Florida Department of Transport APT and Instrumentation Workshop
by user
Comments
Transcript
Florida Department of Transport APT and Instrumentation Workshop
Florida Department of Transport APT and Instrumentation Workshop Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data H L Theyse Transportek CSIR Structure of presentation Background Subgrade definition Site selection Analysis process Elastic response Plastic response Design models Background and analysis process Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data Subgrade definition Wearing course Base layer Subbase layer Upper selected subgrade Lower selected subgrade In situ subgrade Pavement structural layers •High shear stresses •Large strains Pavement foundation or subgrade: •Low shear stresses •Small strains HVS tests used in study Louis Trichardt Bultfontein Rooiwal Cullinan Bapsfontein Amanzimtoti Richmond Umkomaas East London Port Elizabeth Analysis process HVS tests: Multi Depth Deflectometer data Elastic response: •Direct calculation (εv δs) •Back-calculation (εv σv) Plastic response: •Non-linear regression model Subgrade behaviour: •Resilient modulus •Characteristics of permanent deformation •Permanent deformation design model HVS testing: MDD installation MDD modules at layer interfaces Anchor at 2,5 to 3 m Pavement structure MDD installation MDDmodule Reference point anchored at 2,5 to 3 m Elastic response Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data Elastic response: Depth deflection bowls 256 data points on each bowl Peak deflections DEFLECTION (mm) 0 Depth (mm) 60 mm -0.1 200 mm -0.2 375 mm -0.3 550 mm 800 mm -0.4 -0.5 Direction of wheel movement DISTANCE Elastic response: Depth deflection profile Direct calculation Average vertical strain between MDD modules Elastic subgrade deflection Back-calculation At least 2 modules in subgrade Vertical stress and strain at top of subgrade 0 DEFLECTION (mm) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 200 400 HVS load repetitions 10 74559 176540 600 378922 462878 800 589502 1000 DEPTH (mm) MDD depth deflection data: Deflection history 500RF MDD 4 Deflection (micron) 2000 1500 1000 500 0 0.0E+00 1.0E+06 2.0E+06 3.0E+06 Load Repetitions 0 213 396 100 kN 625 1000 MDD depth deflection data: Deflection profile 500RF MDD 4 Deflection (micron) 0 500 1000 0 Depth (mm) 200 400 600 800 1000 100 kN 1500 2000 202575 647499 224501 706985 252495 759745 299731 824952 360090 894991 405258 943566 456768 993404 467202 1058019 480464 1119882 498752 1168178 509327 1207827 554991 Analysis process: Average layer elastic strain 500RF Elastic strain (mocrostrain) MDD 4 2000 1500 1000 500 0 0E+00 1E+06 2E+06 3E+06 Load Repetitions 0 - 213 213 - 396 396 - 625 100 kN 625 - 1000 Analysis process: Direct vs. back-calculation Subgrade deflection from MLLE (micron) Vertical subgrade deflection comparison MLLE vs LVDT 1500 1000 500 0 0 500 1000 1500 Subgrade deflection from LVDTs (micron) Vertical strain from MLLE (microstrain) Analysis process: Direct vs. back-calculation 4000 3000 2000 1000 0 0 1000 2000 3000 Vertical strain from LVDTs (microstrain) 4000 Plastic response Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data Analysis process: Permanent MDD displacement Initial bedding-in Eventual linear rate of displacement Non-linear regression model PD = mN + a(1 – e-bN) a = bedding-in m = linear displacement rate Permanent MDD Displacement (mm) Depth (mm) 3 80mm 2.5 240mm 2 440mm 1.5 660mm 1 900mm 0.5 0 0 1 2 3 HVS Wheel-load Repetitions Millions 4 Analysis process: Permanent MDD displacement Permanent MDD displacement a a(1 – e-bN) m a 1 mN Number of load repetitions, N Analysis process: Permanent MDD displacement PD (mm) R2 = 0,989 SEE = 0,014 0,700 0,600 0,500 0,400 0,300 0,200 Model Data 0,100 0,000 0 1000000 2000000 3000000 4000000 HVS load repetitions Plastic response: Bedding-in “a” Permanent deformation bedding-in vs critical parameter Bedding-in "a" (mm) 10 8 6 4 2 0 0 200 400 600 800 1000 1200 Subgrade elastic deflection (micron) 40 kN 60 kN 70 kN 100 kN 1400 Plastic response: Linear deformation rate “m” PD rate "m" (mm/repetition) Linear permanent deformation rate vs critical parameter 1.0E-05 7.5E-06 5.0E-06 2.5E-06 0.0E+00 0 200 400 600 800 1000 1200 Subgrade elastic deflection (micron) 40 kN 60 kN 70 kN 100 kN 1400 Plastic response: Critical parameter, εv Permanent deformation (mm Subgrade permanent deformation at 200 000 load repetitions 20 15 40 kN 60 kN 70 kN 100 kN 10 5 0 0 500 1000 1500 2000 2500 Vertical strain from LVDT (microstrain) 3000 Plastic response: Critical parameter, σv Permanent deformation (mm Subgrade permanent deformation at 200 000 load repetitions 20 15 40 kN 60 kN 70 kN 100 kN 10 5 0 0.0 50.0 100.0 Vertical stress (kPa) 150.0 200.0 Plastic response: Critical parameter, δs Permanent deformation (mm Subgrade permanent deformation at 200 000 load repetitions 20 15 40 kN 60 kN 70 kN 100 kN 10 5 0 0 400 800 Subgrade elastic deflection (micron) 1200 Design models Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data Subgrade design transfer functions (S-N curves) S-N data S - Stress parameter N - Number of repetitions to reach a certain, predetermined level of subgrade deformation N solved from regression function for each MDD module from top of subgrade downwards Regression of S-N data on a log-linear scale Plastic response: S(vertical strain)-N data S-N data 7 mm plastic deformation Bearing capacity (repetitions) 1.0E+09 1.0E+08 40 kN 60 kN 70 kN 100 kN 1.0E+07 1.0E+06 1.0E+05 0 500 1000 1500 2000 Vertical strain (microstrain) 2500 3000 Plastic response: S(vertical stress)-N data S-N data 7 mm plastic deformation Bearing capacity (repetitions) 1.0E+09 1.0E+08 40 kN 60 kN 70 kN 100 kN 1.0E+07 1.0E+06 1.0E+05 0.0 50.0 100.0 150.0 Vertical stress (kPa) 200.0 Plastic response: S(subgrade deflection)-N data S-N data 7 mm plastic deformation Bearing capacity (repetitions) 1.0E+09 1.0E+08 40 kN 60 kN 70 kN 100 kN 1.0E+07 1.0E+06 1.0E+05 0 500 1000 Subgrade elastic deflection (micron) 1500 Plastic response: S-N subgrade deformation model 5 mm subgrade deformation R2 = 0,672 SEE = 0,379 1,E+09 1,E+08 Cycles 1,E+07 1,E+06 1,E+05 1,E+04 1,E+03 0 200 400 600 800 1000 1200 Subgrade elastic deflection (micron) Model G6 G7 G8 G10 1400 Plastic response: S-N subgrade design models Subgrade Design Curves 1,E+09 Cycles 1,E+08 3 mm 1,E+07 5 mm 7 mm 1,E+06 13 mm 1,E+05 1,E+04 0 200 400 600 800 1000 Subgrade Elastic Deflection (micron) 1200 Plastic deformation model: Conclusions Model based on measured parameters Models only valid for low shear stress zone in pavement Simplified model of subgrade response under normal road traffic loads Good enough for design purpose Subgrade elastic deflection yields the best S-N correlation Model not calibrated for field variables Density Degree of saturation Further refinements are possible Model refinement Subgrade Deformation: The development of mechanisticempirical design transfer functions from HVS data Issues to address Calibration of a continuous model Recursive/incremental distress analysis Pavement systems approach to rutting Resilient modulus models for the pavement subgrade Current work based on measured parameters Subgrade elastic deflection will have to be calculated in the design case Continuous model Applied to HVS data from Richmond Field Station, CA (CALAPT program) Each set of readings contains Number of repetitions (N) Subgrade elastic deflection (δs) Total subgrade plastic deformation (PD) Data triplets – N, δs, PD Approach to calibration Pavement MDD structure installation 0 DEFLECTION (mm) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 HVS load repetitions 200 10 74559 400 δs @ N 176540 MDDmodule 600 378922 462878 800 589502 1000 DEPTH (mm) Permanent MDD Displacement (mm) 3 Depth (mm) 80mm 2.5 240mm 2 440mm 1.5 660mm 1 Reference point anchored at 2,5 to 3 m 900mm 0.5 0 0 1 2 3 HVS Wheel-load Repetitions Millions 4 PD @ N Models fitted PD PD α β s =AN δ bN c s = (mN+a)(1-e ) δ 6 5 anent deform Subgrade perm 4 3 2 2.5e+6 2.0e+6 tio ns 1 0 1.2 1.0e+6 1.0 Subg rade 0.8 0.6 elast ic defle 5.0e+5 0.4 ction 0.2 (mm) 0.0 0.0 pe ti 1.5e+6 Re ation (mm) Continuous subgrade distress models Continuous subgrade distress models m) Deformation (m 6 0 1 2 3 4 5 6 N vs SED vs PD 5 anent Subgrade Perm 4 3 2 2.0e+6 1 1.2 1.0 0.8 Subg rade Elast 0.6 ic De 0.4 0.2 flectio n (mm ) 5.0e+5 0.0 Re pe 1.0e+6 0 titi o ns 1.5e+6 Deflection calculation in the design case Use MDD deflection data with Top-cap MDD module Two modules in subgrade Do MDD back-calculation Combine data for similar materials Investigate non-linearity if possible HVS-section Nr: 332A2 Region: Instrumentation detail Pavement structure 0 2 4 100 200 6 8 10 12 MDD MDD 50 50 MDD MDD 200 200 MDD MDD 375 375 14 Type 16 500 MDD 550 MDD MDD MDD 800 800 550 600 700 800 900 1000 MDD anchor at 3 m depth MDD anchor at 3 m depth Depth (mm) Load sequence detail: Repetitions Related reports: Test information No report available From To Wheel load Tyre pressure 0 604 735 40 kN 520 kPa No 604 735 1 245 733 60 kN 690 kPa No Water added Material properties (UCS, CBR, MDD, OMC,etc) Field Density (kg/cub m) MC (%) TRH14 class 0 - 50 Asphalt New and old asphalt surfacing layers 50 - 250 Crushed Stone mDD = 2233, OMC = 5,5 CBR = 91 @ 98 % GM = 2,25 99,5% mDD 3,1 G2 250 - 370 Natural gravel subbase mDD = 1908, OMC = 10,3 CBR = 48 @ 95 % GM = 2,06 87,4% mDD 12,9 G5 370 + In-situ subgrade Stony limestone and sand mDD = 1926 OMC = 12,1 CBR = 27 @ 93 % GM = 1,65 95,8% mDD 11,2 G6 300 400 Year of test: 1988 Pavement material information Layer Test section point 0 Road Nr: N2/11 Port Elizabeth, Eastern Cape Upper subgrade Mr Frequency Upper Subgrade 45 40 35 30 25 20 15 10 5 0 100% 80% 60% 40% 20% 0% 0 20 40 60 80 100 120 140 160 180 200 More Bin Frequency Cumulative % Lower subgrade Mr Lower Subgrade 100% Frequency 20 80% 15 60% 10 40% 5 20% 0 0% 0 50 100 150 200 250 300 350 400 450 500 More Bin Frequency Cumulative % Deep in-situ subgrade Mr Deep in situ Subgrade 35 100% Frequency 30 80% 25 20 60% 15 40% 10 20% 5 0 0% 0 50 100 150 200 250 300 350 400 450 500 More Bin Frequency Cumulative % To summarize Best correlation was found between subgrade permanent deformation and subgrade elastic deflection Subgrade elastic deflection selected as the critical parameter for subgrade design model Model does not explain a lot of the variation in data Effect of moisture content and density excluded Data not available Given the amount of deformation contributed by the subgrade – no further refinement To summarize (continued) Working on Back-calculations Non-linear model calibration Calibration of continuous distress model for South African data