Comments
Transcript
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS FOR
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 2421 A RAPID APPROXIMATE METHOD FOR DETERMINING VELOCITY DISTRIBUTION ON IMPELLER BLADES OF CENTRIFUGAL COMPRESSORS B y John D. Stanitz and V a s i l y D. P r i a n Lewis F l i g h t P r o p u l s i o n L a b o r a t o r y Cleveland, Ohio Washington July 1951 BUSINESS, SCIENCE & TECHNOLOGY DEP'T 1 NATI0IU.L ADVISORY COMMITTEE FOR AERONAUTICS c TECBNICAL NOTE 2 4 2 1 A RAPID APPROXIMATE METROD FOR DETERMINING VELOCITY DISTRIBUTION ON IMPELLER BLADES OF CENTRIFUGAL CCMPmSSORS I\) P CD By John D. S t a n i t z and Vasily D. Prian P SUMMARY A r a p i d approximate method of a n a l y s i s w a s developed f o r both comp r e s s i b l e and incompressible, nonviscous flow through r a d i a l - or mixedf l o w c e n t r i f u g a l compressors with a r b i t r a r y hub and shroud contours and with a r b i t r a r y blade shape. The method of a n a l y s i s i s used t o d e t e r mine approximately the v e l o c i t i e s everywhere along t h e blade surfaces, b u t no information concerning t h e v a r i a t i o n i n v e l o c i t y across t h e passage between blades i s given. I n e i g h t numerical examples f o r two-dimensional flow, covering a f a i r l y wide range of flow r a t e , impeller-tip speed, number of blades, and blade curvature, t h e v e l o c i t y d i s t r i b u t i o n along t h e blade surfaces w a s obtained by t h e approximate method of a n a l y s i s and compared w i t h t h e v e l o c i t i e s obtained by r e l a x a t i o n methods. I n a l l cases t h e agreement between t h e approximate solutions and t h e r e l a x a t i o n solutions was s a t i s f a c t o r y except a t t h e impeller t i p where t h e v e l o c i t i e s obtained by t h e approximate method d i d not, i n general, become equal on both surfaces of t h e blade as required by t h e Joukowski condition. INTRODUCTION . L I n impellers of c e n t r i f u g a l compressors, p a r t of t h e viscous l o s s e s and t h e phenomena of surge and choke a r e r e l a t e d t o t h e v e l o c i t y d i s t r i b u t i o n on t h e blade surfaces. Viscous l o s s e s i n impellers a r e associated with t h e boundary l a y e r along t h e f l o w surfaces. The growth of t h i s boundary l a y e r depends on the v e l o c i t y v a r i a t i o n along t h e f l o w surfaces j u s t outside of t h e boundary l a y e r . In p a r t i c u l a r , i f t h e v e l o c i t y d e c e l e r a t e s r a p i d l y along the blade surfaces, t h e boundary l a y e r may separate causing large mixing l o s s e s . Also, if t h e v e l o c i t y a t any p o i n t along t h e blade surface i s s u f f i c i e n t l y g r e a t e r than t h e l o c a l speed of sound, shock l o s s e s w i l l r e s u l t . The choke phenomenon occurs when t h e average v e l o c i t y between blades i s sonic. This average sonic v e l o c i t y i s characterized by l o c a l supersonic v e l o c i t i e s along p o r t i o n s of t h e suction surface of the blade. One possible cause of NACA TN 2421 2 surge irl c e n t r i f u g a l impellers i s t h e formation of r e l a t i v e eddies on t h e pressure surface of t h e blade (reference 1). These eddies a r e characterized by negative v e l o c i t i e s , opposed t o t h e general flow d i r e c t i o n , along p o r t i o n s of t h e p:reas-u-e surface. I n order t o analyze t h e performance of c e n t r i f u g a l impellers it i s t h e r e f o r e necessary t o determine t h e v e l o c i t y d i s t r i b u t i o n on impeller blades. .) - Several methods of a n a l y s i s t h a t can be used t o determine t h e v a r i a t i o n i n v e l o c i t y along blades with f i n i t e spacing have been developed f o r two-dimensional incompressible flow (references 2 t o 5, f o r example) and compressible flow (references 1 and 6 ) . All t h e s e methods require considerable labor and t h e r e f o r e are not convenient t o o l s f o r analyzing t h e performance of an a r b i t r a r y impeller design. I n t h i s r e p o r t a r a p i d approximate method developed a t the NACA Lewis laboratory i s presented f o r both compressible and incompressible, nonviscous, two-dimensional flow between blades with f i n i t e spacing i n r a d i a l - o r mixed-flow c e n t r i f u g a l compressors with a r b i t r a r y hub and shroud contours and with a r b i t r a r y blade shape. The method of a n a l y s i s can be used i n connection with an axial-symmetry s o l u t i o n t o determine t h e v e l o c i t i e s everywhere along t h e blade surfaces, but no information concerning t h e v a r i a t i o n i n v e l o c i t y a c r o s s t h e passage between blades i s given. Other approximate methods t h a t a r e l e s s r a p i d than t h e proposed method f o r computing t h e v e l o c i t y d i s t r i b u t i o n on blade surfaces i n impellers of c e n t r i f u g a l pumps and compressors a r e given i n r e f e r ences 6 t o 9. I n t h e s e c t i o n s SIMPLIFIED ANALYSIS of r e f e r ences 6 and 7 approximate methods a r e developed f o r computing t h e t h e o r e t i c a l d i s t r i b u t i o n of v e l o c i t y across t h e passage along normals t o t h e blade surfaces. The methods a r e l i m i t e d t o s t r a i g h t or logarithmic-spiral blade shapes on r a d i a l or conic surfaces of revolut i o n and do not apply, because of assumptions, i n regions near t h e impeller t i p and t h e impeller i n l e t . I n reference 8 methods a r e developed f o r computing t h e d i s t r i b u t i o n of v e l o c i t y across t h e passage between blades i n t h e c i r c u m f e r e n t i a l d i r e c t i o n f o r incompressible flow with a r b i t r a r y blade shapes and with a r b i t r a r y hub and shroud contours. TBe methods do not apply, because of assumptions, i n regions near t h e impeller t i p and t h e impeller i n l e t . I n reference 9 an approximate method i s developed f o r computing t h e t h e o r e t i c a l v e l o c i t y d i s t r i b u t i o n everywhere within t h e impeller. I n t h i s method t h e corr e c t i o n s required f o r compressibility and f o r blade unloading a t t h e t i p a r e somewhat more complicated than t h o s e presented herein. 1 THEORY OF METHOD 4 The method of a n a l y s i s presented i n t h i s s e c t i o n determines t h e v e l o c i t y d i s t r i b u t i o n along t h e p r o f i l e s of blade elements on s u r f a c e s of revolution. 3 NACA TN 2421 Preliminary Considerations 1v P (D P Assumed nature of flow. - I n t h i s section c e r t a i n preliminary assumptions a r e made concerning t h e three-dimensional flow of an i d e a l compressible f l u i d through an a r b i t r a r y impeller passage between blades such as shown i n f i g u r e 1. I n general, t h e f l u i d i s f r e e t o f o l l o w whatever path t h e pressure and i n e r t i a f o r c e s r e q u i r e of it. If, however, it i s assumed t h a t t h e number of blades i n t h e impeller approaches i n f i n i t y , t h e space between blades approaches zero and t h e path of t h e f l u i d i s r e s t r i c t e d t o t h e curved, mean surface of t h e blade. (The blades become very t h i n s o t h a t t h e two s u r f a c e s of each blade approach a mean surface.) Under t h i s assumption of axial symmetry t h e f l u i d motion i s reduced from a general three-dimensional motion t o a two-dimensional motion on t h e curved, m e a n blade surface. The streamlines of t h i s two-dimensional motion can be p r o j e c t e d on t h e meridional ( a x i a l - r a d i a l ) plane, as shown i n f i g u r e 2. &den ( r e f e r ence 10) has shown that, provided that t h e blades a r e not t o o widely spaced, axial-symmetry s o l u t i o n s give a good p i c t u r e of t h e mean flow between blades. For f i n i t e blade spacing, flow conditions vary between blades i n t h e c i r c u m f e r e n t i a l d i r e c t i o n about t h e a x i s of t h e impeller. I n order t o i n v e s t i g a t e t h i s blade-to-blade v a r i a t i o n , it i s assumed t h a t t h e motion of any f l u i d p a r t i c l e bounded by adjacent streamlines i n t h e meridional plane ( f i g . 2 ) i s r e s t r i c t e d t o t h e annulus generated by r o t a t i n g t h e s e adjacent streamlines about t h e a x i s of t h e impeller. If t h e adjacent streamlines a r e s u f f i c i e n t l y close together, flow ,conditions i n t h e annulus can be considered uniform normal t o a mean s u r f a c e of r e v o l u t i o n i n t h e m u l u s . Thus t h e f l u i d motion i s reduced t o two-dimensional flow on t h e mean surface of revolution ( f i g . 3) generated by r o t a t i n g t h e center l i n e between t h e adjacent streamlines i n t h e meridional plane ( f i g . 2 ) about t h e a x i s of t h e impeller. Blade-to-blade s o l u t i o n s of this type may be obtained f o r every mean surface of revolution generated by t h e center l i n e s between adjacent streamlines i n t h e meridional plane. Therefore, flow condit i o n s can be determined throughout t h e passage between blades. The r e s u l t i n g quasi three-dimensional s o l u t i o n i s obtained by t h e combinat i o n of two types of two-dimensional solution, axial-symmetry solut i o n s i n t h e meridional plane and blade-to-blade s o l u t i o n s on s u r f a c e s of revolution. Such a conibination of s o l u t i o n s p r o h i b i t s t h e p o s s i b i l i t y of a corkscrew path, which t h e f l u i d might follow i n an exact three-dimensional solution, b u t i t can be expected t o give a b e t t e r p i c t u r e of t h e flow than does any two-dimensional s o l u t i o n alone. The method of a n a l y s i s j u s t described i s accomplished i n two phases, axial-symmetry s o l u t i o n and blade-to-blade s o l u t i o n s . O n l y t h e second phase, blade-to-blade solutions, will be considered i n t h i s 4 NACA TN 2 4 2 1 .r r e p o r t . The shape and t h e d i s t r i b u t i o n of meridional streamlines i n t h e a x i a l - r a d i a l plane a r e assumed t o be known from an axial-symmetry solution (reference ll, f o r example). Thus, f o r a blade-to-blade solution i n t h e annulus generated about t h e a x i s of t h e impeller by any t w o adJijacerh nericliaKL s t r e d i n e s ( f i g . 21, t h e shape of t h e mean surface of revolution ( f i g . 3) i s known from t b shape of t h e center l i n e between the adjacent meridional streamlines, and t h e v a r i a t i o n i n height of an elementary f l u i d p a r t i c l e ( f i g . 2 ) as it moves along t h e m e a n surface of revolution from t h e impeller i n l e t t o t h e impeller t i p i s known from t h e v a r i a t i o n i n spacing of t h e adjacent meridional streamlines. . Coordinates. - The c y l i n d r i c a l coordinates R, 8, and Z are shown i n f i g u r e 3. ( A l l symbols a r e defined i n t h e appendix.) These coordinates a r e dimensionless, t h e l i n e a r coordinates R and Z having been divided by t h e impeller-tip radius 'T. The coordinate system i s oriented with t h e Z - a x i s along t h e axis of t h e impeller. The coordin a t e s a r e f i x e d r e l a t i v e t o t h e impeller, which r o t a t e s with t h e angular v e l o c i t y LU i n t h e p o s i t i v e d i r e c t i o n (right-hand r u l e ) about t h e Z-axis, as shown i n figure 3. An i n f i n i t e s i m a l distance dS i n t h e d i r e c t i o n ' o f flow ( t h a t i s , coinciding with t h e v e l o c i t y vector) has components dR, Rde, and dZ ( f i g . 3 ) . The p r o j e c t i o n of dS on t h e meridional plane i s given by dM i n f i g u r e 3. The i n f i n i t e s i m a l distances dS and dM help t o define two angles a and I3 where, from f i g u r e 3, and The angle a ( f i g . 3) i s determined by tangents t o t h e center l i n e , between adjacent meridional streamlines, t h a t generates t h e surface of revolution. The angle p ( f i g . 3) i s t h e flow d i r e c t i o n on t h e surf a c e of revolution measured from a m e r i d i o n a l l i n e . From equation (2a) because ds and 1-34 are always p o s i t i v e and f i n i t e . t i o n s ( l a ) and (1k), From equa- 4 NACA TN 2421 5 because f o r impellers of c e n t r i f u g a l compressors considered p o s i t i v e (or zero). dR and dZ w i l l be F l u i d s t r i p . - A f l u i d s t r i p of i n f i n i t e s i m a l width dM l i e s on t h e surface of r e v o l u t i o n and extends across t h e passage between blades along a l i n e of constant R. A developed view of t h e f l u i d s t r i p i s shown i n f i g u r e 4 . The f l u i d s t r i p has dimensions dM and RAG where t h e angular width of passage between blades A6 i s defined by i n which t h e s u b s c r i p t s d and t r e f e r t o t h e d r i v i n g and t r a i l i n g f a c e s of t h e blades, r e s p e c t i v e l y ( l e f t and right walls of t h e channel between blades in f i g . 4 ) . The height r a t i o H of t h e f l u i d s t r i p i s defined as t h e r a t i o of t h e incremental height Ah { f i g . 2) of t h e f l u i d s t r i p a t r a d i u s R t o t h e incremental height ( A ~ ) Tof t h e f l u i d s t r i p a t R = 1.0. This height r a t i o i s completely determined along a mean surface of revolution by t h e spacing between t h e adjacent streamlines i n t h e meridional plane ( f i g . 2 ) . Velocity components. - The r e l a t i v e v e l o c i t y Q on a surface of r e v o l u t i o n has components % and Qe i n t h e dM and de d i r e c t i o n s , r e s p e c t i v e l y , ( f i g . 3). These v e l o c i t i e s a r e dimensionless, having been divided by t h e absolute stagnation speed of sound co upstream of impeller, where eo2 = rgRT0 (4) i n which R i s t h e gas constant, y i s t h e r a t i o of s p e c i f i c heats, T i s t h e s t a t i c (stream) temperature and where t h e s u b s c r i p t o r e f e r s t o stagnation conditions upstream of t h e impeller. The t i p speed of t h e impeller i s likewise dimensionless and equal t o t h e i m p e l l e r - t i p Mach number MT, w h i c h i s defined by Thus, t h e t a n g e n t i a l v e l o c i t y of the i r p e l l e r a t any r a d i u s R i s equal t o RMT and t h e absolute t a n g e n t i a l v e l o c i t y of t h e f l u i d i s equal t o (q + Q ) . From figure 3 % and = Q COS N K A TN 2421 6 - Fromthe general energy equation and Thermodynamic r e l a t i o n s . f r o m the i s e n t r o p i c r e l a t i o n between temperature and density, t h e density r a t i o p/po i s r e l a t e d t o t h e r e l a t i v e v e l o c i t y Q by where the subscript U r e f e r s t o conditions upstream of t h e impeller and where h i s t h e whirl r a t i o (absolute moment of momentum divided by rTco) given by h = R ( W + ri a d N (9) Development of Method - Before outlining t h e method of a n a l y s i s it i s conAssumptions. venient t o discuss t h e major assumptions. Consider t h e f l u i d s t r i p i n f i g u r e 4. Along t h e i n f i n i t e s i m a l distances bounding t h e f l u i d s t r i p a t t h e driving and t r a i l i n g blade surfaces, t h e v e l o c i t i e s may be considered constant and equal t o Q and Qt, respectively, and t h e flow d i r e c t i o n s may be considered constant and equal t o pd and B t . Along the l i n e s o f constant R bounding t h e f l u i d s t r i p i n f i g u r e 4, t h e v e l o c i t y v a r i e s i n some unknown manner f r o m Q t o Q t and t h e flow d i r e c t i o n v a r i e s from pd t o p t . I n t h i s r e p o r t it i s assumed that t h e average values of Q and B along l i n e s of constant R may be u s e d t o s a t i s f y t h e conditions of c o n t i n u i t y and absolute i r r o t a t i o n a l motion. The average value of Q i s assumed t o be given by Qa + Qt Qav = and, for Also, f o r R L R,, R, L R 2 t h e average value of p i s assumed t o be given by 5 1.0, sin pav = A + BR + CR2 . . NACA TN 2 4 2 1 7 where A , B, and C a r e c o e f f i c i e n t s t o be determined and where Rx i s t h e l a r g e s t r a d i u s a t which t h e f l u i d i s considered t o be p e r f e c t l y guided by t h e blades; that i s , t h e radius a t which t h e s i m p l i f i e d analyses given i n references 6 and 7 break down. From f i g u r e 10 of ref.erence 7 t h e value of R , f o r A6 equal t o s r / l O and s i n a equal t o 1.0 i s about 0.8. For other values of A6 and s i n a, t h e value of R, can be estimated from In Rx In ---=-= - 0.71 o*8 where a i s t h e average value over the i n t e r v a l RX k R 5 1.0. Equat i o n (13) i s based upon an extension of t h e work i n reference l where f o r impellers with s t r a i g h t blades it i s shown t h a t t h e flow conditions i n one impeller can be c o r r e l a t e d w i t h t h e f l o w conditions i n another InR impeller a t t h e same value of (ne) s i n a' I n reference 1, t h e i m p e l l e r - t i p Mach number and t h e compressor flow r a t e were found t o have a n e g l i g i b l e e f f e c t on t h e value o f R,. Outline of theory. - F l u i d s t r i p s such a s shown i n f i g u r e 4 exist a t a l l r a d i i along t h e surface of revolution. From t h e assumptions of t h i s a n a l y s i s t h e r e a r e t h r e e unknowns (Qd, q, and %,) f o r each f l u i d s t r i p . These unknowns can be determined by t h e simultaneous s o l u t i o n of equation (10) and t h e equations of c o n t i n u i t y and zero a b s o l u t e c i r c u l a t i o n f o r flow across t h e f l u i d s t r i p . Equations f o r t h e d i s t r i b u t i o n of v e l o c i t y along the blade p r o f i l e on a s u r f a c e of revolution w i l l be developed i n this r e p o r t . - Zero absolute c i r c u l a t i o n . I n t h e absence of entropy gradients, which r e s u l t from shock, viscous d i s s i p a t i o n , heat t r a n s f e r , and so f o r t h , t h e absolute c i r c u l a t i o n around t h e f l u i d s t r i p i n f i g u r e 4 i s zero so t h a t r 1 where (Rl@ + @ ) a v i s t h e average absolute t a n g e n t i a l v e l o c i t y and where from trigonometric considerations of t h e v e l o c i t y t r i a n g l e s ( f i g . 5) Q + % s i n p i s t h e absolute v e l o c i t y component along t h e blade surface. From equations ( 7 ) and (14) and from t h e assumptions t h a t Q and p equal &av and Pav, r e s p e c t i v e l y , i n t h e passage between blades, NACA TN 2421 8 F i n a l l y , from equations (10) and (15) and from equation (11) If Qa,v and Bav a r e known, equations (16) and ( 1 7 ) . Q and Qt can be determined from Average v e l o c i t y &av. - From c o n t i n u i t y considerations of t h e flow across t h e f l u i d s t r i p i n f i g u r e 4, from which M where t h e flow c o e f f i c i e n t Cp i s defined by i n which Aw i s t h e incremental flow r a t e through t h e passage between two blades on t h e surface of revolution and ( h ) i~ s t h e incremental flow area (between two blades) normal t o t h e d i r e c t i o n of €& a t t h e impeller t i p ( h )= ~ ~T(A~)T(A~)T 09a) . NACA TN 2421 9 The flow r a t e p e r u n i t flaw a r e a a t t h e impeller t i p A w / ( b ) ~ i s known s o t h a t t h e flow c o e f f i c i e n t Cp can be determined by equat i o n (19). The density r a t i o pav/p, i s given by equation (8) with Q equal t o Qav 1 Therefore, t h e v e l o c i t y %v can be determined by t h e simultaneous s o l u t i o n of equations (18) and (20) provided t h a t t h e average flow d i r e c t i o n BaV i s known. Average flow d i r e c t i o n . - I n the passage between blades t h e average flow d i r e c t i o n i s assumed equal t o t h e average blade d i r e c t i o n (equation (11)) except near t h e blade t i p ( R x I R 5 1.0) where s i n pav i s given by equation ( 1 2 ) . The exact v a r i a t i o n i n Bav with R i n t h e i n t e r v a l Rx I. R 5 1.0 could be represented by an i n f i n i t e s e r i e s . However, because the v a r i a t i o n i n sin Bav with R w i l l not, i n general, contain an i n f l e c t i o n p o i n t , a p a r a b o l i c v a r i a t i o n i n s i n Bav with R has been assumed and only t h e f i r s t t h r e e terms of t h e i n f i n i t e s e r i e s retained. The constants A, B, and C i n equation (12) are determined from: (1) ( s i n pav)x = A (2) (" (3) (sin P a v ) ~ = A + BRx + sz pav) X = B + ZCR, + B + and so t h a t A = (sin Pav)~- B -C C CR, 2 NACA 'I" 2421 10 . a t Rx, and where ( s i n pav)T i s determined f r o m t h e s l i p f a c t o r which i s a e f i n e d b y (reference 6) p, rl 0, rl so t h a t OJ The s l i p f a c t o r p i s assumed t o be known, or can be estimated, a s a r e s u l t of t h e work presented i n references 1 and 7, f o r example. (Further discussion on Rx and t h e s l i p f a c t o r p i s given l a t e r i n t h i s report.) The v e l o c i t y (Gv)r i n equation (22) i s obtained from equations (18) and (20) with R and H equal t o 1.0 and with (cos Pav)T replaced by 41 - (sin Bav)~2 where (sin Bav)~ i s given by equation ( 2 2 ) : Equation (23) i s solved f o r (&av)rby t r i a l and error. Therefore, pav i s determined a s a function of R ( o r M) by equations (ll), ( 1 2 ) , and ( 2 1 ) . The v e l o c i t i e s Qd, Qt, and GV a r e determined as funct i o n s of M ( o r R) from equations (16), (17), and (18). (The l a s t term of equation (16) i s determined from t h e slope of (+ + &av s i n Bav) R (AQ) p l o t t e d a g a i n s t M.) APPLICATION OF METHOD The following o u t l i n e of t h e numerical procedure i s given f o r t h e general case of a mixed-flow impeller with a r b i t r a r y hub and shroud contours i n t h e meridional plane ( f i g . 2 ) and a r b i t r a r y blade shape (curvature and thickness d i s t r i b u t i o n ) on s u r f a c e s of revolution. It i s assumed that t h e surfaces of r e v o l u t i o n a r e known, that i s have been generated by t h e c e n t e r l i n e s between adjacent meridional streamlines 11 NACA TN 2421 obtained from an axial symmetry solution (reference 11, f o r example). The following o u t l i n e of t h e wmerical procedure r e f e r 9 t o any one of t h e s e surfaces of revolution. Specified conditions. - The following q u a n t i t i e s are specified: (1)Flow c o e f f i c i e n t CP (defined by equation (19) i n which c Aw, and (h), are known q u a n t i t i e s ) 0’ % ( 2 ) Impeller-tip Mach number ( 3 ) Whirl r a t i o h, (defined by equation ( 5 ) ) upstream of impeller (defined by equation ( 9 ) ) (4) Ratio of s p e c i f i c heats y (5) From t h e shape of t h e center l i n e between adjacent meridional streamlines t h a t generate t h e surface of revolution, R = R(M) and a = U(M) where t h e distance M along a meridional l i n e on t h e surf a c e o f revolution i s a r b i t r a r i l y equal t o zero a t t h e impell e r t i p and decreases toward t h e impeller i n l e t (6) From t h e spacing of t h e adjacent m e r i d i o n a l s t r e a n l i n e s , H Variation i n s i n Pav. the impeller t i p (R, <, R 5 = H(M) The v a r i a t i o n i n s i n pa, with i s determined as follows: 1.0) R near (1)Compute t h e value of R, by equation (13). If s i n a v a r i e s i n t h e region R , S R 51.0, as it generally does, the average value of a i n t h i s region i s used i n equation (13), and because t h e average value of a v a r i e s with t h e value of R,, equation (13) must be solved by t r i a l and e r r o r . However, because t h e value of a does not generally vary g r e a t l y i n t h e region RxL R 51.0, a s a t i s f a c t o r y value of Rx could b e obtained from equation (13) using t h e average value of a obtained from an i n i t i a l l y assumed value of R,. Also, equation (13) w a s developed from information (references 1 and 7 ) r e l a t i n g t o blades t h a t a r e not designed t o unload a t t h e t i p . If t h e blades being considered were designed t o unload a t t h e t i p , t h e d i r e c t i o n of t h e mean f l o w p a t h near t h e impeller t i p would deviate l e s s f r o m t h e mean blade d i r e c t i o n and t h e 12 NACA TN 2421 value of RX would be somewhat g r e a t e r than t h a t given by equation (13). The value of Rx i s not e s p e c i a l l y c r i t i cal and i n t h e s e cases, with s u f f i c i e n t experience, it can probably be estimated accurately enough from t h e r a d i u s a t which an assumed path of %he mea= s t r e d i n e (sketched by experience) deviates appreciably from t h e mean d i r e c t i o n of t h e blade p r o f i l e on t h e surface of revolution. ( 2 ) Estimate t h e value of p, or obtain values from references 1 and 7. The values of p given i n references 1 and 7 were obtained f o r blades t h a t are n o t designed t o unload a t t h e t i p . If t h e blades being considered were designed t o unload a t t h e t i p , t h e d i r e c t i o n of t h e mean flow p a t h a t t h e impell e r t i p would deviate less from t h e mean blade d i r e c t i o n a t t h e t i p and t h e value of p would be somewhat greater than t h a t indicated i n references 1 and 7; t h a t is, ( p a v ) ~ 1 would be more n e a r l y equal t o 5 (pd -t- &)T. The value of p, l i k e t h e value of Rx, i s not e s p e a i a l l y c r i t i c a l and i n t h e s e cases it can probably be estimated a c c u r a t e l y enough f r o m the assumed shape of a m e a n streamline (sketched from experience) between blade-element p r o f i l e s on t h e s u r f a c e of revolution, f r o m equation ( 2 3 ) by trial and e r r o r . (3) Compute (€&)T (4) Compute ( s i n fiav)T from equation (22). (5) Compute c o e f f i c i e n t s ( 6 ) Compute sin Pa, A, B, and C over t h e i n t e r v a l from equations (21). %S R 5 1.0 by equa- t i o n (12). The v a r i a t i o n i n pav f o r R l e s s than % i s given by equat i o n (11). This equation i s assumed t o be v a l i d downstream t o the impeller i n l e t . If t h e angle of a t t a c k a t t h e impeller i n l e t i s zero, t h e assumption i s probably good. If the angle of a t t a c k i s small, t h e e r r o r involved i s probably small and could be p a r t l y corrected by estimating t h e path of t h e mean streamline between blades i n t h i s region. For l a r g e angles of a t t a c k , t h e stagnation point on t h e blade surface may e x i s t w e l l i n s i d e t h e impeller passage and t h e i d e a l flow i s reversed along t h e blade surface downstream of t h i s point. Under these conditions, t h e method of a n a l y s i s does not apply near t h e impeller i n l e t but because of t h e high blade s o l i d i t y it does apply elsewhere i n t h e impeller. . . 13 NACA TN 2421 - Average v e l o c i t y &av. The average v e l o c i t y €& a t each value of M ( o r R) i s determined by equation (18) i n which pav/po i s given by equation ( 2 0 ) . Because pav/po a l s o contains Qv, t h e simultsneous s o l u t i o n of equations (13) and (20) must be by trial and e r r o r . A suggested procedure i s f i r s t t o compute pav/po assuming t h a t Qav i n equation ( 2 0 ) i s zero. T h i s value of pav/po i s then used t o compute &av by equation (18). The process i s repeated each time using t h e new value o f &av t o compuCe pav/po u n t i l t h e value of &av converges. V e l o c i t i e s on blade surface6, Qd and %. - The v e l o c i t i e s on t h e blade surfaces a t each value of M (or R ) a r e determined by equat i o n s (16) and ( 1 7 ) . The l a s t term i n equation (16) i s obtained from t h e slope of (+ + &av s i n 3j), R ( M ) p l o t t e d a g a i n s t M. F i n a l l y , t h e s t a t i c (stream) pressure p corresponding t o t h e r e l a t i v e v e l o c i t y Q a t any r a d i u s R i s given by The approximate a n a l y s i s method developed i n t h i s r e p o r t i s a p p l i e d t o e i g h t examples f o r which r e l a x a t i o n s o l u t i o n s of t h e exact d i f f e r e n t i a l equation for two-dimensional compressible flow i n impell e r s of c e n t r i f u g a l compressors a r e given i n references 1 and 7 . Although these examples a r e f o r r a d i a l - o r conic-flow surfaces and not f o r a r b i t r a r y surfaces of revolution, they cover a f a i r l y wide range of design and operating v a r i a b l e s s o that a comparison of t h e v e l o c i t i e s (on t h e blade s u r f a c e s ) obtained by t h e r e l a x a t i o n s o l u t i o n s and by t h e approximate a n a l y s i s method should serve as a check on t h e v a l i d i t y of t h e approximate method. Types of impeller. - The e i g h t numerical examples a r e f o r twodimensional radial-flow mailers f o r which a i s equal t o 90° and t h e s u r f a c e s of r e v o l u t i o n are- ,lat planes normal t o t h e a x e s of the impellers. The impellers ( f i g . 6) contain a f i n i t e nuniber of t h i n s t r a i g h t (pa = B t = 0 ) o r logarithmic-spiral (ad = p t = constant) blades, and t h e flow a r e a normal t o t h e d i r e c t i o n of % i s constant s o that HR equals 1.0. Only t h e c r i t i c a l flow region toward t h e t i p of t h e impeller w a s i n v e s t i g a t e d ( 0 . 7 0 IR 5 1.0). The d i f f u s e r vanes ( i f any) and t h e inducer vanes were assumed t o be far enough removed n o t t o a f f e c t t h e flow i n t h i s region. I NACA TN 2421 14 - Design and operating variables. The following design and operat i n g variables were s p e c i f i e d f o r t h e eight examples: Example Cp - EG-r 0.5 1.5 1.5 1.5 2.0 1.5 1.5 1.5 1.5 .7 .9 .5 .5 .5 .5 .5 - Fluid A0 0 0 0 0 0 -0.5 -1.0 0 C ompre ss i b l e Compressible C ompress i b l e C ompres s i b l e Compressible Compressible Compressible Incompressible 0.934 .937 .938 .935 .899 ,834 .768 .892 The wZlirl r a t i o upstream of t h e impeller A, w a s zero and f o r t h e comp r e s s i b l e f l u i d t h e r a t i o of s p e c i f i c h e a t s y was 1.4. The value of t h e s l i p f a c t o r p given i n t h e t a b l e was obtained from t h e relaxat i o n solutions and was a l s o used t o compute ( s i n p a v ) ~ in equat i o n (22). For t h e incompressible example, t h e speed of sound co cont a i n e d i n t h e d e f i n i t i o n s of &, C P , and MT i s a f i c t i t i o u s quantity (constant) considered equal t o t h e upstream stagnation speed of sound of t h e compressible-flow examples with which t h e incompressible-flow example i s compared. - Results. The r e s u l t s of t h e comparison between the r e l a x a t i o n solutions and t h e approximate method of a n a l y s i s a r e shown i n f i g u r e 7 f o r t h e eight examples. The v e l o c i t i e s Qd and Q,t a r e p l o t t e d a g a i n s t R f o r t h e r e l a x a t i o n s o l u t i o n s and f o r t h e approximate solut i o n s . The average v e l o c i t y Gv used i n t h e approximate method of a n a l y s i s t o obtain Q and Qt i s a l s o p l o t t e d . The e f f e c t of increasing t h e flow r a t e (flow c o e f f i c i e n t ) on t h e agreement between t h e r e l a x a t i o n s o l u t i o n and t h e approximate s o l u t i o n i s shown i n f i g u r e s 7 ( a ) t o 7 ( c ) The agreement appears equally good f o r a l l flow r a t e s . In view of the r e l a t i v e s i m p l i c i t y of t h e approximate method of a n a l y s i s , t h e agreement i s considered e n t i r e l y s a t i s factory'everywhere except i n t h e immediate v i c i n i t y of t h e impeller t i p where t h e r e s u l t s of t h e approximate method of a n a l y s i s do not follow t h e r a p i d unloading of t h e blades. This r a p i d unloading i s - c h a r a c t e r i s t i c of blades t h a t a r e not designed t o unload a t t h e t i p . I f t h e blades were designed t o unload, t h e agreement between r e l a x a t i o n solut i o n s and approximate s o l u t i o n s should be b e t t e r . I n any event t h e disagreement i s serious only over t h e l a s t 2 percent of i m p e l l e r - t i p radius. The f a i l u r e t o unload a t t h e impeller t i p w i l l be observed i n most of the remaining s o l u t i o n s . . rl a ri N 15 NACA TN 2421 The following f i g u r q comparisons indicate: f i g u r e s 7 ( a ) and 7(d), t h e e f f e c t of increasing FmpeUer-tip Mach number; f i g u r e s 7(a) and 7 ( e ) , t h e e f f e c t o f increasing angular width of passage between blades (A6); f i g u r e s 7 ( e ) , 7 ( f ) , and 7 ( g ) t h e e f f e c t of l a r g e r negative blade angles B; and f i g u r e s 7 ( e ) and 7 ( h ) , t h e e f f e c t of compressibility. In f i g u r e 7 ( h ) , t h e p e c u l i a r humps i n t h e v e l o c i t y d i s t r i b u t i o n obtained by t h e approximate method of a n a l y s i s i n d i c a t e s that f o r incompressible 'flow t h e blades start t o unload a t a lower value f o r R, than t h a t given by equation (13). , N P CD P I n view of t h e r e l a t i v e s i m p l i c i t y of t h i s approximate, b u t rapid, method of a n a l y s i s , t h e agreement between t h e r e l a x a t i o n s o l u t i o n s and t h e approximate s o l u t i o n s i s considered good i n a l l cases investigated; t h a t i s , over f a i r l y wide ranges o f flow r a t e , i m p e l l e r - t i p speed, blade curvature, and number of blades. SUMMARY OF RESULTS A r a p i d approximate method of a n a l y s i s w a s developed f o r d e t e r mining t h e v e l o c i t y d i s t r i b u t i o n on impeller b l a d e s of c e n t r i f u g a l compressors. I n e i g h t numerical examples t h e v e l o c i t i e s obtained by t h e approximate method of a n a l y s i s were compared with t h e more n e a r l y c o r r e c t values obtained by r e l a x a t i o n methods. I n a l l cases, t h a t i s , over a f a i r l y wide range of flow r a t e , i m p e l l e r - t i p speed, blade curvature, and number of blades, t h e agreement between v e l o c i t i e s obtained by t h e approximate method of a n a l y s i s and by r e l a x a t i o n methods was considered good. Lewis F l i g h t Propulsion Laboratory, National Advisory C o d t t e e f o r Aeronautics, Cleveland, Ohio, April 27, 1951. NACA TN 2421 16 APPENDIX 1 - SYMBOLS The following symbols a r e used i n t h i s r e p o r t : A,B,C c o e f f i c i e n t s defined by equation (21) CO stagnation speed of sound upstream of impeller, equation (4) Q a c c e l e r a t i o n due t o g r a v i t y H height r a t i o of f l u i d s t r i p normal t o surface of revolution, W W T M distance along meridional l i n e on surface of revolution (dimensionless, expressed as r a t i o of impeller t i p r a d i u s ( f i g . 3) q) M'l impeller t i p Mach number, equation (5) P s t a t i c (stream) pressure Q r e l a t i v e v e l o c i t y on surface of revolution (dimensionless, expressed i n units of t h e stagnation speed of sound upstream of impeller c o ) ( f i g . 3) R c y l i n d r i c a l coordinate (dimensionless, expressed as r a t i o of impeller-tip r a d i u s r T ) ( f i g . 3) rT impeller-tip r a d i u s S distance along streamline on surface of revolution (dimensionl e s s , expressed a s r a t i o of i m p e l l e r - t i p r a d i u s r T ) ( f i g . 3) T s t a t i c (stream) temperature Z c y l i n d r i c a l coordinate (dimemsionless, expressed a s r a t i o of impeller-tip r a d i u s rT) ( f i g . 3) U slope o f surface of revolution i n d i r e c t i o n of t i o n s ( l a ) and ( l b ) ( f i g . 3) B f l o w d i r e c t i o n on surface of revolution, equations (2a) and ( f i g . 3) r r a t i o of s p e c i f i c h e a t s k, equa- ( A E L ) ~incremental flow a r e a between two blades and normal t o the d i r e c t i o n of % a t impeller t i p , equation (19a) (a) . 3 . . . NACA TN 2421 17 Ah incremental height of f l u i d s t r i p on surface of r e v o l u t i o n Aw incremental flow r a t e between two blades on surface of revolution Ae angular width of passage between blades, radians unless otherwise specified, equation (3) e c y l i n d r i c a l coordinate, radians unless otherwise s p e c i f i e d , ( p o s i t i v e about Z-axis according t o right-hand rule) ( f i g . 3) A whirl r a t i o , equation ( 9 ) CL s l i p f a c t o r , equation (22) P s t a t i c (stream) weight density of f l u i d cp flow c o e f f i c i e n t , equation (19) CD a n w a r v e l o c i t y of impeller ( i n d i r e c t i o n of p o s i t i v e e) Sub s c r i p t s : ab s component of absolute v e l o c i t y along blade surface av average d driving f a c e of blade (blade surface i n d i r e c t i o n of r o t a t i o n ) ( f i g . 4) M component along meridional l i n e on surface of r e v o l u t i o n 0 absolute stagnation condition upstream of impeller R,Q,Z components i n p o s i t i v e T impeller t i p t t r a i l i n g f a c e of blade (blade surface opposed t o d i r e c t i o n of rotation) (fig. 4) U upstream of impeller X p o s i t i o n along meridional l i n e on surface of r e v o l u t i o n a t which t h e assumption of p e r f e c t guiding of f l u i d b y blades i s considered t o break down R-, e-, Z-directions, r e s p e c t i v e l y NACA TN 2421 18 1. Stanitz, John D., and Ellis, Gaylord 0.: Two-Dimensional Compressible Flow in Centrifugal Compressors with Straight Blades. NACA Re?. 954, 1950. 2. Concordia, C., and Garter, G. K.: D-C Network-Analyzer Determination of Fluid-Flow Pattern in a Centrifugal Impeller. Jour. Appl. Mech., vol. 14, no. 2, June 1947, pp. All3-Al18. rl 3. SErensen, E.: Potential Flow Through Centrifugal Pumps and Turbines. NACA TM 973, 1941. 4. Spannhake, W.: Anwendung der konformen Abbildung auf die Berechnung van Strtlmungen in Kreiselradern. Z.f.a.M.M., Bd. 5, Heft 6, Dez. 1925, S. 481-484. 5. Busemann, A.: Das F8rderh8henverh8ltnis radialer Kreiselpmpen mit logarithmisch-spiraligen Schaufeln. Z.f.a.M.M., Bd. 8, Heft 5, October 1928, P. 372-384. 6. Stanitz, John D.: Two-Dimensional Compressible Flow in Turbomachines with Conic Flow Surfaces. NACA TIV 1744, 1948. 7. Ellis, Gaylord O., and Stanitz, John D.: Two-Dimensional Compressible Flow in Centrifugal Compressors with Logarithmic-Sptral Blades. NACA TN 2255, 1951. 8. Spannhake, Wilhelm: Centrifugal Pumps, Turbines and Propellers. The Technology Press (Cambridge), 1934. 9. Sheets, H. E.: The Flow Through Centrifugal Compressors and F'umps. ASME Trans., v o l . 72, no. 7, Oct. 1950, pp. 1009-1015. 10. Ruden, P.: Investigation of Single Stage Axial Fans. NACA TM 1062, 1944. 11. Hamrick, Joseph T . , Ginsburg, Ambrose, and Osborn, Walter M.: Method of Analysis for Compressible Flow through Mixed-Flow Centrifugal Impellers of Arbitrary Design. NACA TN 2165, 1950. cn cu rl 19 NACA TN 2421 . Direction of r o t a t i o n N Ul -4 N Figure 1. - Passage between blades i n impeller of t y p i c a l centrifugal compressor. NACA TN 2421 20 - . R T = 1.0 Mer i d i o n a l / / / I m D e 1l e r -------- I I ~ C e n t e r l i n e between streamlines t h a t bound f l u i d p a r t i c l e 1 A x l a of i m peller F i g u r e 2. - S t r e a m l i n e s i n m e r i d i o n a l p l a n e f o r axial-symmetry s o l u t i o n of f l o w t h r o u g h i m p e l l e r o f f i g u r e 1. NACA TN 2421 21 rl a N Figure 3. . - Surface of revolution with coordinates and velocity components. - 22 NACA TN 2421 0) Driving face Figure 4. - Developed view of f l u i d s t r i p between blades on surface of revolution a t radius R . Direction of blade surface 0J2& 4’ / I. \ Q 0’ - x ’ / / / \ \ / / - Velocity t r i a n g l e f o r computing component of absolute velocity along blade surface. F i g u r e 5. . NACA TN 2421 23 rl II I ffi ” d //////// a . I + I p: Z rl NACA TN 2421 24 1.c .9 N t; P .a -Relaxation solution Approximate method .7 .6 Q a 4 .‘1 .C .I -.I I Rx -.‘ .65 I I .?5 .70 I .ao R .ti5 I I .90 I .95 1.0 (a) Example (a): flow coefficient cp, 0 . 5 ; impeller-tip Mach number $, 1.5; constant flow area (HR 1.0); angular width of passage AO, 12O; blade angle B, 0 ; compressible flow ( y = 1.4). I Figure 7. - Varlation in velocity along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method. 4 NACA TN 2421 25 . I 1 -Relaxation aolution Approximate method c - . -., 1 1 I I .70 .?5 .80 (b) Example (b): Figure 7. - I Rx I I R .85 I I .90 .95 1 flow coefficient cp, 0.7; other parameters same as example (a). Continued. Variation in velocity along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method, NACA TN 2421 26 1. Q . 0-Relaxation solution Approximate method - .75 .70 2 .85 .80 .90 .95 1.0 R (c) Example (c): Figure 7. - Continued. flow coefficient T, 0.9; other parameters same as example (a). Variation in veloolty along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method. NACA TN 2421 27 I -Relaxation solutLon Approximate method ' Q \ Q (d) Example (d): Figure 7. - impeller-tip Mach TJmber MT, 2.0; other parameters same as example (a). Continued. Variation in velocity along blade surfaces as obtained by relaxation methods (references 1 ani 7) and by approximate method. NACA TN 2421 28 1 O-------Fielaxation solution Approximate method Q . -. - I I .70 .75 IRx I .00 R Figure 7 . - Continued. V a r i a t i o n i n v e l o c i t y along methods ( r e f e r e n c e s 1 and 7 ) and .e5 I .so 1 .95 1.0 b i a d e s u r f a c e s as o b t a i n e d by r e l a x a t i o n by approximate method. NACA TN 2421 29 1. -Relaxation solution Approximate method Q . - 1 1 I .10 .15 I Rx I .85 .80 I .90 I .95 R (f) Example (f): Figure 7. - blade angle 8, tan-’(-0.5); other parameters same as example (e). Continued. Variation in velocity along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method. 3 NASA TN 2421 30 -0 . ---- Relaxation solution AprL uxlnlaie solution 0 Figure 7. - Continued. Varlatlon in velocity along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method. . NACA TN 2 4 2 1 31 1.0 .9 .e .7 -Relaxation solution Approximate solution .6 Qav .5 0 -4 .3 .f .1 C .-1 .-‘ I I I I I (h) Example (h): incompressible flow; other parameters same as example (e). Note that for incompressible flow stagnation speed of sound co contained in definitions of Q, +, and ‘P is a fictitious quantity which, if considered equal to co of example (e), enables comparison of compressible (example ( e ) ) and incompressible (example(h) ) solutions for same impeller-tip speed, weight-flow rate, and s o forth. Figure 7. Concluded. Variation in velocity along blade surfaces as obtained by relaxation methods (references 1 and 7) and by approximate method. - NACA-Langley - 7-19-51 - M