Comments
Description
Transcript
ZzT I A &y
-.. I N A S A TECHNICAL NOTE A TECHNIQUE FOR IDENTIFYING PILOTDESCRIBINGFUNCTIONS FROM ROUTINE FLIGHT-TEST RECORDS &yRodney C. Wingrove und Frederick G. Edwurds Ames Reseurch Center Moffett Field, CuZzT NATIONAL AERONAUTICS ANi) SPACE ADMINISTRATION .I-.-. . . .~ . 3 . . . .. . WASHINGTON, D. C. MAY 1969 TECH LIBRARY KAFB, NM 0131895 NASA T N D-5127 A TECHNIQUE FOR IDENTIFYING PILOT DESCRIBING FUNCTIONS FROM ROUTINE FLIGHT-TEST RECORDS By Rodney C. Wingrove and Frederick G. Edwards Ames Research Center Moff ett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 CFSTI price $3.00 - TABLE OF CONTENTS Page ................................ INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY 1 3 .............................. General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . I d e n t i f i c a t i oEnr r oUrs i nSgt a n d a r d Methods . . . . . . . . . . . . . Use o f a Time S h i fitInd e n t i f i c a t i o n ................ ANALYSIS OF IDENTIFICATION ERROR . . . . . . . . . . . . . . . . . . . .......................... General Analysis D e t aA i ln ed alysis .......................... BACKGROUND .............. Example 1: Comparison of Theory With Experiment . Time S h i f t . Example 2: A Method oSf e l e c t i ntgh e X . . . 3: F l i g h T t e s R t e s u l t s From Gemini Example CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . ........ APPENDIX A . TIME DOMAIN ANALYSIS AND COMPUTER PROCESSING . . . . . . S t a n d aC r dr o s s - C o r r e l a t i o n Method . . . . . . . . . . . . . . . . . Use of a Time S h i fitn Computer P r o c e s s i n g . . . . . . . . . . . . R e d u c t i o inInd e n t i f i c a t i o E n rror With Time S h i f t . . . . . . . . . Computer Processing With Data Bias . . . . . . . . . . . . . . . . APPENDIX B . IDENTIFICATION OF PILOT/CONTROL DESCRIBING FUNCTION . . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPLICATIONS AND DISCUSSION 4 4 5 6 7 7 9 13 . . . 14 17 19 21 . . . . . . 22 22 24 24 26 27 30 I . " A TECHNIQUE FOR IDENTIFYING PILOTDESCRIBING FUNCTIONS FROM ROUTINE FLIGHT-TESTRECORDS By Rodney C. Wingroveand F r e d e r i c k G. Edwards Ames Resesrch Center SUMMARY Previousstudieshave shown t h a t t h e dynamic r e s p o n s e o f t h e p i l o t c a n b e r e p r e s e n t e d b y a l i n e a r element(describingfunction)and a remnant term ( o u t p u tn o i s e ) . The p r e v i o u s work a l s o h a s i n d i c a t e d t h a t t h e r e i s an e r r o r in identifying the pilot describing function from r o u t i n e t r a c k i n g t a s k recordsbecausetheoutputnoiseofthepilottransfersthroughthecontrol l o o p ,p r o d u c i n ga nu n d e s i r e dc o r r e l a t i o nw i t hh i si n p u ts i g n a l .T h i sr e p o r t shows t h a t t h i s c o r r e l a t i o n , and t h u s t h e i d e n t i f i c a t i o n e r r o r , c a n b e reducedbyshiftingtheinputsignalduringthecomputerprocessingan amount e q u i v a l e n tt ot h ee f f e c t i v e time d e i a yo ft h ep i l o t .T h i sr e p o r ti n c l u d e s a t h e o r e t i c a l a n a l y s i s o f t h i s t e c h n i q u e andexamples t o i l l u s t r a t e i t s application. The t h e o r e t i c a l a n a l y s i s c o n s i d e r s t h e f a c t t h a t t h e computerprocessing i s c o n s t r a i n e dt oi d e n t i f yo n l yp h y s i c a l l yr e a l i z a b l es y s t e m s . With t h i s cons t r a i n t , it i s shown t h a t t h e e r r o r i n i d e n t i f y i n g t h e p i l o t d e s c r i b i n g f u n c t i o n depends on t h e s p e c t r u m o f t h e p i l o t ' s o u t p u t n o i s e ; t h e i d e n t i f i c a t i o n e r r o r canbe made small i f t h e n o i s e i s n e a r " w h i t e " i n r e l a t i o n t o t h e sum o f a l l e f f e c t i v e time d e l a y s t h r o u g h t h e c o n t r o l l o o p ( p i l o t p l u s c o n t r o l l e d e l e m e n t ) .T h i sr e s u l t i s s i g n i f i c a n tb e c a u s e , i f t h e s ec o n d i t i o n sa r em e t , it i s p o s s i b l e t o i d e n t i f y t h e d e s c r i b i n g f u n c t i o n of t h e p i l o t i n a feedback s y s t e mt h a t i s e x c i t e d o n l y b y h i s o u t p u t n o i s e . The i d e n t i f i c a t i o n of s e v e r a l s i m u l a t e d p i l o t models i s i n c l u d e d i n t h i s s t u d yt oi l l u s t r a t et h i st e c h n i q u e .A l s o ,r e p r e s e n t a t i v ed a t a from t h e r e t r o fire phase of the Gemini X f l i g h t h a v e b e e n a n a l y z e d a n d are p r e s e n t e d t o demonstratethesuccessfulapplicationofthistechniquewithroutine spacecraftoperatingrecords. INTRODUCTION T h i sr e p o r tc o n s i d e r st h ep r o b l e m of i d e n t i f y i n g t h e i n p u t - o u t p u t relat i o n s h i p of t h e p i l o t b y u s e o f m e a s u r e d d a t a f r o m r o u t i n e f l i g h t o p e r a t i o n s i n which t h e p i l o t p r o v i d e s f e e d b a c k c o n t r o l . Theproblem i n u s i n g t h e meas u r e di n p u ta n do u t p u td a t ad i r e c t l y i s t h a t a n ye x t r a n e o u so u t p u tn o i s eb y t h ep i l o tc a u s e s an e r r o ri ni d e n t i f i c a t i o n .T h i sp r o b l e m is s o l v e d i n t h i s report by the development of a computerprocessingtechniquethat,undercertainconditions,yields an estimate r e l a t i v e l y f r e e from i d e n t i f i c a t i o n e r r o r . Sincetheidentificationoffeedbackcontrolsystems i s important i n many fields,thetechniquehaswidesignificance and a p p l i c a b i l i t y . The i n p u t - o u t p u t c h a r a c t e r i s t i c o f a p i l o t must b e r e g a r d e d as random, nonlinear,anddependent on t h e t a s k h e i s t o perform. Many p r e v i o u ss t u d i e s a have shown t h a t t h i s type o f r e s p o n s e c a n b e r e p r e s e n t e d a p p r o p r i a t e l y w i t h q u a s i - l i n e a r s y s t e m modeledby a l i n e a r e l e m e n t ( d e s c r i b i n g f u n c t i o n ) a n d a remnantterm(outputnoise). The p i l o td e s c r i b i n gf u n c t i o n su s u a l l yh a v eb e e n i d e n t i f i e d from r e c o r d so b t a i n e di ng r o u n d - b a s e ds i m u l a t o r s( r e f . 1) and 2) w h e r e i nc a r e f u l l yc o n t r o l l e de x t e r n a lf o r c i n gf u n c t i o n s f l i g h tt e s t s( r e f . a r eu s e dt oe x c i t et h ep i l o t - v e h i c l es y s t e m . The p i l o td e s c r i b i n gf u n c t i o n s are measuredbycomparing the input and output signals of the pilot with the known f o r c i n gf u n c t i o n .T h i s method minimizes t h o s e e r r o r s i n i d e n t i f i c a t i o n due t o a n y c o r r e l a t i o n o f t h e i n p u t s i g n a l w i t h t h e p i l o t ' s o u t p u t n o i s e . work and summarizes t h e Reference 3 c o n t a i n s a good r e v i e w o f t h i s p r e v i o u s measured p i l o t d e s c r i b i n g f u n c t i o n s . Most o t h e r methods f o r m e a s u r i n g p i l o t d e s c r i b i n g f u n c t i o n s depend on random d i s t u r b a n c e s ( e . g . , a e r o d y n a m i c t u r b u l e n c e , p r o p u l s i v e d i s t u r b a n c e , e t c . )t oe x c i t et h ep i l o t - v e h i c l es y s t e m .T h e s e methodscompute d i r e c t l yt h e However, d e s c r i b i n gf u n c t i o n of t h e p i l o t from h i s i n p u t a n do u t p u ts i g n a l s . t h e r e i s a f u n d a m e n t a ld i f f i c u l t yw i t ht h e s em e t h o d sb e c a u s et h ep i l o t ' so u t p u tn o i s et r a n s m i t t e dt h r o u g ht h ec o n t r o ll o o pp r o d u c e s an u n d e s i r e d c o r r e l a t i o n between h i s i n p u t and o u t p u t s i g n a l s , t h e r e b y c a u s i n g a n e r r o r i n 4 , t h ee x p e c t e de r r o r i s analyzedand it was i d e n t i f i c a t i o n .I nr e f e r e n c e shown t h a t i f t h e a m p l i t u d e o f t h e p i l o t ' s n o i s e i s l a r g e , as compared with theexternaldisturbance,thentheidentificationerror is unacceptable. D u r i n gr o u t i n ef l i g h t - t e s to p e r a t i o n s ,t h e r e a r e n oc a r e f u l l yc o n t r o l l e d f o r c i n gf u n c t i o n sa n de v e nt h e random e x t e r n a l d i s t u r b a n c e may b e q u i t e small so thattheprincipalsystemexcitation maycome from t h e p i l o t ' s o u t p u t n o i s e .T h i sr e p o r t shows t h a t i n such s i t u a t i o n s i t may s t i l l b ep o s s i b l e , u n d e rc e r t a i nr e a s o n a b l ec o n d i t i o n s ,t od e t e r m i n et h ep i l o td e s c r i b i n gf u n c t i o nw i t h o u ti n c u r r i n g an u n a c c e p t a b l ei d e n t i f i c a t i o ne r r o r . One r e q u i r e d ( o r p o s s i b l yt h ef e e d b a c kc o n t r o ll o o p )h a v e a condition is t h a t t h e p i l o t time d e l a y . If t h i sc o n d i t i o n i s met, i t i s p o s s i b l et ot a k ea d v a n t a g eo f t h i sf a c ti nt h ei d e n t i f i c a t i o nd a t ap r o c e s s i n g .I ne f f e c t ,t h ei n p u ts i g n a l i s s h i f t e d d u r i n g p r o c e s s i n g byan amount e q u a l t o t h e time d e l a y o f t h e 5-7) h a v ec o n s i d e r e dt h eu s eo f a p i l o t . A l t h o u g hp r e v i o u ss t u d i e s( r e f s . time s h i f t i n t h e measurement o f p i l o t d e s c r i b i n g f u n c t i o n s , it was a p p a r e n t l y notobservedthatthistimeshift would s t r o n g l y i n f l u e n c e t h e e r r o r i n identification. a theoreticalanalysisto show t h a t t h i s t e c h n i q u e T h i sr e p o r tp r e s e n t s will r e d u c et h ei d e n t i f i c a t i o ne r r o r . The s i m u l a t i o na n di d e n t i f i c a t i o no f s e v e r a l known s y s t e m e l e m e n t s a r e i n c l u d e d t o compare w i t h t h e t h e o r y and t o i l l u s t r a t et h eu s eo ft h i st e c h n i q u e .A l s o ,r e s u l t so b t a i n e d from t h e r e t r o f i r e phaseofthe Gemini X m i s s i o n a r e p r e s e n t e d t o d e m o n s t r a t e t h e applicationofthistechniquetoroutineflight-testrecords. 2 NOTATION controllerdeflection(outputofpilot) errorsignal(inputtopilot) F o u r i e rt r a n s f o r m of [ ] e x t e r n a ld i s t u r b a n c e c o n s t a n tg a i n numerator terms i nY c ( j o ) i n t e r n a ln o i s e( p i l o tr e m n a n t ) of c r o s s - c o r r e l a t i o nf u n c t i o n e ( t ) and c ( t ) c r o s s - c o r r e l a t i o nf u n c t i o no fe ( t ) autocorrelationfunctionof a u t o c o r r e l a t i o nf u n c t i o n t of and n ( t ) e(t) n(t) time, s e c c o n t r o l l e de l e m e n td e s c r i b i n gf u n c t i o n m e a s u r e dd e s c r i b i n gf u n c t i o n( i d e a l ) m e a s u r e dd e s c r i b i n gf u n c t i o n( a c t u a l ) p i l o td e s c r i b i n gf u n c t i o n estimatedpilotdescribingfunction c1 e x p o n e n t i a ld e c a yf a c t o r ,s e c - l residual A t i m es h i f tu s e dd u r i n ga n a l y s i s , time d e l a yi nY c ( j w ) , time d e l a yi n sec sec Yp(jw), sec p o w e rs p e c t r u mo fe ( t ) power s p e c t r u mo fn ( t ) cross-powerspectrumof e ( t ) and c ( t ) 3 Oen ( j w ) cross-powerspectrumof w f r er aqdu/esneccy , e ( t ) and n ( t ) BACKGROUND T h i ss e c t i o nd i s c u s s e st h ep i l o t e dc o n t r o ls y s t e me l e m e n t sa n di n d i c a t e s theerrorinidentifyingthepilotdescribingfunction from r o u t i n e t r a c k i n g task r e c o r d s . A computingprocess f o r r e d u c i n g t h i s i d e n t i f i c a t i o n e r r o r is t h e no u t l i n e d .T h i sb a c k g r o u n d material p r e c e d e s a more d e t a i l e da n a l y s i so f theidentificationerrorpresented later in the report. General Remarks Figure 1 i s a blockdiagramofthepilotin a compensatorytrackingtask s o t h a tt h ei n p u te r r o rs i g n a le ( t ) t r y i n gt oc o n t r o lh i so u t p u tc ( t ) PllOI r-----1 F i g u r e 1.- I d e n t i f i c a t i o n u s i n g s t a n d a r d Conlrolled system r-----1 measurementmethods. i s k e p tn e a rz e r o .G e n e r a l l y ,t h ei n p u t - o u t p u tc h a r a c t e r i s t i c so ft h ep i l o t time v a r y i n g . However, f o r t h e must b ec o n s i d e r e d as complex,nonlinear,and it i s common p r a c t i c e t o assume t h a t h i s c h a r a c t e r i s t i c s purposesofmodeling, 3 ) . Thismathematical model canberepresented by a q u a s i - l i n e a rs y s t e m( r e f . Yp and t h en o i s es o u r c en . The element Yp(jw), c o n t a i n tsh el i n e a er l e m e n t which i s c a l l e d t h e p i l o t d e s c r i b i n g f u n c t i o n , ' i s a l i n e a rc o n s t a n t a frequency response dependent on t h e i n , p t = = e = ( t ) ." . coefficient system with I T e c h n i c a l l y , Yp(jw) r e p r e s e n t s a random i n p u t d e s c r i b i n g ' f u n c t i o n ref. 3 ) . because random, r a t h e r t h a n s i n u s o i d a l , s i g n a l s a r e u s e d h e r e ( s e e Also, t oa v o i da d d i t i o n a ln o t a t i o n , terms such as Y(jw) will b eu s e dt o representboththetransferfunctionsoflinearsystems and t h e d e s c r i b i n g functionsofnonlinearsystems. 4 The term n ( t ) r e p r e s e n t s t h e d i f f e r e n c e b e t w e e n o u t p u t of t h e p i l o t , c ( t ) , a n do u t p u to ft h ed e s c r i b i n gf u n c t i o n Y ( j w )d r i v e nb ye ( t ) Thus n ( t ) accountsforremnant terms such as n o n l iPn e a r i t i e s , time v a r i a t i o n s , a n d additive noise in the output of the pilot. . The c o n t r o l l e d s y s t e m i s m a t h e m a t i c a l l y c h a r a c t e r i z e d b y t h e c o n s t a n t l i n e a er l e m e n t Yc and t h en o i s es o u r c e i. The time h i s t o r yi ( t )a c c o u n t s f o r n o n l i n e a r i t i e s and time v a r i a t i o n s i n t h e c o n t r o l l e d e l e m e n t , timev a r y i n g commands, and a l l disturbancesfromaerodynamics,propulsion, etc. external to the pilot. Identification Error Using Standard , Methods Severalmethods(e.g., refs. 4-10)havebeenused t o compute,fromgiven r e c o r d so fe ( t )a n dc ( t ) , a d e s c r i b i n gf u n c t i o nq m ( j w )t h a tr e p r e s e n t st h e b e s tl i n e a rr e l a t i o n s h i p between e ( t ) and c ( t ) . Best h e r e means t h a tt h e integralofthesquaredresidual,/E2(t)dt, i s minimizedover a g i v e n r e c o r d i s t h ed i f f e r e n c eb e t w e e nt h ea c t u a lr e c o r dc l t )a n dt h e length,whereE(t) outputofthesystem ?m(jw) e x c i t e db ye ( t ) . The mea.surements Ym(jw) may d i f f e r somewhat betweenmethodsbecauseeach method u s e s s l i g h t l y d i f f e r e n t approximationsand modelforms i n computerprocessing.Generally,themeasurementsofvm(jw) w i l l b en e a rt h ef o l l o w i n gi d e a ld e s c r i b i n gf u n c t i o n Ym(jW) t h a tr e p r e s e n t st h eb e s tl i n e a rr e l a t i o n s h i p between e ( t ) and c ( t ) f o r random stationary signalsz: I nt h i se q u a t i o n ,Q e c ( j w ) i s thecross-powerspectrumbetweene(t)and c ( t ) andQee(w) i s t h e power d e n s i t ys p e c t r u mo fe ( t ) .I ni d e n t i f y i n gt h e p i l o td e s c r i b i n gf u n c t i o nw i t ht h e s et y p e so fm e t h o d s ,p r e v i o u ss t u d i e s( e . g . , refs. 4 and 9 ) have shown t h a t t h e r e i s a differencebetweenthemeasured d e s c r i b i n gf u n c t i o n Ym(jw) and t h ea c t u a dl e s c r i b i n gf u n c t i o nY p ( j w ) . This difference,or"identificationerror,"canbe shown b y d e l i n e a t i n g t h e componentsofthecross-powerspectrum:@ec(j,) = YP(jw)@ee(w) + Qen(j,). Subs t i t u t i n g t h e s e components i n t oe q u a t i o n( 1 )y i e l d s error w i l l c o n t r i b u t ea n Equation (2) shows t h a t any c r o s s - c o r r e l a t i o na e n ( j w ) e r r o ri ni d e n t i f i c a t i o n . Such a c o r r e l a t i o nd o e se x i s td u r i n gc l o s e d - l o o p Yc (jw)andthusappears as a compoc o n t r o lb e c a u s e n ( t )t r a n s f e r st h r o u g h n e n to f e ( t ) . If n ( t ) i s much smaller t h a n i ( t ) , t h e r a t i o @en(jw)/Oee(w) w i l l b e small a n dt h em e a s u r e dt r a n s f e rf u n c t i o n Ym(jw) w i l l b e n e a r t h e t r u e 21f t h e measurementhas t h e c o n s t r a i n t t o i d e n t i f y o n l y p h y s i c a l l y reali z a b l es y s t e m s ,t h e n , as s h a l l b e p o i n t e d o u t l a t e r , Ym(jw) i s w r i t t e n i n a s l i g h t l y d i f f e r e n t form. 5 value Yp ( j w ) . However, i f n ( t ) i s much l a r g e rt h a n i ( t ) , t h er a t i o Oen(jw)/@ee(W) will b e s i g n i f i c a n t and t h e m e a s u r e d d e s c r i b i n g f u n c t i o n Y,(jw) w i l l b ev e r yd i f f e r e n t fromYp(ju). For r o u t i n ef l i g h t - t e s tc o n d i i ( t ) , i t i s n e c e s s a r yt of i n d t i o n s ,w h e r en ( t ) may be much l a r g e r t h a n means o f r e d u c i n g t h i s e r r o r . Such a t e c h n i q u e w i l l b eo u t l i n e dn e x t , some Use o f a Time S h i f t i n I d e n t i f i c a t i o n 5-7) h a v ec o n s i d e r e dt h eu s e of a time P r e v i o u ss t u d i e s( e . g . ,r e f s . s h i f t d u r i n g t h e computerprocessingtoaccountfortheeffectivetimedelay o f t h ep i l o t .T h i st i m es h i f t i n gr e p r e s e n t so n l y a s l i g h tm o d i f i c a t i o nt ot h e i d e n t i f i c a t i o n methods i n f i g u r e 1. Thistime-shiftingtechniqueillustratedinfigure i n gs t e p si nt h ec o m p u t i n gp r o c e s s . 2 i n v o l v e st h ef o l l o w - 1. The i n p u ts i g n a le ( t ) is s h i f t e dw i t hr e s p e c tt oc ( t ) A , where A i s e q u i v a l e n tt ot h e time d e l a yo ft h ep i l o t . byan amount 2 . The d e s c r i b i n gf u n c t i o nG m ( j u ) from s t e p( 1 ) . i s d e t e r m i n e du s i n gt h es h i f t e dd a t a 3 . The e s t i m a t e dt r a n s f e rf u n c t i o n t r a n s f e r f u n c t i o n as i s determinedfromthemeasured Controlled system PI101 r-----l r""1 Figure 2.- The use of a time shift A in identification. A l t h o u g hp r e v i o u ss t u d i e sh a v ec o n s i d e r e dt h i st i m e - s h i f t i n gt e c h n i q u e , it was a p p a r e n t l y n o t o b s e r v e d t h a t t h i s t e c h n i q u e would s t r o n g l y i n f l u e n c e t h ee r r o r si ni d e n t i f i c a t i o n .T h i sr e p o r t shows t h a t when t h i st e c h n i q u e i s usedwith a measurementmethod i n which P m ( j u ) i s c o n s t r a i n e d t o b e 6 physically reali~able,~ then the identification error due to the correlation o f e ( t ) w i t hn ( t )c a nb er e d u c e d .T h i sr e d u c t i o n w i l l b e shown i n t h e n e x t s e c t i o n where t h e i d e n t i f i c a t i o n e r r o r t o b e e x p e c t e d w i t h t h i s computing p r o c e s s will beanalyzed. ANALYSIS OF IDENTIFICATION ERROR The r e d u c t i o n o f t h e i d e n t i f i c a t i o n e r r o r b y t h e f o r e g o i n g c o m p u t e r F i r s t , a general p r o c e s s i n g w i l l b e i l l u s t r a t e d fromtwo p o i n t so fv i e w . a n a l y s i s will show why t h e time s h i f t X r e d u c e st h ei d e n t i f i c a t i o ne r r o r . The s e c o n da n a l y s i s w i l l d e v e l o p e q u a t i o n s t o show, i n more d e t a i l , t h e amount t h e e r r o r i s reduced. The f o l l o w i n ga n a l y s i s i s p r e s e n t e du s i n gt h ef r e q u e n c y domain. A similar a n a l y s i s i s p r e s e n t e di na p p e n d i x A u s i n gt h et i m e domain. General Analysis TO i l l u s t r a t et h er e d u c t i o ni ni d e n t i f i c a t i o ne r r o r ,e q u a t i o n( 1 ) r e w r i t t e n as .d is where F [Re, ( T ) ] r e p r e s e n t s t h e Fouriertransformofthecrossc o r r e l a t i o nf u n c t i o nR e c ( ~ ) and F[Ree(.)] r e p r e s e n t s t h e F o u r i e r transformoftheautocorrelation f u n c t i o n Ree(.). Representative curves4ofthemeasuredquantities R (T)andRee(T) a r e s k e t c h e di n ec f l g u r e3 ( a ) . The e r r o rc o n t r i b u t i o n R,,(T), c o n t a i n e di nR e c ( T ) , is also shown f o r comparison. Now c o n s i d e r t h o s e measurement methods t h a t h a v e t h e c o n s t r a i n t o f p h y s i c arle a l i z a b i l i t yT. h e s e Figure 3.- Effect of time shift on correlation methodsusedonlydataforpositive functions. v a l u e so f T, a n d a , c c o r d i n g l y t, h e measured t r a n s f e r f unction is _____ ~3 T h i sc o n s t r a i n t i s i n h e r e n t i n t h e c o m p u t e r p r o c e s s i n g f o r mosttimeas c r o s s - c o r r e l a t i o n ( r e f s . 4, 8, and 9) , domain measurementmethodssuch orthogonal f i l t e r s ( r e f s . 4 , 5 , and 7), and p a r a m e t e rt r a c k e r s( r e f s . 4, 6 , and10). Most frequency domain measuringmethodsusingcross-spectral comp u t i n gp r o g r a m s( r e f .1 )u s u a l l y do n o tc o n t a i nt h i sc o n s t r a i n t . However, such a c o n s t r a i n t c o u l d p r o b a b l y b e i n c o r p o r a t e d . 4Thesedata are fromexample 1, which w i l l b e d i s c u s s e d l a t e r . (a) No tlrne s h l f i ; X = O " " 7 and if t h ei n d i v i d u a l terms (seeeq. ( 2 ) ) are s u b s t i t u t e d f o r R e c ( ~ ) , With t h i sc o n s t r a i n t ,o n l yt h a tp o r t i o n ofRen(T) (shown by t h e s h a d e d r e g i o n i n f i g . 3 ( a ) ) c o n t r i b u t e s identification. f o rp o s i t i v ev a l u e so f an e r r o r i n T Let u sn e x ti n t r o d u c et h e time s h i f t X as p r e s e n t e di nf i g u r e 2. T h i s time s h i f t i s a p p l i e d s o t h a t t h e s h i f t e d i n p u t d a t a a r e e ' ( t ) = e(t - X). The e f f e c t of t h i s time s h i f t i s i l l u s t r a t e d i n f i g u r e 3 ( b ) where t h e f u n c Refel (T) t i o n sR e l n ( T ) ,R e f c ( T ) ,a n d r e s u l t i n g from t h e s h i f t e d i n p u t d a t a a r e p r e s e n t e d . I t i s shown thattheadditionofthistimeshift n Ref C ( ~ ) and c a u s e st h eq u a n t i t i e s R e f n (sbtTho e)i f t b tehd ye amount X w i t hr e s p e c tt o Ref e' (T) NOW it i s a p p a r e n tt h a tt h ee r r o rc o n t r i b u t i o no fR e f n ( T ) , f o r t h ep o s i t i v e v a l u e so f T~ i s reducedand small shaded area i n c l u d e so n l yt h e (b) Wlth tlme shlfl A f iign3 u (r b e). The a c t u a l v a l u e for the error term is - L \ + . 3. Figure 3 . - Concluded. I ng e n e r a l ,R 2 n ( ~ ) will d e c r e a s ef o rp o s i t i v ev a l u e so f T. T h e r e f o r e ,n o t e -T j w d.r will be reduced as X i s t h atth e r r o cr o n t r i b u t i o n Ren(T + X)e SOm i n c r e a s e d .F u r t h e r ,t h ee r r o rc o n t r i b u t i o n f ovr a l u e os f T g r e a t e trh a n A. w i l l b ez e r o if Ren(r) i s z e r o T h i sg e n e r a ld i s c u s s i o nh a sa t t e m p t e dt og i v e some p h y s i c a l i n s i g h t i n t o We will now t u r n why t h e time s h i f t X r e d u c e st h ee r r o ri ni d e n t i f i c a t i o n . o u r a t t e n t i o n t o a more d e t a i l e d a n a l y s i s t o d e t e r m i n e t h e amount t h e e r r o r can be reduced. 8 Detailed Analysis In t h i s s e c t i o n , w e w i l l d e r i v e f o r m u l a s t h a t show t h e r e d u c t i o n i n i d e n t i f i c a t i o n e r r o r as a f u n c t i o n o f t h e p r i m a r y v a r i a b l e s w i t h i n t h e c o n t r o l loop. As n o t e d e a r l i e r , w e w i l l c o n s i d e rt h eu s eo f a timg s h i f t X i n t h e i d e n t i f i c a t i o na n dc o n s i d e r measurementmethods i n which Ym(jw) i s constrained to be physically realizabl-. To m a t h e m a t i c a l l yr e p r e s e n t a m e a s u r e dd e s c r i b i n gf u n c t i o n Ym(jw) t h a t is constrainedtobephysicallyrealizable, we can u t i l i z e t h e r e l a t i o n s h i p u s e dw i t ht h e Wiener-Hopf e q u a t i o n( r e f . 11). Using t h i s r e l a t i o n s h i p f o r p h y s i c a l l yr e a l i z a b l es y s t e m s ,e q u a t i o n( 1 ) is written I+ where + Q e e ( j w )h a sp o l e so rz e r o so n l yi nt h el e f t - h a l fp l a n e @ e e ( j w )h a sp o l e so rz e r o so n l yi nt h er i g h t - h a l fp l a n e [ I+ h aps o l eos n l iytnhlee f t - h a lpf l a n e This f o l l o w st h eu s u a lf o r m , which i m p l i e s t h a t t h e d i r e c t t r a n s f o r m o f a time f u n c t i o n t h a t i s s t a b l e and z e r o f o r n e g a t i v e t i m e w i l l have a l l i t s p o l e s i n t h el e f t - h a l fp l a n e (LHP). Now we i n t r o d u c et h e time s h i f t X as i l l u s t r a t e d i n f i g u r e 2 and d e f i n e t h es h i f t e dd a t a as e ' ( t ) = e ( t - X). BecauseQelc(jw) = eXjaQec(jw)and @ e , e [w) I = Qee(w) , we c a n w r i t e t h e m e a s u r e d t r a n s f e r f u n c t i o n a s A s shown i n f i g u r e 2 , we c a n d e f i n e t h e e s t i m a t e d d e s c r i b i n g f u n c t i o n i n terms ofthemeasureddescribingfunction,Pp(jw) = e-'joPm(jw). And i f we assume t h a t t h e r e i s no m o d e l i n ge r r o r ,t h a t i s , qm(jw) = Ym(jw),then a theoreticalexpressionfortheestimateddescribingfunction is (9) + 9 I n t r o d u c i n gt h ei n d i v i d u a l terms f o r of Yp The i m p u l s er e s p o n s ef u n c t i o n t h a n a v a l u eo f -tP and, s o long as t e r me X j w Y( j w )h a sp o l e so n l yi nt h e P t h i sa s s u m p t i o n , we o b t a i n Q e c ( j u ) (see eq. (2)), we have is assumed t o b e z e r o f o r time less X i s l e s st h a n o r e q u a tl o T the P' LHP. Simplifyingequation(10)with The term ~ ~ ~ c(o nws i s)t s of c o n t r i b u t i o n s from two s o u r c e s :i ( t ) and n ( t ) . The maximum errorcanbedetermined by assuming i ( t ) = 0 ( r e f . 4 ) . With t h i s a s s u m p t i o na n du s i n gb a s i cc l o s e d - l o o pr e l a t i o n s h i p s( r e f .l l ) ,l e tu sd e f i n e time T h e s ed e f i n i t i o n s assume t h a t Yc(jw) i s minimum p h a s e( i . e . ,c o n t a i n sn o d e l a yo rz e r o si nt h e RHP) . The c a s e i n whichYc(jw) i s a nonminimum phase will b e i l l u s t r a t e d a t t h e endof t h i s s e c t i o n . Y, Minimum p h a s e . - From t h ef o r e g o i n ga s s u m p t i o n s , of pilotedcontrolsituations, we f i n d t h a t 10 whichcover a variety + where now t h e e r r o r i s c o n v e n i e n t l ye x p r e s s e d as a f u n c t i o no fQ n n ( j w ) ,t h e [eX j w @nn(j,)]+ + and excitation noise source. In equation (15), the terms + as shown i n t h e f o l l o w i n g e q u a t i o n : Qnn(j,)canbeevaluated The c o n t r i b u t i o n t o t h e e r r o r t e r m i n c l u d e s t h a t p o r t i o n of R,,(T) f o rv a l u e s g r e a t e rt h a n X (shaded area i n f i g . 4 ) . I t i s s e e nt h a tt h i sc o n t r i b u t i o nt o t h ee r r o rt e r m w i l l bereduced as X i s i n c r e a s e d . (However, t h i st h e o reticalderivationholdsonlyfor t h o s ev a l u e so f X less t h a n o r Error to equal contrlbutlon Tp. 1 - A -7 Figure 4i n d i c a t e s those (15a) Equation c o n d i t i o n s u n d e r which t h e i d e n t i f i c a t i o ne r r o r w i l l be small. For L A i nstancen , o t et h a t i f X is posi4.- Reduction of error contribution w i t h a.. . t i v e and i f n ( t ) i s nwo hi si et e -Tju (Rnn(T) impulse i s an a t T = 0 ) , then w i l l b en oe r r o ri ni d e n t i f i c a t i o n . dT i s z e r oa n dt h e r e AI^ r " S,mRnn (T + More g e n e r a l l y , t h e i d e n t i f i c a t i o n e r r o r w i l l b ez e r o if where T h i sr e s u l ta p p e a r st oh a v es i g n i f i c a n c ef o r many a p p l i c a t i o n s . The most i m p o r t a n tp o i n t i s t h a t when t h e s e c o n d i t i o n s a r e met, a d e s c r i b i n g f u n c t i o n YP(!w) w i t h i n a feedback system can theoretically be measured with the system e x c l t e do n l y by t h e i n t e r n a l n o i s e n ( t ) . I n most r e a l i s t i c s i t u a t i o n s , Rnn(-c) will n o t b e i d e n t i c a l l y z e r o f o r v a l u e so f T > A. W e will n e x t show,however, t h a tt h ei d e n t i f i c a t i o ne r r o r canbereduced,and i n some c a s e s b e made q u i t e small, w i t h more r e a l i s t i c formsofRnn(T).Forexample,assume t h a tt h en o i s en ( t )t a k e st h e form = Ke - a I I which, f o r small a , would benarrow-band(nonwhite)noise. Rn, T h l sf o r ma g r e e sq u i t ew e l lw i t h some experimentalmeasurementsofthepilot remnant.(Forinstance,thisexponentialformwith ~1 = 5 s e c -a ' g r e e sw i t h t h e measured n ( t )i nr e f e r e n c e s 3 and 1 2 . ) With t h i s form, we can e v a l u a t e t h ec o n s t a n tf a c t o ro fe q u a t i o n (15) as and a r r i v e a t The e r r o r term on t h e r i g h t s i d e o f t h e e q u a t i o n i s a f u n c t i o n of t h e magnit u d eo ft h ec o n s t a n tf a c t o r e -ax. As 1 i n c r e a s e s and i f a i s l a r g(en e a r w h i t en o i s e ) , t h e nt p ( j w ) 2 Yp(jw). Conversely, i f A = 0 , t h e nt h er e s u l t i s i d e n t i c a lt ot h a t shown i nr e f e r e n c e 4: vp(jw) = - l / Y c ( j u ) . Yc Nonminimum phase.- Let u sd e f i n et h e nonminimum phase terms as t o r e p r e s e n t anypure time d e l a yi nY c ( j u ) andN,(ju) t or e p r e s e n t any RHP zerosinYc(jw). T h e n ,b yi n c l u d i n gt h e s et e r m s , i ne q u a t i o n s( 1 2 )t o ( 1 4 ) , t h ee s t i m a t e dd e s c r i b i n gf u n c t i o n becomes Note t h a t ,i nt h i sc a s e , i f Rnn(T) = 0 f o r > Tee, t h e n Y (jw) need P X, i s r e q u i r e d i n t h e a n a l y s i s ) i n nothave a timedelay(andnotimedelay, orderthattheidentificationerrorbezero. Inthis b ez e r o i f more g e n e r a l c a s e , t h e i d e n t i f i c a t i o n e r r o r i n e q u a t i o n ( 1 8 ) will where A < T - P The i d e n t i f i c a t i o n e r r o r c a n b e made small i f t h e a u t o c o r r e l a t i o n f u n c t i o n o f i s n e g l i g i b l ef o rv a l u e so f T g r e a t e rt h a nt h e sum t h ei n t e r n a ln o i s eR n n ( ~ ) o tf h e time d e l a y s X + T W e can a l s on o t et h a t h et e r mN i ( - j m ) / N z ( j u ) > C' r e p r e s e n t a t i v eo f a Padeapproximation t o a time delay.Thus,any i n Yc(jw) will t e n d t o a c t as an a d d i t i o n a le f f e c t i v et i m ed e l a ya n d furtherreducetheidentificationerror. is RHP z e r o s will T h i sa n a l y s i so ft h ei d e n t i f i c a t i o ne r r o ri n d i c a t e st h a tt h ei n t e r n a l n o i s en ( t ) neednotbe a h i n d r a n c et oi d e n t i f i c a t i o n ,b u tr a t h e r it will a i d o f feedbackcontrolsystems i f t h ec o n d i t i o n so fe q u a intheidentification t i o n (19) a r em e t .T h i sa n a l y s i sa l s o may h a v ea p p l i c a t i o ni n many o t h e r as biology,economics,andchemicalprocesses.Althoughthese f i e l d ss u c h otherapplicationsarenotconsideredinthisreport,they do c o n t a i n t i m e d e l a y s and some o f t h e measurementscan b e made o n l y w i t h t h e n o i s e i n t r o d u c e d w i t h i nt h e s es y s t e m st ob ei d e n t i f i e d . 12 APPLICATIONS AND DISCUSSION The u s e o f t h e c o m p u t i n g t e c h n i q u e o u t l i n e d i n t h i s r e p o r t w i l l be illustrated through the identification of two e x a m p l e s u s i n g s i m u l a t i o n d a t a andoneexample u s i n ga c t u a lf l i g h td a t a . Each example w i l l i l l u s t r a t e a d i f f e r e n tp o i n t . With example 1, t h e f o r e g o i n g t h e o r e t i c a l r e s u l t s will b e comp a r e dw i t he x p e r i m e n t a lr e s u l t s . With example 2 , a method for s e l e c t i n g t h e time s h i f t X w i l l b ei l l u s t r a t e d . With example 3 , a na p p l i c a t i o nu s i n g actualflightrecordsfrom Gemini X w i l l b e i l l u s t r a t e d . The s i m u l a t e d s y s t e m s f o r t h e f i r s t two-examples are shown i n f i g u r e 5 . The dynamics f o rt h e s ee x a m p l e s were s i m u l a t e d on a d i g i t a l computer. The output of a random n o i s e program was a p p r o p r i a t e l y f i l t e r e d t o o b t a i n t h e d e s i r e ds p e c t r u mo fn ( t ) . The r e s u l t i n g dynamicrecordsofe(t)andc(t) wereprocessgdusingthe method d e s c r i b e di na p p e n d i x A. The e x p e r i m e n t a l l y determined Yp(jw) t ob ep r e s e n t e df o rt h e s es i m u l a t e de x a m p l e sr e p r e s e n t st h e a v e r a g ev a l u e so b t a i n e d from 1 2 separate20-secondruns. . . "7- d I r""- ' I 1 " " " ( b l Example 2 Figure 5.- System examples used to illustrate identification technique. 13 Example 1: Comparison o f Theory With Experiment To i l l u s t r a t e t h e t h e o r y , t h e s y s t e m i n f i g u r e S ( a ) was simulatedandan i d e n t i f i c a t i o n was made on t h e known model. The p i l o t model a n dc o n t r o l l e d elementwere Yp(jw) = 4e -OS3jwandYc(jw) = l/jw. The measurements were made = 0 , a n dw i t ht h eo n l ye x c i t a t i o nb e i n gt h e w i t hn oe x t e r n a ld i s t u r b a n c e ,i ( t ) i n t e r n a ln o i s es o u r c e ,n ( t ) . Two formsofthenoisespectrumwereconsidered: conan n ( t ) w i t h a s p e c t r u m t h a t a p p r o x i m a t e s w h i t e n o i s e t o i l l u s t r a t e t h e d i t i o n fromequation(16)for no i d e n t i f i c a t i o n e r r o r , andwith a spectrum whose a u t o c o r r e l a t i o nf u n c t i o n i s Rnn(.r) = e - a ' . r ' t o i l l u s t r a t e t h e t h e o r e t i c a l r e s u l t s f r o me q u a t i o n( 1 7 )f o ra ne x p e c t e di d e n t i f i c a t i o ne r r o r . I n t e r n a lw h i t en o i s e . -F o rt h i sc a s e ,t h ee x c i t a t i o ns o u r c en ( t ) had a s p e c t r u mn e a rw h i t en o i s e . The time s h i f t u s e d i n t h e computerprocessing was t a k e n a t A = 0 . 2 sec.Theseconditions meet t h o s es p e c i f i e df o re q u a t i o n( 1 6 ) . will i d e n t i f y t h e a c t u a l According t o e q u a t i o n( 1 6 ) ,t h ee s t i m a t i o nt e c h n i q u e system, yp (J-w) = 4 e - ~ . 3 j w A I I Figure 6 (a) presents the experimentally determined magnitude qP (jw) andphaseangle { ? ( j w ) as f u n c t i o n so ff r e q u e n c y .A l s o shown f o r comparison P a r e -themagnitude Yp ( j w ) I andphase ang l e { Y P (jw)oftheactualsystem. The e s t i m a t e d a m p l i t u d e ( E ( j w ) P v a r i e s 2 0 . 5 dB a b o u t h ea c t u a l v a l u ef o rf r e q u e n c i e st oa b o u t 9 r a d / s e c and t h e p h a s e a n g l e .( t P ( j w ) i s w i t h i n k 0 . 5 " o ft h ea c t u a lv a l u e . Thesedifferencesappeartobewithin t h ee x p e r i m e n t a la c c u r a c i e so ft h e s i m u l a t i o nT . h e s er e s u l t s u b s t a n tiatethetheoreticalconclusionthat it i s p o s s i b l e t o i d e n t i f y t h e I d e s c r i b i n g f u n c t i o n of a systemthat i s e x c i t e d by n o i s en ( t )i n t r o d u c e d .I withinthesystem. 1 1 I IO Frequency w , rad / sec I n t e r n a ln o n w h i t en o i s e . -T h i s c a s eu s e st h e same c o n t r o le l e m e n t s and t h e same v a l u e A = 0 . 2 s e c as i n t h ep r e v i o u sc a s e . However, t h e assumed n o i s e s p e c t r u m h a s a more r e a l i s t i c form Figure 6.- Identification of example 1; X = 0.2 sec. A Yp(jw) = 4e . = e- 5 ' T ' . For t h i sc a s e ,t h et h e o r y( e q .( 1 7 ) ) p r e d i c t st h ef o l l o w i n ge s t i m a t e d d e s c r i b i n gf u n c t i o n : I error " " (T) -0.2jw - 0 . 3 j w - 0.37(jw + 4e - 0 . 3 j w )e L_ 14 Rnn T h i st h e o r e t i c a lv a l u eo f qp(5w) i s p r e s e n t e d i n f i g u r e 6 ( b ) a l o n gw i t h t h eq P ( j w )o b t a i n e df r o mt h ee x p e n m e n t a ld a t a .A l s o shown f o r comparison are t h e d e s c r i b i n g f u n c t i o n s o f t h e -.TP(iw),Theory a c t u a ls y s t e m Yp(jw)and t h en e g a t i v e -T P ( j w ) , Experimenl i n v etcrohsofeen t r o l leelde m e n t 20 m / " "_ Yp(iw). Actual e s t i m atthe ed <P al 2 l0- value, actual :1/Yc(jw). The e x p e rdi emrei vnet adl l y Yp(jw) i n t h i s f i g u r e i s c l o s e t o t h a t p r e d i c ttbhehyede o r y . We can see t h a tf from i g u r et h i s magnitude (jw)] i s about 4 dB below the I Yp ( j w) , a t t h e I vp I lowerfrequenciesandtends to give o f a p p e a r a nI c et h e ( s l o p e = 20 dB/decade) a t t h e h i g h e r f r e q u e n c i e sO . v e r a l lt,h e s t i m a t e d magnitudetendstoward I l/Yc(jw) as " w 3 -50e q( 1up7ar)tb ei. d y o inc t e d The e s t i :<Fa agrees however, angle, phase mated a, " " " -I q u i t ew e l lw i t ht h ea c t u a lv a l u e . a 5L lead I ' I 0 0 - -100 L .I IO I Frequency , w , rod /sec I f a time s h i f t were n o t u s e d i n t h i s example, t h a t i s , i f X = 0 , t h e n t h ee s t i m a t e dd e s c r i b i n gf u n c t i o n would b e Yp(jw) = -l/Yc(jw) , shown by 6(b). I t is intert h el i n ei nf i g u r e e s t i n gt on o t et h a tw i t h X = 0, the v a l u eo ft h ec o n s t a n tf a c t o ri nt h e errortermofequation(17) is Figure 6.- Concluded. -ah e = 1. The v a l u eo ft h i sc o n s t a n t f a c t o rw i t h X = 0 . 2 s e c , as shown i n -ah = 0.37. Thereequation (20), i s e X = 0 . 2 secthemagnitude f o r e ,f o r oftheerrorterm was reduced approximately 63 p e r c e n t . 2 q L l Figure 7 i l l u s t r a t e s t h e e f f e c t of X on t h ei d e n t i f i c a t i o ne r r o r . The control system and spectrum of the ex a r ec ittha et i osame n n oas i s e i n $he s o u rprevlous c e(T) , =e case. -51T1 0 - 2 <>n a 4 Yp(jw),Experimental data, " " " I Frequency, i nf i g u r e7 ( a )f o r 10 rod / sec X = . 0 5 sec and X = . 3 s e c ( a ) Describing functions for Figure 7.- Effect of example I; R,,,,(T) w, x on identification; = e-51TI. a r e shown X = 0 . 0 5 and 0 . 3 s eA c .l s o shown f o r comparison are Y (jwjandthe t h ea c t u a ls y s t e m n e g a t i v e i n v e r s e of ?&e c o n t r o l l e d element - l / Y c ( j w ) . These experiment a l d a t ai l l u s t r a t et h ee f f e c to f X p r e d i c t e db yt h et h e o r y ofequat i o( 1 n7). For small v a l uoe fs X, i n 15 , 15 :;""_"""" CaL IO t h i s case X = 0.05 SFC, t h ee s t i m a t e d d e s c r i b i n g f u n c t i o n Yp ( j w) t e n d s toward -l/Yc(jw). For larger values o f X , i n t h i s case X = 0 . 3 s e c ,t h e e s t i m a t e d e s c r i b i n fgu n c t i o n is " " 0 0 0 n e aatrh cetesruyasl tdeems c r i b i n g function. 0 0 pclEr e s e n t e d are 0 I I I 0 I I I " " " 0 T l 4' <P +- -mm -50- 7Y"Q-"""-.- I 0 m m 0 S 0 a data Experimental i nf i g u r e7 ( b )f o rs e v e r a lv a l u e so f I I I X. These r e sf auorlret s value one of frequency, w = 1 r a d / s e c .I nt h i s I I I f i g u r e ,t h ee x p e r i m e n t a ld a t a are comparedwiththevaluefortheactual -18"). system ( l Y p l x 1 2 dB and 4 Yp comparison This the t ihlal u t strates identificationerrordecreases, as p r e t ot h e o r y b , y dicted o fa v a l u e Yp , Actuol X = 0.3 s e c , which i s e q u at ol T . , . Yp , Theory (The t h e o r y , as n opt er d eviously,Pis ,Y.p . Experiment v a loi ndfloyr X 5 T ~ . ) The e r r o r in lqPl v a l u eos f 0 .I I I I .2 .3 .4 A , sec T i m es h i f t , ( b ) ldenliflcotionerrorfor w I .5 = I rod/sec , ; i s s e e nt oi n c r e a s ef o r h much l a r g e trh a n T h i s iesxb pet o e cbt e d cause c a n n o tp r o p e r l y modelYp(jw) T ,P Yp(jw) with X > T P ' T h e s de a t a - i n d i c a t teh atth e minimum e r r o r i n yPl o c c u r s n e a r I F i g u r e 7 . - Concluded. v a l u eo f X M T P' p h a s e a n g l e { Yp v e r ys m a l l at X M T A s shown by t h i s example,thevalueof n e atrhtei mde e l a tym o i n i m i zteheer r oird e n t i f i c a t i o n . , a The e r r o r i n t h e is alsoseentobe X shouldbe We s h a l l now r e c a l l an i n t e r e s t i n g p o i n t p r e v i o u s l y d i s c u s s e d ( w i t h e q .( 2 ) )t h a tc a n now b er e i n f o r c e dw i t he x p e r i m e n t a ld a t a .T h a t i s , t h em i n i mization o f t h e i d e n t i f i c a t i o n e r r o r , as we have shown above, i s n o t e q u i v a l e n t t of i n d i n gt h e minimum v a l u e f o r t h e s q u a r e d r e s i d u a l ~ ~ ( i nt t e) g r a t e do v e r a The f o l l o w i n gt a b l ep r e s e n t st h ee x p e r i m e n t a l l yd e r i v e d a givenrunlength. v a l u e so ft h e f i t t e r m/ E 2 ( t ) d t ,n o r / c 2 ( t ) d t , as m a l i z e dw i t hr e s p e c tt o Time s h i f t X , Normalized f i t term a function X. T h i st a b l e shows t h a t sec JE2(t)dt/'c2Ct)dtthe minimum v a l u ef o rt h e f i t term i s 0 0.02 n o t a t X = T = 0 . 3 s e c ,b u tr a t h e r .1 .19 i s a t X = 0.' This i s t ob ee x p e c t e d .2 .25 becausewith X = 0 then .3 .27 i s essenYp(jw) = -l/Yc(jw)andthere .4 .28 .31 t pi aelrclfoyercr te l a t i o n between .5 e ( t ) and c ( t ) . 16 The f a c t t h a t t h e minimum v a l u ef o r f i t term / s 2 ( t ) d ta p p e a r s a t X = 0 can l e a d t o an e r r o n e o u s i n t e r p r e t a t i o n i n s e l e c t i n g t h e b e s t v a l u e f o r X. For instance, i n p r e v i o u ss t u d i e s( r e f s .5 - 7 ) , X was s e l e c t e db yu s i n gt h a t value whichgave t h eb e s tc o r r e l a t i o nb e t w e e n e ( t ) and c ( t ) ( i . e . , t h em i n i mum v a l u ef o rJ s 2 ( t ) d t ) T . h i sp r e v i o u s method o fs e l e c t i n g X i s unsatisf a c t o r y , however,because as we h a v ej u s tn o t e d , i f n ( t ) >> i ( t ) , t h e nt h e b e s tc o r r e l a t i o n i s w i t h X = 0 and, i n t h i sc a s e ,q P ( j w ) = -l/Yc(jw). An a l t e r n a t e method o fs e l e c t i n g Example 2: w i l l b e i l l u s t r a t e d bythefollowingexample. X A Method o f S e l e c t i n g t h e Time S h i f t The previousexamplepointedoutthatthe time s h i f t X s h o u l db en e a r t h e time d e l a y T~ t o m i n i m i z et h ei d e n t i f i c a t i o ne r r o r . The time d e l a y may beapproximately known i n some s i t u a t i o n s ( e . g . , r e f . 3) b u t , i n g e n e r a l , i t s v a l u e will b e unknown and w i l l depend on t h e p a r t i c u l a r p i l o t i n g t a s k . T~ This example i l l u s t r a t e s onemethod o fs e l e c t i n g X and w i l l c o n s i d e r i d e n t i f i c a t i o n o f thesystem shown i nf i g u r e5 ( b ) . The e x c i t a t i o nn o i s e = e - 5 1 T 1 and i ( t ) = 0 ; s o u r c e i s t h e same a su s e di nt h ep r e v i o u sc a s e ,R n n ( ~ ) however, d i f f e r e n t forms f o rt h ep i l o t c o n t r o l l e de l e m e n t modelYp(jw) = 2(jw + l ) e - O a 5 j w and 1 Yc(jw) = werechosen t od e m o n s t r a t et h ei d e n 1) t i f i c a t i o n o f more complexdynamics. We will assume i n t h i s i l l u s t r a t i o n t h a t Yp(jw) i s unknown. The o b j e c t i v e w i l l b et oe s t i m a t et h ev a l u eo f and TP t h e nu s et h i sv a l u ef o r A t oo b t a i n a b e s te s t i m a t e f o r q P ( j u ) . jw(jw + was used t oe s t i m a t e For t h i s example,thefollowingprocedure t h u ss,e l e c t X. 1. P l o tt h ee s t i m a t e dd e s c r i b i n gf u n c t i o nf o r 2. Determine a t r a n s f e rf u n c t i o nt h a tf i t st h ep l o t ,t h a t -TpJ w , etc. Yp(jw) M (K1 + K2jo)e 3. Note t h ev a l u eo fe s t i m a t e d 4. Repeatsteps 1 through 3 u n t i l a v a l u eo f T~ i s obtained. thestimated T~ a s e l e c t e dv a l u eo f T 1' and X. is, from s t e p 2 . X a p p r o x i m a t e l ye q u a lt o The e s t i m a t e d d e s c r i b i n g i u n c t i o n s f o r example 2 a r e p r e s e n t e d i n f i g u r e 8 f o r X = 0 . 2 and 0 . 4 s e c .A l s o shown forcomparison i s t h ed e s c r i b X = 0 . 2 and i n gf u n c t i o nf o r- l / Y c ( j w ) T . h e s ee x p e r i m e n t a ld a t af o r 0 . 4 s e cf o l l o wt h et r e n d sp r e d i c t e db yt h e o r y . The c u r v e f o r t h e h i g h v a l u e of X ( a s compared t ot h ec u r v ef o rt h e lowervaluesof X ) t e n d s away from -l/Yc(jw). I t was f o u n df o rt h e s ed a t at h a t any v a l u eo f X between A = 0 . 3 s e c and 0 . 8 s e c r e s u l t e d i n a p p r o x i m a t e l y t h e same d e s c r i b i n g f u n c t i o n as shown f o r X = 0 . 4 s e c .T h i se s t i m a t e dd e s c r i b i n gf u n c t i o nc a nb e - a p p r o x i -TpJ w form Yp(jw) NN (K1 + K2jw)e matedby a t r a n s f e r f u n c t i o n o f t h e . The " 17 estimated T v a l u efsr o m fitting P this transfer function to the plots are p r e s e n t e d i n f i g ( e . g . ,f i g .8 ) u r e 9 f o rs e v e r a lv a l u e so f X. It i s s e e nt h a t X i s e q u a lt ot h e at X w 0.5 e s t i m a t e d time d e l a y , T P’ sec. T h e r e f o r e , X = 0 . 5 s e cs h o u l d be selected for use in this example I t i s seen i d e n t i f i c a t i o na n a l y s i s . that for this example t h e method works well f o r e s t i m a t i n g t h e a c t u a l T 50 - I I IO I Frequency , w , rad /sec Figure 8.- Identification of example 2. P’ F i g u r e 10compares t h ee s t i m a t e d d e s c r i b i n gf u n c t i o nu s i n g X = 0.5 secwiththeactualdescribingfunct i o nf o r example 2 . Both t h e magnitudeandthephaseangleofthe e s t i m a t e dd e s c r i b i n gf u n c t i o na r e seen to be near these values for the a c t u a ls y s t e m F . o rt h i sc a s e w , ith X = 0 . 5 s e c ,t h et h e o r yo fe q u a t i o n ( 1 7 )p r e d i c t st h a tt h ei d e n t i f i will b e cationerrorinmagnitude e -ah -- 0.08. The e x p e r i m e n t adl a t a shown i n f i g u r e 10 a p p e a r t o b e w i t h i nt h i s8 - p e r c e n ti d e n t i f i c a t i o n e r r o r as p r e d i c t e d b y t h e t h e o r y . / ? ~ J w ~ X ,: / 5 sec / / t / 50 - I /’ / .2 1 0 .2 I 1 I I .4 .6 T l m e shlft, X . sec I I .8 I .o -100 L IO .I Frequency , Figure 9.- Comparison of estimated example 2. 18 T~ with A ; w , rad / s e c Figure 10.- Comparison of example 2. with Y P . P’ Example 3: F l i g h t Test R e s u l t s From Gemini X F l i g h t d a t a fromGemini X were a n a l y z e d t o i l l u s t r a t e t h e a p p l i c a t i o n o f t h i si d e n t i f i c a t i o nt e c h n i q u e .I na n a l y z i n gf l i g h t - t e s td a t a , it i s b e s t t o select a s e c t i o n o f t h e r e c o r d t h a t c o n t a i n s d i s t u r b a n c e s e x t e r n a l t o t h e p i l o t . As n o t e d e a r l i e r i nt h ed i s c u s s i o nf o l l o w i n ge q u a t i o n (2), external d i s t u r b a n c e s w i l l t e n dt or e d u c et h ee r r o ri ni d e n t i f i c a t i o n . The r e t r o f i r e maneuver i s a c a s e i n which e x t e r n a l d i s t u r b a n c e s are i n t r o d u c e d d u e t o t h e unsymmetric r i p p l e f i r i n g o f t h e f o u r r e t r o r o c k e t s . The r e l a t i o n s h i p o f t h e p i l o t c o n t r o l t a s k , t h e j e t c o n t r o ls y s t e m ,a n dt h ed i s t u r b a n c e sd u r i n gr e t r o f i r e i s i l l u s t r a t e ds c h e m a t i c a l l yi nf i g u r e 11. r-----1 PllOi F i g u r e1 1 . -P i l o td e s c r i b i n gf u n c t i o na n df l i g h tc o n t r o ls y s t e m ;e x a m p l e 3. During r e t r o f i r e , t h e p i l o t c o n t r o l s t h e a t t i t u d e a b o u t e a c h o f t h e t h r e e axes.There i s no c o n t r o lc o u p l i n gb e t w e e nt h e s ea x e s ,a n dt h ep i l o ta p p e a r s t o t r e a t them a s t h r e e s e p a r a t e tasks. O f t h et h r e ea x e s ,t h ec o n t r o la b o u t t h e yaw a x i s c o n t a i n e d t h e b e s t c o n s i s tentcorrelationbetweenattitude d e v i a t i o n s , e ( t ) , and c o n t r o ls t i c k d e f l e c t i o n s ,c ( t ) . A time h i s t o r yo f t h e r e c o r d e d yaw c o n t r o l d a t a i s p r e s e n t e di nf i g u r e 1 2 . Thesecontrol data w i l l be used to illustrate the measurementof the pilot describing "I I--2 sec functionduringtheretrofireofthe Gemini s p a c e c r a f t (. I ts h o u l db e emphasized t h a t t h i s was a normal r e t r o f i r e maneuverand t h e a s t r o n a u t hadnopriorknowledgeofthis i d e n t i f i c a t i o na t t e m p t . ) F i g u r e 12.- Time h i s t o r y of yaw c o n t r o l task duringretrofire. The p i l o t d e s c r i b i n g f u n c t i o n obtainedforthedataoffigure 1 2 are 19 -Gp(I~l, X=O p r e sienC n_otufe1 fridv3 g e.usr e magnitude, Yp (jw) I 1 , and phase angle, { q P ( j u ) , a r e p r e s e n t e d as f u n c t i o n s < f r e qf ouorefn c y X = 0 and 0.6 s e c . Also shown f o r comparison is the “”’ d e s c r i b i n gf u n c t i o n 5f o r- l / Y c ( j w ) . this The os if g n i f i c a n c e was p r e vn ioot ue sdl y . The p r et hd ei cotrsy for that Xe s=t i0m, a t ehde I d e sf u c rnicbtiinogn 9 (jw) w i l l t e n d 10 - -3 L ” ” ” ” _ P line m D ._ ;-10- : / / -2oL I P toward-l/Yc(jw) as i l l u s t r a t e di n f i g u r e1 3 . However, f o rt h i sf l i g h t s i t u a t i o n ,P p ( j w )d o e s not coincide r u m ” 0 u 3 -50 - l e/w Y x b iaectc(hjtaw luys) e d i s teuxrtbearnncael s the lo firing otfh ree t r o r o c k e t s c o n t r o ls y s t e m . ” ” - I00 I .I Frequency, Y , rad /sec of due t o and j e t Figure 13.- Identification of pilot describing function; example 3. For X = 0.6 s e c ,t h ee s t i m a t e d d e s c r i b i n gf u n c t i o nv p ( j w t) e n d s away from t h ec u r v eo -f l / Y c ( j w ) . Any v a l u eo f X from about X = 0.3 t o 0 . 7 s e cr e s u l t e di na p p r o x i m a t e l yt h e same d e s c r i b i n g f u n c t i o n as shown f o r X = 0 . 6 set. Thisestimateddescribingfunctioncanbeapproximated by a - T jw a constang t a i na n d a t i m ed e l a y , Yp(jw) w Ke . t r a n s f e rf u n c t i o nw i t h 1.0 - .8 - ” a, .6- v, a - u 0 ,E .4- W I 0 .2 I I .4 .6 Tlme shlft, X , sec Figure 14.- Comparison of estimated X ; example 3. - I I .8 ~~ I T~ .o with As n o t e d p r e v i o u s l y , t h e v a l u e of A t h a t w i l l m i n i m i z et h ei d e n t i f i c a t i o n e r r o r i s dependent on t h e effectivetimedelayofthepilot, F o rt h e s ed a t a ,t h ep r o c e d u r e k s c r i b e d p r e v i o u s l y was used t o X. determine -rp a n dt ,h u ss,e l e c t With t h i sp r . o c e d u r e , T~ was e s t i matedby f i t t i n g t h e t r a n s f e r f u n c tiontotheplotsforseveralvalues of A . These r e s u l t sa r ei l l u s t r a t e d i n f i g u r e 1 4 where t h e e s t i m a t e d TP as a f u n c t i o n v a l u e sa r ep r e s e n t e d I t i s s e e tnh a t X i s equal of X . totheestimatedtimedelay, TP’ a t X z 0 . 6 s e c .T h e r e f o r e , X = 0.6 s e c was s e l e c t e d f o r u s e i n t h i s i d e n t i f i c a t i o na n a l y s i s . One p r o m i s i n g f e a t u r e i n a n a l y z is that the estiingtheflightdata mated d e s c r i b i n g f u n c t i o n s a r e 20 I ~ 5The d e s c r i b i n gf u n c t i o nf o rt h ej e tc o n t r o ls y s t e m e s t i m a t e df r o mt h ef l i g h td a t a . Yc(jw) was ~ r e l a t i v e l yi n s e n s i t i v et ot h ee x a c tv a l u eo ft h e time s h i f t , A . F o rt h e e s t i m a t e dp i l o td e s c r i b i n gf u n c t i o n s( e . g . ,f i g .1 3 ) ,t h ep l o t s are approxim a t e l yt h e same f o rv a l u e so f X fromabout0.3 t o 0 . 7 sec ( t h ee s t i m a t e d T remainedthe same a t about 0 . 6 s e c ) . I t a p p e a r s t h a t t h e e x a c t v a l u e u s e d f o g A i s n o t c r i t i c a l i nt h i sa p p l i c a t i o no ft h ei d e n t i f i c a t i o nt e c h n i q u e . The e s t i m a t e dd e s c r i b i n gf u n c t i o nf o r X = 0 . 6 sec ( f i g .1 3 )r e p r e s e n t s a c o n s t a n tg a i ns y s t e mw i t h an e f f e c t i v e time d e l a y .T h i sr e s u l t ,a l t h o u g h notdirectlycomparabletotheresults f r o mp r e v i o u ss t u d i e s ,a p p e a r sr e a s o n a b l e .F o ri n s t a n c e ,w i t h a r a t e command system,whichapproximatesthecontrol 1 has shown t h a t t h e p i l o t d e s c r i b i n g systemusedinthissituation,reference f u n c t i o n w i l l b e e s s e n t i a l l y a c o n s t a n tg a i ns y s t e mw i t h a time d e l a y . The v a l u e T~ f o rt h et h r e e - a x i sf l i g h td a t a i s h i g h e rt h a nt h ev a l u ef r o mt h e 1. However, o t h e rs t u d i e ss u c h as r e f e r e n c e1 3 s i n g l e - a x i sd a t ai nr e f e r e n c e have a l s o shown h i g h e rv a l u e s of -rP when t h e p i l o t i s i n v o l v e di nt h e comp l e t e t a s k o f m o n i t o r i n gt h ei n s t r u m e n tp a n e la n dc o n t r o l l i n ga b o u tt h r e e s e p a r a t ea x e s . F u r t h e ra n a l y s i so ft h i sf l i g h td a t a i s p r e s e n t e di na p p e n d i x B . This a p p e n d i x i l l u s t r a t e s how t h e d e s c r i b i n g f u n c t i o n o f t h e p i l o t / c o n t r o l combinat i o n c a nb ei d e n t i f i e du s i n gt h et e c h n i q u eo u t l i n e di nt h i sr e p o r t .T h i s i l l u s t r a t i o n i s i n t e r e s t i n gb e c a u s e i t p r e s e n t s t h e i d e n t i f i c a t i o n o f an i t s own i n t e r n a l n o i s e unknown s y s t e m( i . e . ,p i l o t / c o n t r o ls y s t e m )u s i n go n l y sourceforexcitation. CONCLUDING REMARKS T h i sr e p o r th a s shown t h a t i n m e a s u r i n g p i l o t d e s c r i b i n g f u n c t i o n s t h e i d e n t i f i c a t i o n e r r o r due t o t h e c o r r e l a t i o n o f t h e i n p u t s i g n a l w i t h t h e pilotoutputnoise canbereduced by s h i f t i n g t h e i n p u t d a t a d u r i n g t h e p u t e r p r o c e s s i n g by an amount e q u i v a l e n t t o t h e p i l o t t i m e d e l a y . com- Both t h e o r y and experimentaldatahave shown t h a t t h e i d e n t i f i c a t i o n e r r o r canbe made small i f t h e a u t o c o r r e l a t i o n f u n c t i o n , Rnn(T), o f t h e i n t e r n a ln o i s es o u r c e( p i l o tr e m n a n t ) i s n e g l i g i b l ef o r T g r e a t e rt h a nt h e sum o f a l l e f f e c t i v et i m ed e l a y st h r o u g ht h ec o n t r o ll o o p( p i l o tp l u sc o n t r o l l e de l e m e n t ) .T h i sf i n d i n gh a ss i g n i f i c a n c ei ng e n e r a ls y s t e m si d e n t i f i c a t i o nb e c a u s e , when t h e s e c o n d i t i o n s are met, i t i s p o s s i b l e t o measure t h e d e s c r i b i n gf u n c t i o no f a systemwithfeedbackusingonly i t s own i n t e r n a l noisesourceforexcitation. Representativedataselected from t h e r e t r o f i r e p o r t i o n o f t h e f l i g h t w e r ea n a l y z e du s i n gt h et e c h n i q u eo u t l i n e di nt h i sr e p o r t .T h e s e resultsdemonstratethefeasibilityofidentifyingthepilotdescribing functionfromroutineflight-testrecords. Gemini X Ames ResearchCenter NationalAeronauticsandSpaceAdministration M o f f e t tF i e l d , C a l i f . , 94035,Jan.15,1969 125-19-01-42-00-21 21 APPENDIX A TIME DOMAIN ANALYSIS AND COMPUTER PROCESSING we w i l l first u s e time domain a n a l y s i s t o o u t l i n e t h e I nt h i sa p p e n d i x , s t a n d a r dc r o s s - c o r r e l a t i o n method ( r e f s . 4 and 8 ) . W e s h a l lt h e ni n t r o d u c e X and t h e c o m p u t e rp r o c e s s i n ge q u a t i o n su s e df o rt h er e s u l t s t h et i m es h i f t i nt h i sr e p o r t . The r e d u c t i o ni ni d e n t i f i c a t i o ne r r o rd u et o X w i l l then b ep o i n t e do u tu s i n gt h e s e time domain e q u a t i o n s . And, f i n a l l y , we w i l l discuss a modificationofthese c o m p u t e rp r o c e s s i n ge q u a t i o n st oa c c o u n tf o r any d a t a b i a s . Standard Cross-Correlation Method Let u s c o n s i d e r a n a l y s i s i n t h e time domain i n which t h e l i n e a r i n p u t o u t p u t r e l a t i o n s h i p can b e e x p r e s s e d i n terms o f a c o n v o l u t i o n i n t e g r a l is, assumed t o bezero The hp(T) i s t h e p i l o t i m p u l s e r e s p o n s e f u n c t i o n t h a t T > t, ( i . e . , a f o r T < 0 ( i . e . , hp ( T ) i s a r e a ls y s t e m )a n da l s oz e r of o r f i n i t e memory time, b). A s i m p l ed i s c r e t ea p p r o x i m a t i o no fe q u a t i o n( A l ) , t oa l l o wd i g i t a lc o m p u t a t i o n , is c (k) = A t f hp (m)e (k - m) + n (k) m= 0 The s e t of e q u a t i o n s (A2) canbe where A t i s t h ed i s c r e t es a m p l i n gt i m e . w r i t t e n i n v e c t o r - m a t r i x form as where e(ko - 1) + . . . e(ko .. . e(K 1) E = A ' 22 - (A2 1 hp -- An e s t i m a t e o f f ormu 1a c = - h “I? c a nt h e nb e n = - made, u s i n gs t a n d a r d l e a s t s q u a r e s , by t h e We s h o u l d p o i n t o u t t h a t t h e m a t r i x t o b e i n v e r t e d , ETE , c o n t a i n st e r m s t h a tr e p r e s e n td i s c r e t e m e a s u r e m e n t so ft h ea u t o c o r r e l a t i o nf u n c t i o nR e e ( ~ ) , and t h a tt h ev e c t o r ET c c o n t a i n st e r m st h a tr e p r e s e n td i s c r e t e measurements o tfh ec r o s s - c o r r e l a t i o nf u n c t i o nR e c ( T ) . F o r i n s t a n c e t, h ev e c t o r ET, can b ew r i t t e ni nt e r m so ft h ec r o s s - c o r r e l a t i o nf u n c t i o na s / L k=ko T Ec = 23 Use of a Time S h i f t i n Computer P r o c e s s i n g The time s h i f t X i s i n t r o d u c e di n t ot h ec o m p u t e rp r o c e s s i n gb ys h i f t i n g a d i s c r e t e number o ft i m es h i f t s L , where X = L A t . t h ei n p u td a t ae ( k ) The l i n e a r p i l o t model is t h e n e x p r e s s e d as c(k) = A t f (A6 1 hp(L + m)e(k - m - L) + n ( k ) m= o Thisformassumesthattheimpulseresponse hp i s z e r of o rt i m el e s st h a n A. This form a l s o assumes a memory time o f t m = h + M A t . For t h er e s u l t s i nt h i sr e p o r t , M = 9 and A t = 0 . 0 5 s e c (. L a r g e rv a l u e so f M were a l s o t r i e d w i t h no s i g n i f i c a n t changes i n t h e r e s u l t s . ) Using t h el e a s t - s q u a r e sf o r m u l a t i o n ,t h ei m p u l s er e s p o n s ef u n c t i o no ft h e p i l o t was determined by the following matrix i n v e r s i o n on a d i g i t a l c o m p u t e r : - f eZ(k-L) ... e(k-L)e(k-1-L) e(k-1-L)e(k-L) e(k-L)c(k) e(k-L)e(k-M-L) K e2(k-1-L) . . . e(k-M-L)e(k-1-L) , .. k=ko L k=ko c k=ko 2 f 1 k=ko k=ko K f k=ko f d k=ko e(k-1-L)e(k-M-L) e(k-1-L)c(k) = (At)- k=ko e(k-M-L)e(k-L) k=ko e2 (k-M-L) f e(k-M-L)c(k) k=ko L This time domain s o l u t i o n was f u r t h e r t r a n s f o r m e d i n t o t h e f r e q u e n c y u s i n gt h ef o l l o w i n ga p p r o x i m a t i o nf o rt h eF o u r i e rt r a n s f o r m : 1 domain M A Yp(jw) = e -L A t j w A t ReductioninIdentification G p ( L + m)e -m A t j w E r r o r With Time S h i f t I no r d e rt o show, u s i n g time domain a n a l y s i s , t h a t t h e t i m e s h i f t r e d u c e st h ei d e n t i f i c a t i o ne r r o r , we can write e q u a t i o n (A4) as h kp = kp - + [ETE] - ET,- error 24 X The i d e n t i f i c a t i o n e r r o r , shown above i n v e c t o r form, i s due t o t h e c o r r e l a t i o no fe ( k )w i t h n (k) The t e r m si nt h ev e c t o r ETn c a nb er e g a r d e d as d i s c r e t ev a l u e s of t h ec r o s s - c o r r e l a t i o nf u n c t i o n Re;(.). . T E n = M f e ( k - M)n(k) k=ko If R e n ( ~ )i s nonzero f o r T > 0 , t h e nt h et e r m s z e r o and t h e r e w i l l b e an i d e n t i f i c a t i o n e r r o r . Ren(m), m 2 0 , w i l l b e non- Now, i n t r o d u c i n g a d i s c r e t e number of t i m e s h i f t s equation (A7), t h ev e c t o r ETn - becomes - L, such as u s e di n e (k - L)n (k) <=ko f e ( k - 1 - L)n(k) k=ko T E n = M e(k - M - L)n(k) k=ko -J I We can see t h a t t h i s u s e o f t h e time s h i f t removes t h et e r m s Ren(m), 0 2 m < L , andadds t h e t e r m s Ren(m), M < m < M + L. The terms t h a t are 25 added. g e n e r a l l y are smaller t h a n t h e terms removed; t h u s , t h e u s e o f a time s h i f t L, o r t h ee q u i v a l e n t X , r e d u c e st h ei d e n t i f i c a t i o ne r r o r . (Time s h i f t i n g w i l l n o t s i g n i f i c a n t l y a l t e r t h em a t r i x ETE.) F u r t h e rn o t et h a tt h e m 2 L. i d e n t i f i c a t i o n e r r o r w i l l b ez e r o i f Ren(m) i s z e r o f o r v a l u e s o f Computer P r o c e s s i n g With Data Bias The d a t ac ( k ) and e ( k )o b t a i n e df r o mr o u t i n ef l i g h t tests w i l l usually c o n t a i n some t y p e o f l o n g - t e r m v a r i a t i o n a b o u t which t h e s h o r t - p e r i o d dynamics 12.) a r et ob ee s t i m a t e d .( S e e ,f o ri n s t a n c e ,t h ef l i g h t - t e s td a t ai nf i g . There may b e a b i a s o r d r i f ti ne ( k )b e c a u s eo fi n s t r u m e n t a t i o ne r r o r s or b e c a u s et h ep i l o t may b ec o n t r o l l i n ga b o u t some nonzerovalue.There may be b i a si nc ( k )b e c a u s eo fi n s t r u m e n t a t i o ne r r o r s o r b e c a u s et h ep i l o t must h o l d i f t h e v e h i c l e i s o u to ft r i m ) . some n o n z e r o o f f s e t w i t h t h e c o n t r o l l e r ( e . g . , Intheanalysisoftheflight-testrecordsforthisreport, a b i a s t e r m and a d r i f t t e r m wereadded t o t h e f o r e g o i n g f o r m u l a t i o n so that c ( k ) = bo + b l k A t + A t c hp(L + m)e(k - L - m) + n ( k ) m= o n h The e s t i m a t e dc o n s t a n tb i a s term b oa n de s t i m a t e dd r i f t term b l ,a l o n g w i t ht h ee s t i m a t e di m p u l s er e s p o n s ef u n c t i o n G,(m) , were determinedbythe l e a s t - s q u a r e ss o l u t i o n .T h i s new f o r m u l a t i o nr e q u i r e dt h ei n v e r s i o no f an M + 3 s q u a r em a t r i xi n s t e a do ft h e M + 1 s q u a r e m a t r i x shown p r e v i o u s l y i n equation (A7). 26 APPENDIX B IDENTIFICATION OF THE PILOT/CONTROL DESCRIBING FUNCTION The d e s c r i b i n g f u n c t i o n o f t h e p i l o t / c o n t r o l c o m b i n a t i o n h a s b e e n u s e d e x t e n s i v e l y( e . g . , r e f . 1) t o a n a l y z e t h e c l o s e d - l o o p dynamicsofpiloted s y s t e m s .T h i sa p p e n d i xi l l u s t r a t e st h eu s eo ft h et e c h n i q u eo u t l i n e di nt h i s r e p o r tt oi d e n t i f yt h ep i l o t / c o n t r o ld e s c r i b i n gf u n c t i o n .T h i si l l u s t r a t i o n w i l l u s e t h e Gemini d a t a p r e s e n t e d p r e v i o u s l y i n f i g u r e 12. The d e s c r i b i n gf u n c t i o nq X ( j u )t ob ei d e n t i f i e d t ot h ep i l o t and t h ec o n t r o ls y s t e mi nf i g u r e 15. i s shown i n r e l a t i o n s h i p T h i sd e s c r i b i n gf u n c t i o n PllOt r-----l I I I L - - - - - J h Estlmote Y, " " " 7 F i g u r e 1 5 . - T h et e c h n i q u ef o ri d e n t i f y i n gt h ep i l o t / c o n t r o ld e s c r i b i n gf u n c t i o n 1 was measuredbetween t h ea t t i t u d ee r r o rs i g n a le ( t ) and t h e a t t i t u d e r a t e s i g n a l$ ( t ) . The Bode p l o t so b t a i n e d from t h e s ed a t aa r ep r e s e n t e di n f i g u r e1 6 .C u r v e so ft h ee s t i m a t e dd e s c r i b i n gf u n c t i o n Yx(jw) a r e shown f o r h = 0 and 0 . 7 s e c . Also shown f o r comparison i s t h e Bode p l o tf o rt h en e g a t i v ei n v e r s eo ft h ef e e d b a c kp a t h , -jw. The t h e o r yp r e d i c t st h a t ,f o r X = 0, t h ee s t i m a t e dd e s c r i b i n gf u n c t i o n will i d e n t i f y - j wb e c a u s e ,i nt h i s case, t- h. e- r ea r e no d i s t u r b a n c e se x t e." r n a... lt o.t h e measured d e s c r i b i n gf u n c t i o n . As . 1It i s i n t e r e s t i n g t o o b s e r v e t h a t the identi.ficationofthe pilot/controldescribingfunctionrequiredonly a s i n g l e c h a n n e l of r e c o r d e d d a t a . The o u t p u ts i g n a lu s e di nt h e computerprocessing was t h er e c o r d e d yaw r a t e ,$ ( t ) . The i n p u ts i g n a l was a l s od e t e r m i n e df r o mt h i s same recorded d a t a as i - . . _ - . e(t) = ~ ~ -s t $(T)dT + b i a s + d r i f t 0 where t h e unknown b i a s and d r i f t a r e a c c o u n t e d f o r b y t h e appendix A. method shown i n 27 shown i n f i g u r e 1 6 , t h e c u r v e f o r X = 0 e s s e n t i a l l yc o i n c i d e sw i t ht h e c u r v feo r -jw. F o ri n c r e a s i n gv a l u e so f X, the estimateddescribingfunctiontends - j w . Any away from t h ec u r v eo f v a l u eo f A between 0 . 4 and 1.0 sec resultedinapproximatelythe same Bode p l o t as shown f o r X = 0 . 7 s e c . The e s t i m a t e d d e s c r i b i n g f u n c t i o n can beapproximatedby a describingfunca c o n s t a n tg a i n K, and a t i o nw i t h ,. Figure 16.- Identification of pilot/control describing function. / 1.0 - / / time d e l a y -rx; Yx(jw) = x , - T x j w The e s t i m a t e dv a l u e sf o r T~ are p r e s e n t e di nf i g u r e 17 f o r s e v e r a l X. W e can s e teh a t X v a l u eosf e q u a tl ot h ee s t i m a t e d T~ at X M 0 . 7s e c , s o X = 0 . 7 s e c was selectedforthisanalysis. is ,. From t h ee s t i m a t eY x ( j w ) , we c a nd e t e r m i n et h ed e s c r i b i n gf u n c t i o n forpi!o;/controlledelementcombinat i o n , YpYc(jw). The d e s c r i b i n gf u n c ,. t i o n beY, can combined the with i n t e g r a t i o n , l / j w , as shown i n foi g bt1o u t a5r i,en .8- qPqc (jw) " W .6 / - - 73 W For t h e r e s u l t s from f i g u r e1 6 ,t h e is estimateddescribingfunction / 0 i jw / c .4 - / W -0.7jw / qX(ju) = 1.3e / i.P?C (jw) 0 .2 .4 .6 Tlme shtft, X . sec Figure 17.- Comparison of estimated o fc o n t r o l l e de l e m e n t st h ep i l o t Px ( j w> = .a T~ w so that 1.3e-0.7jw jw I .o Tr he isasup lpter ae rass o n a b l e . From p r e v i o u ss t u d i e ss u c h as r e f e r e n c e 1, with a . it hasbeen shown t h a t f o r a v a r i e t y e-~xjw X w i l l control so t h a t Y Y (jw)m PC j w The a c t u a lv a l u e Thisform i s t h e same as f o u n di nt h ea c t u a lf l i g h tr e s u l t s . K,, of 1 . 3r a d / s e c ) i s lowerthanpref o rt h eg a i n( ac r o s s o v e rf r e q u e n c y , dicted in reference 1 andthevaluefortheeffective time d e l a y (-rXM 0 . 7 s e c ) 28 I II I II I I I 111 i s h i g h e rt h a np r e d i c t e di nr e f e r e n c e 1. Again, i t is r e a s o n a b l et oe x p e c t ( s e er e f s . 10and13) thatthesedifferencescanbeattributedtothefact thatinreference 1, t h e p i l o t was c o n t r o l l i n g o n l y a s i m p l e s i n g l e - a x i s t a s k , whereas,fortheactualflightdata,thepilot was c o n t r o l l i n g a b o u t t h r e e axesandmonitoringthecompleteinstrumentpanel. 29 REFERENCES 1. 2. Newell,Fred D . ; and P i e t r z a k ,P a u l E.: I n - F l i g h t Measurement of Human .n , o3 ., May-June 1968, Response C h a r a c t e r i s t i c s . J . A i r c r a f t , v o l 5 pp. 277-284. 3. Henry R . : A Review o fQ u a s i - L i n e a rP i l o t McRuer, Duane T . ; andJex, HFE-8, Models. I E E E T r a n s a c t i o n s on Human F a c t o r si nE l e c t r o n i c s ,v o l . no. 3,Sept.1967,pp.231-249. 4. Elkind,Jerome I . : F u r t h e rS t u d i e s o f M u l t i p l eR e g r e s s i o nA n a l y s i so f Human P i l o t Dynamic Responses; A Comparison o f AnalysisTechniquesand EvaluationofTime-VaryingMeasurements. ASD-TDR-63-618, March 1964. 5. Elkind,Jerome I . ; S t a r r , Edward A . ; Green,David M . ; andDarley, D . L u c i l l e :E v a l u a t i o no f a Technique f o r DeterminingTime-Invariantand Time-Variant Dynamic C h a r a c t e r i s t i c s of Human P i l o t s . NASA TN D-1897, 1963. 6. Todosiev, E . P . ; Rose, R . E . ; Bekey, G . A . ; TrackingPerformanceinUncoupledandCoupled CR- 532 , 1966. 7. Wierwille, Walter W . ; and Gagne, G i l b e r t A . : A Theory f o r t h e Optimal D e t e r m i n i s t i c C h a r a c t e r i z a t i o n o f t h e Time-Varying Dynamics o f t h e Human O p e r a t o r . NASA CR-170, 1965. 8. i nt h e T a y l o r , Lawrence W . , J r . : A Comparison o f Human ResponseModeling Time andFrequency Domains. Proceedings o f t h e 3 r d Annual NASAUniversity Conference on Manual C o n t r o l . NASA SP-144,1967, pp. 137-153. 9. J. B.: Determination o f SystemCharacterGoodman, T . P . ; andReswick, i s t i c s from Normal OperatingRecords.Transactions o f t h e ASME, v o l . 78, pp. 259-268, Feb. 1956. and Williams, H. L . : Human Two-Axis Systems. NASA 10. Adams, James J . ; Bergeron, Hugh P . ; andHurt,George J., Jr.: TransferFunctionsinMulti-AxisandMulti-LoopControlSystems. NASA TN D-3305, 1966. 11. Newton, George C . ; Gould,Leonard A . ; andKaiser,James Design of L i n e a r Feedback Controls.JohnWileyandSons, 30 F.: Human Analytical N . Y . , 1957. 12. McDonnell, J. D.; and Jex, H. R.: A "Critical" Tracking Task f o r ManMachine Research Relatedto the Operators Effective Time Delay. NASA CR-674, 1967. 13. Clement, W. F.; Jex, H. R . ; and G r a h a m , D.: Application of a System Analysis Theory f o r Manual Control Displays to Aircraft Instrument Landing. Paper presented at 4th Annual NASA-University Conference on Manual Control, Univ.of Mich., March 1968. NASA-Langley, 1969 -5 A- ~ ~ ~ 2993 "~ 31