REPORT1252 THEORYOF WING-BODYINTEWERENCE AT SUPERSONIC QUASI-CYLINDRICAL
by user
Comments
Transcript
REPORT1252 THEORYOF WING-BODYINTEWERENCE AT SUPERSONIC QUASI-CYLINDRICAL
REPORT1252 THEORYOF WING-BODYINTEWERENCEAT SUPERSONIC QUASI-CYLINDRICAL COMPARISONWITH EXPERIMENT 1 By JACKN. NIINAZWIN SUMMARY wing-bodycombinations.The trend towardusinglarge A, theoretical methodis presentedfor cahu.luting i%eflow bodiesand smallwingsat supersonicspeeds,especiallyfor jield abouta wing-bodycombinathnemployingbodiesdeviat- missiles,is the primereasonfor the increaaedimportance ing only slightlyin shapefrom a &&r ylinder. If .L18 of wing-bodyinterferenceat thesespeeds. Muchsigni60ant workhasalreadybesndonein thefield. combinatwn pos8e8sesa horizmt.a.! pf.aneof symmetry,no In reference 1, Spreiter has shownthatwhena wing-body restricttis arerequiredon wingplanform in theapplication combination i sslender i n thesenseof hispapersimpleexpresof the methodto tlw zero angle-o fut.tackcondition. If the sionsfor the lift and momentcoefficients can be derived. combinti’on& lifting,themethodrequirwW thewi~ LmdThese resultswere obtainedby reducinga three-dimening edgesbe MLpersonic.2%enth8*t ofti$m&ld sionalproblemfor thewaveequation to a two-dimensional thatcan be cakula.ted dependson thewingaqwctratioand whether ornotthetrailingedgeeare supersonic. Twometlwok problemfor Laplace’sequation. Anotherapproachis that of calculating the$OWjield, the W-functionmethodand the of simplifyingthe differentialequationby using conical boundaries.Followingthis approach,Browne,Friedman, mu.ltipole method, are prmenti. The nwti& m pramli andHodesin reference2 obtaineda solutionfor theprekure areaccurate totheorderof quasi-cylindrical theory. field of a wing-bodycombinationcomposedof a flat triThemetltod is appliedto ti caku-?ution of thepre+wurefild angular wingand a coneboth witha commonapex. The actingbelweena circu.?ur cylindricalbodyanda rectangular use of all-conical boundariesreducestheproblemto oneof wing. Thesecalw?atti arefor combinatti for whichthe conical f lowforwbioh powerfulmethodsof solutionareavaile$ectivempectratioof thewingpanelsjoinedtogether h greater able. than2 andfor whichh e~ectivechord-radim ratwis 4 orle8s. Severalinvestigators havepresentedmethodsfor deterTwocamxare calcululd,t.luwe in whichthebodyremains at mroangleoj a.t&ckwhilethewingimidenceix variedand thepr~e field,includingtheeffectof interference, thecasein whichthewingremain8at zeroangleof incidence acting on wing-body combinationsemployingcircular slender. In reference3, whilethe bodyangleof attackh varied. It wasfound that fuselagesandwingsnot necessarily methodof obtainingthe four I’owriercomponent8 of theinterference jield arerequired Rrrari hasgivenan approximate “interferenceof the wingon the streamlined body, assumto e8tabli8h thepressurefield, butthatonlyone component ti nece.wary b establtihthe8panloading. A detui.?eo? di.scnuwioning that the inducedfield generatedby the wing is that oj thephy8icalnaJure of th8in&rjerence pre88ure~ h given. whichwouldexistaroundthewingif it wereplacedin the .4n experirn ent wa8performedespeoia.?-ly for Lb purpose uniformstreamalone.” Similarly,the interferenceof the oj checkingthe calcu?utwe examples. The iwz&.ga&nww body on the wing has been determined.The resultsof Ferrarithusrep~esenta first approximation, and while a performed atMachnumbers of1.48and$.00M arectie secondapproximation usingthe methodis possible in priuwingandbodycombination.Bothtlwoariable wing+wi.d+mce and angle-o f~ack UMeSwere cavered.It w found tha$ ciple it appearsthat too much labor would be involved. solujor 8@h&ntiysmd ang.h,about2?0orkxs,i!lM prewntmethod Morikawain reference4 hasobtainedan approximate problemand has also predictithepreeeuredi.stribti withinabout&10 percent tion by solvinga boundary--value obtaineda closedsolutionby approximating the three-difor bothCUB. ImportantnunlineareJectswerefoundfor anglesof affackand incidenceof 4° to 6°, and important mensionalmodelby a planarmodel. Bolton%hawin referuiscowe$ectswere w.swd?y jound whereLzminarbowndary ence5 has obtaineda solutionby satisfyingboundaryconditionsatafinitenumberofpointsratherthanoverasurface. layersencountered 8hockwavei. bother methodfor estimatingthe effectof ‘interference INTRODUCTION on the aerodywnic propertiesof wing-bodycombinations In recentyears the problemsof supersonicwing-body whichare not necxwwilyalenderis given“inreference6. interference haveoccupiedtheattentionof manyworkersin In thisreferencothe method-isappliedto detarminin g the t-aerodynamics. ,Thelargeamountof effortexpendedon the dragof symmetrical wing-bodycombinations; it is alsoapsubjectis a resultof theimportanteffectsthatinterference plicableto the oalculatiogs of theliftingpressures actingon can have on the overall aerod~amic characteristicsof combinations~ploy@g wingswith supersonicedges. In 1SnperacdM NAOATN 2677 ‘“Wing-Body Interfmence atSnpcxsmto SPASWItb‘anAppUmtion to CbmbinatIom WithReotm@arW~,by J&.N: Nkdssn md WILIInm O. Betwean ‘ThwryandExperbnont forInterfaxmw ~, ~~d B~jwean Wlqga@ [email protected],S_;~y mm O.Pitts,Jnok Pit@1062, fmdNAOATNW28Worn-n . ... . . . .. . ..? N.Nldsen, andManrka P. O1onMddo, Iw. ,-, .*,-q ..-. “.-’. -<, . . 1299 ., 1300 FORAFJRONAU’ITCS REPORT125%NATTONAL ADVISORY COM3DTTEE reference7, an essentiallynew methodof solvinga wide classof wing-bodyinterference problemshasbeenpresented. Th~methodis basedon decomposingthe interferemw of a wing-bodycombination intoanumberof Fouriercomponents and solvingthe problemfor each componentin a manner simih to thatusedby von KiirmtinandMoorein reference 8 for bodiesof revolution. I?hinney,reference9, hascomparedthemethodsof references3, 6, and7 by applyingeachto the calculationof the pressurefieldactingon a circularcylinderintersected by an obliqueshockwave. In reference10thetheoryof reference 7 hasbeenappliedto the computationof the pressuredistributionsactingon a rectanguhw wingandbody combinationwiththebody at zeroangleof attackandthewingat incidence. In reference11 Bailey and Phinneyhave applied the methodof reference7 to the calculationof the pressures on thebody of a rectangyilaz wingandbody combinationat angleof attaokbut withthewingat zeroangle of attack. b reference12 the same authorshave comparedtheircalculationswith some experimental measurementsmadeat a Machnumberof 1.9. In reference13the experimental pressuredistributions actingon a rectangular wingandbody combinationat Machnumber1.48and2.00 me extensively comparedwiththeoreticalcalculations based on themethodof reference7. In part I of the presentreportthe theoryof wing-body interferencefor combinationsemployingquasi-cylindrical bodiesis presented,includingrecentdevelopments not previouslyreportedin references7, 10, or 13. The theoryis applicableto combinationsat zero angleof attack with horizontalplanesof symmetryor combinations at angleof attackif the wing leadingedgesare supersonic. In part II the theoryis appliedto the calculationof the pressures andspanloadingsfor a rect.angukwingandbody combinationfor the caseof thebody at zeroangleof attackand variablewingincidenceandfor thecaseof thewingat zero wingincidenceandvariablebody angleof attack. The calculationsforthesecondcasearemorecompletethanhitherto. In partIII extensivecomparisonis madebetweenthe calculationsof partII andtheresultof experiments at Mach numbersof 1.48and2.00especiallydesignedto check the cnlcuhtions. SYMBOLS : c C* CA) G Cg C&(s) D,.(s)I f2n(x) {Jp bodyradius,in. aspectratioof wingformedby joiningexposed hal-wingstogether chordof rectangular wing,in. effectivechord-radius ratio,~ m strengthof multipoleof order2n at point x of bodyaxis chordat wing-bodyjuncture,in. chordat wingtip,in. 1,=(8) K,.(8)} kw K. L L-1 L Lrvo ; ill,,(z) n P Po PI PT P modi.iied Besselfunctionsof thefirstandsecond kinds,respectively & ~B=o b &va . o —$ z~= L lift of combinationback to wing tmilingedge, lb; Laplacetransformoperator inverseLaplacetransformoperator lift on exposedhalf-wings joinedtogether,lb lift on exposedhalf-wingsin combinationwith body,lb indexidentifyingsetsof multipolesolutions free-stream Machnumber characteristic functionsfor obtainingmultipole strengths numberof Fouriercomponent staticpressure,lb/sqin. staticpressurein freestream,lb/sqin, staticpres-sure at anyparticularoriiicoof wingbody combinationwhen a~=iW=O,lb/sq in. staticpressureat wind-tunnelwallori.flco,lb/sq in. pressurecceflicient,~; —$! for theoretical calculations interferencepressure coefficient due to nth Fouriercomponent free-stream dynamicpressure,lb/sqin. !10 dynamicpressurebased on conditionat wall ~T orificeof windtunnel,lb/sqin. r,ejx cylindricalcoordinates:y=r cos 0, Z=T sin O (Seefig. 1.) R Reynoldsnumberbasedon wing-chordlength realpart R.P. semispanof wind-bodycombination, in,; Lnplaco 8 transformof x coordinate U,o,w axial,lateralandverticalperturbation velocities, respectivey in.lsec free-strewn v‘d ocity,in./sec v W,n(x,r) characteristicfunctionsfor calculatingpressure coetlicient Carte9ianccordinatxwx, axial coordinate;~, S,y,z lateralcoordinate;z, verticalcoordinate,in, (Seefig. 1.) ffB bodyangleof attack,radiansexceptwherootherwisedesignated up-wash angleof body-aloneflow,radians %$ wingangleof attack,radians ~w P m DA effectiveaspectratio Dirac delta function; 6(Z) P1. arbitraryfunctionsof ~ 0 velocityamplitudefunctionof nth Fouriercomponent,in.lsec wing-incidence angle,radiansexceptwhereotherwisedesignated, positivefor txailingedgedown A $ A a(z)=o, 2#o; J‘“8(X)*=1 polarangle(Seefig. 1.) ‘“ dummyvariableof integration sweepangleof -wingleadingedge .-. “. —--—- -. .- — ‘-- ‘- ‘-- - ‘-- interference perturbation velocitypotentiaJ nth Fourier componentperturbationvelocity potential combination perturbation velocitypotential wing-alone perturbation velocitypotential wing-alone perturbation velocitypotentialdueto theexposedrighthalfof thewing wing-alone perturbation velocitypotentialdueto theexposedlefthalfof thewing wing-alone perturbation velocitypotentialdueto theportionof winginsidetheregionoccupied by body Laplacetransformof q suR90RlPm lowersurfaceof combination uppersurfaceof combination I. GENERAL INTERFERENCE THEORY PHYSICAL PRINCIPLEX3 Prior to a mathematical formulationof the wing-body interference problem,it is wellto defineinterference andto explainhowit arises. Withastationary wingora stationary body in a uniformparallelflow, thereare associatedthe wing-rdone andbody-aloneflowfields Thewing-alone flow field does not, in general,produceflow tangentialto the positionto be occupiedby the body surface. As a result an interference flowfieldmustariseto canceltheflowfield inducednormalto the body by thewing. For thisreason, the sumof the body-alonepluswing-aloneflow fieldswill not be theflowfieldfor thebody andtig together. The ditl’erence betweenthe flow fieldof the body andwingtogetherand the sumof the body-aloneandwing-aloneflow fieldsis defied to be theinterference flowfield. The effectsof wing-bodyinterference on theflowfieldof rLwing-bodycombinationare illustratedby considering separately theeffectsof eachcomponenton theothers. For the purposesof thisdiscussionfigure1 showsa wing-body combinationdividedinto the part in front of the leading edgeof thewing-bodyjuncture,henceforthcalledthenose, thewingedpartandthepartbehindthewingtrailingedge, henceforthcalledthe afterbody. If the combinationpossessesa horizontalplaneof symmetryandtheangleof attack is zero, no restrictionson wing plan form are necesmry. However,if thewingis twistedor camberedor if the nose is at angleof attack,thenthe wingleadingedgesmustbe supersonic for thefollowingdiscussion to apply. ,/ / / / .. ,/ Nosewove /“ “h% line, / / { A/’ ,/’ y / I ,.A 1., . . \ \ \ \\ \ / ,/ ~Fonvord boundoryof 1 regionof influenceof ) oppositewing ponel 1.\ // ‘. A I-x 1 z.-fj+- ‘-t’ e=lr port FIGUREI.—timpmentsof typicalwing-body combination. JNTDRFERENCE ATSUPERSONIC SPEEDS 1301 Effectof nose on wing.—Considarnow the flow as it progresses pastthebody. At thebodynosetheflowis that arounda bodyof revolution,andit canbe treatedby misting methodssuchas thoseof references8 and 14. TVhenthe bodyis at angleof attacka,, thereis anupwashfieldin the horizontalplaneof symmetryof the body. If the body is sticiently slender,the flowfieldin a planeat rightangles to the body axis correspondsto that arounda circular cylinderin a uniformstreamof velocity,V sin @?. This givesan upwashfieldin the horizontalplaneof symmetry of thebody of %=aB(l+a2/&) (1) The effectof thisupvmshon the wingcan be obtainedby consideringthe wingto be at angleof attackand twistedaccordingto equation(1) and by applyingthe formulasof fieldso obtained supersonic wingtheory. Thewingpressure is exact,tithin thelimitations of thetheory,for thatsection of the wingoutbomdof the Machlineemanating fromthe leadingedge of the wing-bodyjuncture. If the wing is locatedcloseto the body noseso thatthereis a chordwise variationin theupwashfielddueto thebody,thenthewing is effectivelycambered,and the solutionis mom difiicult. However,for mostwing-bodycombinations it is possibleto disregardtheeffectof thenose,andto assumethatthewing is attachedto a circularcylinderthat extendsupstream indefinitely. Mutualeffeots betweenbody and wing,-The mutual interference betweenthebody andwingon thewingedpart of a combinationcausesan interference fieldacting.on the body andon thewinginboardof the Machline emanating from the leadiagedge of the wing-bodyjuncture. The wing-aloneflow field does not, in general,produceflow tangentialto thepositionto be occupiedby the body surface. An interference flowfieldmustarisethatcancelsthe veloci~ inducedby thewing-aloneflowfieldnormalto the body whilenot changingthewingshape. Alternately,the originof theinterference fieldcanbe explained in thefollovring manner. The wing and body can be thoughtof as sourcesof pressuredisturbances that radiatein all directionsin downstream Mach cones. The wing disturbances whichradiatetowardthe body are,in part,reflectedback by thebody ontothewingandin parttransmitted ontothe body givingrise to interferencepressures.Likewise,the disturbances originating on thebodypas-sontothewingand affectthepressuresthere. It is apparentthatthedeterminationof theinterference pressurefieldon thebody andon thewinginboardof theMachlineof thejunctureis thecrux of thewing-bodyinterference problem. Mutualeffeotsbetweenwingpanels,-To detx+mine the regionof influenceof onewingpanelon another,it is necessaryto tracathepathof a pulsehornonewingpanelacross thebody onto the other. The pathtracedacrossthebody by thepulseoriginating attheleadingedgeof thewing-body junctureis theforwardboundaryof theregionof influenceof onewingpanelon thebody. (See@. 1.) It is clearlythe helixintersecting allparallelelementsof the cylinderat the Mach angle. The boundarycrossesthe top of the body a distanceof ~M_ downstrewandreachestheopposite wing-bodyjuncturea distancemz~=l downstream.A 1302 \/ P FORAERONAUTICS REPORT125&NA~ONAIJADVISORY CO~ pulseoriginating at a pointon onewingpanelandtraveling to a pointon theotherpanelcantravelaroundthebody on its surfaceto theoppositejunctureandthenalongthewing to a givenpoint,or it canleavethebodytangentially before reachingtheoppositewingjuncturein a straightpathto the point. The secondmeansof transnu “ttingthe impulseis shorterin distancethan the first and is the one which determinca theforwardboundaryof theregionof idluence of onewingpanelon theother. Applyingthisconsideration to thepulseoriginating at theleadingedgeof onewing-body juncture,it is easyto showthattheforwardboundaryof the regionof influenceof onewingpanelon the oppositewing panelis givenby the equation (2) This boundaryis also shownin figure1, and it becomes pmallelto theMachlineatdistances farfromthebody. EfFeotson the afterbody.-~ far as the interference effectof thebody on thewingis concerned,it is confinedto thewingedpartof thecombination, buttheeifectof thewing on thebodyisfeltalsoon theafterbody. Fora symmetrical configuration atzeroangleof attackthereisno dowmvash in thehorizontal planeof symmetryandtheafterbodypresents noparticular problem. However,behindaliftingwingthere is a dowmvash field. If the dowmvaihwerelmowneverywhereinthewingwake,thenthewakecouldbe considered as an extensionof thewingwithtwistandcamber. Thewing wake and afterbodycould then be incorporatedwith the wingedpart of the combinationand treatedin the same manner. However,the actual dowmvashpatternin the wingwakedependson theinterference effectof thebody on thewing. It is thusapparentthatthesolutionof theafterbodyproblemrequiresthattheinterference problemfor the wingedpart of the combinationbe solvedfirst. Only the wingedpartof the combination is analyzedin detailin this report. Regions of applicabilityof the theory,-The present interference theorycanbe appliedto all or part of a -ivingbody combinationdependingon the configuration and the lift. If thecombinationis not liftingandpossessesa horizontalplaneof symmetry,then the interferencepressure fieldcanbe determined for the entirecombination.For a liftingcombination withsubsonicleadingedgesthe up-wash field in front of the wing makesthe presentmethodinapplicable. For a liftingcombinationwith supersonicleadingedges severalgeometricfactorsconsiderably influencethediflicuhy of calculatingthe interference fitildor indeedthe extentto whichit canbe calculated. Theei7ectof oneof thesefactors, the sweepof the tmilingedge,is illustratedin figure2 (a). A subsonictrailingedgegivesrise to multipleMach wave reflectionswhich greatlycomplicatethe determination of theinterference fieldovertherearpartofthewing. &Iother importanteilectlimitingthe applicabilityof the theoryis illustratedin figure2 (b). This figureindicatesthat the interference fieldbehindtheincidentwavecaninfluencethe tipupwashfieldwhich,in turn,influencesthe presmrefield behindthereflectedwavefromthetipin a complicated way. ‘1 -1 \A/ \ /’ ,, i// I // Mul!lple a X A Mach wave reflections A (a) ‘\\ \\ \ > / (b) \ \ \ \ ‘\A, ;X: \\ c E- / / > / >< B / / /’D 4 \ \ \\ \< “\ d) (a) Subsonic trailing edge. (u) Simplecase. (b) JIffeot of wing-bodyintmferencoontipupwaeh field. (d) Tractable case. FIGURE2.—Classes of interference problems forliftingwingondbody wmbinations. Avoidanceof thiscomplication requiresthattheincidentwave intersectthe trailingedgeratherthan the wing tip. To assurethiscondition,the aspectratiomustbe greaterthnn a certainminimumvaluein accordancewith the following inequality: One of the simp16casesof wing-bodyinterference for a liftingwingandbody combinationis shownin figure2 (c). Heretheleadingandtrailingedgesarebothsupemonic,and the root-chordMach wave intersectsthe trailingedge. Alsothewing-tipMachwaveintersects thebodydownstream of thewing-bodyjunctureso thatno wing-tipeffectsoccur on the wing interferencepressurefield. This condition imposesthe aspec~ratioinequality: Under the circumstancesof this figure, the interference problemproceedsas if the combinationhad a horizontal plane of symmetry. ‘Any body upwashfield in front of 1303 INTERFERENCE ATSUPERSONIC SPEEDS QUASI-CWMNDRICAL TBEORYOFWING130DY thewingcanbe treatedas equivalentto a changein thickness distribution.The rectangularwing of aspectratio gnmterthan twois an exampleof the simplecase, and it willbe treatedas anillustrativeexamplein thispaper. An exampleof a tractablealthoughfairly complicated camto whichthepresenttheorycanbe directedis shownin figure2 (d). In regionA the pressurefieldis determined as a purewing-aloneproblemwithanybody upwashbeing treatedas equivalentto a changein thiclmcssdistribution. In regionB theproblemis stilla wing-aloneproblemwhich is complicatedby upwaahoutboardof the tip. In region C thereare body interferenceeffectsbut no tip effects. In regionD both effectsprevail. In regionE the tip has influencedthe flow at the body surfaceand produceda secondaryeffecton the interference pressurefield. MATHEMATICAL FORMULAnON OFPROBLEM Throughouttheanal@s, thebodyradiusis takenasunity and W is takenas 2 so that 19=1. Any formulacan be generalized to anybodyradiusby dividingalllengthsymbols by a, andto anyMachnumberby dividingall streamwise hmgthsby p, by multiplying allpressureandlift coefficients by /?,andleavingallpotentials,lift forces,andspanloading unaltered.It is necessaryto specifythewingalonebefore any detailedinterferencecalculationcan be carriedout. However,in the theoreticalsolutionof the problemthe wing-alonedefinitionis arbitrary. The flow field about the combinationdoes not dependon the definitionof the wingalone. General.decompositionof boundary-valueproblem.— Tlmgeneralcaseof a combinationat angleof attackwith the wing at incidenceas shownin figure3 is considered. The mdhematicaldetailsof the decompositionof this ccdguration into tractableconjurations is carriedout in detailin AppendixA followingthe suggestions in reference 15. A simplifieddiscussionof the decompositionis now prcsonted, The completecombinationcan be decomposed intothreecomponentcodigurationsasshownin figure4 (a) in whichthe wing boundaryconditionsare to be applied in the z=O plane and the body conditionson the ~= 1 v cylinder. Component(1) is simplythe body alone,which createsan upwashfield a=in that regionto be occupied by thewingin accordancewithequation(l). Components (2) and (3) are combinations withwingsof the sameplan form;butwhilecomponent(2) hasa wingat angleof attack i~, component(3) has a wingwith angleof attack—au. The significanceof this particularmethodof decomposing the generalwing-bodyproblemis that component(l), the body alone, can be solvedby knownmethodsand components(2) and (3) with bodiesat zero angleof attack canbe solvedby themethodsof this report. In thewingincidencecasewherea~=O,onlyconfiguration(2) remains. This configurationcan be decomposedinto a wing-alone problemanda distorted-bodyproblemas show-nin figure 4 (b). We confineour attentionto this wing-incidence casefor thetimebeing. +“ +3 \ ( k -1- — (1) (a) aB=O -c k h (2) “o + +6 ‘o . -1 au ‘au { (3 ~:v-1 l! II r iw=o ;W —- > il 0 I Y Zu (b) (a) Deoompoaition of general wing-body combination. (b)Decomposition forwing-inaidence case. FIGURH4.—Deaomposition of wing-bodycombinations into simpler combinations. l?nxmn3.-Genera1combination undercombinedeffectsof angleof attaokandwinginciden’m. Considernow a combinationwiththebody at zeroangle of attackandlet ~ be its potential. (Seefig. 4(b).) This potentialcan be consideredthe sum of a wing-alonepotential~ andof aninterference potentialq. Pc=#v+P (3) 1304 E FORAERONAUTICS REPORT125%NATIONAL ADVISORY COMMITI!E Sincethebodyis aninfinitecircularcylinderat zero.angleof attack,it producesno flow field. If the body werequasicylindricdwith smalldistmtions,a potentialdue to the body couldbe includedin equation(3). If thebody hasa horizontalplaneof symmetry,the inclusionof a potential due to body distortionwill not changethe interference potential. The essentialproblemis to determinep. l?irst,selecta convenientway of extendingthewingthroughthebody to formthewingalone,therebyspecifying~. The -wing-alone am flowfieldin generilproducesvelocities~ normalto the with ap2. ~=f2z(x) cos 2n0 (9) atr=l Thenthecombination givingtheinterference potentialp can be decomposed in a seriesof combinations, eachgivingoneof the~. valuw. The decomposition is illustratedin figuro6. m *=A&,f$ l-l surfacethatwill enclosethe circularcylinderas illustrated in figure4(b) for theregionabovethewing. In figure4(b) and subsequentfigures,all bodiesare shownas cylinders parallelto the z axis. Whilethe bodiesof the component configurations in somecasesareslightlydistortedcylinders, they are nevertheless shownas true cylindexs. This procedureis compatiblewith the fact that the boundaryconn.o /7=1 nx~3-. ditionsareto be appliedon a tie cylinder. The valueof Fmmm6.—Decompoeition of interference combination intoseriesof a$m. — varieswith8 andwithz. Thismeansthata body conFouriercomponent interference combinations, br formingto thewing-alone flowfieldis distortedin a compli- Forn=O catedfashion. NTOW sincethe body mustbe circular,there !!$’=fo(z) mustariseaninterference potentialp thatidenticallycancels ~w at thebody surface,therebystraightening it. andthereis no variationof thenormalvelocity,pressure, or b potentialwith0. Thusthefirstinterference combination is (4) a bodyof revolution. Thepressurefieldactingon thobody of sucha combinationcanbe determined by themethodof Therearetwootherconditionsto be fuliilledby q. It must reference16. This n=O interferencecombinationhas the not distorttheshapeof thewingwhenaddedto * to pro- verysimplesignificance thatitsflownormalto the~= 1 cylducew Thuswhen0=0, avo ap inder,~ subtractedfrom~ reducesthe flow acrossthe lap o ——. (5) bodyto zerowhenaveragedfrom0= Oto o=r atanystroamT ae wiselocation. For n=l, or iW=Ofor theinterference combinationasshownin figure g=f,(z) Cos20 4(b). The last conditionis that the interference potential mustbe zeroaheadof thewingedpartof thecombination. andthenormalvelocity,pressure,andpotentialwillvaryas (6) cos 20. To summarize briefly,it hasbeenshownthatthegoneml Equations(4), (5), and (6) are the essentialboundaryconinterference problem of a body andwingat ditlerentangles ditionson p. of attackcanbe brokendownintowing-bodyproblemswith Thenormalvelocity~ to be inducedat thebody surface bodiesat zero angleof attackas shownin figure4 (a). by theinterference potentialcan be analyzedat any given Combinationswith the body at zero angleof attackam combinations intowingsaloneplusinterference streamtie positionas a Fouriercosineseries. The ampli- decomposed asinfigure 4 (b). Theinterference c ombinations me finally tudesof thevariousFouriercosineterms,f~m (z),varywithz, decomposed i ntotheirFourier components a sin figure6, thestreamwise distance. Thus, A generalmethodfor determiningthe characteristics of anyFouriercomponentwillnowbe given. It willbe shown (7) COs atT=l that good accuracycan be obtainedfor the interference n-0 potentialwithfewFouriercomponents. Onlyevenmultiplesof 0axeconsidered becauseof thevertical SOLUTION BYMZTHODOF W’FUNCTIONS plane of symmetry. Considerthat the interferencepotentialis decomposedinto a seriesof potentialssuch that Theproblemto be solvedis thatof a supersonic wingand eachcancelsone Fourkr componentof the velocityat the body combinationsubject to the conditionsalreadymenbodysurface;thatis, tioned,but with the wing and body possiblyat different anglesof attack. Thisproblemis reducedto a body-alone (8) P=& $92n problem andtwowing-bodyproblemswiththebody at zero n-0 -4@=*+++ $0=0, X<o *=Afs.(4 %8=–93 1305 AT BUPERSONIO SPEEDS QUASI-C~RICAL THEORY OFWG-BODY INTERFDRENC!E angleof rtttackM shownin figure4 (a). The body-alone problemcanbesolvedby existingmethodssuchasreferences 8 and14. Theprocedure neceasagtosolveeitherwing-body problemasgivenin reference7 is nowsummarized together withrecentimprovements. Thepotentials~, pr, andp mustallfulfdltheequationof linearizedcompressible flow (M’–l)fo=-pw-p:z=o (lo) If werestrictourselves for thetimebeingto thecaseM= @ andtransformequation(10)to polarcoordinates, wehave $%r+: w++ W-%r=o independentof the boundary conditions. The inverse transformof theproductof thetwo transformscanthenbe determinedby the convolutionintegral. The part of the transformindependentof the boundaryconditioncan be thoughtof as defininga set of characteristic functionsor influencecoefficients.A tabulationof thesefunctionsallows a numericalsolutionof the problemfor all boundaryconditions. Themannerof splittingequation(17)intotwo transforms dependsalsoon the existenceof the inversetransformsof thepartsintowhichit is split. Letuswriteequation(17)as (11) (18) withthecoordinatesystemof figqre1. In solvingtheprob- Withtheaidof thefollowingrelationships lemwe chrmgefromthephysicalspace,z, r, O,to thetrans-,v-lq=j,m(z-r+l) formedspaces Z-1[F2J~)e 9)9)r o by meansof theLaplacetransformation L[9(X)]= J‘e-%@fa=@(s) L-I(s@)=p= (12) 0 %++ @ee–s@=o (20) andthedefinitionof thecharacteristic functions Withtheboundaryconditiongivenby equation(6) thatPis zero2for x<0, equation(11)cm be transformed to %++ (19) (13) Expanding@ in a cosineseriesof multiplesof O,we can aatisf y the boundaryconditionsgivenby equation(5), and sincothereis a verticalplaneof symmetry,we can confine ourselvesto evenmultiplesof 0. Withthisrestriction,generalsolutionsto equation(13)canbe written 1 L-1 ~ti-u ‘~.(m) ~J_ =W,n(z~) K,/(s) J ‘ [ (21) we obtain P==& cos2n6 ~, n=o LJ fln(~–r+l)W~~(z–gjr)d&f’’(z;r+l) 1 (22) cb=n~oCos2ne[c,n(s)K2a(w)+D2z(8)I,n(w)] (14) Withthe aidof the Wj,(z,r) functions,the valueof q., and hencethepressureor potentialanywhere,canbe calculated where lz.(sr) and F&(m) are modifiedBesselfunctions. horn equation(22) by numericalintegrationfor as many Tho constantsC~%(s) andDzs(s)arearbitraryfunctionsof s. harmonicsasdesired.Thisresultwaspreviouslygiven(refs. ThefunctionsIzm(sr) canlogicallybe eliminated atthispoint 7 and10)for the.=1 caseonlyas sincefrom their asymptoticforms they can be shownto representwavestravelingupstream. The function(72.(s) (23) q==~ cos2n0 :j2m(t)w2.(z–t)dt–j2m(z) canbo evaluatedby meansof theremainingboundaryconn-o [s ditiongivenby equation(7). If welet andthe W2S(Z) functionsweretabulatedfor numericalcalonly. The genF,#(s)=L~,Jz)] (15) culationof the body pressuredistributions eralizationof the WI.(Z)functionto WZ,(Z,~) functionsby then meansof equation(21)is a naturalextensionthatpermits (16) the simplecalculationof thepressureanywherein theflow field. Somemathematical propertiesof W2.(Z,~) functions Wo thenhnveastheoperational solutionto ourproblem and methodsfor theirevaluationby automaticcomputing machineryhave been studiedby Dr. W. Mersmanof the NACA. A r&wrn6of hisresultsis reportedin reference18. (17) Propertiesof the W2n(x,r) functions.-Two important propertiesof the Wz.(z,~) functionsthatmakethemuseful The solutioncan be splitinto the productof two trans- for numericalworkarethattheypossessno singularities in forms,onedependenton theparticularboundaryconditions the fieldandtheirmagnitudes neverbecomelarge. These m representedby the ~zn($) functionsand anotherpart advantages arein distinctcontrastto severaldisadvantages of the multipolemethod subsequentlyto be described. fmquontly atntdfnderiving eqnatfon (fS),thatA.O forz-W, b Mt ~ThemndItfon requlmd mproven fnmfemnm (1?).Thisb bramoral wftbthofnhrltfve physkdideathat Curves of theW&(z,~)functionarepresented in chart1 for onrvewhlobforengfnedng anyatcnIn$, @ theorfglnmuhoreplactdby a mnthmons n=O, 1, 2, and3 for usein numerical computations. pnrpmw mmbnvoanolkctdlffarwnt fromtlmtofthe*P onlyina lhnft2d lKSIregfon. 1 — 1306 FORAERONAUTICS REPORT125*NATIONAL ADVISORYCOMMJTT13E A simplephysicalpictureof theWSE(Z, r) functionscanbe obtainedtim equation(22). Writethe interference pressurecoefficient 3dueto anyharmonicas 2 Cos2nd jJz-r+l) P,n=– + ~= ~ () [ $– a(+-ak+:+:)+”( ’28 w.(X,7-)= w,m(o,7’)– –~ (16n’+3)-@’’;-l) (29) 8+ [ It shouldbe noted that tbe valueof W*.(0,r) is known precisely. I SOLUTION BYMETHODOFMUL’1’fPOLES Let the veloci~ amplitudefunctionbe a deltafunctionat theoriginasshownin figure6. Then 2 cos 2n0 @=-r+l)_W,x(~-~+l,r) (25) P2n= ~ 1 [ $ ‘u ,#Jnit arm Multipoletypes.-In references7 and 10 a multipole methodwasusedto determine thepressure fieldoffthebody. The singularities arisingin this method,togetherwith the lossof accuracyforthehigberharmonics duetolargenumbers, led to the developmentof the W,x(z,r) methodjust described. Since the multipolemethodhas applicationto certainproblemsand sinceits connectionto the WZa(x,r) methodis of interest,it willbe givenhere. In the W2~(z,?’) methodthe pressurefield-isdetermined by usingboundary conditionson the body surfaceandcontinuingthepressure fieldoutwardfromthebody. It is intuitivelyobviousthat any quasi-cylindrical flow canbe generatedby distributing sourcesand multiples along the body axis in vmioble strength.If thestrengthof theaxialmultipoledistribution canbe relatedto the body shape(velocityamplitudefunctions),thenthe entireflowfieldcan be calculatedoutmwcl fromthetis. Considerequation(14)which,withDSn(s)equalto zero,is @=&2.(8) Cos2neK’&r) (30) Thisequationcanbe interpretedto meanthatthepotentialisbuiltupfroma distribution of multipolcscorresponding to the inversetxansformof cos 2ndK~n(sr) alongthe x axis in Shengthq.(z). However,therearemanypowiblesets of multipoleacorresponding to x integralsor derivativeof the set just mentioned. These are generatedsimplyby rewritingequation(30)as (31) . Theiirsttermrepresents thetial strengthfunction,andthe secondtermrepresents thefundamental multipolesolutions. component interference comb-tion with“dolta For eachvalueof theindexmthereis obtaineda distinctset FIGUEII6.—Fourier funotion”protuberonco atz=O. of multipolesclutions. For selectedvaluesof m themultiIt is seenthatphysicallytheW2,(Z,r) functionrepresents pokah&e thefollowingforms: the pressurefield due to a deltafunctionin the velocity m=() amplitudefunction. The fit termrepresentsan iniinite cos2n6cosh(2ncosh-lz/r);~>r pulsepropagatedalongtheMachconewithapexat z= —1 Cos27LeL-yK2=(&r)] = ~+ andattenuating inverselyasf. The W2x(Z—r+ 1, r) term representsthe overexpansion behind tie bumpwherethe X<T =0; presmrewouldbe zeroif theflow-weretwo-dimensional. m=l Formulasfor theW,s(z,r) functionsfor smallz andlarge =CosZti sinh(2ncosh-lx/r);~>r x c-anbe obtainedhornLaplacetransformtheory. In fact COS2m3L-~K,,(w) —8 2n theseresultsare (32) (26) =0; x<r m=2n (2n)I K,&) —- 2 2“ cos2nOL-1—@ (4n)10r eqosuorl (23)C8nontbeomtkd S!rhoewntlonfcup mme aB3mdmttobe115@wfh groM&beoh8ng@lfrl gofngfrom uk3*blth8bodYoftie conflm-atfonsscu==ed~ (??-~-’l’; Z>r formoftbeBemonJllequatfonbretaImd [1 [1 foralmplfolty, thelharbed rofemnm IL Howmr, of theqwadratio terlmto the throusbout tbatiecdfcd@daumM. TheCOrltz-fbutfon bodyp~ ccamclent h UllWmenuy dbalmedforW mwofthem*tfon atfmgle ofattaok. =Coa Zti =0; x<r INTERFERENCE AT SUPERSONIC SPEEDS QUASI~DRICAL THEOILY OFWING-BODY For positivevaluesof m it is clearthat at the Mach cone (z=T) no nonin@grableeingularitica occur. For negative valueaof m, derivativesof the m= O multiples are encounteredand the singulmitiesoccur on the Mach cone ratherthanon the rmis. Sincethesesingukwitiea occurin theflowfield,theyarenot wellsuitedto numericalmethods of analysis. Anothersetof simplemultipleswithsinguhwitics on the Mach cone are thoseof reference19 givenby g“ cos 2n0 ~“ Multipolestrengths,-Thefirst step in determmm ““g the interfmencepotentialby the methodof multiples is to determine themultipolestrengthhornthevelocityamplitude functions. For the m=O set of multiplestherelationship betweenthesetwo quantitiesis alreadygivenby equation (16) (33) 1307 Faltungintegralof equation(34)we obtain %(x-l)= J0 *A=(W2A-W (36) Tbe functionM2=(z)has a square-rootsingularityat the originso thatc.2Jz— 1)willbe iiniteif$n(z) is finite. However,fz.(z) mayhavea singularity whichin confluencewith the square-rootsingulwi~of M2~(z)producesa singularity in C.2n(z-1) . Increasing the”indm mbyunityhastheeffectofintegrating thesetof multipleswithreapedto z andof differentiating the axialstrengthfugctionsby z. Whilethisdecreases the orderof the singularities of the multipolesolutions,it incrwes the orderof the singuhwities of the axialstrength functions. Thehighcs.t indexm thatdoesnotleadto singularitiesthusdependson how manynonsingular derivatives G,(z—1)possesses,which,in turn, dependsonthesmoothness If thepotentialat a pointP asshownin figure7 is desired, of $%(z). In the calculationsfor the wing-incidencecase (ref. 7) f~~(z)has a square-rootsingularityat $=1 so that the c2,’(z-1) has a logarithmiceingulariw. Since cx@-1) y,z correspondsto m= O,it waspossibleto usemnltipolesolub. / M~hlines tionsof the m= 1 classandstillobtainintegrablesingular/ - ‘.,, /--”” ‘.y/ P(XA z) itiesin thetial strengthfunctions. P / / / Properties of the M2.(z,r) functions,-The Ik.&(z,r) / zr /’ / o functions havesimplephysicalsigniflwce. Letthevelocity / ,/ / amplitude functionbe thatcorresponding to a deltafunction Y / 1/ ( x as shownin figure6. Thenby equation(36) x-r -1 ‘?- u ) $? Fmum7.—Geneml pointat whiohpotential is to bedetermined. multiples mustbe distributedfrom —1 to x—ralongthe body ti. Since Laplacetransformsmust be zero for z< O, the axialdistributionmustbe shifteda distanceat leastunityto therightby introducing e-’ intothetransform (34) Equation(34)definesa Fahnngintegralinvolvinga newset of characteristic functionsgivenby “*@)=L-’Lk’@l Thus the Mz.(z) functionrepresentsthe distributionalong theaxisof multipolestrengthfor them=O setof mnltipolw necessaryto makethe velocityamplitudefunctiona delta function. Corrwpondingly, it is the distributionnecessary to produceapressure f%ddcorrespondhgto theWZ~(z—r+l,r) function. Equations(25) and (30) yield the relationship betweenthe W,n(zjr)andL&(z) functions. (35) Thesecharacteristic functionshavebeenstudiedinreference 7, are tabulatedin table I, and are plottedin figure8. J?orming nowthe (37) Seriesfor theA&(z) functionsfor smallandlargevalues of theargument havebeenobtainedby thestandard methods of Laplacetransformtheoryin reference7 Lo ( ~ $ J&(z) = —— [ .5Ma(x) C (16n~+3) ~---25632n3+33+33 ~fl+ . . . 96 1 (38) The square-rootsingularityof MSJZ)at the originis noteworthy. For the asymptoticresultonly a singletermhas beencalculated -51.0 M.(z)-—: II II 5 LO 1.5 2.0 (39) J 30 3.5 40 25 x Fmmm8.-&aphiaalrepresentation of M*=(z)functions. o x>r—1 (40) 1308 REPORT 125%NATIONAL ADVISORY COMMI’ITEE FOR AERONAUTICS Spanloadingand pressurecoefficient,-l?romequation gukwitiesaretractableusingthe methodsof analysis,they arenot adaptedto thenumericaI methodsusedherein, The (31)thepotentiilcanbe written method utilizhg the W2.(z,r)function moids difficulties @=>O cos2nd[e-’C,.(s)] [K2%(8r)d] (41) withlargenumbersandwithsingukwitiea. IL APPLICATION OFTIWiORY TO COMBINATION OF so that CIRCULAR BODYANDRECTANGULAR WING g-l-l . Q.(x—l—f)cosh 2n COSh-l — In thispart of the reportcalculationsare cnrrieclout to P=g coa2n0 r ) @ (42) r-l n=o determinethepressurefieIdactingon a wing-bodycombinaJtion employinga rectangdaxwingwithno thickness Tho Fromthisresultthe potentialcanreadilybe obtainedand calculations arefirstmadefor thebodyatzeroangleof attack henm the spanloading. The pressurecoefficientfollows with the wingat incidence-thewing-incidence case. Tho directlyfrom equation(42) using the linearizedform of calculationsare thenmadefor the body at angleof attack l%rnoulli’aequation withthewingatzeroangleof inciden~the angle-of-attack attentionis focusedon theupper (43) case. For thecalculations halfof thecombination sincetheexpsrimentrd measurement weremadefor theupperhalf. X+l Gm(—1) cosh 2ncosh- — WING-INCIDENCE CASE ) The completepressurefieldwill now be calculated.As ~~g r + previouslymentioned,the wing alonecan be specifiedin anyconvenientmannerand,for thepurposeof theexample, the wingaIoneis takenas the rectangularwingextending straightthroughthe body fromsideto side. Althoughtho analysisas carriedout is for M=fi, the resultsam preThe practicabilityof usingthis resultfor calculatingthe sentedin a form applicableto a rangeof Mach numbem. pressuresdependsin the &t place on the accuracywith Thestepsin performingthecalculationare:(1) to determhm which& G.(z—1—f) canbe calculated.Sincethiscalcula- ~, thewing-alonepotential;(2) to determinethe velocity amplitudefunctions,j~x(z); and (3) to determinotho tion dependson the Ma.(x)functions,whichare tabulated potentialor pressure,as desired,anywherein thefield. No at the presenttime only to the third decimalplace,only tip effectsareconsidereduntiltheresultsarepresentedaaa threesignificant figureswillusuallybe obtainedfor theaxial functionofwingaapectratio. strengthfunctions. For higherharmonicsandlargevalues Wing-alonepotential.-The wing-aloneflow, exclusive of z, lossof rwcuracyis incurredthroughthe natureof the of tip effects,can be determined from theAckerettheory. multipolesolutionsthemselves.The followingtabulation Theflowat a spanwisestationout of theregionof influenco illustrates thepoint. of thewingtipsis illustrated in figure9. The potentialfor theflowabovethewingis cosh(2ncosh‘b) ( s P+% ~ ( \ (46) ~= Vz+Z&T?(z— z) whenz<z I ‘/j+ :, ;, ;, Z)qw Thesidewash producedby sucha potential— iszero,rbncl % / ,A’-----ych . ‘i”es Althoughthesetof multiplesusedhereis not welladapted to-thecalculationof pressurecoefficientfor highharmonics andlargevaluesof z, it nevertheless is usefulfor calculating spanloadingssinceonly one or two harmonicsare needed in this case. The ticulties of computingpressurecoeflicient me alleviatedin part by the fact that the pressure disturbancedueto higherharmonicsdampoutwithina few downstream radii. In reference7 the pressurecoeilicients werecomputedup to thefourthharmonic(n=3) but with somedifficulty.Theuseof a setof multipolesolutionsother thanthe?n=Osetdoesnotholdmuchpromisesinceincreasing the valueof m introducessingularities into the axial strengthfunctionsanddecreasing thevalueof m introduces sin”~aritiesinto the multipolesolutions. Whiletheseein- / / / \ \ \ . \ \ \ \ \ \ \ \, \ by wingalono. FIGURE9.—FIow fieldproduced . QUASI-C!~RICAL THEORY OFWINGBODY RWERFERENCE ATSUPERSONIC SPEEDS -’lz!k& -la ~2”(z1_v&F2 Cos(27L-1)w_2 Cos(2n+l) Co_ 2n—1 2n+l T [ 4 4n’—l whenz< 1 o o T o u 8 l?munE10.—Variation of normalvelouity inducedat bodysurfaceby wingalone;unitbodyradius;wing-inoidence case. r 6 .4 1L fo(x) 0=1 * -. 1 1309 (51) (52) wherea=sin-lr. Thejz.(z)functionsareshownin iigure11. The constantvalues of YJB(z)for z>l are noteworthy. Thevaluesoffz,(z) aretabulatedin tableIt. Interferencepressure distributions.-The interference pressuredistributionshave been calculatedfor tbe first four Fouriercomponents. and are presentedin figure12. In this@e theabscissais proportional to distancebehind theMachlineoriginating attheleadingedgeof thejuncture, asillustrated in part(a) of thefigure.Althoughthecalculw tionshave been carriedout for M=fi, that is, f?=l, and for unitradius,they are generalized to all Mach numbers andbodyradiiby replacingz—r+1 by ~a—~+l and~z~by -2 - 13PJS ashasbeendonein thefigure. Fromthe figureit is apparentthat the cuspsin the pressuredistributionsare -40 .4 .2 .6 x .8 12 Lo propagateddownstream alonglinesof constant~a—~l or z—pi-;that is, alongthe downstreamcharacteristics.A Frmmm 11.—Graphioal representation ofvelooityamplitude functions; the pressuredistributionsmove outwardfrom the body wing-hmidenoe case. along the downstremncharacteristics, they are distorted and decreasedin magnitude. Z)* Increasingthe orderof theFourierharmonicscausestwo ‘he ‘omwmh --&Tis uniformly—iwV. The down-wash importanteffects:first,thenumberof pointsof zeropressure cfmses a flow normalto the surfacer= 1 in amount—iWV sin t?. Thismeansthat,for rLbody conformhgto tbe wingrdongflow,the deformation is zero at the wing-bodyjuncturesand a maximumon the top of the body. The interferencecombinationswhen addedto the deformedbody straighten it outFouriercomponentby Fouriercomponent. Fourieramplitudes of bodynormalveloeity.-TheFourier amplitudes of thenormalvelocityinducedby thewingalone hw at potentialat thebody aredetermined by expanding~ r= 1 in a Fouriercosineseriesof evenmultiplesof & The normalvelocity distributionis shownin @e 10. For x> 1 the body is totallyimmersedin the wing dowmvasb field. With the usualequationfor obtainingthe Fourier amplitudes of a function,thereis obtained fo(z)=:~:k’z iwvsin eG% (47) j,.(z)=:Jiwv sine Cos2n0at? (48) Theintegrations give fo(x)=~ (1–~) (49) when$<1 ● f.(z)==2viWwhenx>1 (50) is incr-ed and, second,the pressurecoefficientdamps morerapidly. As a resultof the fit effect,the contributionsof the higherharmonicsto the combinationspan loadingare proportionally less than theircontributionsto the pressurecoefficient;while, as a resultof the second effect,themoreremotea pointis fromtheleadingedgeof the wing-bodyjuncture,the fewerthe numberof Fourier componentsthat mustbe includedto obtainits pressure coefficient accurately.Allinterference pressuredistributions ja~a”+l=l. This beexhibitdiscontinuities in slopeat — havioris a consequenceof the fact that thebody becomes totallyimmersedin thewing-aloneflowfieldfor thiscondition. Whenthepressuredistributions of thevariousFourier componentsare addedtogetherto obtainthe interference pressuredistributions, the discontinuities in slopetend to cancelso thatthepressuredistribution for the combination willbe smooth. A detailedexaminationof the interferencepressuredistributionfor the firstFouriercomponentillustratesseveral pointsof interest. Theimportanceof thecomponentarises hornthefact thatit accountsfor mostof theeilectof interferenceon thespanloading. Thereasonfor thisis thatthe pressurecoefficientsfor n=O are of invariablesign. The effectof the&st Fouriercomponentis to reducethevelocity inducednormalto thebody by thewing-aloneflowfieldto zeroaveraged moundthebodyfrom0=0 toO=r atanystreamw-iselocation. . 1310 REPORT 125%NATIONAIJ ADTTSORY COMMITTEE FORAERONAUTICS o .5 1.0 -1.5 2.0 -1.0 -.5 0 .5 0 .5 Lo 1.5 2.0 2.5 3.0 5%5 x/BO- r/a+ I (a) n=O (b) n=l FrlmEE 12.—Interference pmwuedistributions of variousFouriercomponents; wing-incidence case. . 4,0 INTERFEB13NCE ATSUPF)RSOMC SPEEDS QUASI-CYIJNDRICW THEORY OFWINGBODY UI z V&-r/a+I (c) n=2 (d)n=3 FIGURE 12.—Concluded. 1311 1312 REPORT126%NATIONAL ADVISORY COMWTT13 E FORAERONAUTICS For purpose9of comparisonwith the exaotredti for n= O, some approximateresultshave been included in -20 figure12(a). For valuesof ~~1 on thebody, theAckeret -1.6 valueof P@(twicethe localstreamangledividedby ~) is a close approximation to the truepressurecoefhcient. This is theresuhtof thefactsthatthepartof thebody affecting theinterference is effectivelyplanefor pointsneartheleading edge of the wing-bodyjunctureand that thereis no variationof any quantitieswith 0 so that an approximate two-dimensional situationprevails. As ~ increasesbeyond unityon thebody, thereis a rapiddecreasein thepressure coefficientbelowthe Ackeretvaluedueto the effectof all disturbamxs in frontof thepointin questionasrepresented by theintegralof equation(24). In reference7, the followingapproximateresultswere obtainedfor smallandlargevaluesof ~a~a+l for thepressurecoeilicient: (53) Four Fouriercomponents Six Fouriercomponents \ — \ / / I -1z &P fw -.s “42 m -.4 I o .5 lo I 1.5 20 x/p 25 Pi 30 , 3.s 40 FIGURE13.—!I’heomtiordpremum distribution at wing-body junotum of combination usingfour and six Fouriercompommts; winginoidenco case. concernedisnotlargesothatthebodyiseffectivelya vertical boundaryon whicha givendistributionof normalvelocity is producingan interference field. Supersonicwingtheory appliedto thisconditiongivesfor thenetinterference prweurecoefficient(ref.7). BP. Ax when=0 iw ‘3@?a ftla (66) (54) It is clearthatthecalculatedresultscanbe jointedsmoothly to this result. Usingthe resultof equation(66) onablm satisfactoryresultsto be obtainedwith four Fouriercomponents. The criticalregionin the convergenceof the solutionis thatneartheleadingedgeof thewing-bodyjuncture. Tho higherharmonicshavetheirmostimportanteffectnearhero andrapidlydampdownstream alongthebody. Emco moro and more Fouriercomponentswould be requiredto got For~a—~l <0.6 equation(53)is a good approximation for accuracyfor smallerand smallervaluesof ~ ~a. However, 2n6 z - ‘l’+o pP,=+– 32iw(4nl)(#”+r-2’)COS 1)24n+l 0‘a T(2nt)2(4ni— J n= Oalthoughit isof littlevalueforMgheraderhqonics. withtheresultof equation(55),thisestraworkis unneccsThereisageneraltendencyof POto approachauniformvalue~ W. independent of r as~~ 1 becomeslarge,as shownby Onepointof interestin figure13is thefact thatwhen& Da a equation(54). The dampingin thecharacteristic direction, althoughinitiallyinverselyproportionalto the squareroot of r, is ultimatelyindependent of r. Pressure distribution in junctureof wing-bodycombination,-By addingthe interferencepressurecoeiiicientsof thevariousFouriercomponentsto thatfor the wingalone, the prewm distributionfor the combinationis obtained. Theadditionhasbeencarriedoutforthewing-bodyjuncture usingfourFouriercomponentsandsixFouriercomponents, and the resultsare presentedin figure13. The pressure coefficientwithinterference is lessin magnitudethan2, the valuewithoutinterference, showingthatsigniihnt lossesof lift occurin thewing-bodyjuncture. A comparisonof the resultsfor four componentsandsix componentsshowsthat fourcomponents givegoodover-aUaccuracyfor allvalueaof ence of the oppositehalf-wingis felt in tho wing-body juncture. Pressure distributionon top meridianof wing-body combination,-’l%epressuredistribution on thetopmeridian of thewing-bodycombination isobtainedinthesamefashion asthatat thewing-bodyjuncture,the dMerencebeingthat the pressuresdue to the evennumberFouriercomponents havethesamesignatthemeridianasatthejuncture,whereas the odd numberedcomponentshave reversedsigns, The pressuredistributions basedon four and six Fouriercomponentsareshownin figure14. Severalinterestingeffectsare exhibitedby the results, ~ greaterthan1. For smallvaluesof $ in thewing-body The stepin the wing-alonepressureat ~a=l is effoctivoly juncture,the curvatureof the body insofaraa the flow is canceledby the interference pressuresof the Fouriercom- equalsapproximately 3, thepremurecoefficientincreasesin magnitude.Thisis dueto thefact thatfor~> T theinflu- .—. .. -—-—--.- —-— — .— —-— —-—— QUABl_tJXlANJJltlWLJ.I‘1’HMUltY UF WING-BUDY INTERFERENC.131 AT SUPERSONIC SPEEDS -20, ,- I I ,I [ I ~Wkg ol&e J’ I I I I Ill I I I L&i-T I.- \ -1,2 I ,, , I I 1 -% w , , -8 -1.2 I--@ A / o .4~ .4 ,8 -20 I / -,4 1313 -1.6 Equohon156~ P - W&g alon’eplus Q w -- four Fourier Topmerldlan~ components I I ‘--Wing olone plus six Fouriercomponents o ;0 ,2 ;6 24 2S 3.2 56 40 1/ X//go BP ~w -.8 -.4 0 X/flu FIGURE14,—’l’heoretical pressure distribution on top of combination )?rGunEI 15.—The+metic.al pressuredistribution aotingon wingof usingfourandsixFouriercomponents; wing-inoidence caae. combination; wing-incidence case. ponentsfrom~=1 to ~a=m/2,andfor~> r/2 thepressure Sincethe r.~on of influenceof the body on the wingis pa of the Machlines increasesrapidly and tends toward the two-dimensional confinedto the wingregiondownstream value. The effectof the interference pressurein canceling emanatingfrom the leadingedgeof the juncture,in front areuniformat thetwo-dimensional tlm effectof the wing aloneon the top of the body from of thislinethepressures value,andbehindthelinethereis a decrease inthemagnitude 3=1 to —=~/2 is to be expectedsince the wing of the of the pre9surecoefficient. If the body were a perfect /3a ~a extent,then combination crmhaveno effecton thetop of thebodyunless reflector,that is, a verticalwall of fits therewould be no pressureloss. Howevm,the pr~we ? > ~/2, as lms been alreadypointedout. II an irdinite pulsesoriginatingon thewingareonlyin partreflectedby ~a– numberof Fouriercomponents hadbeentaken,thepressure thecircularbody. The eflkiencyof thebody as a reflector is discussedsubsequently in connectionwith spanloading. coefficients wouldbe identicallyzerofrom ~=0 to ~ The tendency of thepressure to increasein magnitudenear pa pa ’12” theinboard trailing edgeis dueto the effectof theopposite Thegeneralbehaviorin thisregardis evidenceof theplausiTV@ pan~ whichat the W@ j~cture is felt downsticam bilityof thecalculatedresults. The tendencyof thepressures to approachan asymptotic of thepoint~=r. 13a value is also illustratedby figure 14. This asymptotic Spanloading,-The spanloaddistributions for a rangeof valuerepresented by thesumof thewing-alone pressure plus rectangukw wing-body combinations withthe body at zero the asymptoticresultsfol the first Fouriercomponentis angleof attackcanbe determined f rom thepressure distrigivenby thefollowingequation: butionsof @ures 13, 14, and 15. Siucethe pressuredistributionsof iigure15 arein a formindependent of Mach (56) number,it is convenientto defhe a spanloadingwhichis ~ >2.4, the resultsof this equationaxe in good anintegralof thesedistributions. ‘or pa agreement withtheresultsof iigure14. qawa Someevidenceis furnishedfromthepressurecalculations for thejunctureandtop of thebody concerningthenumber ofFouriercomponents necessary foraccuracy. Comparisons madein figures13and14showthataboutfourcomponents aresticient andthattheadditionof twomoreis notworth (57) theextrawork. Pressuredistribution onwingof wing-bodycombination.— The quantityin thesquarebracketsis takento be thespan The distributionof the pressureactingon the wingof the loading. If all distancesare takenin units of the body combinationcanbe determined in a mannersimilarto that radius,then‘(a” canbe set equalto unityin theformulas. for the wing-bodyjunctureby addingto the wing-alone Thepressureremdtsof figure15aiefor value9of themeiratio of 4 or less and for valuesof the pressurethosedueto theFouriercomponents.Theresult- tive chord-radius antpressuredistribution for thewingbasedon fourFourier effectiveaspectratio of 2 or greater. Spanloadingsfor 4=J:=[~(59’)~@)]49 +“[:J(&Jdz]d, ‘%’[%(%w’~ ● componentsis shownin figure16. For smallvaluesof ~ pa the higher-orderoscillationsin the pressurecoefficient.as shownin iigure13havebeenignored,andthe curveshave beenfairedthroughthem. anycombination of ~ (or c*) and&4in theserangescanbe /3a obtainedby integratingthe pressuredistributions.The span loadingevaluationshave been made for c*=4 and /?A22. Firstthespanloadingsdueto the.variousFourier 1314 - FORAERONAUTICS REPORT 125%NATIONAJJ ADVISORY COMMTl?PEE componentsare discussed,and thenthe spanloadingsfor theactualviing-bodycombinations arepresented. In figure16,thecontributions to thespanloadingfor.the first three?louriercomponentsare shown. For n=O the pressure fielddoesnot dependon O,beingtially~symmetric, rmda constantloadingexistson the body. However,on thewingasthespanwiae distanceincreases thereis a decxease in thespanloading,dueprimarilyto decreasein thelength of chord over whichthe interferencemes-sures act. The spanloadingdue to the iirstFourier~omponentcausesa lossof lift everywhere alongthespan. 1.6 With the techniquesof Laplacetransformtheory,it is possibleto obtainasymptoticformulasfor thespanloadings of the variousFouriercomponents.For the firstI’ourier componentthefollowingasymptotic resulthasbeenobtained by the standardmethodsof Laplace transformtheory. (SeeAppendixB.) ‘hen ; -’w (68) asymptoticresultfor the spanloadinggivenby this equation,whencomparedwiththeresultsof the exactcalculationsinfigure16,isseentobeslightlylow. However,for valuesof ~ greaterthan4thedifference betweentheresults @ decreases,and equation(58) thus providesa satisfactory meansof extrapolating theresultsof thepresentcalculations for spanloadingto largervaluesof ~ The asymptoticresulthas alsobeen determinedfor tho higher-orderFouriercomponentsas a matterof intarest, Thespanloadingis The B I\ n=l -7 n=27 , -. 8. .- $ Q .3 L“ * Wmg Body / .l~ / / / / 16@+*)(4”-’)’c 0 m.-C -0 : ~ _z4 (,,, 7r(2n !)z(4ns—1)2Jm-1 ~ a s n .OT ‘\ -32 -40 \t -4.80r–––––y. 20 ylo ?iO 4.0 5 I?mmm16.—Thwretical spanloadingof varioua Fouriercomponents actingoncombination ofbodyandrectangular winghavingeffective chord-radius ratioof 4; wing-incidence ease. A comparison of theresultsof iigure16forn=O andn=l showsthat the first Fouriercomponentaccountsalmost entirelyfor theeffectof interference on thespanloadingof “ thecombmation.For thebody thisfact is evenmoretrue thanfor thewing. Thisfact is of considerable importance sinceit givesasimplemeansof extending theliftandmoment resultstolargervaluesof ~ thanthoseforwhichthepressure distributions havebem d~’ated. Also,it suggests a simple the adverseeilectsof interferenceon m~~ of ~ lift aswillsubsequently be pointedout. Theresultsof equation(59)andthe exactsolutionfor n= 1 in iigure16bothcorroboratethefact thatthespanloadings of allbutthetit Fouriercomponentarenegligible for— ;a >4, It is alsoto be notedthatthecontributionto theloadingof theiirstcomponentgivenby equation(58)increama without limitasz+ m;whereasthespanloadingsof thohigher-order components arefinite. To obtainthespanloadingfor thefamilyof combinations -=4, it is neceswuyto considerthe loadingsof ‘or ‘bi& ~a both the wing alone and the Fouriercomponents.Tbe neceswuycalculations havebeen carriedout, and tho span loadingsfor the familyof combinations basedon one and fourFouriercomponentsarebothshownin figure17. The loadingdueto the wingaloneis alsoshown. No effectof wingtipshasbeenincluded. It is to be notedin figure17 that,whereastheloadingonthewingdueto itsownpressure fieldis constant,thereis somelosson the body becauseof thefact thatthepressurefieldof thewingaloneactson the body only if x>~a sin 0. However,if an afterbodyis included,someof tbe lift lost can be recovered. As has alreadybeen pointedout, the pressuresdueto the first Fouriercomponentsare positiveon the upperhalf of tho wing-bodycombination andproducealossof lift,asfigure17 shows. When the effectsof four Fouriercomponentsme takeninto account,the net lift is slightlyhigherthanthat for oneFouriercomponent,but the differenceis not signifi- 1315 INTERFER.EINCE ATSUPERSONIC SPEEDS QUASI-CYLINDRICAL THEORY OFWTNG-BODY theinteresting fact that the body is somewhatlessthan50 percenteffectivein reflectionfor this particularfamilyof configurations. I- Reference100ding, campletereflection Referenceloading,no reflection I/ \ ‘. \ ‘.,s.Combination loodingfour Fouriercomponents / I 1 ‘\~Comblnation loodingone Fourier component Lift,-For values of -& 4 the pressuredistributions alreadypresentedaresufficientfor obtainingspanloadingor lift on eitherthe wingor body for all combinations having sticiently largeaspectratiosto avoideffectsof thetipson thewing-bodyinterference.Thisis thecasefor1%4.22.The liftresultsarepresented in termsof anondimensional parameterkm,definedas theratioof thelift on tbe exposedhalfwingein combination(exclusiveof thaton thebody) to that on the exposedhalf-wingsjoinedtogether. (60) / For *>4 the value of kw can be obtainedby usingthe asymptoticformof thespanloadinggiven‘byequation(58). kw=l– 8F+&10’(a-NOg@+’)1 mC@(2PA—1) C*+w (61) ‘ Thevaluesof kwhavebeendetermined fromthepressure distributions of figure15for valuesof&4 tion (61)for values4 of ~>4. andfrom equa- The eflectof the wingtips hasbeentakeninto accountby utihzingreference20. The resultsareshowninfigge 18whereinkwisgivenasafunction y/o I?mmm17.—Theareticnl spanloadingfor combination of bodyand rectangular winghavingeffectiveohord-zadius ratioof 4; winginoidenco caw. cant. For most engineering purpose9,one Fouriercompog the span loadingwhen nent is sufficientfor determining . ~>4. f?a– Someinsightintothemechanism of wing-bodyinterference can be gainedby comparingthe spanloadingfor the combinationwiththosefor tworeferenceloadings:(1) thecompletereflectioncasefor whichtheblanketedareaof thewing actseffectivelyat&, and(2) theno-reflection casefor which theblanketedareaof thewingis supposedto aoteffectively at zeroangleof attack. The spanloadingcorresponding to thefirstcaseof completereflectionof thewingpressure pulses by thebodyis,infact,thespanloadingmarked“wingalone” in figure17. A comparison of thiscurvewiththatbasedon oneor fourFouriercomponents showsthattheloadinggiven on thoassumption thatthewingblanketedareaisfullyeffective in lift is too optimistic. Underthe conditionsof the secondreferenceloading,the solepurposeof the blanketed meaisto supportliftgenerated by thewings. A compfion of thespanloadingfor thiscasewiththetrueloadingshows thattheaverageloadon thebodyis wellpredicted,butthat theloadingonthewingis under~timated... A comparison of ~ thetrueloadingwiththosefoi’thetworeferencecasesreveals . \\ .92 II I I Y b ‘ \2 .88 / !II/ I x / / . .84 I I .800 I I 2 I I I I ! I I I I I I I I ‘- -Asymptoticformu[o ‘hosed on one -Fourier component,. equation (61) I I I I I Body ot zero armle of ottack I 12 10 4 8 6 Effective chord-rodius raha, c/~0 t I I I I 14 16 Fmcmn18.—Lifteffectiveness forwingor controlsurfacein combination withbody. of ~ for variouseffectiveaspectratiosof 2 andgreater. It fla shouldbeborneinmindthattheresultsof thefigurearefor a combination of bodyandrectangular wingor anall-movable, ~rectangular controlsurfacewithno gap. It is notedin the figurethattheexactresultsfor ~a<4 canbe fairedinto the 10theasymptotfo emalrtlcaf mprssdom forkrrsnd+lc arenot_ by 4In rofemm vfrtneofenfncorrwtn prmllndtonfmfnteaml.Tbrnadxnaron nrnei-fcnlo rrorinkwls abto.ol mhzdcawt amtivqb-ofe. ‘I’hepreekevalaesfuogfven hIthk roIMrL Thesefor6A-2 areonchrrngd. 1316 FORAERONAUTICS REPORT125%NATTONAL ADVISORY COMMITTEE Thevaluesof ~ havebeendetermined fromthe pressure asymptoticresultsfor ~>4, therebyprovidinga dwign chart for engineeringpurposesfor the entirerangeof ~ distributions of figure15for valuesof &-4 andby equation The curvesof figure18 illustratethe decreamof & as ~ (62)for valuesof &>4. increasesat constanteffectiveaspectratio,andtheslowincreaseof k~ asthewingchordbecomesverylarge. Theloss of lift is mostseriousfor &4=2, beingabout15percentin theworstcase. A practicalpointin connectionwiththelossof lift on the wingdue to interference is that this10= occursno matter whatthebody angleof attack,eventhoughthecalculations aremadefor aB=O. It occurseitherin thecaseof a wing mountedon a body or in thecaseof a deflectedatl-movable controlsurface. For wingswith sweptleadingedgesfor whichallof thewingarealiesin theregionaffectedby the interference, ev~ largerlossesthanoccurwithrectangukw wingsareto be anticipated.However,thelossof lift at the designconditioncan, at leastin principle,be largelypreventedby design@ thefuselageso thatit conformE to the firstFouriercomponentin thewing-alone flow-. Thiswould involvecon~ting the fuselageabovethehorizontalplane of symmetryinarotationally symmetric fashionandexpandinga likeamountbeneaththehorizontalplaneof symmetry. Whetheror not sucha changewouldimprovethe lift-drag ratiocanbeatbe determined by experiment. Center of pressu.re.-The cmter-of-pressurelocations havebeencalculatedfor thesamerangeasthelift resultsof @e 18. The center-of-pressure locationin chordlengths behindtheleadingedgearepresented infigure19. Forlarge valuesof c*, an asymptoticresulth= been calculatedfor ZJCusingthemethodsof Laplacetransform theoryandconsideringonlyoneFouriercomponent. beentakeninto consideration.The exactresultsfor &4 %2 C 112 2U+$ log & 3f7A f?zi%[ z() k. (l–+A . . ). –; log (C*+U] asti+co (62) The lossof lift nearthe tipshas havebeenfairedintotheasymptoticresultsfor largevaluea of ~ by dsahedcurvesto providean engineeringdesign chartcoveringtheentirerangeof& It is againmentioned thatthischartis applicablebothto thewingof an airplane or missileor to an all-movable,rectangularcontrolsurface with no gap. The curvesof figure19 start at valuesof ‘w corresponding to thosefor thewingaloneat~=0. As~ Z& increaaes for constant9A,thereis aforwardmovementof the centerof pressure becauseof thelossofliftduetointerference whichis mostlyeffectiveon therearof thewing. For the lowesteffectiveaspectratioof 2 thereis abouta 4-percent forwardmovementof the centerof pressuredueto intsrforencein the extremecaae. For largeeffectiveaspectratios theforwardmovementis not nearlyso large. As thovaluo of ~ increaseafor constant/3A,there is an mymptotio pa approachof the centerof pressureback to the wing-alone vrdue. AN~EOF-A’ITACK CASE In figure4 (a) it is show-n howtheflowfieldof a combinationcanbe builtup of a bodyaloneandtwowing-bodyflow fields. The firstwing-bodyflowfield((2) of fig. 4 (a)) has beensolvedin the precedingsection,andwe now solvethe secondwing-bodyproblem((3) of fig. 4 (a)), The wingis tiectivelytvvisted sothattheslopeof itssurfaceis a“ m given by equation(1). It shouldbe notedthattheproblomof the combinationand body with a rectangularwing twisted accordingto the second term of equation(1) has been solvedby Bailey and Phinneyin reference11 usingthe presenttheory. Theircalculationis restrictedto tho body j’c - 3.0 ,2@):7 I 2.5 a=l 2.0 1.5I Effective chord-radius ratio, c/~a FmuEH 19.—Center of pressure forwingoi &ntrolsurfacp in cmnbinatfon withbody.. ~ -l.o L o Fmum ,. .2 .4 .6 x [.0 .8 .’ 12 ‘ ‘.:, 20.-Gmphi@ repmmntstitm of velocityamplitudp funotions; angle+f-attack case. r,., ,,, . 1317 QUASI—CYHNDRICAL THEORY OFWING-BODY INTERFERENOH ATSUPERSONIC SPEEDS o .5 1.0 I,5 2.0 2.5 3.00 .5 LO L5 2.0 2.5 3.0 3.5 4.0 .T/@ - r/o + I (a) n=O of variousFouriercomponents; angh+of-attaok case. l?IGUEI!Z1.—bterference premnre distributions cmdis carriedout for downstream distancesof 2Bafromthe wing leadingedge. Actually,the resultsof reference11 representthe ditlerencebetweenthe angle-of-attackand wing-incidenee crisestreatedhereandarein agreement with tho presentresults. This agreementis, in effect,an independentcheck on the accuracyof the presentnumerical resultsfor theinterference pressuredistributions. Wing-alonepotential,-Thetit step in the calculation is to detmninethewing-alonepotential.Becausethewing is twistedto conformto thebodyupwashfield,thisdeterminationis fairlytediousandhasbeentied outin Appendix Cl The formof thewing-alonepotentialfoundin reference 11 is in agreementwith thosefoundhereinfor the wingincidenceandangle+f-attackcases. Fourieramplitudes of bodynormalvelooity.-Thevelocity amplitudefunctionsfor the presentcase were computed numerically by performinga Fourieranalysisof the calculatedbodynormalveloci@distribution at a numberof body crosssections.b analyticaldetermination wasmadeof the velocityamplitudefunctionsby the authomof reference11 forvalueaof z<2. However,forz>2 thevelocityamplitude functionsare saidby theseauthorsto lead to incomplete 413672-57-sa ellipticintegrals,andno analyticaldetermination wasmade, A numerical determin ationhasbeenmadehereinfor0<x<4. Thenumerieal wdueaof thefj,(z) functionsfor thiseaseare tabulatedin tableII andplottedin figure20for illustrative purposw. Interferencepressure.distributions,-The interference pressuredistributionshave been calculatedby numerical integrationusingequation(22). The resultsare shownin &-me21. The interference pressuredistributions arevery similsxto thosefor the wing-incidencecase, being about twiceaslarge. Pressuredistribution in junctureof wing-bodycombination,-The pressuredistributionof the combinationis obtainedby addingthe interference pressurecoefficientsto the pressurecodicients of the wing alone. The results, usingfour andsixPz, components,areshownin figure22. Thisfigureshowsthatfourcomponents givea closeapproximationto thelinear-theory valuefor x/@>l. At z/@= O, the wing leadingedge,lineartheorywith Beakinupwash theorygivesexactly/3P/cr= –4.0. For the region3/f?a<l the higherharmonicshave theirgreatestimportance,and manycomponents wouldbe neoessaryto getgoodaccuracy. 1318 mPORT 1252-NATIoNu ADmORY coMMITTEEFORAERONAUTICS -2.0 -1.5 -Lo m N m g < c Q ‘“5 o .5 I .0 0 .5 Lo 15 2.0 x/~o -r/a+ (b) I m=l Fmmw21.—Continued. 2.5 3.0 55 4.0 1319 QUASI-OYIJNDRICAL TEEORYOFWINGBODY ~TERFERENCE ATSUPERSONIC SPEEDS -15, ..- , -1,0 al -.5 0 .5 I.OO .5 Lo L5 2.0 2.5 so 3.5 4.0 .@a -rla + I (o) n=2 FIGURE , 21.—Continued. t .. 1320 REPORT125*NATIONAI.IADVISORYCOMMIT173E FORAERONAUTICS [email protected]+ 1 (d)n=3 FIGURE 21.—Concluded. -4.0. 1 , , \\ -32 -24 & F -1.6 -.8 \v ,--’ , !! Six Fmmer components / \..- tl%ur Fourier comooner&- m I I Juncture, \, , of the oppositehalf-wingreachingthe wing-bodyjuncture at thispointas shownin the sketch. It shouldnowbe notedthatthepressuredistribution for the-easeof thebodyat angleof attackwiththewingat zero angleof incidence isrepresented by thesumof cases(1)and(3) aa givenby figure4 (a). However,we are neglectingtho contributionof case (1) becauseit is small. The contribution to the pressurecoefficientrepresentedby cam (1) is thatdueto a yawedinfinitecylindersincewe areneglecting noseeffects. This contribution,whichis clearlypresentin front of the wing,is P (63) — = (.YB(l —4Cos%) C#B () 0 Lo 1.5 20 25 5 3.0 3.5 4.0 x//3o Forthejunctureof thecombination(0=0°) thecontribution FIQUREI 22.-Theoretical pressure distribution atwing-body junoture is about0.1for aB=zO and0.3for aB=60. At an=2° tho of combination usingfourandsix Fouriercomponents; angleof- effectis thusnegligiblecomparedto P/aB of about4, andat attaokU. aB=6° therearedefinitenOdiU~ effectsthatm& fbprecise applicationof linear theoW inaccurate. For those However,satisfacto~accuracycanbe obtainedby fairinga reasonsthe contributiongivenby equation(63) hnabeen curvethroughthisregionsinceboth endpointsareknown. neglected. For the top andbottomof thebody thecontriOne item of interestin figure22 is the increa9ein the butionsare one-thirdof the foregoingand henceare also magnitude of ~P/aB nearpoint1. Thisis dueto theinfluence negligible. QUASI+~~CW ~ORY Pressuredistribution onbodyof wing-bodycombination.— Tho pressuredistributionon the body is also obtainedby addingthe interference preaaure coefficientsto the pressure coefficients dueto thewingalone. Theinterference pressure distribution for anyvalueof o differshornthatin thewingbodyjuncture,0=0, onlyby a cos2m9factor. For example, in thejuncturecos 2n0is always+1. Ontop of thebody, i9=r/2,cos2n0alternates between+1 and—1asn increasa.s. OntheO=CT/4 meridiancos2n0hasvaluesof O,+1, and–1, so thatwhenn is oddPZ.=O. Thepressuredistributions on thetop meridianof thebody andon the0=45° meridianof thebodyareshownin figures23and24,respectively. -4 -3 . LLl .-Wing aloneJ’ ,!r ;’ ‘ : ‘- - - - - - coeiiicients wouldbe identicallyzerofromx/~a=Oto z/pa= r/2. Thesameeflectsareexhibitedby figure24exceptthat the wing-alonestep occurs at z/pa=&/2 and the Mach helix intersectsthe meridianat x/~a=x/4, point 1. The Mach helix from the oppositewing panel intersectsthe mtidian at point 2 causingan additionalpresmwerise. Sincethe regionin which13P/a~=O is bow-n andsince the exactlineartheoryis wellapproximated by fourcomponents for largevalucaof z/~a,theoreticalcurvesof goodaccuracy can be fairedhornfigures23 and24. The areaunderthe highpeaksin the curvesnearz/Ba=rJ4wouldbecomeinfitesimal if an idinite numberof interferencepressure componentswere taken. Pressuredistribution onwingof wing-bodycombination.— For theregionin frontof theMachwavefromtheleading edgeof thejuncture,the calculationof pressureceefiicients is just a wing-aloneproblem. The pressurecoafiicients in this regioncan thereforebe obtaineddirectlyfrom the wing-alonepotentialasgivenin AppendixC. Theresultis P=–2aB A I A?+ I Y/’t--l 1321 OF-Q-BODY INTERFERENCE AT SUPERSONIC SPEEDS Four Fb@ercomponents , 1 i I 1 SIX Fouriercomponents I [’ 1 (&-yf1312 (64) 1 In theregionbehindthe Mach wavethe pr=ure coef6cientswereobtaineddirectlyfrom the WSJZ,r) functions, I I I\/ I aswasdoneon thebody. Theresultsof thesecalculations for the wingpressuredistributions are shownin figure26 3.5 4.0 1.5 2,0 2.5 3.o ‘o 5 LO and are to be comparedwith the pressuredistributions of x/p o @e 15. 23.—Theoretical p~u.m distribution on top of combination FmunE Spanloading.-The spanloadingshavebeendetermined usingfourandsixFouriercomponents; angle+f-attaok case. by graphicalintegrationof the pressure-distribution curves of figulw 21 to 25. For a combinationwith a value of -4 c/~a of 4 the span loadingsassociatedwith the.various Fouriercomponentsme shownin figure26,whichis to be -3 comparedwithfigure16 for the wing-incidence case. The magnitudesfor the n=O harmonicof the angle-of-attack -2 caseare abouttwicethosefor thewing-incidence case,but g otherwisetie two case9are similar. The span loading includingwing-aloneand interferenceeilectsis shownin -1 @ure 27, whichis to be compmedwith Qure 17. The importmtdifferenceis notedthatthepeakspanloadingis 0 nearlyequalto theroot loadingin the angle-of-attack case, butis considerably greaterthantherootloadingin thewing1 +. r ‘o .5 1.0 1.5 20 25 3.0 3.5 -4.0 4.0 X/pa Fmmm24.—Tlmoretioal prwauredistribution on 0=45°meridian of bodyof combination usingfourandsixFouriercomponents; angleof-attaokcase. ‘\ -2.4 flP % I 1 ,- rh =40 Severalinteresting effectsareexhibitedby figures23 and 24. Thostepinthewing-alonepressureat %/pa=1in figure -1.6 23 is effectivelycanceledby the interference pressurehorn T ‘\ , x/j’3a=1to%/@a=r/2, andforx/fla>~/2thepressure increases ti=w rapidly. The effectof theinterference pressurein canceling -.8 tho offcct of the wing aloneon the top of the body horn +!$ x/pa=1 to x/fla=~/2is to be expectedsincethewingof the 0 20 25 30 3.5 4.0 .5 10 1.5 combinationcanhaveno effecton thebody in tint of the Machhelix(point1of sketch)originating attheleadingedge of thewing-bodyjuncture. If an infinitenumberof com- FIWJZE 25.—lWoretiwd p-me distribution aotingon wing of combination; angle-of-attaok can ponents had been computed,the combinationpressure 1322 FORAERONAUTICS REPORT125*NATIONALADTISORY COMMFM’EE .8 0 A \ .8 ~—Looding due to -1.6 -24 $ -32 @‘12 ;7 +.~ I G -48 ~ ~,, %mb’inotlon loadi~gfour Fouriercomponents ! 100cilng~~m~ino+ion one Fourier component z -3.6 c 0 $ -64 -7.2 Body -ac 4 Wing -88 -9.6 04 y/o 1.0 20 y/o 3.0 4D 5 Fmmw26.—Theoretiml spanloadingof variousFouriercomponents spanloadingfor combination of bodyand actingoncombination of bodyandrectangular winghavingeffective l?mmm27.—Theoretical rectangular winghavingeffeotiveohord-radius ratioof 4; mglo-ofchord-radius ratioof 4; angle-of-attack cam. attaok case. incidencecase.. Because of tie cliflerencoin the sl.mpeof tlm span loadings,a differenttrailingvortexpattern would be nssociat~dwith each. ?No@ect of wing tips is included in figures26and27. reference21. The lift of the entirewing aloneincluding the blanketedarea was so determined.The lift of lho blanketedarea was then calculatedfrom the potonliml Lift,-From the theoreticalwingpressuredistributions of functiongivenin AppendixC rmdsubtractedfromtho lift tbe combinationthelift of thewingpanelsin thepresence of the entirewingaloneto get thelift of the panels. Tlw of thebody canbe calculatedas a functionof PA andc/@. loss of lift on the panelsdueto interference as determined To showhowthebody upwashis effectivein increasing the by graphicalintegrationwas then subtractedto get ~~a. lift of the wing, a factor KWhas been calculated. This The valuesof Km so calctiatedareshownin figure28 (a) factorhasbeendefied as asa functionof c/paandin figure28 (b) asa functionof a/s. Figure28 (a) showsa largeeffectof IL4at constnntc/pa; kc. &.=() (65) whereasfigure28 (b) showsa smalleffectof &l at constmt &= y- , a/s. In figure28 (b) theeffectof aspectratioon Kmat wfi..ecl Here.&Cis thelift of thepandsin thepresenceof thebody as nnd.& is thelift of thewingpads joinedtogetherat angle valueof a/s is lessthantheprectilonof the calculations area. For comparisonthe of attacka.. In calculating& firstthelift of theexposed indicatedby the cross-hatched theoryhnvebeen panelsm partof theW@ alonemustbe calculated.This valuesof Kw calculatedfromslender-body wasdoneby the use of revemibilitytheoremsdescribedin includedin thefigure ((33) 1323 ATSUPERSONIC SPEEDS THEORY OFWEW+BOD NTERFERENCE QUAsI=~HCW The close agreementbetweenthe linear-theoryresultsfor the presentcase and the slender-body-theory resultsis noteworthysincethe rectangularwingandbody combinationsconsideredherearenot slender. Thisresultsuggests that slender-bodytheory can be used for calculatinglift ratiosfor nonslender coniigumtions. 20 18 III.COMPARISON OFEXPERIMENT ANDTHEORY FOR RECTANGULAR WINGANDBODYCOMBINATION APPARATUS AND PROCEDURE b investigation to evaluatethepresenttheorywasmade in theAmes1-by 3-footsupersonic windtunnel. Thiswind tunnelwasequippedwitha flexible-plate nozzlethatcould be adjustedto give tes.ksection Machnumbemfrom 1.2to 2.2. The pressuremeasurements are obtainedas photographicrecordingsof a multiple-tubemanometerboard usingdibutylphthalateasthefluid. 16 Kw 14 1.2 \ \ -h Y \ 6.00 3- —6 y/o 00...00 - —2.58 . -1.92 _ I,02 0000. I.* (0) eooooo 1,00 I Effectivechord-r%diusrotio c/& (Q) 4 3 x \ O.. t’ .*OO — 1.25 Effectof chord-radius ratio. FIGURE 28.—Lifteffectiveness for rectangular wingin combination withbody;angle+f-attaok case. 3.75 00000 —3.92 I 1.02 2,0 +3.00+ \’ —4.25 4 1.8 ~rifice ,’ 1.6 I Presenttheory=, 25 flAS6 ‘\ Kr, { tI +a A / / I .( (b) .2 .4 .6 Effechve rodius-semisponrotio, 0/S (b) Effeotof radius-semispan ratio. 28.—Concluded. FIGURE I Fmurm 29.—Pressure distribution model(all dimensions in inohes). 1,4 1.2 surfc-ce .8 1.0 Thesting-supported model,whichis diagramm edinfigure 29,is a combination consistingof a cylindricalbodywithan ogivrdnose and a rectangular,wedge-shaped wing. The dimensions of the modelaregivenin figure29. The wing wasmade10 percentthickto minimizeaeroelasticeffects. It wasmountedin thebodyby meansof a setof anglebloeka whichenabledthe flat wingsurfaceconttig the oriiices to be setat 0°, —1.9°,—3.8°,and—5.7°anglesof incidence withrespectto the body centerline. The presureorifices werealllocatedon theuppersurfaceof themodd. The47 ori.iiceswere distributedalong seven.manwisestationsin orderto givea comparison withtheoryfor thewingandthe I body. Thelocationsof theofices aregivenin tableIII. 1324 REPORT125>NATIONAL ADVISORYCOMMT17EE FORA13RONA’UTK!S Sincethisinvestigation requireda comparisonof thedata forseveralMachnumbersandReynoldsnumbersatthesame dues of @j and&-,it wasnecessaryto set aB and &- accuratelyfor eachmeasurement.Thestingsupportby which themodelwasmountedhadsufficientflexibilitythatit was deemednecessaryto havemeansfor accuratelysettingthe vrduesof ~ivand& undertunneloperatingconditions. The valuesof& wereaccuratelysetby meansof angleblocksin thebody. The angleof attackwasset by a specialimage projectiondevice. A mirror-mi.sinsertedin the schlieren systemso thatanimageof themodelwascastupona screen. Withthewindoff, themodelwassetat thedesiredvalueof aB andtheinclination of themodelimagewasmmkedon the screen. Withthetunnelinoperationatthedesiredpressure, the angleof attackof the modelwas adjusteduntil the inclinationof itaimagewaspdel to the calibrationline made on the screenwith the wind off. To check this method,a horizontalandverticalwiregridwasplacedonthe tunnelwindowandschlieren picturesweretakenof themodel whilethe tunnelwasin operation. Thesepicturesshowed thattheimageprojectiondeviceset @ to within+ 0.07°of the desiredvalue. It was especiallynecessaryto set a~ accuratelyfor the smallanglesI%avoid largepercentage errorsin theanglesetting. Themodelangleof attackrangedfrom + 6° to —6°in 2° increments, andthewing-incidence anglerangedhorn 0° to –5.7° in 1.9° increments.The twt wasperformedat the two Mach numbers1.48 and 2.00 and at the Reynolds numbersof 0.6,1.2,and1.5million,basedon thewingchord. Themodelwastestedfor allcombinations of thesevaluesof thefourparameters investigated. A completeset of datain theformof ~ for theReynolds numbers0.6, 1.2, and 1.5X10aat ilf’=1.48 and for l?= 1.5X 10eat M=2.OQispresentedin tableIV. Thesevalues of P are,for themostpart,averagesof tworeadings. REDU~ON AND ACCURACY OFDATA All data are reducedto the coefficientform (p-pJ/gO. Actuallythequanti@(p-pT)/q. was measured, and subsequentcorrectionswereappliedto changethereferencestatic pressuretopl (pIisthestaticpressureattheparticularorifice in questionwhen @=&= 0°) and the referencedynamic pressureto qo. Sincep, includestheeffectsof nosethiclme~ andstreamangle,usingpl as a referencepressure~es theseeffectsandessentially givesonly thepressuresdue to theanglesettingsof themodel. The dynamicpressurewas adjustedfrom q~to goon the basisof a previouspressure wasnegligible surveyof thetunnel. Thislatteradjustment forfW=1.48andamountedto lessthana 3-percentcorrection for iM=2.00. For the purposeof comparisonwith theory thepressure ccdicient @—pJ/goisreducedto theparameters #IP/ciBfor iW=OO andBPJiw for aB=OO. Two typesof errorsenteredintothe experimental investigation:systematicerrorsandrandomerrors. In thispaper accuracywill be takenas the abili~ of the experimentto givethetruevalueswithoutnoseeffector streamangleand, hence,is a measureof thesystematicerrors. Preckionwill be takenas the abilityto repeatthe dataand,hence,is a measureof therandomerrorsin the experiment. Severalfactorscontributedrandomerrors, The major factorwastheerrorin theangle-of-attack setting. Theuncertain ineachanglesettingwas+ 0.07°,buteachmeasurementwasdependent upontwoanglesettings:thesettingfor the conditionrepresented andthe settingto determinethe zero correction. This leads to a net uncertaintyof O.1° whichwouldaccountfor a 5-percenterrorfor anglesof + 2°. Most of theremainderof theuncertaintyin thedatais due to thefactthatthereferencewallstaticpressure inthetunnel changedslightlyfrom run to run whilethe total prmsure remainedconstant. Althoughthemagnitude of thispressure changewasquitesmall,it waslargeenoughcomparedto the smallpressuredifferences for the 2° anglesettingsto cmso asmuchas a 3-percenterror. In additionto thesefactors, betweenl-percentand 2-percentunctiinty wasobserwxl in readingthe datafrom the manometer-board pictures. To detwmineexperimentally the precisionof the dots, L large number of repeat measurements were taken and compared. It was found that for ~B or iW=&2°, two independent detetinationsof ~P/uB or BP/& differedfrom eachotherby +7 percentontheaverage.For aB or&= +4° and~BoriW=&6°,theexperimentally determined precision of /3P/aB and/3P/iw are &4 percentand &2 percent,respectively. Theprecisionin &/aB increases withthemagnitude of theanglebecausea largepartof therandomerroris due to theanglesetting. Thelmownmajorexperimental errors are due to stream-angle andbody-noseeffects. The effect of these factors was not determined,but, as previously described,correctionswereappliedto minimizetheireffect, assuming theeffectsdidnot varyappreciably withangle-ofattacksettings. This assumptionshouldbe good for the body-noseeffect. However,it is not necessarilya good assumptionfor the stream-angleeffect since the stream anglevarieswith verticallocationin the tunneland the modelmovesapproximately 6 inchesin n verticaldirection betweenaD= + 6° and aB= —6°. Since the stream-angle correctionthatwasusedwasobtainedfortheffB=0°position in the tunnel,data obtainedat aD=0° shouldhave no appreciable errordueto streamangle. For othervaluesof a~, someerrordueto streamangleis possible.s For thepurposesof thispaper,theimportantquestionis, “How well does theory predictthe experimental data?” Direct comparisons betweenlinmr theoryand experinmnt will be madeonly for aB=&2° and iW=—l.f10dat~, In iigure30experimental pressure distributions inthewing-body junctureobtainedfromtwoindependent measuremmts with &-——1.9°and aB=OOare shown togetherwith a faired curve of their averagevalues. The +7-percentlimit of precisionabout the averagevalue is representedby the dottedlines. The &o showsthat the theoreticalvalue generallylies betweenthesedottedlines,and thereforetho theorypredictstheexperimental valueswithintheprecision of thedatain thisexample. GRNERAL PHYSICAL PRINCIPLR9 Beforethediscussion of theresultsof theinvestigation in detail,it is wellto givefirsta generalphysicaldescription of the effectsto be expected. Figures31 and 32 show ~Astremn+nglo andprmure oluymmotry ~Y Oftie ~ _ ~ ti vcrtlml Pfnno fndfmtdthatstream-angfe variation caosedthemagnftudo of thoos@montalvaluca of BP/aBtoIM4pa’a!nthfghon thoavamge. 1325 QUASI—CYLINDRICAL THEORY OFWJIW-BODY lNTERFERENOll ATSUPERSONIC SPEEDS -4 TT=T’7 ❑o -3 BP G-2 to curlaroundthebody untiltheystrikethewingpanelat points3, wherepart of the pressuredisturbancecontinues along the wing and part of it is reflectedalong another Mach helixon the body, causinga furtherincreasain the magnitudeof thepressurecoefficients at points4. Another pressuredisturbanceoriginatesat the trailingedgeof the wing-bodyjuncturethatcausesthedecrease inthemagnitude of the pressurecoefficientsnoted at points 5 of the two figures. Two independentmeasurements Fcuredaverogeof two measurements * 770 llmlt of preclslonon averoqe o -1 –— o I 5 1.0 1.5 20 2.5 3.0 3.5 x/k20 Intersectionof Mati IYMeSwith surfoce of combinotim v I’XCHJZE 30.—Comparison between twoindependent readings ofprmum distribution in wiag-bodyjunoture;a~=O, iW=l.90, ~=L@ R=l.fixloo. ‘---— intersectionof Moth coneswilh surface of combination I 32.—Ie0metrio drawingof pressuredistribution aotingon combination of bodyandrectangular wing;wing-inoidence cairn. I?murm drawingof FIGUnE31.—Ieometrio premuredistribution aotingon combination of bodyandreotangulsr wing;angle+f+ttack case. qualitatively thepressuredistributions to be mqectedon a rectangularwing and body combinationfor the angl=fattackcaseandthewin@ncidencecase,respectively.The chordwisevariationsof the coe5cient,BP/aB or f9PIim, are shownfor fivesttitionsby theshadedareas.eThesefigures show that-Mach coma emanatingfrom the wing-body juncturedeterminethe pointsat whichthe variouseffects of wing-bodyinterference arefelt. Onthe cylindricsJ body tlmpressurecoefficientis zero in front of the Mach helix originatingat the leadingedgeof the wing-bodyjuncture. Thebodypressurecoefficients herearetakenm zerobecause the effectsof crossflowon the body pressuresare very small,asshownin connectionwithequation(63). However, asshownby thetwostationson thebody,thepressurerises abruptlybehindthisMach helix,point 1, in both figures. ThoMachheliceafromthetwowingpanelscrossthe0=7/2 stationsimultaneously so thatthereis onlyonelargeincrease in the magnitudeof the pressurecoefficient.TheseMpch holiceacrossthe 0=3r/4 stationat two differentpointsso that beyondpoint 1 thereis a secondaryincreasein the pressure coefficients atpoint2. TheseMachhelicescontinue dlstrfbutlon slmm forthe0m3r/4 station onthebody k Identfrd to the eThoprcssare P~ dfstrfbntlon fortho8../4 st.ailon duototie symme- oft~ m~~ 413072—57—84 Onthewingof the combination thepressurecoefficientis thesameasthatfor a wingalonein froritof theMachwave hornthewing-bodyjuncture,exceptthatwhenthebodyis at anangleof attackthebodyupwasheffectivelytwiststhe wing in a mannersuchthat a.=a.(1 +aa/#). Figure31 showsthiseffectof body upwashalongtheleadingedgeof the wing wherethe pressureewdlkientdecreasesas y/a increascabecauseof the effectivetwist of the wing. The importanceof body upwashem be seenby comparingthe pressuredistribution alongtheleadingedgein figure31with thatin figure32. Thepressurecoeflieient at thewing-body juncturein figure31is twicethatin figure32wherethereis no body upwash. The pressurecoefficientat any given spanwisestationremainsnearlyconstantbetweenthewing leadingedgeandtheMachwavehornthewing-bodyjuncture. Behindthe Machwave,interference from thewingbody juncturecausesthe pressurecoefficientto decreasein magnitudeasshownin thetwofigures. =mf3 OFANGLE OFAmA~ Comparisonsbetweentheory and experimentfor the angle-of-attack case are madein figures33 for data at a Reynoldsnumberof 1.5x10e and Mach numbersof 1.48 and2.00with&-=OOandctB= +2° and *6”. Pressuredistribution in junctureof wing-bodycombination,-A comparisonbetweenlineartheoryand experiment for the pressuredistributionin the wing-bodyjunctureis madein figures33 (a) and33 (b) for both Machnumbers. The sketchcashowthe pertimmtMachlinesandthe span- ___ 1326 REPORT125*I?A~ONAL ADVISORY COMbfTITE E FORAERONAUTICS -6 Q -6” U -2” 0 2“ -5 y/u=1.0,\(ija . -8~6. //A /&~ 6° O 4 w m Q \, \ -3 0 H \ \ ,. #t -2 Y 6 ~Present theory + & 0 0’ u - W (0) <“ d L- — 0 ? -1 -6 -5 y/a x1.02 L ,/ g4 \ x, , ,/’ -2 “o , k ‘Present I 0° shownin figure33 for valuesof y/a of 1.92,2.68,and3,92. For ikf=l.48 body upwashcausedthe shockwave to be detachedfrom the wingin the wing-bodyjunctureso that no calculationof tho spreadcould be made there. For .J4=2.00it wasfoundthatnearthewing-bodyjuncturotho predictedspreadin fiP/a~ between—6°and+6° wasnbout twicethe experimental spread;whereasfor y/a greaterthan about1.5theexperimental spreadwasfairlywellpredicted. This differencebetweenshock-expansion theory and tho experimental datain thewing-bodyjunctureisprobablyduo to the combinationof severalthings. First,nearthewiugbodyjuncturethebodyupwashismodifiedby viscouseft’octs. Second,thetheoreticalspreadwascalculatedat theleading edgeof thewing,andthisvaluewasamumedto applyrearwardto theiirstorifice. Thisassumption is probablygood beyondy/a= 1.5 wherethe chordwisechangesin prcssurcr aresmallback to thefirstorifice,but, in the juncture,tho changesin the chordwisedirectionarelargenearthowing leadingedgeso that this assumptionis probublyinvalid. Third,thecontribution of thebodycrossflowfieldpreviously mentionedis present(eq. (63)). Anotherphenomenonnot predictedby lineartheoryis shownby figure33 (a). Thelineartheorypredictsthatthe g w : 0 0 I I &l -=! . -, . & \ 9‘ \ r -4- I ToP_- d thetiry t ? - -2 (b) .5 mertd!on 1 I \ ,@ \/\x / -3 w Lo 1.5 20 25 3.0 3.5 X437 (a) M=l.48, y/a=l.02 (b) M=2.00,lda=l.m l?muan33.—Premure distributions duetoangleofattack;R=l.5X 10E. wise location of the ori6ees.7 The experimentaldata points from the wing surffLcO on which a comprwsionoccurs (gegative angleof attack) arerepresentedby flaggedsymbols,and the data points from the surface on which an expansion occurs (positive angle of attack) are representedby unflaggedsymbols. The @ures show that the theorypredicts the magnitudeof ~P/a~about5 percentbelowthe average of the aD=&2° experimental vahmsat -ii= 1.48andabout 15 percentbelow experimental valuesat J4=2.00. The chordwisevariationis wellpredictedby thetheory. Lineartheorypredictsthattheparameter~P/a~is independentof angleof attack. Actuallyit is not, and the nonlineaxeffectsof angleof attackcausea spreadin the data. It is possibleto evaluateapproximately thevariation in the parameter/3P/a~ with angleof attackat the wing leadingedge. IWsttheupwashjustin frontof theleading edgewas calculatedusingequation(1) whichis basedon lineartheory. Then the pressurecoefficientsat the wing leadingedgewerecomputedusingshock-expansion theory. Thevaluesof ~P/a~for aB= —6°and+6° so calculatedare 7Thelw9U0110fthsSAfwhffQ!a L9cdyqodftauveksnse.thocdddlomwem nmd9 USfW~*-w@fou ~} ~fi b =nrnPti that thsrom no Id Mach nnnwr theI@@ s&0ofthowiru. TOSfMpWy theskotchesj theBkc!hhdfms vruhtionbehind onthobwlyars represenbxl asstralghtlfnsa g ‘ ‘i@ 0. o’ \ d ‘+, ? -: o -1 ‘ ‘Present theory w 8 ; ~ 0:’ ‘ Q-6° a -2° o 2° O 6° , { f FL 6 Y 0 Q{ (c) I -4 Top_7 meridmn, I 1 \ -3 ‘x // I-CD .M w -2 ; ‘\ ;- Q, @’ T - 1’ : o’ a 8 o 6 e 8’ d % - - : { @ (d) ~.8 o : Presenttheory o .8 1.6 2.4 3.2 Mb (o) itf=1.48,topmeridian. (d) iW=2.00,topmeridian. Fmmm33.—Continued. 4.o 4.8 1327 QU~I-Cfi~RICAL mORY OFWING-BODY INTERFERENCE ATSUPERSONIC SPDEDS - J!ii!b; ,,;~-:-~ 8=45° merld!on ,/ -3 ‘@ G \ 0d d, 8 ~2 Q a 0 O I -1 Present theory: -6° -2” 2° 6° i? ~ 0- [e) @+ Q+ @IT I +@ -4 -4 -3 @j’/ /’7\ ~ 2 @ j b ‘: -1 -3 - ~~ RP w r- c & o -i-1 e !2&’ \o ‘i x : -2 PresenttheoryJ (f) !8 d 0_ : / 1\ o Y I--@ 42! “0=’”25 --j/ o“ 8=45° mendlan o i ! v _ v 0 ~ TrL1--l4’Jl Y 0’ / c1 \o - d ‘--R esent theory -1 (D~ ,8 I I I 1.6 @L n 2.4 1 (h) 1 32 4.0 4.8 0 Mb 5 1.0 1.5 2.0 25 3.0 3.5 v!2a (g) M=l.48, v/a=l.25 (h) M=2.00,~la=l.25 (e) ~=1.48, 0=45°meridian. (f) M=2.00,0=45°meridian. FIGURE 33.—Continued. fiGmm33.—Ckmtinued. lvfachhelixfrom the oppositewingpariel(seesketch)should intersect the tig-body juncture at point 1, causing am incrensoin the magnitudeof DP/uB. Thiseffectis observed Q) ffB= +2°, particularly at lW=1.48. However,nonlinear effectsdueto ~Bcausea hingespreadbetweenthe dtttafor aB=+60 and.aB=—60. All the effectspredictedto occur experimentally for negativevaluesof aB in front of point on the body in the sectionof thereport“GeneralJ?hysical 1 ratherthanexactlyat point 1. The re’hsonis that for I?rinciples”are observedmperimentally, but not exactly negativevaluesof aBa eompreasion occurson the orificed at the pointspredictedbemuseof nonlineareffects. The surfacoreducingthe local Mach numberfrom the free- pressurerisepredictedat point1 of figures33 (c) and33 (d) stmmmMach number,thusincreasingthe Mach angleand ocoursprematurely andis lessabruptthanexpectedfor all causingthe Machhelixto shiftforward. The resultis the anglesof attackbecauseof thebound~ layeron thebody. spreadof thedatashow-n in figure33 (a) nearpoint1. This The variationin local Mach numbercausesthe Mach effectis not shownby figure33 (b) becausetheMachhelix helicesto shift forwardfor the negativeanglesof attack liesmorerearwardfor i14=2.00so thatthe oriiicesdo not as discussedin thesectiontreatingthewing-bodyjuncture. extendto theMrLch helixasshownby thesketch. Theincreasein themagnitudeof f?P/aBexpectedat point2, Figures33 (a) and33 (b) showthatMachnumberhasno x/pa=3ir/2,actuallyocoursat aboutz/@=4 for ~E=—2°. eUectuponthemagnitudeof thehigher-order spreaddueto The deoreasein magnitudeof &/a* that is e.spectedat rmgleof attackor upon the chordwisevariationof BP/aB, point 3 actudy occurs at about x/Ba=4.Ofor aB=—6°. but on the averagethe magnitudeof BP/aB is about 10 Forthepositiveanglesof attacktheMachhelicesareshifted percenthigherfor 31=2.00thanfor M= 1.48. rearward sothattheseeffectsarenotobservedexperimentally Pressuredistribution ontopmeridianof bodyof wing-body in therangeof z//3ameasured. Figures33 (c) and 33 (d) show that, in general,the oombination,— A comparisonbetweenthelineartheoryand experiment for thepressuredistribution on thetopmeridian itf= 1.48dataarepredictedbetterby the theorythanare of the body ie madein figures33 (c) and 33 (d). These the M=2.00 data. For i14=2.00thereis an unexpectedly figuresshowthmttheoryandexperiment arein goodaccord largepre8surecoefficientin front of point 1 for negative for 1328 -5 REPORT125%NATIONAL ADVISORY CO~ I I I I -5 CY-6” a -2” -G +9 2“ 0 r # r’ -2 6“ %3‘“., . I 4 I J’ ‘ O(r 1’ !’ J’ [ I I I Nonlineor theory — (shock-exponslon) a =-6” with upwosh -4 — /B ‘aB= 6“ with upwosh , t t 1 ,, ; !’ ol~ -3 ; .’ w 1 Nonllneortheory — (shock-exponslon) r - --aB=-& with upwosh -4 + t - Ie-OBX@with UpWOSh- -3 @P T o ,/ FOBAERONAUTICS A w : * ‘. y/u=L9>~ +2 \ . y/o . 0 w ~ Presentthmry w o -1 (1) 0+ @~q 0 -5 1 1 i 1 Nonllnmrtheory — [Shock-exponslon) ,---~=-6°w!th upwosh -4 d ;- ,r ‘B. &w,th upwosh 1’ r’ v , w /t I @ % -3 J : 8 ,, / , j3P 0 !? f< , ,( Y T J ,! 1 -e @/ I+ 0° 6° . @ “., , 9 ‘. y,,o=1.92’> BP -J/ G -2 ! ‘-2 J [P resent thmry -1 : ~ 0 I I y/o = 2,5 , 0 , ‘%. 0 $ (Y & 8 ‘.. o ..... - -- Present theory -1 (J) 0 I I 1 I Nonllneor theory ‘ — (shock-expons”@ ,aB=-& with upwosh 4 — . ,aB= 6“ ~“th upwosh I ; ‘ Q w -3 ;; “ , , 6 -5 1 (3+ Q+ q 5 10 CD @ (1) 15 m% 20 2.5 3.0 35 (i)M=l.4S,y/u=l.02 (j) iM=2.00, V/a=l.92 FIcimm .%.-Continued. 00 .5 ID 1.5 2.0 2.5 ? 3.0 : ) X/p a (k) M=l.4S, p/a=2.ELt3 (1) iM=2.00, y/a=2.6S Fmurm&L—Continued. is felt from thewing-bodyjunctureso that the theomticnl pressuredistribution forawingaloneinthebodyupwashfield isusedin thisregion. Figures33 (g) to 33(n)showthaton the averagethe wing-alonetheorypredictsmagnitudesof @’/aB about6 percentbelowthemeasurements for a~= A2° due to the bound~-layer conditionon the body andwill for M=l.48 andabout12percentbelowthemeruwremcmts be discussedin detailin the sectiondealingwithReynolds for M=2.00. The spreadin the data betweena~= +6° numbertiect. and aD=—60is fairlywell predictedby shock-expansion I?ressuxedistributionon 0=45° meridianof body of theoryfor y/a gnmterthanabout1.6 (figy.33 (i) to 33(n)), wing-bodycombination,-Acomparisonbetweenthe linear At y/a= 1.25thepredictedspread(notshown)is too large, theoryandexperiment for the pressuredistributionon the justasfor thewing-bodyjuncture. 0=45° meridianof the body is madein iigures33 (e) and Someof thginterference effectsdiscussedin thesectionof 33 (f). Essentially thesameeffectsareshownonthismerid- the reportentitled“GeneralPh~ical Principles”me illu5 ianason thetopmeridian. tratedinfigures33(g) to 33(n). Theinterference effectfrom Justasfor thetopmeridianof thebodytheexpwimentis, the oppositawingpanelis observedin figure33 (g) where, in general,betterpredictedby thetheoryfor M= 1.48 than justin frontof point1,thesamespreadin thedataoccursm forikf=2.00,andthesameboundary-layer effectsareevident in the wing-bodyjuncture. Accordingto lineartheorythe nearpoint1 for ilI=2.00. disturbanceoriginatingat the nearerwing-bodyjunotum Pressuredistribution onwingof wing-bodycombination,— Bhouldbe felt at point2 of figures33(i) to 33 (m),andthe E.sperirnental chordwisepressuredistributions on the wing magnitude of pP/CYBshouldbeginto decreasefromthewingareshownin figures33 (g) to 33 (n) for the four spanwise done valuethere. Thesefiguresshowthatthe magnitude or&e stationsy/a=l.25, 1.92,2.58,and3.92. In frontof of point2. They of BP/aB doesdecressein theneighborhood theMachconefkomthewing-bodyjunctureno interference dso showthat,in general,the an= +6° and the @= —6° rmgleaof attack. The predictedpressurecoefficientdue tQ crossflowis only about 0.1 in unitsof the ordinateandhence does not account for the observed effect at M=2.00. For @= —2° ttnd~=2.()(), &/a= dips slightlynearpOiIlt1 and thenrisesand overshootsthe aB= —6°data. Thiseflectis 1329 QUASI—CYLINDRICAL THEORYOFWING-BODYINTERFERENCE AT SUPERSONIC SPEEDS 1111 0 -6” Nonlmeortheory (shock-expons,on) -4 — - /RB*-60w,th upwosh- — / /a8. 6° with dpwosh I/ ; ./ a -2” y/u=39 o 2° 0 6° >, .,, @’ / I rK!%Hw@=-Jx%?)& -6° @ Theexperimental andtheoretical resultsfor thespanloading distributionon the wingandbody of the combinationare presentedin figure34. No accounthas beent~kenof tip \ 0; ‘m 20 PJ’‘i i 1 I I 1 1 ! /t 1 ! If w <s @ I I 1% I =12 @co QU u 0 I I - I I i %G 10=3.92 . ~L, e; ,/ ~. : A Q&+$ /’ <> 8# ti da I p I I I -4 + (0) , j ‘Q 0 \ /’ /’ I I 1 ‘k B@ fp , CD @l I I t o y/L7=o 1, I I Sodypving ~ i 20 I I i E!E! I 1 16 6 LO 8 , , -–Present theory e 15 20 ? 25 W3a (m) df=l.48, 9/a=3.92 (n) M=2.00,yia=8.02 30 3.5 I \ -T +(3 . I y Present theory *Q (n) 5 A- 2“ 6“ $“ Q I ,,, Nonlmeortheor~ (shock-expons,on) -4 — - -aB.-E?wllhupwostl [ ~aB.ewtth upwosh t / 1’ o’ Q ,, o’ &j3 Jr” d 0 0 0 i’ , v o -2 >’ / I 1 LPresenttheory I -1 o 0 o 1 [m) -5 o O I ‘Present theory 1 -1 I I I o ‘=’ ~8 \ R12 $$ y \ \ \ t 6 n ~ \ll o \ -y/a=o 8 I I I Fmmm33.—Conoluded. 4 1 1 I I I I 1 I / “/ / datacome togetherin the neighborhoodof point 2. This Rnfiv!Wkm @@ convergence is dueto a variationin thelocalMachnumber @ CDC3 witha~, Thisis shownby the sketchin figure33 (j) where 3 5 6 2 4 I the disturbance fromthewing-bodyjunctureis firstfelt at o ym point 3 for a~= —6°,wherwieit is iirstfelt at point4 for (a) M=l.48 Since themagnitudeof ~P/aB beginsto decrwse aD= +6°. (b) M=2.00 m soon as thisdisturbance is felt, the magnitudeof @’/aB due to angle of attaok; beginsto decreaseat a smallervalueof z/flafor a==– 6° Fmmm M.-Span load distributions R= L6X1OO. thunfor aB= + 6°, thus causingthe convergenceobserved. The sketchesin figures33 (k) and 33 (m) showthatthe effects in calculatingthe span loading because the twist of disturbance fromthewingtipshouldalsocausethea~=+ 6° the wing makea a determinationof these effecti a ~cult andaD— –– 6° datato cometogetherbeyondpoint6 in these wing problem. The theory is thus valid only inboard of point 2. If an approximateansweris needed,the Busemann figures. The figuresshow that the data not only come togetherbutactuallycrossoverandreverseorderjustbeyond tip solution (ref. 20) can be joined onto the span loading at point 2. l?igure34 showsthat the theoryis generallyabout point6. 10 percent below experiment. This result is not surprising The only significanteffect of Mach numbershownby in view of the comparisonsbetween the experimentaland figures33(g) to 33(n)is theapproximately 10-percent-larger theoreticalpressuredistributionsof figure33. Of particular wdueaof @’/aD for d!f=2.00thanfor ~= 1.48. Nearly40 interestis the fact that, in general,the higher+rder &&3rpercentof thisdifference maybe dueto differences in stream encesduetc a~thatwereso largefor thepressure-distrlmtion unglein thewindtunnelfor thetwoMachnumbers. resultsarenegligiblefor the spanloading distribution. The Spanload distribution.-spanloadingis definedfor both only exceptionis on thetop of thebody, g/a=O, andM=!2.00, where the effects of boundq-layer and shock-waveinterthebodyandthewingaatheintegral(seeeq. (57)) m 1330 FORAERONAUTICS REPORT125%NATIONAJJ ADVISORY COMMITTEE actionarelarge. The explanationfor the independencefrom aB is that the higher+rder effects on the top surface are compensatedfor by higher+rdertiecti of the samemagnitude on the lower surfaceso that the net loading per unit angleis very nearlyindependentof angleof attack. EFFECT OFWING-INCIDENCE ANGLE Comparisonis made between theory and experimentfor thefig-incidence casefor dah takenat a Reynoldsnumber of 1.5X106imd Mach numbersof 1.48and 2.00 tith aBeOO and~T= —1.9° and —5.7°. It will be remarnberedfrom the sectionon the accuracyof data that thereis no appreciable error due to stremnangle for the wing-incidencecase, and the comparisonbetween experimentand theory reflectsthis fact. fw 111111 u -1.90 Q -5.7” r-11 4 -3 +j2 -1 0 I -4 y/o .1.027 ,1 .7” -4 -3 “: -3 .Nonhrmr theo BP - #r “. (shock-exponsi{ T J’ iw=-5.7” I I I I -2 < Illllmrr-1 ‘. -1 M / W“” -2 I /I I I I I BP -F -1 I <Presenttheory 0 (o) @ o -5 -’.[ y/u=lo2; -4 L(D /’0= i 43 / , Nonlineartheory + tr .(shock-exponsion) -1 /# -5.7° Q x/& (o) M=l.48, topmeridian. (d) i$f=2.00,topmeridian. Fmmm35.—Continued. 35 (a) and 35 (b) show that the spread predicted & this mannercanaccountfor theexperimental results. Thoprematureincrease in the magnitude o f L@/iwnearpoint 1 is -2 \ & dueto theeffectof theoppositewingpanelandvariationof > . the local Mach numberas discussedin the anglo-of-attnclc @ f No significanteffectof Mach numberwas found section. -1 1 i on theparameter19P/&. L Presenttheory Pressuredistribution ontopmeridianofbodyofwing-body (b) combination.-Acomparisonbetweenthelineartheoryand 1.5 o .5 M LO 20 experiment for thepressuredistribution on thetop meridian xl~a of the body is madein figures35 (c) md 35 (d). Tlmso (a) M=l.4S, ~/a=l.02 figures showthattheoryandexperiment arein good accord (b) iu=2.oo, v/a=l.02 for {W=–1.9°. However,nonlineareffectsdueto i~ causo FIGURE35.—Pressuredistributionsdue to wing incidence; R= 1.5X 105 muchlargerclHerences betweentheoryand experiment for . Pressuredistribution in wing-bodyjunctures.-Thelinear i~= –5.7°. This is consistentwith the angle+f-ottaok theoryandesperimentnl pressuredistributions in thewing- casewherethe higherardereffectdue to aB m8 hwgofor body junctureare comparedin figures35 (a) and 35 (b). negativeanglesof attack. All of theeffectsobservedfor theangle-of-attack casecluo The symbolsin thefiguresareflaggedto be consistentwith to disturbance fromthewingarealsoshown to occurfor t,ho theuseof flaggedsymbolsfor negativeangle-of-attack data. casein figures35 (c) and35 (d). Thopoths The figuresshowthatthe experimental valueaare about5 wing-incidence aspredictedby lineartheoryareshown percentbelowthosepredictedby the theoryfor iW=—1.9°. of thesedisturbances Themagnitude of thenonlineareilectsdueto&is predicted on the sketch,and the positionsat whichthe effectsnro at the lendingedge by shock-expansion theory. Figures expectedto occurareshownon thenbscissn. .-. . . .— --- . . . . -—--- . . —.. -4 ---- 1331 INTERFDRENCE AT SUPERSONIC SPEEDS iw iw u -1.90 e -5;7” w -5.7” /( & ‘. / -3 r--Nonlinwr theory + -(shock-exponsion) i~ -5.7” ; 0’ $j2 0° y/O =125 -5.7” 0° , * J’ w -1 o’ _ c‘ d - + T // d ! d — d ,, ~ Present theo ry o (e) (9) Q~ 0+ @ Q OJ I -4 - 0=45” i merldlan -3 Y/O= 1.25 ,/ Y\@ ~ , + , / / _ ~ ~- 2 / -1 o ~ + -Nonlinear the~ry -(shock-expansion) / J’ > 0° 8 > d d o“ /’ iw=-5.7° F ‘PresentIheary 2** / & g ; f-.,— + // e t “Present theory (f) J.8 o @, 8 1.6 ok 24 X/@ (h) @ 3.2 4.0 4.8 (o) M= 1.48, 0=45° meridian. (f) 31=2.00,0=45°meridian. ~GWRE 35.—Continued. The only significanteffectof Mach numberapparentin figures35 (c) and 35 (d) is the largerboundary-layer and shock-waveinteractionfor 1W=2.00thanfor M= 1.48near point 1. The .M=2.00 experimental data for &= – 1.9° dip andthenovershootat thispoint. Thisphenomenon is discussedin more detailin the sectionof the report on Royuoldsnumbereffect. Pressuredistributionon 0=46° meridian of body of wing-bodycombination,-Linemtheoryis comparedwith cxTerimrmt al resultsfor the pressuredistributionon the 8=45° meridianof the body of the combinationin figures 36 (o) and36 (f). The effects’shownby thefigureareconsistentwith thoseshownfor the angl~f-attack case and for thewing-incidence caseon thetopmeridianof thebody. Pressuredistribution onwingof wing-bodyoombination,— A comparison betweenlineartheoryandexperiment for the pressuredistribution alongseveralspanwise stationsismade in figures35 (g) to 35 (n). The experimental data (figs. 35 (k) and35 (1))showthat,in generil,&/& for their= – 1.9° datais constantandnearlyequalto –2 in frontof thohf.nchcone. BehindtheMachconethetheorygenerally predictsvaluesabout5 percentabovetheexperimental data for im=—1.9°. The higher-ordereffectsdue to & cause .5 1.0 1.5 20 25 3.0 3.5 .%% (g) 31=1.48,I//a=l.25 (h) M=2.00, ~/a=l.25 FIGURE35.—Continued. largerdifferences betweenlineartheoryand experiment for iw= —5.7°. The figuresshow that these differencesare wellpredictedby shock-expansion theory. The effectsdue to the influenceof the Mach wavesare the sameas those discussedfor the angbof-attackcase. Thereis no eiTect of Machnumberevidenton thewingof thewing-bodycombinationotherthanthatpredictedby lineartheory. Span load distribution,-A comparisonbetween the theoreticaland experimental resultsfor spanload distributionon thewingandbody of thecombinationis madein figure36 for &= –1.9°. The decreasein the spanloading dueto thewingtip wascalculatedby themathodof Busemann(ref.20). In part (a) of figure36,interference from both thebody andthewingtip is feltbetweenpoints1 and 2, butinpart(b) no interference is feltbetweenpoints1 and 2, and the spanloadingis that of a two-dimensional wing alone. Figure36showsthat,in general,the experiment is 5 percent lower than the linear-theoryprediction. Site all pressuremeasurements for the wing-incidencecase were made for negativevalueaof &, the experimental values usedin this figurewere obtainedby doublingthe values of 19P/iT obtainedfor iW=—1.9°ratherthanby considering 1332 -5 Q- y/a= /< /’ l-9~” Q~ -4 .:- - Nonlineor theory ) – ( sho:k- expansion , , IW=-5.7” ,,’ + o fi;3 G -2 FORA13RONAU!HCS REPO~ 125%NAT’IONUADVISORY CO~ w- — L w -5.7” u -1.9” o“ . -5- % iw 0 -1.9° Q -5.7” ;W 4 ,rNonllneortheory -3 ~(shock-exponsion)— ifl-5.7” BP G / I J c‘ u c“ d -2 <f i, - -1 - Present theory -1 w @ -%- . ,/ / Present theory>’ # “ f “ lY— <~ I (k) (i) 0 B+ P 0 P -5 -5, y/o = -4 “2-- .- +, w’ ‘= I Nonlinear theory : ) -3, : 1 (sho$k-exponsicm /w.-5.7” P / [W J w ~ -2’ I ‘, : -1 I I I --Present theory 0 (i) .5 Q 1.0 I &Q-!O I ,rNonhneartheory ~shcck-exponsion) iw. -5,7° &3 / J u a @ 0’ -2 u Q I y/a= 2,5s 4 ~ “ ,/’ 1 o) 1.5 ,+ / PresenttheoryJ’ -1 - 2.0 2.5 3.0 3.5 x/’& fi) M= I.48, Idsz=l-92 (j M=2.00, I//u=l.92 I?mJEE 35.—ContinuecL two surfacesas for the angle-of-attackcase. Since this increasesthenonlinesreffectsof & ratherthanmhimking them,only the i~= —1.9° data (for whichthe nonlinear effects are small) ware plotted. However, de praent methodis applicableto the predictionof the net span loadingfor largervalueaof& becausethenonlineareilects on the upperandlowersurfacestendto canceleachother, asdown for theangle-of-attack case. EFFECT OFREYNOLDS NUMBER The primaryeffectof Reynoldsnumberin thisinvestigationwason thebody. Reynoldsnumberwasfoundto have no significant effecton thepressuredistribution on thewing of the combinationfor the range-investigated.Figure37 showstheboundary-layer condition,x observedin schlieren pictures,on top of thebodyat thepointof intersection with the Mach wave from the leadingedge of the wing-body juncture for R=O.6 and 1.5X108. The transitionand separation regionsshownin figure37indicateapproximately therangesof a~andiwin whichtheboundarylayerchangw from laminarto turbulentor separatedflow at the Mach wavefromthewing-bodyjuncture. In lamiParandturbulentregionstheflowremainslaminaror turbulentacrossthe ‘o .5 Lo P P L5 2.0 .2.5 30 : X/& (k) M=l.4S, ~/a=2.6S (1)M=2.00,~/a=2.68 ~GlJE13 35.—Continued. Mach wave. Someof the Reynoldsnumbereffectshown by&we 37maybe dueto changea in theturbulence levelof thewindtunnel. It is to be expectedthatdataobtainedfor severalarsglo combinations withinanyoneof theregionsshowninfigure37 wouldshowno significantdifferences dueto viscouscdfects, but thatthesedatawoulddiilerfromdatain otherregions. For example,for M= 1.48 and R=O.6X 106the dato for U*=—z” with &—_ —0° should dMer from the data for ~~=—6°with&=OObecausetransitionoccursat theshock wavefor thelattercasebut notfor theformer. Thatthere is shownin iiggire38 wherethepressuredisis a d.ifEerence tributionson top of the body for thesetwo conditionsaro compared. In front of the shockwavetheflowis laminar for bothanglesof attackso thatthereis no difference in tlm two setsof data. However,for ff3=—6° transitionoccurs at theshockwaveandthepressurerisesaspredicted,whilo ——2°laminarflowpersistsbehindthepointat which for ~3— theshockis expectedandthepressure riseoccursmuchlater thanpredicted. Jn fact, the pressurerise doesno~occur untilthetransitionpointshownin thefigureisreached,and thenit tendsto overshoot. Thisphenomenon of thedolnyod pressurerisewasobservedto occurwheneverlaminarflow QUASI-CYLINDRICAL THEORY OFTTTNQ-BODY INTERFDRENoE AT SUPERSONIC SPEEDS 20 -5” -4 16 Nonhneortheory - (shock-expans,on) -3 ~ -57° - / BP ~ j ~~ Q , I r’ L ‘-Present theory *$ ]2 . ~~~s c ‘>’ * 1 d -2 o a - 1.90 o -57” : 0° *O -5.7° ;* / \ c>~ r -1 - 4 (m) P o (cl) -5 ❑ 1 I I 1 I I \ / Tip )~ solution” \ \ \ I 1 @~ 1 I I I ‘is ~ w t d / \ ~ Presenf theory I2 I %1%* ~n ~’ 8 :Presenttheory-~ , I/ I I n ~ - . 0 -. . %* 1 -1 I I I ‘ ,J% \ I 1 16 ~ \ (n) o , I(Z)O /*- ,.@ L. ~~ d ,,’ ‘\\ \. ,/ ~‘CQTIbirwd effects of - tips ondinterference I I 1 o e=> !’5.7° /“ -2 ~ x, i ,+0” I 1 I 20 y/O392 >,~~,~ ~ ~3 1 I 1 1300g o I \ , - Nonlmeortheory f -(shock-expormon) /w=-570- -1.9°I I I I 1 I Present theory r 1 / 1 / -J :I @+ P -4 ‘L—-yjo=o Iw ; /w y/O .392 1333 ,@ .5 1.0 L5 +0 2.0 4 25 30 3.5 X/@ (m)dfEM3,v/a=3.92 (n) M=2.00,v/a=3.92 FrQURE 36.—C!onoluded. pmsistedbeyondthepointat whicha shockwavefromtbe wingwas predictedto exist. Whentie d.kturbance from tlmwingis anexpansion wave,thepressure-coeilk.ient curve9 rise approximately as predicted,regardlessof the type of bounda~ layer. The conditionsfor which this delayed pressurerisewasobservedto occurareshownby thedotted aremin figure37. Two otherexampkaof thisphenomenon may be seennearpoints1 of iigures33 (d) and35 (d) for ——2°,&=OOandaB=OO, iW=—1.9°,respectively. an— In figure39,thepressuredistributions on top of thebody mecomparedfor threeReynoldsnumbers. It isshownthat data for the two highestReynoldsnumbem,R=l.2 and 1.6X 10°,agreewell,whilethe datafor thelowestReynolds numberdifFerfromthosefor thehigherReynoldsnumbers. COMPARISON WITHTHRORYPROMOTHRRSOURCR9 Thethreetheoriesforwhichnumerical resultsareavailable am comparedin figure40. The theorydueto I?errariwas obtainedby cross-plotting from a &ure in reference22 so thatthecurveshownis onlyappro-te. The thmretic~ curvedue to Morikawais obtainedfrom tabulatedrcmdts given in reference4. The experimentaldata region was determined by theextremevrduesobtainedfor aB= %2° for ! I I : Tip Sotutkm’ / / ( (b) :ody~Wly n 1 +@ 2 3 )’@ ‘, \ 4 5 6 (a) M=l.43 (b) M=2.00 FIGURE f36.-SpFLn load distributions dueto wing inoidanca; R=1.5X106. Machnumbers1.48and2.00. Fromthisfigureit appears thateitherthetheoryof Morikawaor thepresent@en-y can be usedto predictthepressuredistribution in thejuncture theoqrpre&ct9 of a wing-bodycombination.l?sITfi’s valuesthataresomewhat lowattheleadingedgeof thewing> butit appearsthatif numerical resultswereavailable beyond z]pa=0.7, they would lie within the experimental mnge. For a morecompletecomparisonof the theork of Ferrari andNjelsen,seereferences 9 and23. Exceptfor thepresent theory,no numericalresultsfor thepressuredistribution on thebodywereavailablefor comparison. CONCLUSIONS A theoryof wing-bodyinterference for supersonicspeeds hw beendeveloped. The liheorywasappJiedto the calculationof theseparateeffectsof bodyangIeof attackandwing incidenceon the prwsuredistributionsactingon a rectangularwingandbody combmation.on thebasisof comPmiaon betweenthe theoreticalpredictionsand experimental 1334 FORAERONAUTICS REPORT 125%NAI?1ONMJ ADV180RY COMMI’ITElll Laminar 111]111]] Turbulent ~:;:~ -;. . . . . . . ~~~ Trcr.siticm ~///~ . Seporotion -4 cf R=l.5xi06 d L2X106 & 0.6x106 Delayedpressure ise region o # &3 $ 0 v u’ d w -2 0’ Presenttheory— -, -1 w Y !8 0 W a 1 r! l.’ d .8 x/b 24 3.2 4,0 4.8 l?mmm39.—Effect of Reynoldsnumberon Pressure distribution on topmeridian ofbody;~= 1.48, C@=~6°, andiW=OO. (b) .5 Lo t t 1.5 20 , 25 1 , 30 35 1 40 x/~o FrGuan40.—Comparison amongseveraltheOretiOSl caloulatione of pressures in thewing-bodyjunctureof the combination; anglo-ofattackcase. (c) Wing-incidenceongle,;W deg (b) M=l.48, R=1.5x1O$ (d) df=2.00,R= 1.5x 10’ R=O.6Xl@ (C)iif=2.t)o, R=O.6X NY (a) M=l.Q FIGURE37’.-BoundaIlayerer condition on top meridian of body point of intereeotionwith iUaohhelix from wing. -4 u -2” 0 -6° at c -3 Q w u w 0’ d Presen! theory-Y, lj2 d o’ . -1 @ o !.8 r P @ o t t.-Tronsdton point fora’-2° Trongtlon..j point fora~~-6” o .8 1.6 x@o 24 3.2 4.0 4.8 l%um 38.-E!Teot of transition positionon pressure distribution on topmeridian of body;M=l.48, R=O.6X10$,andiW=OO. measurements,the followingconclusionsare drawn: 1. The presenttheory predicts the pressuredistributions due to tig incidenceabout 5 percenthigh for anglesup to 2°. However, the pressure distribution due to angle of attackispredictedabout5 percentlow for M= 1.48andabout 10percentlowatilZ=2.00for anglesbetween+2° and—2°, 2. Nonlineareflectadue to angleof attack and wingincidenceanglearelarge. On thewingthe differencefrom lineartheorydue to nonlineareffectsof anglecan be predictedby shock-expansion theory,exceptnearthewing-body juncturefor theangle-of-attack case. 3. Spanloadingwas shownto be predictedwithin+10 percentforboththebodyandthewing. Thepredictedsprm loadingsarehighfor thewing-incidence caseandlowfor tho angle-of-attack cnae. 4. For the angle-of-attack case,the pressurecoefficicmts on the wingare experimentally about5 percenthigherfor M=2.00 thanfor i14=l.48,whenreducedto a forxnthatis theoreticallyindependentof lMach number. Otherwise lMachnumberhasno importanteffect. 5. ViiccmsefFectsareimportintonly on the body whore tbe shockwavefrom thewingcnuseslargeboundmy-lmyer andshock-waveinteractions for someangleconditions. Amm bBoN-4ww LABORATORY NATIONAL ADVISORY ComnmmnFORAIQRONAUTICS MoF~~ FIELD,CALIF.,Jan.4,196.4 APPENDIXA DECOMPOSITION OFBOUNDARY CONDITIONS OFWING-BODY COMBINA~ON A detailedanalysisof theboundaryconditionsfor a wingbody combinationis now carriedout for the following conditions: 1, Thewingis a flatplatein thez=O plane. 2. Thebodyis aninfinitecylinder,ther=l cylinder. 3. Thelendingedgesof thewingaresupersonic. 4, The Mnchnumberis-@ Considera wing-bodycombinationcorresponding to figure 4 (u) and shownin greaterdetailin figure41 (a). The pohmtidsfor theflowmustsatisfyseveralconditions: 1. It mustbe a solutionof thewaveequation. 2, It mustproduceno flownormalto solidboundaries. 3. It must.produceno upstream-moving disturbancea.s mdon thebody %+); ~=~ I!hefirst step in the decomposition is to break yainto a ?otentialdueto flow alongthe z axisandone alongthe z ti in accordancewiththesuperposition principle Potential Pa v () ap z-u+ +d (b) ttttt Potential: h Va* “ #f + % + av ~ ~on body: () r= +h (c) andcrossflow. (a) Pamdlel (b) Parallel flow. (o) Crossflow FI~IJRE 41.—Decomysition of boundary ccmditiona. If pais thepotentialfor the completeflowaboutthewingbody combination,then the boundaryconditionon the wingis ape 2=() —= - irvq Z)z p. Cos Cq?=vCosq?+ O o = o +V sin ff, O + o O ~d + y, v= o + 17 o= o + o Yb = ap z Z-D+on wing:—imV= () ttHt VaB + The flow conditionsat infinityand the prescribednormal velocitiesat the combinationsurfacealso obey the superpositionprinciple. The next stepsin the decompositionare to resolverfb and PCinto potentialsthat can easilybe computed. The decomposition of vbintowing-alone andbody-aloneproblems isillustrated in figure41 (b). +’, + pb on wing: —iIvv = —-’iryv+ ap on body: a~ r=l (-) “ = Vsina.= z ‘& (M) b (Al) $Stnmthe snrfwsonwM*tbb& amdltbmsm osivenm P8mIIolto thezaxi& Inordwtodtfferontfrdo npstream fromdownsban. It Isneccsmy to IWO this mndltlon o– o =5f2@ n-o ‘&v Cos2n&5f2n(z) Cos2n8 n-o The potentialP, due to the wing aloneat incidenceir producwa velocityfieldnormalto the r= 1 surfnceto be occupiedby thebody. Thenormalvelocityfieldis decomposedinto a Fourierseries. Sincethe wingleadingedges are supemonic,we can considerthe flow above the z= O planealone. To preservethewing-alone boundarycondition whenpdis added,wemustconfineourselvesto cosineterms, and,becauseof a verticalplaneof symmetry,wemustretain onlycosinetermsof evenmultiplesof 6’in theFourierseries To counteractthe distortionof ther= 1 surfacedueto the wingalone,a body withoppositedistortionis addedin the formof rfd. 1335 1336 REPORT125%NATIONALADVTSORY COMMITTEEFORAERONAUTICS The decompositionof pe into three componentsis convenient;a componentprassociated withcylindricalcressflow, n componentPOdue to a distortedbody alone,and a componentm dueto a twistedwingalone. Potential: P. = + Qf 0=0 ap on wing O =aBV ap on cylinder: O = z () ,.~ + ~h o + o o – +0+0 awv=aBv ()z *..+ Pr 1 (b) + 1+ o The crossflowassociated withq~causesanupwashdistributionin the z=O planewhichrequiresan equalandopposite twistedwing to counteractit. Againthe r= 1 surfaceis distortedby the wing-aloneflowfield,and a cylinderwith oppositedistortionisintroducedin theformof POto counterI act thedistortion. VaB +nsoh(z) ~s m-n~fw 1+$ () ~s z~ Two convenient casea in the wing-body interforonco problemare differentiated;the wing-incidencewe in which ,aE=() but & #O and the @e-of-attack case in which case“isropremntcd iw=O but aB#O. The wing-incidence by m andtheangle-of-attack caseby PC. APPENDIXB FORFIRSTHARMONIC;WING-INCIDENCE ASYMPTOTIC SPANLOADING CASE The span loadingfor the first harmonicas given by equation(57)is Theseintagralsaregivenin termsof AngerandWeberfunctionsasgivenon page310of reference24. JX2-%9’G%) Jorsin0 cos(i$sin0)d8=T~1(b) J0rsin0sin (1ssin0)&=7rJ1(z%) (En) Let us takea=l, ~=1, and Pu= –P~=Po; thenthe span loadiruz is -2JX3*T%J%’*%“2) (Weber funotionl (Angerfunotion) Thevalueof Fe(s)is then The methodof calculatingthe asymptoticformulafor the F.(s)=+V [E,(@+iJ,(i@] @7) spanloadingis tit to expandthe Laplacetransformin a series abouttheoriginandthento taketheinversetransform For smallvaluesof s theAngerandWeberfunctionshave termby term. theexpansion Fromequation(17) ‘[-2JWAI=[%)I[WI ‘ ‘3) It is nownecessaryto findtheseriesabouttheoriginfor the twopartsof thehmxfonnof equation(B3). Fromequation(47)thereis obtained m%)=: [l+o(i.s)q 1 .J,(@ ~; [Zk+o(iloal so that (B8) (lx)) Fo(8)=L~.(z)]=L (: J*lZ ‘&vein e de) (B4) The ratioof Besselfunctionsgivenin equation(B3) has an expansionaroundthe originwhiohis a doublyinfinite seriesof productsof powersofs andlogs. ‘0(8)=wJme-”dzJb’’shod ‘%JN--ILO’-=” () F’0(8)=%V J Lf 1 (B5) Ko(@ = ‘(’Y+lOg@)-lOg 8+0(87+0(~10g8) 1 8log : +0(8)+0(@log8) Z’(8) x –;–~ “sinfhos(hsine)do+i‘Sinesin(tisinqd 0 0 (B6) ‘(w) ~:(8) ‘8 (’Y-l-log r/2)+8log 8+0(89+0(8’ 10& 8) (B1O) QU~I=~~CAL ~ORY OFWTNQ-BODY INTERFE~NCD ATSUPERSONIC SPEEDS Fromequations(B9)and(B1O)we get ‘[-21(3”1 =(*)(~q[:+0(8?] 1337 Takingthe inversetransformwith the help of reference25, page 282, we obtain the desiredresult. [8(7+log7’/2)+ (III’) 8log8+0(93lo&s)] SOthat For anyMachnumberandbodyradius -’J1’2)’G)”:@(* “2” ‘[-21(2) ’’ZI=:[(’+1:TP)+ 1 logs n—-~ log8+0(8lo&8) 8 (ml) (B13) APPENDIXc DETERMINATION OFWING-ALONE POTENTIAL FORANGLE-OF-A’ITACE CASE Tho iimt step in calculatingthe potentialfor the wing of thcaewing sectionsand the results added together to alonewill be to set up a mathematical model. Sincethe obtain the potentialfor the entirewing alone. Thus, reposedwingof thecombination operatesinthebodyupwash fieldwhicheffectivelytwiststhewing,thewing-alone model0 isconsidered tobe twistedin themannerpredictedby Beskin Sincethe wing may be consideredto be composedof an upwaahtheoryfor y2 a infinitenumberof flat,rectangular wings,the expression ““=+-$)=”’C+3 ( ,(.W,,]+ -zcos-&pcosh-y&+ (cl) The concealedwing may be extendedthroughthe body r@on in anymanner$ut,sinmequation(Cl) @v@ ~w=’& at both wing-bodyjunctures,it is takenas a flat plateat Qngleof attack‘2~B(seefig.42). I -4 S::::n ~ Left bolf- wing+ 1 -3 1 -2 -1 0 y/o i 1 Right half-wing I 3 2 I 4 (C3) hornreference6 for thevelocitypotentialof a flat, rectangularwingwillbe usedasthebasicrelationfor the calculations. Equation(C3) gives the velocitypotentialat any point (z,v,z) due to a flat, rectangukm wing at angleof attackaw, terminatingat V= O,and extendingto m along thepositivey axis.l” Sincethe twistedwingwasshownto be equivalentto a baaicflat-platewingat angleof attack2“’ plusan infinite numberof modifyii flabplatewings(seefig. 43), the potentialof therighthalf-wingmaybe writtenas f%VE=d2”Bd/-l)+$’ FmSJRE 42.-fWqMof wingalonewitheffeotivetwistproducedby bodyupmshfield;angle-of-attaok case. db,v-m) (C4) Q~=2aB+fial+Aa2-7 1 Thetwistingof thewingis accomplished by superimposing a seriesof flat-platewingsupon a basicflakplah wing at a~=2aB(seefig.43). Each of the superimposed wingsis at an incremental angleof attack,andeachsuccessive wing terminatesat a valueof y greaterthanthe previousone. Asthemincremental valuesof abecomeinfinitesimally mmll, 1 a~=2(fB 1 theresultingpotentialapproachesthat of a wing with the aw=2aB+Aal l,L– I I I i twist defied by equation(Cl). I I g thewing-filonepotential, For thepurposesof determining i::J the wingis consideredto be composedof the threeparts Basic wing Twls!edwing shownin figure42: the right exposedbalking, the left exposedhalf-wing,and the wing sectioninsidethe body. I?mmm4.3.-Formation of infinite of twistedwingby superposition The perturbation velocitypotentialis determinedfor each number of Satplates. (-.<- ~ 1130tha andpnmtnkenmaolty. -1~’fflr: NThetopandbottom wfng:~ arefl mndatiMWmdmti 1338 FORAERONAUTICS REPORT125%NATIONMJADVISORYCOMMTI’PDE The &t termon therightin equation(C4)is thepotential dueto the basicexposedhalf-wingwhichterminates at the wing-bodyjuncture,y= 1, and is at angleof attack2aB. The secondtermis thepotentialof theiVmodifyingwings eachat angleof attackAafand terminating at y= qiwhere l<qi S OJ. Since equation(C3) is homogeneouswith respectto a, equation(~) maybe written %VE=dzaB!v—l)+$’ 9(1 ,?J-@a; z (C5) Fromequation(Cl) da= —— 2? dY (C6) FIQUWS 44.-Uppervalueof y included intheforoMacheonoomonot ingfromPI;p=l. coneemanating fromthearbitrarypointPIfor19=1tlmt Therefore, %R=d2~B,Y-1)-zaB ~9“q(l,y—q)$ J Z12=21*+(q.~J~ (C7) Therefore,theupperlimitof integration is wherethelimitsof integrationaredetermined by therange (08 FY1+4Z=7 of y on thewingincludedin theforeMachconeoriginating from the point for whichWE is beingdetermined.From Thelowerlimitof integrationis at thewing-bodyjuncture figure44 it is apparentfromthe equationof thefore Mach y=l. Fromequations(C3), (C7),and(C8), Cmryingout theintegrationandcombiningtermsgives plane,thepotentialfortheotherhalf-wingissimplyobtmine by replacingy by –y in equation(C1O). (C12 %VL=wR(%—?/, z) 6+=) cOsh-’,@+q-x Cosh., (y’+&) ,&–y’-zs (z+Y+)cOs-’ Z’-y(y-l)-z’+ ,- ‘d’-l) J(y-1)2+ z?&=2 1} *CR.,. = &&4)+ {(c@&,+c z n- . wings terminatesat the wing-bodyjunctureat y= —1, figure42,andintends(throughthebody)indefinitely in the positivedirection. The otherwingterminates at theother wing-bodyjuncture,y= +1, and also extendsindefinitely in the positivey direction. The d.iilerencebetweenthe potentialsof thesetwo wingsis the potentialof the wing sectionin thebody (Cll) The expressionfor q (aW,y) is given by equation(C3). Since the model is symmetricalabout the verticaly=O —’e ) (Clo) G~+y—2 Equation ((210)gives thepotentialdue to the exposedright half-wing. To thismustbe addedthe potentialsdue to the othertwo wing sections.The potentialdue to the sectionof thewing in the body regionis simplythe differencebetween the potentirdsof two flat wings at a~=2aB.Oneof these wB=P(~B,Y+l)—9(~B,Y—1) Combiningequations(C1O),((211),and (C12) gives th( potentialdueto theentirewingalone. cosh-1 e~- &ti+2) (Y “ cosh-’ Ji&7 –’(y-l) +&--#-z X(y+l) [ Cos-k=mwe+cos-kmw= x/J (y’+”) ~~2 ~sh_, z’-y(y-l)– m ) cosh_l [ 1+ &–y(y+l)–& w– ‘l+2”(z-z)} (013; Investigationof ~ as givenby equation(013) revorh thatthereare threeregionson the body in whichthe ron. part of this espreaaion assumesdiflerentforms, A fourt,l region,regionIV, is entirelyon thewingandis, thereforo not necesswyfor determmm “ “ g thenormalvelocitydistribu tion on the body. Theseregionsare determined by three — 1339 – INTDRFERENCFI AT SUPERSONIC SPEEDS QUASI-CYIJNDRIOAL THEORY OF WING-BODY ($:2+Y+2 ) co&-’ ~~~+(+z) 4/+1) —z(?J-l) [ 1+ cos-’4@=Fw4=+c0s-14 mww= ~sh_, &–&–y(y-l) (?/’+ .9%3=7= [ coah_,3?-&-y(y+l) ,- 4==– ]-2(.-3,.} (C14) RegionII: .— 1 * +- ,w=-- r -. CoS-’;~)[ L+ +2 G Y–2) cosh-l~&-–– (&-z) (Y’+a&FICWRB 45.—Intersootion of oharaotetiloMaohconeswithz=Oplane showing corresponding regions. clmracteristic Mach cones. One of the Mach cones originates on the body axis at z= O,and the other two originate at the leading edges of the two wing-body junctures (see fig, 45). The expressionsfor the realpart of ~ in the three regionson the body are: Region I: VCYB VW. .7 —x {[ cOs-ld~2.w+ “(Y-l) co&_, &–&–y(y–l)_x=_zlT 1 (CM) RegionIll: Va PIY=—~ –~ ~o,-1*_ — 3 (~+y–2) cosh-’ d+2– *z)cos-’ –(y–l)+coa-l COS-l - J!!& – 1 (Y’+aJ7+&–& ~~-+‘*(Y-l) _, &–&–y(y-g_2(z_z)T m Cos 1 (C16) 1340 FORAERONAU!ITCS REPORT125&NA~oNAL ADVISORY CO&IWTT13E REFERENCES 13. Pitt-g,WifliamC., Nielsen,Jack N., and Gionfriddo,MnuricoP.. 1. Spreiter,JohnR.: The AerodynamicForceson SlenderPlane-and ComparisonBetweenTheoryand Experimentfor Interference Cruciform-Wingand Body Combination. NACA Rep. 962, PressureFieldBetweenWingand Body at SupersonicSpeode 1950. (FormerlyNACA TN’s 1662and 1897.) NACA TN 3128,1954. 2. Browne,S.H., Friedman,L., andHodes,I.: A Wing-BodyProblem 14. Tsien,H.: SupersonicFlow Overan InolinedBody of Revolution in a SupersonicConicalFlow. Jour.Aero. Sci., vol. 15,no. 8, Jour.Aero.S&, vol. 6, no.12, 1938,pp. 480-483. Aug. 1948,pp. 443-452. 15. Lagerstroq P. A., andVan Dyke, MiltonD.: GeneralConsidera 3. Ferrari,Carlo:InterferenceBetweenWingandBodyat Supemonio tions About Planarand NonplanarLiftingSystems. DouglaE SpeedE-Theoryand NumericalApplication. Jour.Aero. Sci., AiroraftCo., Rep. No. SM-13432,June1949. VOL15,no. 6, June19@ pp. 317-336. 16. Ward,G. N.: The ApproximateExternaland IntarnolFlow Pact 4 Morikmva,GeorgeK.: The Wiig-Ikdy Problemfor Linearized a Quasi-~lindricalTubeMovingat SupersonicSpeeds. Quart. SupersonicFlow. Calif.Inst. of Tech. DoctJ3rd This, 1949. Jour. Mech. and App. Math.j vol. 1, pt. 2, June 1948,pp. GALCIT,Jet PropulsionLab.PR&l16. 226-246. 5. Bolton-Shaw,B. W.: Wiig-Body Interferenceat Supersonic 17. Fraenk+ L. E.: On the OperationalForm of the Linomized Speede-RwtangularWiig at Inoidenceon a Body at Zero Equationof SupersonicFlow. Jour.Aero. SOL,vol. 20, no. 0, Incidence. EngliehElectriuCo. Rep. LA. t. 039. 1953,ReadersForum,pp. 647-648. 18. Mersnwq W. A.: NumerioalCalculationof Certain Inverso 6, Nieken,Jaokh’., andMatteson,FrederiokH-: CalculativeMethod LaplaceTransform. (R6mun6)Vol. 2 of Proo. Intl. Cong,of for Estimatingthe InterferencePremre Fieldat ZeroLift on a Mathematioiane, Amsterdam,1954. SymmetricalSwep&BaokWiig Mountedon a CircularCylin19. Lamb,Horace:Hydrodynamics. SixthEd., Dover Pubfloatione dricalBody. NACA RM A9E19,1949. 194S,p. 527. 7. Nieke~ Jack N.: SupersonicWing-Body Interference. Calif. 20. Busemann,Adolf:Intlnitecimal ConicalSupemonfo Flow. NACIA Inst.of Tech. Doctmtd Thwia, 1951. TM 1100,1947. 8. von Hhmin, Theodore,and Moore, Norton B.: R&dance of SlenderBodiesMovingWithSupersonicVelocities,WithSpecial 21. Alden,HenryL., andSchindel,LeonH.: The Calculationof Wing Lift and Momentsin NonuniformSupersonicFlows. Moteor Referenceto Projectiles. Amer. Sea. Moth. Engm.,VOL64, Rep. No. 53, M. I. T., May 1950. Dec. 1932,pp. 303-310. 22. Cramer,R. H.: InterferenceBetweenWingandBodyat Superaonio 9. PMnney,R. E.: Wing-BodyInterference. ProgrewReportNo.4. Speeds. PartV—PhaeeI Wind-TunnelTestsCorrelatedWith Universityof Miohigan, Eng.Res.Inst.,ProjeotM937,April1952. theLinearTheory. timell Aero.Lab.Rep.No. CAL/CJM-507 10. hTielsen, JackN., andPitts, Wii C.: Wiig-Body Interference Dee. 195o. at SupersonicSpeedsWith an Applicationto Combination 23.Lawrence,H. R., and Flax, A. H.: Wing-BodyInterferenceat ‘iWthRectanguhuWings. NACA TN 2677,1952. Subemicand SupersonicSpeeds. Surveyand New Devolop11. Bailey, H. E., and Phhmey, R. E.: Wing-Body Interference. menti. Paperpresentedat the AnnualSummerMeetingof the FinalReport. Part I. TheoreticalInvestigation. University I. A. S., La Angeles,Jdy 15-17,1953. of hfichiq Eng.I&. Inst., 1937–1–F,Jan.1964. 12. Bailey, H. E., and Phinney, R. E.: Wing-Body Interferonca 24. Watsoq G. N.: A Treaticoon the Theory of BesselFunotion.e SecondEd. 194+ MaoMifIan. FinalReport. Part II. ExperimentalInvestigationof CylindricalModeL Universityof hfichigan. Eng. Res. Inst., Feb. 2S. Cardaw,H. S., andJaeger,J. C.: OperationalMethodsin Applied 1954. Mathematical.Sewnd Edition1947,OxfordUnivemityPreaa. 1341 QUASI-CYLINDRICAL THEORYOF-WING-BODY IXTDRFERENC13 AT SUPERSONKJ SPEEDS 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 x (a) TV.(z,r)O <2.<2 CHARTI.—vdurs% Of ~z&r) functions. 1.4 1.5 !.6 1.7 1.8 1.9 20 1342 . REPORT125*NA’JXONALADVISORYCOMMJ!ITEE FORAERONAUTICS ) x b) Wo(z,r)2 S z <4 CHAFLT I.—Continued. QUASI-CYLINDRICAL TBEORYOFWINGBODYINTERFERENCE AT SUPERSONIC SPEEDS x (0) W,(z,r) O < x <2 CHART I.—Contiued. 1343 1344 REPORT125*NATIONAL ADVISORYCOMMITTEE FORAERONAUTICS ., x (d) W,(z,r) 2< z <4 CHAETI.-Continued. QUASI-CYLWRICALTBEORYOFWINGBODYINTERFERENCE AT SUPERSONIC SPEEDS x 1345 F 1246 REPORT125%NAmoNALADTILSORY COMMITTEE FORADRONAUITCS x (f) W,(%r)2 s z <4 CHAET l.—Contiiued. QUASI-CYLINDRICAL THEORY OFW2NGBODY INTERFERQNOll ATSUPERSONIC SPEEDS (g) W,(z,r) o ; z <1.6 CHART l.—Concluded. 1347 REPORT126*NATIONAL ADVISORYCOMMITTED FORAERONAUTICS TABLEI.—VALUES OF A&(z) z o .05 .1 . ;5 .25 .3 .35 .40 .45 .:0 .7 .75 .8 .85 .:5 M.(z) —w ----------- –L 321 H 40 –. 787 –~ 7;6 1.334 L 155 .735 .279 –. 119 –. 417 –. 595 :: f33; ------------------------------- ----------.131 ----------- -----.----.831 -------..- --------------------- --------------------- ----------- ----------- ----------- ----------- ----------- 1----------- 1----------- –. 538 –. 166 .304 –. 378 .450 ___________----------–. 292 .902 .560 245 –: 040 –. 253 –. 417 –. ::; -------------------I 1 —: .457 .235 .340 .406 .433 .420 .306 .123 –. 062 –. 197 –. 256 –. 239 –. 162 –: :); –. 386 -----------l-----------1 ‘. 434j ---------. –. 224 ---------- H 3.5 3_6 3.7 –: 5;1 .405 —m ----------- ----------- :: L6 1.7 1.8 U &o 3.1 3.2 M,(x) ----------- –. 868 ---------- H M,(s) ----------- i: 1.2 1.3 i: 21 2.2 23 24 25 I M,(z) I –. 180 ---------- –. 147 –. 122 ---------–. 102 ---------–. 086 ----------–. 073 ----------–. 062 ----------–. 053 ----------- –. 045 ----------- –. 038 ----------- –. 031 ----------- –. 026 ----------- –. 022 ----------- –. 018 ----------- –. 016 392 . ---------- .294 . ---------- .188 –. 412 –. 337 –. 231 /l: 095 .088 :163 204 ----------.005 :211 197 ----------–. 058 :164 --------------------.069 –. 100 020 ----------–. 123 –: 022 –. 053 ----------–. 073 –. 126 ----------- ---------- –. 119 ---------–. 103 ---------–. 083 ---------–. 061 ----, -----–. 040 ---------–. 022 ---------–. 007 ----------- –. –. –. –. –. –. 080 ~ 071 060 038 019 002 .011 021 :027 027 :025 .022 .015 J . 12 NOTEthatM*=@)+—-‘A-1 - asz+O. . .105 .134 .121 .085 .036 –. 013 –. 053 –. 063 –. 059 –. 042 –. :;; .022 .030 .028 .019 .008 –. 002 –. 011 –. 014 –. 103 1349 QUASI+YLIIWRICAL THEORY OFWINQ-BODY INTERFERENCE ATSUPERSONIC SPEEDS TABLE 1L—VEL0CIT% AMPLITUDE FUNCTIONS Angleof attaokcase,j,n(cc)funotions z _& & o o VCCB o .02 . l); :08 , 10 .12 : it :;: .22 .24 .26 .28 .30 .32 ,34 .36 ,38 .40 .42 .44 ::! .50 .52 .64 : :; : :; .64 .66 :% .72 ;;: .78 .80 .82 .84 :E .90 .92 . Q4 . 9(3 .$38 ;? i2 L3 L4 L5 L6 L7 L8 ii 24 28 3.2 3.6 4.0 .001 .003 .006 : ::; .014 .019 . 02! .029 .032 --------.050 ------.068 .079 .089 ------.111 ------.136 .151 ------------:M ------.299 .208 ------.308 ------.363 ------------.426 .467 ------------------.687 ------.667 ------------.812 ------------1.013 L 121 1.375 L 386 1.393 1.402 1.410 L 415 L 421 L424 L 425 L 424 L 421 L 384 L 356 L 337 L 323 L 314 413072-ci7+5 Wing-inuidence oasq~ix(z)functions f4 Kw vaB o w o .003 .003 : .008 .007 .008 .012 .011 .013 .017 .015 .019 .022 .020 .026 .029 .025 .034 .037 .031 .043 .047 .037 .052 .057 .044 .062 .068 .062 . ----------------- . --------.083 .097 .063 ------------------.103 .127 .067 .112 143 .067 :161 .120 .065 ------------------.133 .199 .051 ------------------.140 .026 .139 .% .008 ------------------------------------.315 –. 065 : –. 086 .333 ------------------–. 14s .088 .869 –. 175 .388 .069 ------------------.016 –. 236 .420 ------------------–. 052 –. 286 .450 ------------. 461 ------------------–. 181 –. 322 .476 –. 232 –. 323 . 478 ------------------------------------------------------–. 212 –. 462 .456 ------------------–. 109 .411 –. 552 -----.------------------------------.178 –. 673 .280 ------------------------------------–. 623 .397 .004 –. 510 .378 –. 250 –. 053 –. 025 –. 669 –. 047 –. 032 –. 651 –. 045 -.040 –. 631 –. 045 –. 045 –. 613 –. 048 –. 047 –. 592 –. 055 –. 045 –. 572 –. 064 –. 040 –. 650 –. 075 –. 035 –. 627 –. o& –. 033 –. 503 –. 088 –. 036 –. 479 –. 087 –. 037 –. 459 –. 085 –. 036 –. 434 –. 085 –. 036 –. 429 –. 086 –. 036 –. 427 –. 086 –. 036 –. 426 –. 085 –. 036 –. 425 M o o .003 : %; .013 .017 .022 .027 .033 .037 .040 .004 .007 .012 .016 .020 .022 .024 .025 .024 .023 --------- . --------- ------- ------- .038 .026 .017 .007 ------–. 023 ------–. 068 –. 090 .014 –. 007 –. 022 –. 041 ------- –. 080 ------- –. 106 –. 114 ----------–. 146 ------------- ------- ------- ------- ------- ------–. 142 ------------- ------- ------------------- ------------------- –. 159 –. 178 –. 182 –. 176 –. 012 .075 .235 ------.223 ------------.093 ------------–. 263 –. 340 –. 0268 –. 028?3 –. 0230 –. 0192 –. 0156 –. 0166 –. 0199 –. 0224 –. 0206 –. 0195 –. 0203 –. 0202 –. 0202 –. 0202 –. 0202 –. 0202 —. 121 —. 114 –. 082 –. 054 .047 .119 ------------- .184 .163 .027 ------- –. 170 ------------- –. 234 ------------- .062 –. –. –. –. –. –. –. –. –. –. –. –. –. –. –. –. ZL 0078 0108 0118 0152 0146 0122 0115 0135 0127 0129 0129 0129 0129 0129 0129 o .0001 .0005 .0011 : %:: .0046 .0063 .0082 .0104 .0129 .0156 .0186 .0219 .0255 .0293 .0335 .0379 .0427 .0478 .0531 o .0003 .0010 .0023 .0040 .0063 .0091 .0123 .0160 .0201 o .0003 .0010 .0023 .0040 .0061 .0087 .0116 : %? . 02i7 .0253 .0289 .0324 .0366 .0395 .0412 .0432 .0445 .0450 .0447 .0433 : EM: .0966 .1043 .1119 .1195 .1269 .1342 .1411 .1477 .1539 .1596 .1646 .1688 .1722 .1746 .1757 .1755 .1737 .1701 .1644 .1562 .1452 .1308 .1125 .0894 .0603 .0235 –. 0237 –. 0865 –. 1777 –. 4244 ::% .0320 .0254 .0173 .0074 –. 0041 –. 0174 –. 0326 –. 0497 –. 0686 –. 0893 –. 1118 –. 1359 –. 1616 –. 1886 –. 2164 –. 2451 –. 2738 –. 3021 –. 3292 –. 3539 –. 3751 –. 3908 –. 3983 –. 3939 –. 3704 –. 3121 –. 0849 * * v .0928 .1008 .1092 .1180 .1273 .1371 .1475 .1584 .1689 .1820 .1948 .2084 .2229 . ~~ .2722 .2912 .3118 .3842 .3591 .3871 .4194 .4584 o .0002 .0010 .0022 .0038 : %;: .0104 .01.28 .0151 .0171 .0187 .0197 .0201 .0196 .0181 :W .0065 –. 0001 –. 0081 –. 0177 –. 0282 –. 0410 :: ;3; –. 0829 –. 0985 –. 1142 —. 1297 –. 1446 —. 1583 –. 1703 –. 1808 –. 1870 –. 1897 –. 1898 –. 1838 –. 1739 –. 1565 –. 1360 –. 1063 –. 0716 –. 0312 : %E :M .1727 .1605 –. 0364 w 1350 FORAERONAUTICS RDPORT125*NA!ITONALADVZSORY COMMITI’DE TABLE JII.-ORIFICE LOCATIONSON wING AND BODY OF WING-BODY COMBIATATION ~imensions ininok measo.red fromwingleadingedge] 1a= O.75inch. ., . .< .. . . ,, +.- ., .-. . . . —— -.. TABLE 1T.— BM1.On -h- –1.!Y 1 .- #/I-o,lm . .. .. .. a 431 a ..4 i .149 j.m :Ml :$9 : nl U 3HEi .-. .ma .414 7Lm ..411 .m.4 .s3 Vb-um . .. .. . -. — .. . .,UU ..(M . I 43 :FJs .274 ‘:’R.1 .2,!4 :1 .1 . .314 :2 .X0 ,M4 ,1 .1 :1 .1 .1 ,1 ,1 :’21 :1 i i :; .1 ,1 “:lnl .1 .1 .1 .1 .ml . :y 1. .!456 .= ,Xa .X& .911 :n :W —.w :1 :ml .M1 .ss4 .al :1 :H :1 .14 , .UJ, .W :U :Cd4 .17 .U .U :n ., :1 ,21 ,n ,% .11 . 1$? .4M .m .1 :Km :4 :4 4m i :2M .1 Ml ,1 :451 :M4 .. wl . W1 ::W .Ed .:&i ,afl :3 ,4m .s4 .4m .4W .4a .W .4U :E?. : 17s .m —. .m w . WI “:24 :204.. . Ul .lm - .ma .m :E .= ‘:41 .&m .ma .% :Sll :11 . 7U .:fi .W .. —. .ma - ..M1 .M :al .Zm .Ke .57 .52 .m ,m .Im :76J :md : lM .310 —. ~ .1 ,17 .1 ,1 1?4 :1 :al i .m4 .m .533 .m .n — :W .al .1’24 .lH .434 :63 g UII=UJL. . ... . CL .— .-. . 1 .:: iiil 41 El !411 ! I 1J 11 :344 .37 I 0,m . Im WJ .1 .1 .1 .161 ,1 1 1 :1 :1 .1 1 I () TABLE IV,-PRE%3UlZJ3 00EFFIOIJ3NlW~ -Continucxi TABLE IV.—PRESSUlW COEFFICIENTS & (-) -4%nlinwd ‘8 I ,/#=o.mm . ..–...1 ml mgl :