCH, A. E., SADIKOV, M. A., SHVARTS.EV, S. L.: Abundances of certain elements in [he surface and ground waters of the northwestern part of the Siberian platform. Dnkl. Ak:ld. Neuk SSSR 149, 168 (1963). KOROLEV, A.: The water content of the petroleum deposit of Kala and the chemical classi fication of [his warer. Azerb, Nefr, Khoz, 15,35 (1938). KOZ1N, A. N.: Barium in formation weters of oil pnols in the Volga area near Kuibyshev. Gc:okhimiya 9, 937 (1964). KRAVCHENKO, V. B.: Crystal structure of B:J.B:O,· 4H~O=B:l[B(OH)4b. Zb, Strukr. Khim, 6, 724 (1965), translated. KIlETZ, R.: Chemical study of garnet, biotite, and bornhlende from gneisses of south western Quebec, witb analysis on disttibution of clements in coexisting minerals. j. Geol. 67, 371 (1959). - The distribution of certain dements among coexisting calcic pyroxenes, calcic amphi boles and biotlres in skarns, Geoehim. Cosmochim. Acta 20, 161 (1%0). ROM'.Me! 1i6-AIO!.l).O I - 12 Barium KUKABAliV, B., SYDnWV, ZH.: Hydrochemistry of subsurface WBII:rs of the Permian Triassic deposits in the southwc:stc:rn pan: of the Ural end Emba intc:rfluvc:. Izv. Akad. Nauk Kaz. SSR, Set. Gcol. 4, 58 (1962). KliNO, H., YAMAsAKr. K., 110A, CIi., NAGASHlIl.lA. K.: Differentiation of Hawaiian magmas. Japan. J. Geol. Geography, Trans. 28,179 (1957). KURODA, P. K., EOW'\RDS, R. R.: Radiochemical me-asurement of the natural fission rate of uranium and the naruml occueeenee of 11gB:>.]. Incrg. Nucl. Chern. 3, 345 (1957). LAMBERT. I. B.. HEIER, K. S.: Geochemical lnvestigadons of deep-seared rocks in the Austr.Llian shield. Litbas 1, 30 (1968). L.UlBERT. R. ST.: The eel.aticnship of the Moine schists and Lcwlsian gneisses nor Mallaig more, Inverness-shire. Proc. Geologists' Assoc. 75, t (I9G4). WNDRR, J.: The crystal structures of NiO· 3B:l0, NiO· BaO, BaNiO and inrermediarc races with composition nor Ba~Ni108; '\\lith a note on NiO. Aet::l. Cryst. 4, 148 (1951). !.ANOERGEEN, ST., MANHEIM, F. T.: Vher die Ahhingigkeic der Ve:rteilung von Schwer mereuec von dee Fazies. Fortschr, Gccl. Rheinld. u. Wenf. 10, 173 (1963). LARSSON, W.: Chemical analyses of Swedish reeks. Bull. Ge:ol. Jose. Univ. Upsala 24, 47 (1932). I..AVRU}(HINA, A. K., KOLJ!~ov, G. M., KAI.ICHEVA, I. S., AKOL'ZlNA, L. D.: At::tivation analysis for Ce:, Eu, SCI Be, U, and P in the: dark and light varieties of the Kunashak and Pervomayskiy Poselok chondrites. Geoehem. Inc., 217 (1966). LE.8EOEV, B. A.: Trace dements in Jurassic lllld Lower Cretaceous Formations of the: Caspian depression. Dckl. Ak:td. Nauk SSSR 173, 192 (1967a). - Comparison of trace: dement cooeenta in marine and fresh water clays. Geocbern. Icc., 821 (l967b). LEBLANANDAM, c.: Chemical study of pyroxenes from the charnockinc rocks of Konda gu.lli (Andt':th pradesh), India, with emphasis on the distribution of elements in co existing pyrOll;eJ1es. Mineral. Mag. 36, 153 (1967). LEJ.'\U.ITRE, R. \'\t.: Petrology of volcanic roeks, Gougb Island, South Atlantk. Bull. Gecl, SOt::. Am. 73, 1309 (1962). LEt1I'W"-IN, F.: Geoebemische Untersuchungen an Alaun- und Kicsdschie:fe:rn Thuringens, Arch. Lagerstarrenforsch. 82, 1 (1951). - Spurencicmenre in rezenten Carcli:c:n vcrschledener Fundnrre. Forrschr, Ge:ol. Rheinld. u. We:stf. 10,283 (1963). - Geochernische Charakrerisrjca mariner Einfltlsse in Torfcn und andcree quarternaren Scdimenten. Geol. Rundsehau 55, 97 (1966). - WEISE, L.: Hydeogeochemisehe Untersuchungen an eragebirgischen Gruhen- und Oberfliel1enwiisscrn. Ge:ochim. Cosmoeblm. Acro. 26, 1333 (1962). LEVI, H. W., SCHI:EWI'.R, E.: Bariumaustauseh an Vermikulie und Beneonlr. Z. Anorg. Allgem. Chern. :H7, 105 (1965). LIEnAU, F.: Die Sysremadk der 5jlik.o.te. Narurwisaensehafren 49,481 (1962). - Ein Beirrag zue Kristallchemie dee Scblchtailikare, Acta Ceyee. B 24, 690 (1968). LU!.BENllERG, C. J.: The trace elements of the rocks of the: Bushveld igneous complex. Puhlikasies Univ. Pretoria, Nuwe Reeks 12 (1960). LIN, H. C, FOSTER, \YI. R.: Studies in the syscem BaO-Al"OJ-SiO:. I. The: polymorphism of eelsian. Am. Mineralogist 53, 134 (1968). - - Studies in [he system BaO-Al"OJ-SiO~. Ill. The binary system sanbornite-celsian Miaerel. ~bg. 37,459 (1969). LIPMAN, P. W.: Alkalic and tholeiitic volcanism related to the Rio Grande: depression, Southern Colorado and Northern New Mexico. Hull. Geol, Soc. Am. 80, 1343 (1969). LlPnrANN, F.: Die Kriatallsttukrur dC3 Noeserhlr, BaMg(CO')2' Tschermak's Min. Peer, Mittei!. 12,299 (1968). LITVIN, I. I.: Minor elements in Lower Cretaceous rocks of the: Dnlepcr-Donets depression, Dokl. Akad. Nauk SSSR 139, 450 (1961). LITVIN, S. V.: Trace elements in the Upper Carboniferous sedimentary rocks of [he Donees Basin nnd in ncnheasiem part of [he Dnlcper-Donets syncline. Dokl. Akad. Nauk SSSR 152, 1453 (1963). Barium LONK.... A.: Trace dements in the Finnish Precambrian phyllites as indicators of salinity at the rime of aedimentacion. Bull. Comm. Geol. Flnlande 228 (1967). LOTSrElcn, F. B., M"'RKW"'RO. E. L.: Minor dements in bedrock soil. and vegetation at an outcrop of the Phosphoria Formation on Snowdrift Mountain. socrbeesteen Idaho. U.S. Geo!. Surv. Bull. U81-F, Fl (1963). LSPET (Lunar Sample Preliminary Examination Te9.JTl): Preliminary examination of lunar samples from Apollo 11. Science 165, 1211 (1969). _ Preliminary cxarninaticn of lunar samples from Apollo 12. Science 167, 1325 (1970). Lunatic Asylum: Mineralogic and isotopic investig;l.Iions on lunar rode. 12013. Earth Planet. Sci. Lett. 9. 137 (1970). LlJRYE, L. :M.: Migration of barium and strontium during country rock mecascmadsm in the Zambarak ore fic:ld. Dokl, Abd. Nauk SSsR 149, 1167 (EngL. tnmslation 185) (t963). ],.I... cDoN.~LD. G. A., EATON, J. P.: Hnwniian volcanoes during 1955. Bull. U.S. Geol. Suev. 1171 (1964). l\V.CPHf;RSON. H. G.: A chemical and petrographic study of Pre-Cambrian sediments. Geochim. Cosmochim. Acta 14, 73 (1958). MALlNlN, S. D.: An experlmeocai investigation of the solubility of calcite and witherite under hydrothermal conditions. Geochemistry, 650 (1963). MANonA R. H .• R...M...S:E;S/-IAN, 5.: Crystal coordination of the hariurn ion. Proc. Ind. Acad. Sci. 60. 317 (1964). - - The crystal sreucccrc of barium hydroxide ocrahydrare BII (OH)~ ·8HsO. Z. Kirst. 119.357 (1964). Ml.I'lK"'RT, H., PRELSLNGEIl., A.: ZUT Besnmmung dcr Feldspatc in Gesteinen. Tschermaks Mineral. Peecog Mitt., 3. F., 315 (1964/65). 1!AIl.KHINrN, E. K., SAPOZHNIKOV.... A. M., STRATlJL..., D. S.: Barium in the volcanic rocks of Kamchatka and the Kurile Islands. Geochemistry. 933 (1964). MAkMCI, V.• Srrvor.a , J.: The harium content of some granites of Finland. Bull. Comm, G':ol. Finlande 222. Hj9 (1966). MATHE, G.: Die: Metabasite des aachsischen Granulitgebirges, Freiberger Forschungsh. C 251 (1969). MAT/-IIAS, M.: The geochemistry of the Messum Igneous Complex. South-West Africa. Gecchirn. Cosmoehim. Aeta 12, 29 (1957). ],.U.TSlJ~llJkA, T.• ISIllYA.."A, T.: Adsorption of radioactive materials by coal humic aeid. Ann. Rcpr. Rndiae. Cenree Osaka Prefect 7. 14 (1966). MATT"'UClI, J. H. E., TmELE, W., \'V'... PSTk.... A. H.: 1%4 atomic mass table. Nucl. Phys, 67. 1 (1965). MAXWELL. J", PECK, L. c.. WIIK, H. B.: Chemical composition of Apollo 11 lunar samples 10017,10020,10072 and 10084.P~oceedings of the Apollo 11 Lunar Science Conference 2. 1369 (1970). - WIIK. H. B.: Chemical composition of Apollo 12 lunar samples 12004. 12033. 12051. 12052 and 12065. Earth Planer. Sci. Lett. 10, 285 (1971). MA.ZZI. F., PABST. A.: Re-examination of cuprorivaire. Am. Mlneralogisr 47. 409 (1962). - ROSSI, G.: The crystal structure of taramellite B~(Fe. Ti, Mg)aHz[O:(SiI01J]. Z. Krisr. 121, 243 (1965). MCGR"'IN, P.• THOM"'S. G. R.: Preliminary repcrr on the narural brines of E:l.stem Ken tucky. Kentucky Geo!. Surv. Repr, Invest.• Ser. 9 3, 1 (1951). M.E.LCHER, A. c.: The solubility of silver chloride. barium sulphate and calcium sulphate at high remperarcres. Am. Chern. Soc. 32, 50 (1910). ;\iELSON. W. G., THOMSON, G., ANOf;L. T. H. VA.N: Vclcanisre and metamorphism in the Mid-Atlantic Ridge, 22°N latitude. J. Geophys. Res. 73, 5925 (1968). MICHEL. G.: Untersuchungen tiber die Tiefenbge der Grenze SiiBwasser-Salzwasser im ncrdllchcn Rheinland und ansehliellenden Teilcn Westfatens, zugleieb etn Beitrag zue Hydrogeologic und Chemic des tiefee Grundwas~ers. Fersehungsher, Landes Nord rhein-Westfalcn 1239 (1963). - Zur Mineralisation des riefen Grundw:u~ers in Nordchein-Westfalen. j. Hydrology 3, 73 (1965). Ror.renco. 5erA to 56-0 I ~ 14 Barium C. D., DF.GENS, E. T., HATH,\W,\Y, I. C, M'\'NHEI~I. F. T., McFARLTN, P. E, POCKLINGTO~, R" JOKEL,!., A.: Hot brines. and recent iron deposits in deeps of [he Red 5c:1. Ceocbirn. Cosmochim. Acta 30, 341 (1966). Muana, J. P.: Solutes in small streams draining single rOl:k types, Sangre de Ceisro Range, New Mexico. U.S. Gcol. Surv. \'\!:ltcr Supply lS35.F (1961). MINGUI:ar, C.: Spectrography of some products of Vesuvius fcmaecles. Rend. Soc:. ~Ijnc: rat 1tal. 5, 60 (1948). MOENKE. H.: Trace clements in Variscan and pee-Variscan German granites. A spectro chemical analysis of granitic rocks of differeoc age. Chemic Erde 20, 227 (1960). MOHR, P. A.: Trace dement distribution in a garner-chlcrire-rock from Foci Ddu, ncar Harlccb, Merionerhsbire. Mineral. Mag. 31, 319 (1956). - A geochemical study of the sh:Ues of the Lower Cambrian rneoganese shale group of the Haelech Dome, Noeth W1l1es. Geochim. Ccsmcchim. Act:! 17, 186 (1959). _ ALLEN, R.: Further considerations 'on the depnshton of the Middle Cambrian manganese carbonate beds of Wales end New Foundland. Gect. Mag. 102, 328 (1965). MOORE, C. B., BROWN, B.: Barium in srcny meteorites. J. Gecphye. Rcs. 68, 4293 (1963). MORRt~ON, G. H., GERARD.]. T., KASHUD,\, A. T., GANG"'DH"'R... ~r. E. V., ROTHENDERG, A. M., POTTER, N. M., MILLER, G. B.: Eicmernal abundances of lunar soiJ and rocks. Proceedings of the' Apollo 11 Lunar Science Conference 2, 1383 (1970). .\[OXH,\~I, R.I..: Minor dement distribution in some metamorphic pyroxenes. Can. Mine ralogist 6. 522 (1960). - Distribution of minor elcmerus in coexisting hcmblendes and bicrires. Can. Mineralc gist 8, 204 (1965). MUIR, A., H,\RDIE, H. G. M., ;',{ITGHELL, R. L, PH~IISTER, ].: Limestones of Scodand: chemical analyses and petrography. Mem. Geol. Surv. Gt. Brit. Mineral Resources Gr. Brit. 37. 1 (1956). MUIR, T. D., TILLEY, C. E., SCOON, J. H.: Basalts from the Northern Parr of the rift zone of the Mld-Adanrlc Ridge. J. Petrol. 5, 409 (1964). MUKHERJEE, B.: Genetic slgnifieance of trace clements in certain rocks of Singhlbuen, India. Minernl. M:Ig. 36, 661 (1968). .i\[URR...Y, H. H.: Gene.o;is of clay minerals in some Pennsylvanian shales of Indiana and Illinois. Proc. 2nd Nac. Conf. C!:Iys and Cby Minerals 1953, 47 (1954). MURTIlY, V. R., EVENS£N, N. M., CoSCIO, M. R.: Distribution of K, Rb, Sr and B1 and Rb-Sr isotopic relations in Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar Science CLlnfer"nce 2, 1393 (1970). NABOKO, S. I.: The sublimates of the Klyuchevskcy volcano. Bull. Aead. Sci. USSR, Geo!. Ser, I, 50 (1945). NESl'ERENKO, G. V., STUDENIKOVA, Z. V., SAVtNOVA, E. N.: Rare and disseminated ele rnents in skarns of Tyrny-Auz (Sevier Armeni:t). Geochemistry, 287 (1958). NEU!.IANN, E. W.: Sclchiliry relations of barium sulfate in aqueous solutions of strong e:1eeu:olyces.]. Am. Chern. Soc. 55, B79 (1933). NICHOLLS, G. D., LORING, D. H.: The geochemistry of some British CarboniferoLls sedi ments. Geochim. Cosrnochim. Acui 26, 181 (1962). NIKOL,lEV, V. M., SOKIRKO, L. E., PESTOV,\, N. M.: SPC'1:tn! analysis for correlation of formation waters in Mesozoic deposits of the E:J.Stem Caucasus Region. Tr. Groznensk. Neft'. Nauchn.cfssled. Inse, 8, 200 (1960). NIXON, P. H., KNORRING, O. VON, Rooxa, J. M.: Kimbcelites and associated inclusions of Busuroland: a mineralogical and geochemical srudy. Am. Mineralogisr 48,1090 (1963). NOBLE, D. c., HAFFTY, J.: Minor-dement and revised major-element contents of some Mediterranean parttellertres and ccmendhes. J. Petrol. 10, 502 (1969). NOCKOLDS. S. R., ALLEN, R.: The geochemistry of some igneous rock series. I. Calc alkalic rocks. Geochim. Cosmochlm. Acta 4, 105 (1953). - - The geochemistry of some igneous rock series. ll. Alkalic rocks. Gecchirn. Cosmo chim, Am. 5, 245 (1954). - - The geochemistry of some igneous rock series. HI. Tholeiitic rocks. Geochim. Cosmochim. Act~ 9, 34 (1956). MILLER. A. R., DENS~IOkIl. Barium RefereneBl 56·A Ig 66-0 I 15 OFTF.OAL. 1.: 00 the developrnece of granite pegmatite in gnelss areas. Norak Geol. Tidsskr, 38, 231 (1958). - Disu:ibutil1n I1fBa and Sr in micrccline in sections across a granite pegmatite band in gneiss. Norak Ge:oL Tidsakr, 39, 343 (1959). - Remarks 00 the: variable conteors of Ba and Sr in microcline from a single pegmatite: body. Ncrak Ge:oL Tidsakr, 41, 271 (1961). - Contribution to the geochemistry of nephelineayeniric pegmatite in the aogcsunds fjord area. Nccsk Ceol. Tidaekr, 42, 167 (1962). O'HARA, M. ].: Zoned uheabaslc and basic gneiss masses in the: early Lewislan me:umoqJhic complex at Scourie, SCl1tland.]. Petrol, 2, 248 (1961). OKRUSCH, M., RICH'l'"2.R. P.: Zur Geoche:mie: dee Dioritgruppe. verglelcheade Untee, suchunge:o an Geseetcee des Bayeriscben \'<.'alde.s, des Spcssans und des Odc:nwaldes (Sud-Deursehland). Ccce. Mineral. and Petrol, 21, 75 (1969). ONU/oJA, N., HIGUCHI, H., \"'A!tITA, H., NAGASAWA, H.: Trace element partition between tWO pyroseoes and the host lava. Earth Planer, Sci. Le«. 5, 47 (1968). ORR, A. R.D.: Barytes. Mining Annual Review, London 108 (1970). OSTRO», M. E.: Trace: dements in Illinois Pennsylvanian Iimesrcoes. Illinois State Gecl, Sun. Cire:. 243, 1 (1957). OSTROU~IOV> V. M., RussKIKH, A. M.: Sarazon spring. Izv, All:l.i. Gc:ogr. Ohshe:he.st. SSSR 6, 45 (1965). PABST, A.: Structures of some: tetragonal sheer silicates. Acta Cryee. 12, 733 (1959). PAPEZIK, V.S.: Geochc:mistry of some Canadian anorthosites. Ge:ochim. Cosmochim. Acta 29, 673 (1965). PARRAS, K.: The: chamoekites in the: light of II. highly metamorphic rock complex in south western Finland. Bull. Comm. Cecl. Plnlande 181 (1958). PATTl!ISKY, K.: Die: tberrnalen Solen des Ruhrgebietes und we [uvenllen Quellgase. Glilc:k auf 90, 1334, 1508 (1954). PATTERSON, E. M.: A petrochemical study of the Tertiary lavas of oorth-ea..stlreland. Gee chim. Ccsmcchlm. Acta 2, 283 (1951). _ Petroehemieal data for some nerd intrusive rocks from the:Mourne: Mouoroins and Stieve Gullion. Proe. Roy. Irish Acad., Sect B 55,171 (1953). - MrTCliELL, \\;/". A., SWAINE, D. J.: Tertiary volcanic succession ill the western part of ehe Anuim Plateau. Proc. Roy.lrish Aecd., Seer. BS7, 155 (1955). - SWAlNE, D. J.: A perrnchemical study of Tertiary tholeiitic basalts: the middle Ieves of the Antrim Plateau. Geochim. Ccsmochirn. Acta S, 173 (1955). PATTIARATCHI, D. B., SAARJ, E., SAHAMA, TH. G.: .Anandite:, a new barium iron silicate from Wilage:dera. North Western Province, Ceylon. Mine:ral. Aug. 36, 1 (1967). PECK, D. L., WRIGHT, T. L., MOORE, J. G.: Cty.I;t:illization oftholditie basalt in Alae: Lava Lake, Hawaii. Bull. VolcanoL 29, 629 (1966). PECORA, W. T.: C3rbonatite: problem in tbe Bearpaw Mountains, Montana. Bull. Gecl. Soc. Am., Buddington Volume: 83 (1962). PENCHEV. N. P., P£NCHRVA, E. N., BONcnEV, P. R.: Specreographlc investigation of rbe trace elemems in Bulgarian mineral waters. Ccmpr. Rend. Aced. Bulgare Sci. 11, 375 ("58). _ - - Specerographic inve:stigatiom of tbe microcornponenrs of Bulgarian mineral waters. n. Compr. Rend. Acad. BuIgare: Sci. 13, 55 (1960). PERCHUC"', L. L., RYABCHIl.:OV, 1. D.: Mineral equilibria in the: system nephelloe-alkali fdd.5par.plngioclase: and their petrological significance. -J. Petrel. 9, 123 (1968). psraov, V. P., PR£OOVSKtI, A. A., SEllGEEV, A. S., G.tLrnIN, V. A.: Some: peculiarities in the distribution of trace: elements in blotltes from crystalline schists and gneisses in the Northern Ladoga Region. Vestn. Lcningr, Univ. See. Geol. i Geogr, 4,5 (1965). P:ETT1jOJ.IN, F. ].: Dam of Geochemistry, 6th ed. U.S. Geo!. SUIT., Profess. Papers 440-8 (1963). PHiLPOTTS, J. A., SCHNETZLER, C. c.. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and b:rsalt genesis. Gecchlm, Cosmcchlm. Aero. 34, 307 (1970a). R~lG""oao SG-AIoM-O I 16 Barium PaIlJ>()T'!S,]. A., SCHN/>TZl.J!R, C. c.; Apollo 111uD3.t samples: K. Rb, Se, Ba and rare-earth concenreations in same rocks and separated phases. Proceedings of the: Apollo 11 LUJ13r Science Conference 2,1471 (197Gb). - - THOMAS, H. H.: Rare-earth and barium abundenees in the Bununu howardite. Earth Planer. Sci. Lett. 2, 19 (1967). PtE1'ZNI'.R, H., WOLF. 1L:: Geochemical study of brown coal esbes, and ccal-perrographic study of brown coals from [he: Lower Rhine district. Pcetscbr, Geol. Rheinland Wc:st falm 12, 517 (1964). PlLKEY, O. H.: Trace elemecrs in Recent marine mollusk shells. Thesis, Ann Arbor, Michi gan, 1963. Prssox, W. H., AHRENS, 1.. H., FR"'NC~, M. L.: The abundance of Li, Se, Sr, Ba Rod Zr in chondrites and some ultramafic rocks. Gcochim. Cosrnochim. ACI3. 4, 251 (1953). PlRANI. R., Sn.lUOLI, G.:: Genesis of Sardinian granlce of the Buddoso platea. Geochemistry and structure of the chid mineralogical components. 1. K-fddspar. l\lineml. Petrogr. Acla 9, 179 (1963:l). - - Plagioclase and the use of the 2 coexisting feldspars in geothermal determinations. Minem.l. Peeoge. Acta 9, 211 (1963b). PL"S, L. VAN DER, HUGI, T.; A ferrian sodium-amphibole from Vals, Switzerland. Schwela. Mineral. Perrog. Mitt. 41, 371 (1961). POTH, CII. N.: The occurrence of brine in Western Pennsylvania. Pennsylv. Bull. Geo!. Sutv.,4th See, M 47 (1962). PUSHNOWSKY, A. A.: Sedlmenrperrographische und geochernische Untersuchungen im audliehen Rheinischen Schiefergebirge. Neues Jamb. Geo!. Palaeontol. Abhandl. lOS, 47 (1957). PREUSS, E.: Spekeralanalyrlsche Unteesuchung der Tektite. Chern. Erde 9, 365 (1935). PRICE, P. H., H"RE, C. E., MCCUE, J. B., HOSKINS, H. A.: Salt brines of West Virgini:l. WeSt Virgo Geo!. Sutv. Repr. 8 (1937). Pll.lNZ, M.: Geologic evolution of the Beartooth Mountains, Moorana, and Wyoming. Part 5. Mafie Dike Swums of the Southern Beartooth Mountains. Bull. Geel. Soc. Am. 75,1217 (1964). - Geochemistry of basaltic rocks: trace elements. In: HESS, H. H., POLOI'.RVAAIl.T, A. (cd.), Basalts. The Poldervaart Treatise on Rocks of Basaltic Composition, vol. T, New York: Interseienec Publishers 1967. PIl.OKOF'SV, V. A.; Elcrneotal chemical compositloo of shills of the Paleozoic brachiopods from spectral analysis data, Geokhimiya, 75 (1964). PUCHELT, H.: Zuc Geoehemie des Grubenwassers im Rubrgebiet. Z. Deceseh. Geo!. Ges. 116, 167 (1964). - Zur Ceochemre des Bariums im exogenen Zyklus. Sitzungsber. Heidclb. Akad. Wiss. Math.-nat. KL 4. Abh. (1967). R.E.Ao, H. H., H"Q, B. T.: The distribution of rraee clements in the dunlre-eyecire differen tiated series of the Inselr Compla. Aberdeenshice. Peoe. Geologists' Assce. 74, 203 (1963). - SAO"-SH1V"I"H, M.S., HAQ, B. T.: The hypcntene-gabbro of the lnseh Complea, Aberdeenshirc. Proc, Geologists' Assoc. 76, 1 (1965). RUD, G. W.: Heavy clements in the Pantar meteorite. J. Geopbya. Res. 68, 3531 (1963). RENFREW, c., D1XON, J. E., CANN, J. R.: Obsidian and early Cultural contact in the Near East. Proc. Prehistoric Soc. 32, 30 (1966). - - - Further analysis of near eastern obsidians. Proc. Prehistoric Soc. 34, 319 (196B). REYNOLDS, F. M.: Bcmedrungen uber daa Vorkornmen von Ba in der Kohle. J. Soc. Chern. Ind. 58, 64 (1939). RHODIlS, J. M.: On the cbemletry of potassium feldspars in granitic reeks. Chern. Geo!. 4, 373 (1969). RICHTER, W.: Die Feldspate des Granices von Eisenkappel (Karnten) und seines Rand porphyres. Tschermaks Minernl_ Perrog, Mitt., 3. F. 11, 439 (1966). R!OLEY. W. I.: The petrology of the Las OlOsdas volcanoes, Tenerife, Canary Islands. Coote. Minerak and Petrol, 26, 124 (1970). Barium Ralanm"". 56-A to &6-0 I - 17 RUiSAITE, J. H. Y.: On micas from magmatic and metamorphic roeks. Beitr, Mineral. Petrog. 10, 152 (1964). RiVALENTI, G., SIGHlNOLFI, G. P.: Geochemical study of graywackes as 0 possible starting material of para-ampblbolires. Corne. Mineral. and Petrol. 23, 173 (1969). ROlliNSON, W.O., WHETSTONE, R. R., EDGINGTON, G.: Barium in soils and pb.nts. U.S. Dept..Agr. Tech. BuU. 1013 (1950). R6l.1PP, H.: Cbemie Lexikcn, vol. I. Srurrgart . Francksche Verlagsbuchh.andlung 1966. ROGERS, J. J. W.: Textural and spectrochemieal arudies of the White Tank quartz monzo, nire, C:ilifOrnil1. BuU. Gcol. Soc. Am. 69, 449 (1958). ROSENQVIST, I. TH.; Note on leaching of granite whh special reference to lead, radium and barium. Ncesk Geol. Tidsskr, 19, 110 (1939). ROSSEINSI.:Y, D. R.; The solubilities of sparingly soluble: salts in water. Trans. Faraday Soc. 54, 116 (1958). . RoY, N. N.: Tbe miner:ilogy of tbc potassium-barium fddspar series. I. The dererminatlon of the optical properties of natural members. Mineral. Mag. 35, 50B (1965). - II. Studies on hydrothermally synthesized members. Mineral. Mag. 36, 43 (1967). RUllliSKA, I., MIKSOVSKY, M.: Strontium and barium in plain and mineral waters of me Karlovy Vary and 'Teplice erces and tbeir determination. Vesm. Usrrcdcekc Ustavu GeoL 38, 153 (1963). RUDERT, V.: Phasenbezlehungen im System Nl1AJSisOI·B~Si~OI·H~O. Fortschr, Minc ral. 48, 86 (1970). RUSSELL, H. D., HIEMSTRA, S. A., GRQliN£VELD, D.: The mineralogy and petrology of tbe carbonatite ac Loolelcp, eastern Transvaal. 'Trans. Proc. Geol. Soc. S. AfriC3 58, 197 (1954). RYBACH, L., NISSEN, H. U.: Zerstdrungsfreie Simulranbestinunung von N:L, K und Bl1 in Adular rnittels Neucronenaktivierung. Schweia. Mineral. Petrog. Mitt. 47, 189 (1967). SAtlINF., P. A., YOUNG, B. R.: Cell size and composition of the baryte-celestire isomorphous series. Acta Crysr, 7, 630 (1954). SAHA!dA, TH., G.: Spurenelemenre der Gesteine im sudlicben Finnisch-Lappland. Bull. Ccrnm. ceei. Finlandc 135 (1945a). - On the chemistry of east Fennoscandian Rapakivi granites. Bull. Comm. Gl!ol. Finlande 136,15 (1945b). SAHL, K.: Die Verfeinerung der Krlstallsrrukruren von PhC~ (Corunnir), Ba4, PbS04 (Anglcsir) und BaSO, (Baryr). Beier, Mineral. Petrcg. 9, 111 (1963). SAVELLI, c.: The problem of rock assimilation by Summa-Vesuvius magma. 1. Composielon of Somma and Vesuvius lavas, Contr. Mineral. and Perrol, 16, 328 (1967). SCHARB£RT, S.: Mineralhestand und Geoesis des Eisgarner Granics im niedcrOsterrc:ichi schen Waldvierrd. Tscheemsks Mineral. Petrog, Mitt. 3. F. 11, 388 (1966). SCHNEI'ZLER, C. C, PHILroTT~,]. A., BOTIINO, M. L.: Li, K, Rb, Sr, Ba and rare-earth concenrratinns, and Rb-Sr age of lunar rock 12013. Earth Planet. Sei. Lett. 9, 185 (1970). - - THOMAS, H. H.: Rare earth and barium abundances in Ivory Coast tektites and rocks' from me Bosumtwi Crater area, Ghana. Geochim. Cosmoehim. Acta 31, 1987 (1967). SCHOPF, T.]. M., MANHEIM, F. T.: Chemical composition of Ectoprocta (Bryozoa). ]. ·PaleomoI. 41, 1197 (1967). SCHWANDER, H., HUNZICKER, ]., STell.N, \VI.: Zur Mineralehemie in HeUglimmern in den Tessmer AIpen. Schweiz. Mineral. PeU"Og. Mitt. 48, 357 (1968). SCHWAII.CZ, H. P.: Chemical and mineralogic variations in an arkosic quartzite during progressive regional metamorphism. Bull. Geol, Soc. Am. 77, 509 (1966). SCHWINn, S. B.: Barium. A bibliography of unclassified literature. U.S. Arcmic Energy Comm. Nat. Sci. Foundation \'Quh. TID-369 (1952). SEN, N., NOCXOLD5, S. R., ALLEN, R.: Trace clements in minerals from reeks of the S. O:J.1ifornian batholith. Geochim. Cosmochim. Acta 16, 58 (1959). . SEN, S. K.: Some aspects Qf the distribution of barium, strontium, iron, and titanium in plagioclase feldspars. J. Geol. 68, 638 (1960). SENAKOLlS, A. F.: Lithology and geochemistry of tbe Cambrian carbonate rocks in some sections of the Sayan-Altai territory. Marerialy po Geo!. i Polcan. Iskcp, Zapadn. Sibiri 193 (t964). Rolo"'ocu tJ6.Alo~ I 18 Barium SHACIU..En'E. H. T.: Element comeoe of bryophyees, Conee. Gc:oc:hc:rn. Prcsp. Minerals, Geol. Surv. Bull. 1198-D (1965). SHAW, D. hi.: Trace elements in pelitic rocks I, II. Bull. Geo!. Soc. Am. 65, 1151, 1167 (1954). - Some aspects of rbe determination of barium in silicate rocks. Specteochlm. Aetll 10, 125 (1957). - MOXHAM; R. L., FILllY, R. R., LAl'.ItOWSKY, W. \VI.: The: petrology aod gecchcmlseey of some Grenville skarns.ll. Geochemistry. Can. b1iaccalogist 7,578 (1963). SHCHE.RBA, G. N., GUKOVA, V. D., KUORYA5HOV. A. V., SENClilLO, N. P.: Alkali feldspars from feldspar-quartz veinlets in molybdenum-tungsten deposits, Kazakhstan. IV. QuatU and feldspar-quartz veins and velcteu. Gcoclu:m. Int, t, 141 (1964). SHELTON, J. S.: Glendcve volcanic: rocks, Los Angeles Basin, Cal. Bull. Geo!. Soc. Am. 66, 45 (1955). SI-lIIdA, M., HONDA, M.:: Distributions of alkali, alkaliee e:uth and rue: earth elements in component minerals of chcndricea. Ge:oe:him. Ccsrnocbrcc. Acta 31, 1995 (1967). Sml.lER, J. A.: Spectrographic analysis of New England granites 'lad pegmatiees. Bull. Gco!. Soc. Am. 54, 1049 (1943). SHINKARl;NKD, A. L.: The: gas eornpcueuc and content of mlcroelemems in mineral springs of the Caucasian mineral wucera. Tr, Lab. Gidrogeol. Prob!' 3, 253 (1948). SHirABARA, M. N.: On the mineralogy of wellslrc. Ze:ntc. Mlneralogie, 180 (1950). SIEDNER, G.: Geochemical features Df n strongly Ieacdonared alkali igneous suite. Geot:him. COSrIloe:him. Actn 29, 113 (1965). SIEGERS, A., P'CIU.ER, H., Zau., \'7.: Traee element abundances in the "andesite" formation of rrorthern Ehile, Geocblm. Ccsmocblm, At:la 33, 882 (1969). SIJ.nlSON, E. S. W.: The Okonjeje igneous complex, southwest Mrica. Trans. Prne, Genl, Soc. S. Mric:l. 57, 125 (1954). SINHA, R. C, KAR}(ARE, S. G.: Distribution and behavior of trace: elements in somt: of the Deccan basalts. Geot. Soc. India Bull. I, 21 (1964a.). - - Geocheeusrey ofDeccan basalre. a.study of the behaviour of major and trace:elements in tbe basaltic flows of India. Inrem. Gecl, Congress, Rt:p. 21, Session India, Part VII, 85 (1964b). - TIWARI, B. D.: Geochemisuy of the volcanic racks of Pavag:uh. Intern. Geo!. Coogr. Rep, 21, Session India, Pact VII, 104 (1964). SXINNER, B. J., WnnE, D. E., ROSE, H. J., 1uYs, R. E.: Sulfidc:s associated with the Sahnn Sea ge:otht:rmal brine. Ee. Gecl. 62, 316 (1967). SKRODOV, A. A., Sl.lIRNOV, V. J.: Die narilrlichen Mineralwasaer des ncrdlichen Gebiets, Ncedl. Gecl. Verw. Arcbaagelsk (1939). Sl\lAl..ES, A. A., WEBB, M. S. W., WEBSTEIl, R. K., WU.sON, J. D.: Elemental composition of lunar surface material, Proceedings of the Apollo 11 Lunar Science Conference 2, 1575 (1970). SmTH, A. L., UR.IouC:HA.EL, 1. S. E.; Quaternary trachybasalts from scutheasrern Cali fornia. Am. Minaalogist 54, 909 (1969). S~nTH, G. J.: Geology and volcanic perrologp of the Lava Mountains, San Beenardinc County, California. U.S. Geol. Surv. Profess. Papers 457 (1964). SUITH, J. V., RmBE, P. H.:X-cay-emission microanalysis of ruck-forming minerals. 1lI. Al kali feldspars. J. Gecl. 74, 197 (1966). SNAVELY, P. D., Jr., MACLEOD, N. S., WAGNER, H. Tholeiitic and alkalic basalts oftbe Eocene Siletz river, Am. J. Sci. 266, 454 (1968). SNET5lNGER. K. G.: Barium-vanadium muscovite: and vanadium tourmaline: from Mariposa County, Callfcmia. Am. Mineralcgisr 51, 1623 (1966). SOLOUON, M.: Origin of barite: in the North Pcnnine oct: field. Insr. Mining Mer., Trans. 75, 230 (1966). SPENCER, D.: Factnes affecting element distribution in a Silurian graprollte hand. Chern, Geol. I, 221 (1966). SYAIUTSIN, F. V.: Sceadgeaphlc subdivision cr Sresoeolc extrusives of eastern Transbaik2.Liya by trace elements. Geochemistry 83 (1964). c.: -------------------------------_._. -- Barium STARfC, J. T., TIlACZ;;Y, J. T.: Petrology of volcanic rocks of Guam. U.S. Geol. Surv. Profess. Papers 40J-C (1963). STARK"_ R.: Die: Strontiumgehaltc: der Baeyee. Freiberger Fcrschungsh, C 150 (1964). STEULr, F. G., HOWER, ).: Mineralogy nnd early diagenesis of carbonate sediments. J. Sediment. Petrol. 31, 358 (1961). ST1'.RN, ,'V. S.: Zue Miaeralchemie von Glimmc:m aus Tc:ssinc:r Pegmaelrcn. Schwei z Mineral. Perrog, Mice. 46, 137 (1966). STEVENS, R. E., Fl.I;lSCHE.R, M., Nnzs, W. \~ .• CHOQOS, A. A., FILBY, H., LEINrNG:ER, R. K., FLA.~AGAN, F. ].: Second report on II cooperative investigatioo of the compo sition of two silicate: rocks. Bull. U.S. Geol. Surv. 1113 (1960). STOHR, B., FLASCH, H.: Barium und Baeiumverbinducgenv In: Ullmanns Encyklepndie dec rechnlschen Chemic, vel. IV, Muncben-Berlin i Urbcn & Schwerzenberg 1953. STRAUB, J.: Chemical ecmposirlon of mineral waters of Tronsylvanin: their rare: ccnsriruems and the biochemical Importance, Magy. A.Uami Foldt Inc. Evkonyve: 39 (1950). STROMING£R, D .• HOLLANDER. J. M., SEABORG. G. T.: Table: of isotopes. Rev. Mod. Phya. 30 (1958). STRUBEL. G.: Zur Kenntnia und generlscben Bedeunmg des Systems BaSOt-NaCI-H:p. Necee jshrb, Mineral. Monatsb.• Z23 (1967). STRUNZ, H.: Mineralogische Tabellen, 4. AufI. Leipzig: Akademlsche Ve:rl:tgsgescllscWt Geese & Bcnlg 1966. Sesss, H. E., UJt.eY. H. c.: Abundance:s of the elemencs. Rev. Mod. Phps, 28, 53 (1956). SUKHAREV, G. H.: The composition of connate waeees in Mesozoic deposits in the Cau Cll5U.1l re:gion and their connection with thc prospecting for oil and gas. Gecl. Nefti i Gaza 5, 17 (1961). SWAINE., D.].: The tmce-element coneenr of soils. Commonwealth Agr. Bur. Tech. Com. 48, 16 (1955). - Inorganic constituems in Austr:tlian coals. Mitt. Naturforsch, Ges. Bern (N. P.) 24. 49 (1967). SZABO. B. J .• JOENSUU. 0.: Emission spectrographic determination of barium in sea water using a cation-exchange coocentration procedure. Environ. xi. Technol, 1, 499 (1967). TADZHIEV. F. KJ-l .• Muxsneov, T. KH.: Change in the: thermodynamic fucctfons of some ion-exchange reactions on Oglanly bemorure. Uzbeksk. Kbim. Zh. 11. 49 (1967). TAKUlIO, J.. TATEICAWA, M.: Distribution of minor dements in pegtnlltites and granites from Oku-Tango District, Kyoto Prefeeruee, Japan, I. Distribution of barium and strontium. Kobursugaku Zasshi J, 301 (1954). TAYLOR, S. R.: The origin of some New Zealand metamorphic: rocks as shown by their major and trace dement composition. Geochim. Eosmochim. Acta 8. 182 (1955). Consequences for rektite: composition of an origin by mcteorlrie splash. Gccchlm. Cosmccjam. ACCl 26, 915 (1962). Similarity in composition between Henbury impact glass and ausrraiirea, Ge:ochim. Cosmochirn. Acta 29, 599 (1965). - Tbe application of trace dement data to proble:ms of petrology. Pbys. Chern. Earth 6. 133 (1965). - Ausrealites, Henbury impact glass and subgrc:yw:tcke: a comparison of the ahcndanees of 51 elements. Geccblm. Eosmochim. Acta 30. 1121 (1966). - <:Au, A. E,; GRAHAM, A. L.: Trace dement abundances in andeelees. II. Saipan, Bou gninville: and Fiji. Contr. Mineral. and Petto!' 23, 1 (1969). - EWART, A.• Cfll>J', A. c.: Leuc;ogranites and rhyolites: trace element evidence for fractional crystillisation and parcial. melting. Lithos 1, 179 (1968). _ Haran, K. S.: The petrologic;::U aignificance of trace element variations in feldspars. Proc. XXI. Inter. Gecl. Congr. Norden 47 (1960). - JOHNSON, P. H., MARTIN, R., B£NNETr. D.,.A1.LEN, J.• N.u.CE, W.: Prc:1irninsuy chemi cal analyses of Apollo 11 lunar samples. Proceedings of the Apollo 11 Lunar Science Ccnfeeence 2, 1627 (1970). KOLBE, P.: Henbury impact glass: patent material and behaviour of volatile elements dUting mdting. Nature: 203, 390 (1964). Barium TAYLOR, S. R•• SACHS. M.: Gecchemleal evidence for the origin of australires. Geochim. Cosmochim. Acta 28, 235 (1%4). - SOLO~/ON. M.: The geochemistry of Darwin glass. Geochim. Cceooceiei. Aeta 28, 471 (1964). - - SVJ:;llDll.l1P, T. L:: Cooerihuricns to th" mineralogy of Norway. V. Traee dement variations in three generations of feldspars from the Landsverk I pegmatite Evje, Southern Norway. Ncrsk Geo!. Tidsskr. 40. 133 (1960). - WHIrE, A.]. R.: Trace element abundances in andesites. Bull. Volcanol, 29, 177 (1966). TEMPLE. A. K., GIlOGAN, R. M.: Carhcnadre and related alkalic rocks at Powder Born, Colorado. Ec. Geology 60, 672 (1965). TEMPLETON. CH. C: Solubility of barium sulfate in sodium chloride solutions from 25" co 95" C ]. Chern. Eng. Data 5, 514 (1960). 'rEM, P., EtlGSTEIl, 0., BtlRNElT, D. S.• W.... sscnauac, G. ].: Compararive study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples. Proceedings of the Apollo 1t Lunar Science Conference 2. 1637 (1970). TII.tASHEV..... E. E.: Distribution of trace elements in formation WlI.letll of the Carpathian syncline and in southwestern boundaries of the Russian Platform. Tr. Ukr, Naucbn., Issled. Geo!. Reeved. Inst. 3, 344 (1963). TKACHJN. Yu. A., SKU"'. N.S., BONtl....RENI:O. C. P.: Distributions of strontium and barium in "oals of Kirgizia. Litol., Geokhim. i Polezn, Iskop, Osad. Obraeov. Tyan Shanya. Akad. Nauk Kirg. SSR, Inst. Geol., 24 (1%5). TOLKACHEV. M. V.: Alkaline-c:u:th dements in sedimentary rocks of the west Siberian depression. Geokhimiya 4, 489 (1968). TOOKER. E. W.: Altered wallrocks in the ccmral part of the Front Range minenl belc, Gilpin and dear Creek Counties, Colorado, U.S. Gecl. Surv. Profess. Papers 439 (1963). TOIJR"l'ELOr, H. A.: Chemical composition of the Piette shale and equivalent rocks of late Cretaceous age, Great Plains region. Bull. Geo!. Soc. Am. 68, 1806 (1957). TOWNEND, R.: The geology of some geanlre plutons from \'i/estem Connemarn, Co. Galway. Roy. Irish Aced. Proc. 65, 157 (1966). TOWNLEY. R. N., WHrTNEY, W. n., FELSING, W. A.: The solubilities of barium and etron dum caebonetcs in aqueous solutions of some alkali chloride. J. Am. Chern. Soc. 59, 631 (1937). TUREKIAN, K. K.: Deep-sea deposition of barium, cobalt. and silver. Geochim. Cosmochim. Acta 32, 603 (1968). - ARM5'TIlONG, R. L.: Magnesium, erronrium, and barium concentrations and calcite aragonite ratios of some Recent molluscan shells. J. Marine Res. 18. 133 (1960). - - Chemical and mineralogical composition of fossil molluscan shells from the Fox Hills formation. South Dakota. Bull. Gecl. Soc. Am. 72, 1817 (1961). - HARRISS, R. C. JOHNSON, D. G.: The variations of Si, 0, Na, Ca, Sr. Be, Co, and Ag in the Neuse River. North Carolina. Limnol. Oceanog. 12, 702 (1967). - JOHNSON, D.].: The barium distribution in seawater. Geocbim. Ccsmochim, Acta 30, 1153 (1966). - PnINNEY. \'iI. C: The distribution ofNi, Co, Cr. Cu, Ba, and Sr between biotite-garnct pairs in a metamorphic seqceoee. Am. Mineralogist 47, 1434 (1962). - T .... USCH, E. H.: Barium in deep-sea sediments of the Atlantic Ocean. Nature 201. 696 (1964). - WEDEPOHL, K. H.: Distribution of the dements in somc major units of the earth's crust. Bull. Gecl, Soc. Am. 72, 175 (1961). UCHAMEISHVIU, N. E., MALININ, S. D., KH1T.... ROV, N.].: Solubility of barite in concen traced solutions of chlorides of some metals at elevated temperatures in relation to tbe genesis of barite deposits. Gcochemimy, 951 (1966). U~tEMOTO, 5.: Isotopic composidoo of barium and cerium in stone meteorites. J. Geophys. Res. 67. 375 (1962). UNSOLD, A.: Der neue Kosmos. Heidelberger Tascbenbiicher 16/17 (1967). Ursu~u. K.: Specrml analysis of some carbon stan in the visual region. Pub!. Astron. Soc. Japan 19. 342 (1967). Barium References 56-A \0 56-0 I 21 YAROY, A. A., RO~I!.I, 1. F.; Occurrence of strontium and barium in oilField water:; of the Ural-Volga-Region. Dokl. Akad. Nauk. SSSR 35, 114 (1942). VINE, J. D.: Elemental distribution in some shdf lind eugeosyncljnel black shales. U.S. Cccl. Surv. Bull. 1214-E (1966). VII'.:OCRI\OOV, A. P.: The Elementary Chemical Ccmposirlon of Marine Organisms. New Haven: Memoir Sears Foundation for Marine Research, No. II, Yale University 1953. - Regularity of distribution of eeemlcal clements in the earth cruse. Geochemistry, 1 (1956). - Rouov, A. B.: Composition of sedimentary rocks of the Russian platform in reladon to the history of their tectonic movements. Geochemistry, 533 (1956). _- - RATYNSKY, V. M.: Changes of chemical composition of carbonate rocks of the Russian Platform. Akad. Nauk SSSR Izv. Geol. See. 1, 33 (1952). VnWGRADOViI, Z. A., KOYAL'SIUY, V. V.; Elemental composidon of the Black Sea plank ton. Dokl. Akad. Nauk SSSR 147, 1458 (1962). VLASOY, K. A., KIJZMENKO, M. Z., ES'KOVA, E. M.: The Lcvoaerc Alkali Massif. Edin burgh-London. Oliver & Boyd Publishers 1966. VOLBORTH, A.: Rapakivi-type geanlres in the Precambrian complex of Gold Butte, Clark County, Nevada. Bull. Geol. Soc. Am. 73, 813 (1962). VOROB'EV, G. G.: Compositioo of tektites. I. Indochinites. Mereoridka 17, 64 (1959). - Composition of tektites. II. Mcldavlres. Mereoridka 18, 35 (1960). WANKE, H., RU'.IlER, R., BADO~HAIJSEN, H., SPETl"EL, B., T:ESCHIt-E, E, QUIJANO-RICO, ~I., BALACESco, A.: Major and rraee dements in lunar material. Proceedings of the Apollo 11 Lunar Science Conference 2, 1719 (1970). WAGER, L R., MnCK£LL; R. L. The distribution of trace dements during strong frac tionation of basic magma. - a further study of the Skaergaard intrusion, East Green land. Geochim. Ccsmochim. Acta 1, 129 (1951). - - Trace elemenea in a suite of Hawaiian lavas. Gcocbtee. Cosmochim. Acta 3, 217 (1953). WAKEEL, S. K. EI, RILEY, J. P.: Cbemical and mineralogical studies of deep-sea sediments. Geochim. Cosmochim. A<:la 25, 110 (1961 b). - - Chemical and mineralogical studies of fossil red clays from Timor, Gecchim. Cosmo chim. Acta 24, 260 (1961a). WAKlTA, H., SCHMITT, R.A.: Elemental abundances in seven fragments from lunar rock 12013. Earth Planet. Sci. Lett. 9, 169 (1970). -- - HEY, P.: Elemeotai abundances of major, minor and trace clements in Apollo 11 lunar rocks, soil and core samples. Proceedings of theApollo 11Lunar Scienee Coefeeence 2, 1685 (1970). WALLERSTEIN, G., GRE.l!:!olSTEIN, j. L.: Chemical composition of twO CH stars, HD 26 and HD 626. Astrophys. j. 139, 1163 (1964). - - P"'nu:R, R., HELFER., H. L., A.t.u.E., L. H.: Red giants witb extreme mew defi ciencies. AstrophY3. j. 137, 280 (1963). \'(fARNER, B.: The barium stars. Monthly ootices of the Roy. Amon. Soc. 129, 263 (1965). WEDEPOHL, K. H.; Der tracbydolerinsche Basalt (O!ivin-Andesin-Basalt) des Backen berges bei Gtlntersen, wesdicb von Gi5tting~. Heidelberger Beirr, Mineral. Perrcg, 4, 217 (1954). Sporenanalyrlscbe Untersuchungen an Tiefseetcnen aus dern Atlantik. Geochim. Cosmochim. Acu 18, 200 (1960). - Written communication August 1961. - Composition and abundance of common igneous rocks, p. 227. In: K. H. \'(fEOEPOHL, Handhook of Geocbernlsrry, I. Beelin-Heidelbeeg-New York: Springer 1969. WElReL, M.; Zurn Chemismus alpiner Adulace (II). Schwc:iz. Minenl. Pctrog. Mitt. 37, 545 (1957). - Cbcmismus und Mineralausamrnensetzung von Gesteinen des nordlichen BergcUcr Massivs. Schweia, Mineral. Peerog. Mitt. 40, 69 (1960). - MEYER, F.: Zum Chemismus a1piner Adulace (1). Schweiz, Mineral. Peerog, Mitt. 37, 153 (1957). WEISKIRCIINER, \'(1'.: Personal comrnunieacion 1969. 7 Roforoncn 5G-Atow.-o I 22 - Barium WHrn:, A. J. R.: Genesis of migmarlres from the: Palmer region of south Australia. Chern. Gee!. I, 165 (1966). WHITE,D. E.: Saline w::ItI::(5 of sedimentary rocks. In: Fluids in subsurface environments. Am. Ass. Pete. Gecl. Memoir 4, 342 (1965). - Hzxr, J. D., WAlnNG, G. A.: Data of Gc:ochcmistry. 6th Edition. Chapter F.: Chemical composition of subsurface: waters. Geol. SUIT. Profess. Papers 440~F (1963). WHITE, R. W.: Ultramafic inclusions in basa.ltit rocks from Hawaii. Cone. Mineral. and Petrel. 12, 245 (1966). WILKlNSOI'I, J. F. G.: The geochemistry of a differentiated tescbenire sill near Gunncdah, New South Wales. Geocbim. Cosrnochim. Act:iI 16, 123 (1959). - Mineralogical, geochemical, and pl:teOgcnedc aspects of an anaIcite-b:ualt from" the New England district of New South Wales.]. Petrol. 3, 192 (1962). - Analdmcs from some POras3!C igneous rocks and aspects of analcime ricb igneous assemblages. Contr. Mineral. and Petrol. 18, 252 (1968). - Y£Rl"ON, R.H., SHAW, S. E.: The petrology of an adamellite-porphyrite from the New England Bathylith (New S. Wales).]. Petrol. 5, 461 (1964). WILSKA, S.: Trace c!emcna in Finnisb ground and mine waters: 11 spcctroanalytical study. Ann. Aced. Sci. Fennic:u: Set. A II. Chern. 46, 7 (1952). WOLGEMUTH, K.: Barium enalpses from the first gecseca eesr cruise.]. Geophys. Res. 75, 7686 (1970). - BRo:EI:K£l\, W. S.: Barium in sea water. Earth Planet. Sci. Lett. 8, 'Sl2 (1970). WYI:KOFF, R.: Crystal Structures, 2nd ed., vo!. 4. New York and London: Inrerscience Publlibers 1968. WYNNE-EnWARDS, H. R., HAy, P. W.: Conistiog cordierire and garnet in regionally met:amorpbosed rocks from the Westport area, Ontario. Can. Mineralogist 7, 453 (1962). YOUNG, E.].: Studies of trace elecoenea in sediments. Thesis, Mass. Inn. Techn. 1954. YUSUROVA, S. M.: Geochemistry of the mineral W3[Cr of thermal springs of T:l<uhilUstan (rare clements in thermal waters of 'Tadahiklsean). Dokl. Akad. Nauk Tadah. SSR 21, 19 (1957). ZOLTAI, T.: Chw.ifieation of silicates and other minerals with tecrahcdeal structures. Am. Mineralogist 45, %0 (1960). ZURJ.O, P.: Geochc::m1scbc Untersuchungen im Unterkarbon von Dobedug und im Obee karbon von Zwickau. Geologie 9, 1112 (1963).