Virtex-5 RocketIO GTP Transceiver Characterization Report
by user
Comments
Transcript
Virtex-5 RocketIO GTP Transceiver Characterization Report
Virtex-5 RocketIO GTP Transceiver Characterization Report RPT056 (v1.1) May 20, 2008 R www.BDTIC.com/XILINX R Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information. THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION. © 2007–2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. PCI, PCI-SIG, PCI EXPRESS, PCIE, PCI-X, PCI HOT PLUG, MINI PCI, EXPRESSMODULE, and the PCI, PCI-X, PCI HOT PLUG, and MINI PC design marks are trademarks, registered trademarks, and/or service marks of PCI-SIG. All other trademarks are the property of their respective owners. Revision History The following table shows the revision history for this document. Date Version Revision 06/08/07 1.0 Initial Xilinx release. 05/20/08 1.1 • Added figures that were missing or occupied by placeholders in previous revision. • Added and/or updated figures and table entries for 3.75 Gb/s operation. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report www.xilinx.com RPT056 (v1.1) May 20, 2008 Table of Contents Schedule of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schedule of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 15 Preface: About This Guide Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 22 22 23 Typographical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Online Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 1: Introduction Virtex-5 LXT and SXT FPGA Platforms Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . RocketIO GTP Transceiver Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scope of Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 25 25 27 31 32 32 34 34 34 Summary of Characterization Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 2: PMA Transmitter Characterization TX Near-End Output Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 100 Mb/s, Oversampled . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 500 Mb/s, Oversampled . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.0 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.0 Gb/s, 200 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.5 Gb/s, 62.5 MHz REFCLK. . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.5 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 37 37 40 40 41 41 42 42 43 43 44 44 45 45 3 R TX Near-End Eye Diagram at 2.5 Gb/s, 250 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 3.2 Gb/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Near-End Eye Diagram at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 47 47 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 TX Jitter Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 500 Mb/s Using Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.0 Gb/s Using 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.0 Gb/s Using 200 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.5 Gb/s Using 62.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.5 Gb/s Using 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.5 Gb/s Using 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 2.5 Gb/s Using 250 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Generation at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 48 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 TX REFCLK to TX Jitter Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 1.0 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 2.0 Gb/s, 200 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 2.5 Gb/s, 62.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 2.5 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 2.5 Gb/s, 250 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Jitter Transfer at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 66 69 69 69 70 70 71 71 72 72 73 TX Output Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time as a Function of TXDIFFCTRL . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time as a Function of Process . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time as a Function of Voltage . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Rise and Fall Time as a Function of Temperature . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 74 77 77 78 79 80 81 82 83 84 85 TX Output Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Amplitude Test, Histograms by Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Histograms by Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Histograms by Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Trends by Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Trends by Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Trends by Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Amplitude Test, Trends by Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 90 91 92 92 93 93 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 TX Output Amplitude Squelched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX Output Amplitude OOB Squelched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 95 98 98 98 TX Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 TX Pre-emphasis Test, Minimum Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 TX Pre-emphasis Test, Maximum Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 TX Pre-emphasis Test, Max Setting, 1 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . . . . . 103 TX Pre-emphasis Test, Max Setting, 1 Gb/s, dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TX Pre-emphasis Test, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, % . . . . . . . . . . . . . . 104 TX Pre-emphasis Test, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB . . . . . . . . . . . . . 104 TX Pre-emphasis Test, Max Setting, 3.2 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . . . . 105 TX Pre-emphasis Test, Max Setting, 3.2 Gb/s, dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 TX Pre-emphasis Test, Max Setting, 3.75 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . . . 106 TX Pre-emphasis Test, Max Setting, 3.75 Gb/s, dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, % . . . . . . . . . . 107 TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, dB . . . . . . . . . . 107 TX Pre-emphasis Test, Percentage vs. Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 TX Pre-emphasis Test, dB vs. Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 TX Pre-emphasis Test, Percent by TXPREEMPHASIS Settings at 3.2 Gb/s . . . . . . . . . 109 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TX Termination DC Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TX DC Resistance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 111 114 114 114 Chapter 3: PMA Receiver Characterization RX Stressed Eye Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 80 MHz, 3.2 Gb/s Data Rate. . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 20 MHz 3.2 Gb/s Data Rate . . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 22 KHz, 3.2 Gb/s Data Rate . . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 80 MHz, 3.75 Gb/s Data Rate . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 20 MHz 3.75 Gb/s Data Rate . . . . . . . . . RX Stressed Eye Composite Jitter Tolerance, 22 KHz, 3.75 Gb/s Data Rate . . . . . . . . . www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 115 115 118 118 118 119 119 120 120 5 R RX Stressed Eye, Channel Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 RX Sinusoidal Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 100 Mb/s (Oversampled) . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 500 Mb/s (Oversampled) . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.0 Gb/s, 100 MHz REFCLK . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 62.5 MHz REFCLK . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 100 MHz REFCLK . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 125 MHz REFCLK . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 250 MHz REFCLK . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . RX Sinusoidal Jitter Tolerance Test Results for 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 122 125 125 125 126 126 127 127 128 128 129 129 130 130 131 131 132 RX Sinusoidal Jitter Tolerance with CDR Frequency Offset . . . . . . . . . . . . . . . . . 132 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX SJ Tolerance with CDR Frequency Offset Results, 500 Mb/s (Oversampled) . . . . . RX SJ Tolerance with CDR Frequency Offset Results, 500 Mb/s . . . . . . . . . . . . . . . . . RX SJ Tolerance with CDR Frequency Offset Results, 1.00 Gb/s . . . . . . . . . . . . . . . . . RX SJ Tolerance with CDR Freq. Offset Results, 2.0 Gb/s, 100 MHz REFCLK . . . . . . . RX SJ Tolerance with CDR Freq. Offset Results, 2.50 Gb/s, 62.5 MHz REFCLK. . . . . . RX SJ Tolerance with CDR Freq. Offset Results, 2.50 Gb/s, 125 MHz REFCLK . . . . . . RX SJ Tolerance with CDR Frequency Offset Results, 3.2 Gb/s . . . . . . . . . . . . . . . . . . RX SJ Tolerance with CDR Frequency Offset Results, 3.75 Gb/s . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 132 135 135 135 136 136 137 137 138 138 139 RX CDR Frequency Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 1.25 Gb/s, 125 MHz REFCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 2.0 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 2.488 Gb/s, 155.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 2.5 Gb/s, 62.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 2.5 Gb/s, 250 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 3.125 Gb/s, 156.25 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 3.2 Gb/s, 320 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CDR Offset at 3.75 Gb/s, 187.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 139 142 142 142 143 143 144 144 145 145 146 146 RX Input Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 100 Mb/s Using Oversampling . . . . . . . . . . . . . . . . . . . . . . . . 6 www.BDTIC.com/XILINX www.xilinx.com 147 147 150 150 Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Input Sensitivity at 500 Mb/s Using Oversampling . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 2.0 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Input Sensitivity at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 151 151 152 152 153 153 154 154 155 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 RX Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Equalization Bench Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Equalization ATE Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Equalization Test, Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer Off . . . . . RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 25% . . . . RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 37% . . . . RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 50% . . . . RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 62% . . . . 156 156 156 156 159 160 161 161 162 162 163 RX Equalization Test, Mean Sinusoidal Jitter Tolerance vs. RX Equalizer Settings, 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 RX OOB Signal Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 RX CID Run Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 500 Mb/s, External AC. . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 1.00 Gb/s, External AC . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 2.0 Gb/s, 100 MHz REFCLK, External AC . . . . . . RX CID Run Length Test Results at 2.488 Gb/s, Internal AC . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 2.5 Gb/s, 62.5 MHz REFCLK, External AC . . . . . RX CID Run Length Test Results at 2.5 Gb/s, 100 MHz REFCLK, Internal AC . . . . . . RX CID Run Length Test Results at 2.5 Gb/s, 125 MHz REFCLK, External AC . . . . . . RX CID Run Length Test Results at 3.125 Gb/s, Internal AC . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 3.2 Gb/s, External AC . . . . . . . . . . . . . . . . . . . . . RX CID Run Length Test Results at 3.75 Gb/s, External AC . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 167 170 170 170 171 171 172 172 173 173 174 174 175 RX Jitter Transfer Based on Data to Recovered Clock . . . . . . . . . . . . . . . . . . . . . . . 176 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Jitter Transfer to Recovered Clock Test, Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . RX Jitter Transfer to Recovered Clock Test, 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . RX Jitter Transfer to Recovered Clock Test, 2.0 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . RX Jitter Transfer to Recovered Clock Test, 2.5 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 176 176 178 178 178 179 179 180 7 R RX Termination DC Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 181 185 185 Chapter 4: GTP_DUAL Transceiver Power Consumption GTP_DUAL Transceiver PMA Power Consumption (ATE Measurement). . . . 187 Appendix A: General GTP_DUAL Test Settings 8 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 Schedule of Figures Chapter 1: Introduction Figure 1-1: Bench Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 1-2: TX Bench Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 1-3: RX Bench Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 1-4: High-Volume Characterization Tester, Top View. . . . . . . . . . . . . . . . . . . . . . . 30 Figure 1-5: High-Volume Characterization Tester, Whole View . . . . . . . . . . . . . . . . . . . . 30 Chapter 2: PMA Transmitter Characterization Figure 2-1: TX Near-End Output Eye Measurement Bench Setup . . . . . . . . . . . . . . . . . . . 38 Figure 2-2: Representative TX Output Eye at 100 Mb/s (5X Oversampling). . . . . . . . . . . 40 Figure 2-3: Representative TX Output Eye at 500 Mb/s (5X Oversampling). . . . . . . . . . . 41 Figure 2-4: Representative TX Output Eye at 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 2-5: Representative TX Output Eye at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 2-6: Representative TX Output Eye at 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 2-7: Representative TX Output Eye at 2.0 Gb/s, REFCLK 100 MHz. . . . . . . . . . . . 43 Figure 2-8: Representative TX Output Eye at 2.0 Gb/s, REFCLK 200 MHz. . . . . . . . . . . . 43 Figure 2-9: Representative TX Output Eye at 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 2-10: Representative TX Output Eye at 2.5 Gb/s, REFCLK 62.5 MHz . . . . . . . . . . 44 Figure 2-11: Representative TX Output Eye at 2.5 Gb/s, REFCLK 100 MHz. . . . . . . . . . . 45 Figure 2-12: Representative TX Output Eye at 2.5 Gb/s, REFCLK 125 MHz. . . . . . . . . . . 45 Figure 2-13: Representative TX Output Eye at 2.5 Gb/s, REFCLK 250 MHz. . . . . . . . . . . 46 Figure 2-14: Representative TX Output Eye at 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 2-15: Representative TX Output Eye at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 2-16: Representative TX Output Eye at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 2-17: ATE Test Setup for TX Jitter Generation Tests . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 2-18: TX Jitter Generation at 500 Mb/s, Oversampled, C and I Grade . . . . . . . . . 52 Figure 2-19: TX Jitter Generation at 1.00 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . 53 Figure 2-20: TX Jitter Generation at 1.25 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . 54 Figure 2-21: TX Jitter Generation at 2.00 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . 55 Figure 2-22: TX Jitter Generation at 2.00 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . 56 Figure 2-23: TX Jitter Generation at 2.488 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . 57 Figure 2-24: TX Jitter Generation at 2.5 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 2-25: TX Jitter Generation at 2.5 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 2-26: TX Jitter Generation at 2.5 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 2-27: TX Jitter Generation at 2.5 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 2-28: TX Jitter Generation at 3.125 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . 62 Figure 2-29: TX Jitter Generation at 3.2 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 2-30: TX Jitter Generation at 3.75 Gb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . . 64 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 9 R Figure 2-31: ATE Test Setup for TX REFCLK to TX Jitter Transfer Tests . . . . . . . . . . . . . 68 Figure 2-32: TX Jitter Transfer vs. Modulation Frequency at 1.0 Gb/s. . . . . . . . . . . . . . . . 69 Figure 2-33: TX Jitter Transfer vs. Modulation Frequency at 2.00 Gb/s . . . . . . . . . . . . . . 69 Figure 2-34: TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s. . . . . . . . . . . . . . . . 70 Figure 2-35: TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s . . . . . . . . . . . . . . . 70 Figure 2-36: TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s. . . . . . . . . . . . . . . . 71 Figure 2-37: TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s. . . . . . . . . . . . . . . . 71 Figure 2-38: TX Jitter Transfer vs. Modulation Frequency at 3.125 Gb/s. . . . . . . . . . . . . . 72 Figure 2-39: TX Jitter Transfer vs. Modulation Frequency at 3.2 Gb/s. . . . . . . . . . . . . . . . 72 Figure 2-40: Bench Test Setup for TX Output Rise and Fall Time Tests . . . . . . . . . . . . . . 76 Figure 2-41: TX Output Rise Time at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 2-42: TX Output Fall Time at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 2-43: TX Output Rise Time at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . 78 Figure 2-44: TX Output Fall Time at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . 78 Figure 2-45: TX Output Rise Time at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 2-46: TX Output Fall Time at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Figure 2-47: TX Output Rise Time at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 2-48: TX Output Fall Time at 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 2-49: TX Output Rise Time as a Function of TXDIFFCTRL . . . . . . . . . . . . . . . . . . 81 Figure 2-50: TX Output Fall Time as a Function of TXDIFFCTRL . . . . . . . . . . . . . . . . . . . 81 Figure 2-51: TX Output Rise Time as a Function of Process . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 2-52: TX Output Fall Time as a Function of Process . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 2-53: TX Output Rise Time as a Function of Voltage . . . . . . . . . . . . . . . . . . . . . . . . 83 Figure 2-54: TX Output Fall Time as a Function of Voltage . . . . . . . . . . . . . . . . . . . . . . . . 83 Figure 2-55: TX Output Rise Time as a Function of Temperature . . . . . . . . . . . . . . . . . . . 84 Figure 2-56: TX Output Fall Time as a Function of Temperature . . . . . . . . . . . . . . . . . . . . 84 Figure 2-57: Bench Test Setup for TX Output Amplitude Tests . . . . . . . . . . . . . . . . . . . . . 88 Figure 2-58: TX Amplitude, Across All Rates, Silicon = SS . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 2-59: TX Amplitude, Across All Rates, Silicon = TT. . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 2-60: TX Amplitude, Across All Rates, Silicon = FF . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 2-61: TX Amplitude, across All Rates, VCC = VMIN . . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 2-62: TX Amplitude, across All Rates, VCC = VMAX . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 2-63: TX Amplitude, across All Rates, Temp = –40°C. . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 2-64: TX Amplitude, Across All Rates, Temp = 0°C . . . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 2-65: TX Amplitude, Across All Rates, Temp = 100°C . . . . . . . . . . . . . . . . . . . . . . . 91 Figure 2-66: TX Amplitude, Process Split vs. TXDIFFCTRL . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure 2-67: TX Amplitude, MGTAVTTTX Supply vs. TXDIFFCTRL Trend . . . . . . . . . 92 Figure 2-68: TX Amplitude, Temperature vs. TXDIFFCTRL . . . . . . . . . . . . . . . . . . . . . . . . 93 Figure 2-69: TX Amplitude, Data Rate vs. TXDIFFCTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Figure 2-70: Qualitative TX Amplitude Swept across TXDIFFCTRL . . . . . . . . . . . . . . . . 94 Figure 2-71: Bench Test Setup for TX Output Amplitude (Squelched) Tests . . . . . . . . . 97 Figure 2-72: TX Output Amplitude Histogram when OOB Squelched, 2.5 Gb/s . . . . . . 98 Figure 2-73: TX Output Amplitude Squelched, 2.5 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Figure 2-74: Bench Test Setup for TX Pre-emphasis Tests . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 2-75: Pre-emphasis Concept Showing Min and Max Voltage Levels . . . . . . . . . 101 Figure 2-76: TX Pre-emphasis, Minimum Setting, 2.5 Gb/s, 125 MHz REFCLK . . . . . . 102 Figure 2-77: TX Pre-emphasis, Maximum Setting at 2.5 Gb/s, 125 MHz REFCLK . . . . 102 Figure 2-78: TX Pre-emphasis, Max Setting, 1 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . . 103 Figure 2-79: TX Pre-emphasis, Max Setting, 1 Gb/s, dB . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 2-80: TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, Percentage . 104 Figure 2-81: TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB . . . . . . . . 104 Figure 2-82: TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage . . . . . . . . . . . . . . . . . . 105 Figure 2-83: TX Pre-emphasis, Max Setting, 3.2 Gb/s, dB. . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure 2-84: TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage . . . . . . . . . . . . . . . . . 106 Figure 2-85: TX Pre-emphasis, Max Setting, 3.75 Gb/s, dB. . . . . . . . . . . . . . . . . . . . . . . . . 106 Figure 2-86: TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, % 107 Figure 2-87: TX Pre-emphasis Test, AVTTX Supply Trend vs. Temperature, dB . . . . . 107 Figure 2-88: TX Pre-emphasis Test, Percentage vs. Data Rate . . . . . . . . . . . . . . . . . . . . . . 108 Figure 2-89: TX Pre-emphasis Test, dB vs. Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Figure 2-90: TX Pre-emphasis Test, by TXPREEMPHASIS Settings at 3.2 Gb/s . . . . . . 109 Figure 2-91: TX Pre-emphasis Test, dB by TXPREEMPHASIS Settings at 3.2 Gb/s . . . 109 Figure 2-92: Qualitative Measurement of the Different Pre-emphasis Settings . . . . . . 110 Figure 2-93: Bench Test Setup for TX Termination Resistance Tests . . . . . . . . . . . . . . . 112 Figure 2-94: RX and TX Termination for GTP Transceivers in LXT Devices . . . . . . . . . 113 Figure 2-95: TX Termination DC Resistance Histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Chapter 3: PMA Receiver Characterization Figure 3-1: ATE Test Setup for RX Stressed Eye Jitter Tolerance Tests (ATE Measurement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Figure 3-2: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 80 MHz, 3.2 Gb/s . . . 118 Figure 3-3: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 20 MHz, 3.2 Gb/s . . . 118 Figure 3-4: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 22 KHz, 3.2 Gb/s . . . 119 Figure 3-5: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 80 MHz, 3.75 Gb/s . . 119 Figure 3-6: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 20 MHz, 3.75 Gb/s . . 120 Figure 3-7: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 22 KHz, 3.75 Gb/s . . 120 Figure 3-8: RX Stressed Eye, DCAj Channel Stress at 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . 121 Figure 3-9: RX Sinusoidal Jitter Tolerance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Figure 3-10: RX SJ Tolerance, 100 Mb/s (OS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Figure 3-11: RX SJ Tolerance, 500 Mb/s (OS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Figure 3-12: RX SJ Tolerance, 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 3-13: RX SJ Tolerance, 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 3-14: RX SJ Tolerance, 1.25 Gb/Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 3-15: RX SJ Tolerance, 2.0 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 3-16: RX SJ Tolerance, 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 3-17: RX SJ Tolerance, 2.5 Gb/s, 62.5 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 3-18: RX SJ Tolerance, 2.5 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . 129 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 11 R Figure 3-19: RX SJ Tolerance, 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . 129 Figure 3-20: RX SJ Tolerance, 2.5 Gb/s, 250 MHz REFCLK . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 3-21: RX SJ Tolerance, 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 3-22: RX SJ Tolerance, 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 3-23: RX SJ Tolerance, 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 3-24: RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Figure 3-25: RX SJ Tolerance w/ CDR Frequency Offset, 500 Mb/s (OS) . . . . . . . . . . . . 135 Figure 3-26: RX SJ Tolerance w/ CDR Frequency Offset, 500 Mb/s . . . . . . . . . . . . . . . . . 135 Figure 3-27: RX SJ Tolerance w/ CDR Frequency Offset, 1.00 Gb/s . . . . . . . . . . . . . . . . . 136 Figure 3-28: RX SJ Tolerance w/ CDR Frequency Offset, 2.0 Gb/s, 100 MHz REFCLK 136 Figure 3-29: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 62.5 MHz REFCLK 137 Figure 3-30: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 125 MHz REFCLK 137 Figure 3-31: RX SJ Tolerance w/ CDR Frequency Offset, 3.2 Gb/s . . . . . . . . . . . . . . . . . . 138 Figure 3-32: RX SJ Tolerance w/ CDR Frequency Offset, 3.75 Gb/s . . . . . . . . . . . . . . . . . 138 Figure 3-33: ATE Test Setup for RX CDR Offset Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 3-34: RX CDR Offset at 1.25 Gb/s, C and I Grade, 125 MHz REFCLK . . . . . . . . 142 Figure 3-35: RX CDR Offset at 2.0 Gb/s, C and I Grade, 100 MHz REFCLK . . . . . . . . . 142 Figure 3-36: RX CDR Offset at 2.488 Gb/s, C and I Grade, 155.5 MHz REFCLK . . . . . . 143 Figure 3-37: RX CDR Offset at 2.5 Gb/s, C and I Grade, 62.5 MHz REFCLK . . . . . . . . . 143 Figure 3-38: RX CDR Offset at 2.5 Gb/s, C and I Grade, 125 MHz REFCLK . . . . . . . . . 144 Figure 3-39: RX CDR Offset at 2.5 Gb/s, C and I Grade, 250 MHz REFCLK . . . . . . . . . 144 Figure 3-40: RX CDR Offset at 3.125 Gb/s, C and I Grade, 156.25 MHz REFCLK . . . . . 145 Figure 3-41: RX CDR Offset at 3.2 Gb/s, C and I Grade, 320 MHz REFCLK . . . . . . . . . 145 Figure 3-42: RX CDR Offset at 3.75 Gb/s, C and I Grade, 187.5 MHz REFCLK . . . . . . . 146 Figure 3-43: ATE Test Setup for RX Input Sensitivity Tests . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 3-44: RX Input Sensitivity at 100 Mb/s, C and I Grade, Oversampled . . . . . . . . 150 Figure 3-45: RX Input Sensitivity at 500 Mb/s, C and I Grade, Oversampled . . . . . . . . 150 Figure 3-46: RX Input Sensitivity at 500 Mb/s, C and I Grade. . . . . . . . . . . . . . . . . . . . . . 151 Figure 3-47: RX Input Sensitivity at 1.00 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . 151 Figure 3-48: RX Input Sensitivity at 1.25 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . 152 Figure 3-49: RX Input Sensitivity at 2.0 Gb/s, C and I Grade, 100 MHz REFCLK . . . . 152 Figure 3-50: RX Input Sensitivity at 2.488 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . 153 Figure 3-51: RX Input Sensitivity at 2.5 Gb/s, C and I Grade, 125 MHz REFCLK . . . . 153 Figure 3-52: RX Input Sensitivity at 3.125 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . 154 Figure 3-53: RX Input Sensitivity at 3.2 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . . 154 Figure 3-54: RX Input Sensitivity at 3.75 Gb/s, C and I Grade . . . . . . . . . . . . . . . . . . . . . 155 Figure 3-55: RX Equalization Bench Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 3-56: RX Equalization ATE Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Figure 3-57: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = Off . . . . . . . . . . 161 Figure 3-58: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 25% . . . . . . . . . . 161 Figure 3-59: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 37% . . . . . . . . . . 162 Figure 3-60: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 50% . . . . . . . . . . 162 12 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Figure 3-61: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 62% . . . . . . . . . . 163 Figure 3-62: RX Equalization Test, Mean SJ Tolerance at 3.2 Gb/s vs. RX EQ Settings 163 Figure 3-63: ATE Test Setup for RX OOB Signal Detect Tests . . . . . . . . . . . . . . . . . . . . . 165 Figure 3-64: RX OOB Signal Detect Results by OOB Setting at 2.5 Gb/s . . . . . . . . . . . . 166 Figure 3-65: RX OOB Signal Detect Example Distribution, OOB . . . . . . . . . . . . . . . . . . 166 Figure 3-66: ATE Test Setup for RX CID Run Length Tests . . . . . . . . . . . . . . . . . . . . . . . 169 Figure 3-67: RX CID Run Length at 500 Mb/s, C & I Grades . . . . . . . . . . . . . . . . . . . . . . . 170 Figure 3-68: RX CID Run Length at 1.00 Gb/s, C & I Grades. . . . . . . . . . . . . . . . . . . . . . . 170 Figure 3-69: RX CID Run Length at 2.00 Gb/s, 100 MHz REFCLK, C & I Grades . . . . . 171 Figure 3-70: RX CID Run Length Test at 2.488 Gb/s, C & I Grades . . . . . . . . . . . . . . . . . 171 Figure 3-71: RX CID Run Length at 2.5 Gb/s, 62.5 MHz REFCLK, C & I Grades . . . . . 172 Figure 3-72: RX CID Run Length Test at 2.5 Gb/s, 100 MHz REFCLK, C & I Grades. . 172 Figure 3-73: RX CID Run Length at 2.5 Gb/s, 125 MHz REFCLK, C & I Grades . . . . . . 173 Figure 3-74: RX CID Run Length at 3.125 Gb/s, C & I Grades. . . . . . . . . . . . . . . . . . . . . . 173 Figure 3-75: RX CID Run Length at 3.2 Gb/s, C & I Grades. . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 3-76: RX CID Run Length at 3.75 Gb/s, C & I Grades. . . . . . . . . . . . . . . . . . . . . . . 174 Figure 3-77: RX Jitter Transfer to Recovered Clock Test Bench Setup . . . . . . . . . . . . . . 176 Figure 3-78: RX Jitter Transfer to Recovered Clock, Trends . . . . . . . . . . . . . . . . . . . . . . . 178 Figure 3-79: RX Jitter Transfer to Recovered ClockK, 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . 178 Figure 3-80: RX Jitter Transfer to Recovered Clock, 2.0 Gb/s, 100 MHz REFCLK . . . . . 179 Figure 3-81: RX Jitter Transfer to Recovered Clock, 2.5 Gb/s, 125 MHz REFCLK . . . . . 179 Figure 3-82: RX Termination Resistance Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Figure 3-83: RX Termination Resistor Calibration Macro . . . . . . . . . . . . . . . . . . . . . . . . . 184 Figure 3-84: RX Termination DC Resistance Historgram. . . . . . . . . . . . . . . . . . . . . . . . . . 185 Chapter 4: GTP_DUAL Transceiver Power Consumption Figure 4-1: GTP Single Transceiver Power Consumption at Differing Rates . . . . . . . . 188 Appendix A: General GTP_DUAL Test Settings www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 13 R 14 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 Schedule of Tables Chapter 1: Introduction Table 1-1: Test Setup Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 1-2: Example PLL Settings Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 1-3: Example Test Settings Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 1-4: Example Test Conditions Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 1-5: Summary of Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 2: PMA Transmitter Characterization Table 2-1: TX Near-End Output Eye PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 2-2: TX Near End Output Eye Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 2-3: TX Near-End Output Eye Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 2-4: TX Jitter Generation Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 2-5: TX Jitter Generation Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 2-6: TX Jitter Generation Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 2-7: TX Jitter Generation Measurement at 500 Mb/s Data Rate . . . . . . . . . . . . . . . . 52 Table 2-8: TX Jitter Generation Measurement at 100 Mb/s Data Rate . . . . . . . . . . . . . . . . 53 Table 2-9: TX Jitter Generation Measurement at 1.25 Gb/s Data Rate . . . . . . . . . . . . . . . . 54 Table 2-10: TX Jitter Generation Measurement at 2.00 Gb/s Data Rate . . . . . . . . . . . . . . . 55 Table 2-11: TX Jitter Generation Measurement at 2.00 Gb/s Data Rate . . . . . . . . . . . . . . . 56 Table 2-12: TX Jitter Generation Measurement at 2.488 Gb/s Data Rate . . . . . . . . . . . . . . 57 Table 2-13: TX Jitter Generation Measurement at 2.5 Gb/s Data Rate . . . . . . . . . . . . . . . . 58 Table 2-14: TX Jitter Generation Measurement at 2.5 Gb/s Data Rate . . . . . . . . . . . . . . . . 59 Table 2-15: TX Jitter Generation Measurement at 2.5 Gb/s Data Rate . . . . . . . . . . . . . . . . 60 Table 2-16: TX Jitter Generation Measurement at 2.5 Gb/s Data Rate . . . . . . . . . . . . . . . . 61 Table 2-17: TX Jitter Generation Measurement at 3.125 Gb/s Data Rate . . . . . . . . . . . . . . 62 Table 2-18: TX Jitter Generation Measurement at 3.2 Gb/s Data Rate . . . . . . . . . . . . . . . . 63 Table 2-19: TX Jitter Generation Measurement at 3.75 Gb/s Data Rate . . . . . . . . . . . . . . . 64 Table 2-20: Summary of Results for TX Jitter Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 2-21: TX REFCLK to TX Jitter Transfer Test PLL Parameters . . . . . . . . . . . . . . . . . . 66 Table 2-22: TX REFCLK to TX Jitter Transfer Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 2-23: TX REFCLK to TX Jitter Transfer Test Conditions . . . . . . . . . . . . . . . . . . . . . . 67 Table 2-24: TX Jitter Transfer Measurement at 1.0 Gb/s Date Rate. . . . . . . . . . . . . . . . . . . 69 Table 2-25: TX Jitter Transfer Measurement at 2.0 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 69 Table 2-26: TX Jitter Transfer Measurement at 2.5 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 70 Table 2-27: TX Jitter Transfer Measurement at 2.5 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 70 Table 2-28: TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 71 Table 2-29: TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 71 Table 2-30: TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 72 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 15 R Table 2-31: TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate. . . . . . . . . . . . . . . . . . . 72 Table 2-32: TX Jitter Transfer Measurement Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 2-33: TX Output Rise and Fall Time Test PLL Parameters . . . . . . . . . . . . . . . . . . . . 74 Table 2-34: TX REFCLK to TX Jitter Transfer Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 2-35: TX Output Rise and Fall Time Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 2-36: TX Output Rise and Fall Time at 1.00 Gb/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 2-37: TX Output Rise and Fall Time at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . 78 Table 2-38: TX Output Rise and Fall Time at 3.2 Gb/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 2-39: TX Output Rise and Fall Time at 3.75 Gb/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 2-40: TX Rise Time Measurement Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 2-41: TX Fall Time Measurement Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 2-42: TX Output Amplitude Test PLL Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 2-43: TX Output Amplitude Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 2-44: TX Output Amplitude Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 2-45: TX Output Amplitude Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 2-46: TX Output Amplitude (Squelched) Test PLL Parameters . . . . . . . . . . . . . . . . 95 Table 2-47: TX Output Amplitude (Squelched) Test Settings . . . . . . . . . . . . . . . . . . . . . . . 96 Table 2-48: TX Output Amplitude (Squelched) Test Conditions . . . . . . . . . . . . . . . . . . . . 96 Table 2-49: TX Output Fall Time at 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . . . . 98 Table 2-50: TX Pre-emphasis Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 2-51: TX Pre-emphasis Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 2-52: TX Pre-emphasis Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 2-53: TX Pre-emphasis, Minimum Setting at 2.5 Gb/s, 125 MHz REFCLK . . . . . 102 Table 2-54: TX Pre-emphasis, Maximum Setting at 2.5 Gb/s, 125 MHz REFCLK . . . . . 102 Table 2-55: TX Pre-emphasis, Max Setting, 1 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . . . 103 Table 2-56: TX Pre-emphasis, Max Setting, 1 Gb/s, dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 2-57: TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, Percentage . . 104 Table 2-58: TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB . . . . . . . . . 104 Table 2-59: TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . 105 Table 2-60: TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage . . . . . . . . . . . . . . . . . . . 105 Table 2-61: TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage . . . . . . . . . . . . . . . . . . 106 Table 2-62: TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage . . . . . . . . . . . . . . . . . . 106 Table 2-63: TX Termination Resistance PLL Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 2-64: TX Termination Resistance Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 2-65: TX Termination Resistance Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 2-66: TX Termination DC Resistance Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Chapter 3: PMA Receiver Characterization Table 3-1: RX Stressed Eye Jitter Tolerance Test PLL Parameters. . . . . . . . . . . . . . . . . . . 116 Table 3-2: RX Stressed Eye Jitter Tolerance Test Test Settings . . . . . . . . . . . . . . . . . . . . . 116 Table 3-3: RX Stressed Eye Jitter Tolerance Test Conditions. . . . . . . . . . . . . . . . . . . . . . . 116 Table 3-4: RX Stressed Eye SJ Jitter Tolerance, 80 MHz, 3.2 Gb/s Data Rate . . . . . . . . . 118 Table 3-5: RX Stressed Eye SJ Jitter Tolerance, 20 MHz, 3.2 Gb/s Data Rate . . . . . . . . . 118 16 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 3-6: RX Stressed Eye SJ Jitter Tolerance, 22 KHz, 3.2 Gb/s Data Rate . . . . . . . . . 119 Table 3-7: RX Stressed Eye SJ Jitter Tolerance, 80 MHz, 3.75 Gb/s Data Rate . . . . . . . . 119 Table 3-8: RX Stressed Eye SJ Jitter Tolerance, 20 MHz, 3.75 Gb/s Data Rate . . . . . . . . 120 Table 3-9: RX Stressed Eye SJ Jitter Tolerance, 22 KHz, 3.75 Gb/s Data Rate . . . . . . . . 120 Table 3-10: RX Stressed Eye SJ Jitter Tolerance, Summary of Results. . . . . . . . . . . . . . . 121 Table 3-11: RX Sinusoidal Jitter Tolerance Test PLL Parameters . . . . . . . . . . . . . . . . . . . 122 Table 3-12: RX Sinusoidal Jitter Tolerance Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 3-13: RX Sinusoidal Jitter Tolerance Test Conditions . . . . . . . . . . . . . . . . . . . . . . . 123 Table 3-14: RX Sinusoidal Jitter Test, 100 Mb/s (Oversampled) . . . . . . . . . . . . . . . . . . . . 125 Table 3-15: RX Sinusoidal Jitter Test, 500 Mb/s (Oversampled) . . . . . . . . . . . . . . . . . . . . 125 Table 3-16: RX Sinusoidal Jitter Test, 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 3-17: RX Sinusoidal Jitter Test, 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 3-18: RX Sinusoidal Jitter Test, 1.25 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 3-19: RX Sinusoidal Jitter Test, 2.00 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . 127 Table 3-20: RX Sinusoidal Jitter Test, 2.488 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 3-21: RX Sinusoidal Jitter Test, 2.5 Gb/s, 62.5 MHz REFCLK . . . . . . . . . . . . . . . . . 128 Table 3-22: RX Sinusoidal Jitter Test, 2.5 Gb/s, 100 MHz REFCLK . . . . . . . . . . . . . . . . . 129 Table 3-23: RX Sinusoidal Jitter Test, 2.5 Gb/s, 125 MHz REFCLK . . . . . . . . . . . . . . . . . 129 Table 3-24: RX Sinusoidal Jitter Test, 2.5 Gb/s, 250 MHz REFCLK . . . . . . . . . . . . . . . . . 130 Table 3-25: RX Sinusoidal Jitter Test, 3.125 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 3-26: RX Sinusoidal Jitter Test, 3.2 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 3-27: RX Sinusoidal Jitter Test, 3.75 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 3-28: RX Sinusoidal Jitter Tolerance Summary Results. . . . . . . . . . . . . . . . . . . . . . 132 Table 3-29: RX Sinusoidal Jitter Tolerance - CDR Freq. Offset Test, PLL Parameters . 133 Table 3-30: RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 3-31: RX Sinusoidal Jitter Tolerance with CDR Freq. Offset Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 3-32: RX SJ Tolerance with CDR Frequency Offset, 500 Mb/s (OS) . . . . . . . . . . . 135 Table 3-33: RX SJ Tolerance with CDR Frequency Offset, 500 Mb/s (OS) . . . . . . . . . . . 135 Table 3-34: RX SJ Tolerance w/ CDR Frequency Offset, 1.00 Gb/s . . . . . . . . . . . . . . . . . . 136 Table 3-35: RX SJ Tolerance w/ CDR Frequency Offset, 2.00 Gb/s, 100 MHz REFCLK 136 Table 3-36: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 62.5 MHz REFCLK. 137 Table 3-37: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 125 MHz REFCLK . 137 Table 3-38: RX SJ Tolerance w/ CDR Frequency Offset, 3.2 Gb/s . . . . . . . . . . . . . . . . . . . 138 Table 3-39: RX SJ Tolerance w/ CDR Frequency Offset, 3.75 Gb/s . . . . . . . . . . . . . . . . . . 138 Table 3-40: RX SJ Tolerance with CDR Frequency Offset Summary Results. . . . . . . . . 139 Table 3-41: RX CDR Offset Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 3-42: RX CDR Offset Test Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 3-43: RX CDR Offset Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 3-44: RX CDR Offset at 1.25 Gb/s Data Rate, 125 MHz REFCLK . . . . . . . . . . . . . . 142 Table 3-45: RX CDR Offset at 2.0 Gb/s Data Rate, 100 MHz REFCLK . . . . . . . . . . . . . . . 142 Table 3-46: RX CDR Offset at 2.488 Gb/s Data Rate, 155.5 MHz REFCLK . . . . . . . . . . . 143 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 17 R Table 3-47: RX CDR Offset at 2.5 Gb/s Data Rate, 62.5 MHz REFCLK . . . . . . . . . . . . . . 143 Table 3-48: RX CDR Offset at 2.5 Gb/s Data Rate, 125 MHz REFCLK . . . . . . . . . . . . . . . 144 Table 3-49: RX CDR Offset at 2.5 Gb/s Data Rate, 250 MHz REFCLK . . . . . . . . . . . . . . . 144 Table 3-50: RX CDR Offset at 3.125 Gb/s Data Rate, 156.25 MHz REFCLK, Minus . . . 145 Table 3-51: RX CDR Offset at 3.2 Gb/s Data Rate, 320 MHz REFCLK . . . . . . . . . . . . . . . 145 Table 3-52: RX CDR Offset at 3.2 Gb/s Data Rate, 320 MHz REFCLK . . . . . . . . . . . . . . . 146 Table 3-53: RX CDR Offset Test Summary Results, Minus . . . . . . . . . . . . . . . . . . . . . . . . 146 Table 3-54: RX CDR Offset Test Summary Results, Plus . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 3-55: RX Input Sensitivity Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 3-56: RX Input Sensitivity Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 3-57: RX Input Sensitivity Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Table 3-58: RX Input Sensitivity at 100 Mb/s Data Rate, Oversampled. . . . . . . . . . . . . . 150 Table 3-59: TX Generation Measurement at 500 Mb/s Date Rate, Oversampled . . . . . . 150 Table 3-60: RX Input Sensitivity at 500 Mb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 3-61: RX Input Sensitivity at 1.00 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 3-62: RX Input Sensitivity at 1.25 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 3-63: RX Input Sensitivity at 2.0 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 3-64: RX Input Sensitivity at 2.488 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Table 3-65: RX Input Sensitivity at 2.5 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Table 3-66: RX Input Sensitivity at 3.125 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 3-67: RX Input Sensitivity at 3.2 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 3-68: RX Input Sensitivity at 3.75 Gb/s Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 3-69: RX Input Sensitivity Summary Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 3-70: RX Equalization Test PLL Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 3-71: RX Equalization Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 3-72: RX Equalization Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Table 3-73: RX Equalization Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 3-74: RX Stress Test, Various Rates, Various FR-4 Trace Lengths . . . . . . . . . . . . . 160 Table 3-75: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = Off . . . . . . . . . . . 161 Table 3-76: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 25% . . . . . . . . . . . 161 Table 3-77: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 37% . . . . . . . . . . . 162 Table 3-78: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 50% . . . . . . . . . . . 162 Table 3-79: RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 62% . . . . . . . . . . . 163 Table 3-80: RX Equalization Test, Mean SJ Tolerance at 3.2 Gb/s vs. RX EQ Settings . 163 Table 3-81: RX OOB Signal Detect Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 3-82: RX OOB Signal Detect Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 3-83: RX OOB Signal Detect Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Table 3-84: RX OOB Signal Detect Results by OOB Setting at 2.5 Gb/s . . . . . . . . . . . . . 166 Table 3-85: RX OOB6 Signal Detect Results at 2.5 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 3-86: RX CID Run Length Test PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Table 3-87: RX CID Run Length Test Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 3-88: RX CID Run Length Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 3-89: RX CID Run Length Test at 500 Mb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 18 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 3-90: RX CID Run Length Test at 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 3-91: RX CID Run Length Test at at 2.00 Gb/s, 100 MHz REFCLK, C & I Grades 171 Table 3-92: RX CID Run Length Test at 2.488 Gb/s, C & I Grades . . . . . . . . . . . . . . . . . . 171 Table 3-93: RX CID Run Length Test at 2.5 Gb/s, 62.5 MHz REFCLK, C & I Grades . . 172 Table 3-94: RX CID Run Length Test at 2.5 Gb/s, 100 MHz REFCLK, C & I Grades. . . 172 Table 3-95: RX CID Run Length Test at 2.5 Gb/s, 125 MHz REFCLK, C & I Grades. . . 173 Table 3-96: RX CID Run Length Test at 3.125 Gb/s, C & I Grades . . . . . . . . . . . . . . . . . . 173 Table 3-97: RX CID Run Length Test at 3.2 Gb/s, C & I Grades . . . . . . . . . . . . . . . . . . . . 174 Table 3-98: RX CID Run Length Test at 3.75 Gb/s, C & I Grades . . . . . . . . . . . . . . . . . . . 174 Table 3-99: RX CID Run Length Test, Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 3-100: RX Jitter Transfer to Recovered Clock Test PLL Settings . . . . . . . . . . . . . . 177 Table 3-101: RX Jitter Transfer to Recovered Clock Test Settings . . . . . . . . . . . . . . . . . . 177 Table 3-102: RX Jitter Transfer to Recovered Clock Test Conditions. . . . . . . . . . . . . . . . 177 Table 3-103: RX Jitter Transfer to Recovered Clock, 1.00 Gb/s . . . . . . . . . . . . . . . . . . . . . 178 Table 3-104: RX Jitter Transfer to Recovered Clock, 2.0 Gb/s, 100 MHz REFCLK . . . . . 179 Table 3-105: RX Jitter Transfer to Recovered Clock, 2.5 Gb/s, 125 MHZ REFCLK . . . . 179 Table 3-106: RX Jitter Transfer to Recovered Clock Test, Summary . . . . . . . . . . . . . . . . 180 Table 3-107: RX Transfer Jitter Test PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Table 3-108: RX Transfer Jitter Test Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Table 3-109: RX Termination Resistance Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 182 Table 3-110: RX Termination DC Resistance Measurement. . . . . . . . . . . . . . . . . . . . . . . . 185 Chapter 4: GTP_DUAL Transceiver Power Consumption Table 4-1: Average and Deviation Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Table 4-2: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Appendix A: General GTP_DUAL Test Settings Table A-1: Relevant GTP_DUAL Port Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Table A-2: Relevant GTP_DUAL Attribute Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 19 R 20 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Preface About This Guide This characterization report provides FPGA characterization results for Virtex®-5 LXT and SXT RocketIO™ GTP transceivers across specified process, voltage, and temperature (PVT) conditions. Guide Contents This manual contains the following chapters: • Chapter 1, “Introduction,” introduces the Virtex-5 LXT and SXT platforms and describes: the tests conducted, test methodology, test setup, and test conditions. • Chapter 2, “PMA Transmitter Characterization,” describes the characterization process and results for various Physical Media Attachment (PMA) transmitter tests. • Chapter 3, “PMA Receiver Characterization,” describes the characterization process and results for various PMA receiver tests. • Chapter 4, “GTP_DUAL Transceiver Power Consumption,” describes the power consumption of the PMA portion of the GTP. • Appendix A, “General GTP_DUAL Test Settings,” describes the GTP settings applied in every test, except where noted within the individual tests. References The following documents provide useful supplementary material. All can be accessed on the Xilinx website. From the Home page, select Documentation → By Device → Virtex-5. • Virtex-5 RocketIO GTP Transceiver User Guide • Virtex-5 FPGA User Guide • Virtex-5 Data Sheet: DC and Switching Characteristics • Virtex-5 Gigabit Ethernet Serial Protocol Standard Characterization Test Report • Virtex-5 PCI Express Protocol Standard Characterization Test Report • Virtex-5 OC-48 Protocol Standard Characterization Test Report • Virtex-5 XAUI Protocol Standard Characterization Test Report • Virtex-5 CPRI Protocol Standard Characterization Test Report www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 21 R Additional Resources To find additional documentation, see the Xilinx website at: http://www.xilinx.com/literature To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at: http://www.xilinx.com/support Definition of Terms ATE Automated Test Equipment BER Bit Error Ratio BERT Bit Error Ratio Tester Channel The high-speed serial signal path, which can include printed circuit board (PCB) material, connectors, cabling, and so on. CDR Clock and Data Recovery DCD Duty Cycle Distortion DDJ Data Dependent Jitter DJ Deterministic Jitter – attributable to specific data patterns or events. DRP Dynamic Reconfiguration Port. Used to dynamically modify PMA settings such as data rate or equalization. DUT Device Under Test FPGA Field Programmable Gate Array FR-4 Generic name for printed circuit board dielectric material Gb/s Gigabits per Second I/O Input/Output ISI Inter Symbol Interference PJ Periodic Jitter PLL Phase-Locked Loop PMA Physical Media Attachment – also known as the SerDes portion of the transceiver. PCS Physical Coding Sublayer – digital logic that supports the 8B/10B encoding/decoding. PVT Process, Voltage, and Temperature RJ Random Jitter – attributable to random noise. Random jitter is Gaussian in nature. RocketIO™ Xilinx trademark for the high-speed serial I/O transceivers RX Receiver SerDes Serializer/Deserializer. A complete transceiver with RX, TX, CDR, and PLL blocks. TJ Total Jitter TX Transmitter VCO Voltage-Controlled Oscillator 22 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Conventions This document uses the following conventions. An example illustrates each convention. Typographical The following typographical conventions are used in this document: Convention Meaning or Use Example Courier font Messages, prompts, and program files that the system displays speed grade: - 100 Courier bold Literal commands that you enter in a syntactical statement ngdbuild design_name Commands that you select from a menu File → Open Keyboard shortcuts Ctrl+C Variables in a syntax statement for which you must supply values ngdbuild design_name References to other manuals See the Development System Reference Guide for more information. Emphasis in text If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not connected. An optional entry or parameter. However, in bus specifications, such as bus[7:0], they are required. ngdbuild [option_name] design_name A list of items from which you must choose one or more lowpwr ={on|off} Separates items in a list of choices lowpwr ={on|off} Vertical ellipsis . . . Repetitive material that has been omitted IOB #1: Name = QOUT’ IOB #2: Name = CLKIN’ . . . Horizontal ellipsis . . . Repetitive material that has been omitted allow block block_name loc1 loc2 ... locn; Helvetica bold Italic font Square brackets Braces [ ] { } Vertical bar | www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 23 R Online Document The following conventions are used in this document: Convention 24 Meaning or Use Example Blue text Cross-reference link to a location in the current document Blue, underlined text Hyperlink to a website (URL) See the section “Additional Resources” for details. Refer to “Title Formats” in Chapter 1 for details. Go to http://www.xilinx.com for the latest speed files. www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Chapter 1 Introduction Virtex-5 LXT and SXT FPGA Platforms Overview Customers should see Virtex-5 Data Sheet: DC and Switching Characteristics (DS202) and Virtex-5 FPGA User Guide (UG190) for complete information on the Virtex®-5 LXT and SXT FPGA platforms. RocketIO GTP Transceiver Overview The Virtex-5 RocketIO GTP Transceiver User Guide (UG196) provides an excellent introduction to Virtex-5 RocketIO™ GTP transceivers. Refer to this document for additional GTP transceiver information. Scope of Characterization This document serves as a general characterization report for Virtex-5 LXT and SXT devices. It is not designed to demonstrate compliance to specific standards. Xilinx produces standards-based characterization reports that detail specific setup and measurement requirements per those standards. See the “References” section for additional details. Also, check online at http://www.xilinx.com for the latest standardsbased reports. This report is designed to document the behavior characteristics of the physical media attachment (PMA) and not that of the physical coding sublayer (PCS). The intention of this report is to provide a consistent framework for evaluating the various aspects of the PMA transmitter and receiver. The same setups are used, with the same settings, wherever possible. Some tests require differing setups due to their nature. Importantly, the test setups used for this report are different than those of the specific standards-based characterization reports. Results can differ between these reports due to the nature of the test setup and/or test conditions used in the creation of each report. Use the report appropriate for the intended use. Test Setup and Methodology Characterization of a complex analog component requires a variety of test setups in order to cover all of the interested parameters. Where possible, Automated Test Equipment (ATE) was used to perform measurements. In some instances, bench measurements are required to explore a particular parameter. Table 1-1 identifies how each test was conducted, and cross references a picture of those setups. Three different bench setups and one ATE setup are used. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 25 R Chapter 1: Introduction Table 1-1: Test Setup Reference Test Conducted Test Setup Reference Figure Test Style TX Near-End Output Eye Figure 1-1 Bench TX Jitter Generation Figure 1-4, Figure 1-5 ATE TX REFCLK to TX Jitter Transfer Figure 1-4, Figure 1-5 ATE TX Output Rise and Fall Time Figure 1-2 TX Bench TX Output Amplitude Figure 1-2 TX Bench TX Output Amplitude Squelched Figure 1-2 TX Bench TX Pre-Emphasis Figure 1-2 TX Bench TX Termination DC Resistance Figure 1-2 TX Bench RX Stressed Eye Jitter Tolerance Figure 1-4, Figure 1-5 ATE RX Sinusoidal Jitter Tolerance Figure 1-4, Figure 1-5 ATE RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Figure 1-4, Figure 1-5 ATE RX CDR Frequency Tolerance Figure 1-4, Figure 1-5 ATE RX Input Sensitivity Figure 1-4, Figure 1-5 ATE RX Equalization Figure 1-1, Figure 1-4, Figure 1-5 RX OOB Signal Detect Figure 1-4, Figure 1-5 ATE RX CID Run Length Figure 1-4, Figure 1-5 ATE RX Jitter Transfer Based on Data to Recovered Clock Figure 1-3 RX Termination DC Resistance Figure 1-1, Figure 1-4, Figure 1-5 Bench and ATE RX Bench Bench and ATE Figure 1-1 through Figure 1-5 show the test setups that were used for this characterization document. 26 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Test Setup and Methodology Characterization Test Setup Figure 1-1 shows a picture of the test setup used to capture the TX near-end output eye and measure the RX and TX resistance. This setup consisted of a high-precision clock source, a Virtex-5 ML523 characterization platform, a temperature forcing unit (illustrated in Figure 1-3), a BERT generator, high-precision power supplies, and a high-speed Agilent Infinium DCA (86100A). Additionally, a high-precision digital voltmeter was used for DC resistance measurements. Not all instruments shown were used for all tests. Connection to the Device Under Test (DUT) was made through a high speed, low profile, zero insertion force socket. The device was configured for these tests via the JTAG port using Xilinx ChipScope™ Pro SerialIO Toolkit software. RPT056_c1_01_040507 Figure 1-1: Bench Setup www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 27 R Chapter 1: Introduction Figure 1-2 shows a picture of the TX bench setup used to capture PMA transmitter characteristics. It consists of a Virtex-5 ML523 characterization platform, a programmable temperature forcing unit, high precision programmable power supplies, an Agilent Infinium DCA 86100A, a programmable HP 8133A Signal Generator, and a programmable HP 3499B Switch Control System. Connection to the DUT was made through a high speed, low profile, zero insertion force socket. The device was configured for these tests via the JTAG port using Xilinx ChipScope Pro SerialIO Toolkit software. The TX bench setup was controlled by a PC running a PERL program with GPIB interfaces to control the power supplies, clocks, data generation, and data gathering facilities.. RPT056_c1_02_040507 Figure 1-2: 28 TX Bench Setup www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Test Setup and Methodology Figure 1-3 shows a picture of the RX bench setup used to capture some of the PMA receiver characteristics. It consists of an ML523, a programmable temperature forcing unit, high precision programmable power supplies, an Agilent Infinium DCA 86100A, a programmable HP 8648C Signal Generator, an Agilent N4901B SerBERT, and a programmable HP 3499B Switch Control System. Connection to the DUT was made through a high speed, low profile, zero insertion force socket. The device was configured for these tests via the JTAG port using Xilinx ChipScope Pro SerialIO Toolkit software. The RX bench setup was controlled by a PC running a PERL program with GPIB interfaces to control the power supplies, clocks, data generation, and data gathering facilities. RPT056_c1_03_040507 Figure 1-3: RX Bench Setup www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 29 R Chapter 1: Introduction Figure 1-4 and Figure 1-5 show the Agilent ParBERT ATE equipment setup. This equipment includes fully programmable multi-channel BERT, clock sources, power supplies, and measurement equipment, which can be automated to sequence through various test setups and conditions, including reconfiguring the FPGA. The automated temperature-forcing equipment is not shown. RPT056_c1_04_040507 Figure 1-4: High-Volume Characterization Tester, Top View RPT056_c1_05_040507 Figure 1-5: 30 High-Volume Characterization Tester, Whole View www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Test Setup and Methodology A DUT test fixture was used to hold an FPGA under test. An FPGA was placed in the test fixture, and the temperature forcing equipment was placed over the top of the FPGA. The ATE equipment sequences through the specified tests across voltage and temperature. FPGAs from various process corners are used to capture the process-related variances in the GTP PMA transmitter and receiver. The Automated Test Equipment, or ATE, is a state-of-the-art test system designed specifically for PMA parametric testing. It is based on the Agilent 81250 13.5 Gb/s ParBERT and provides a total of twelve generator and analyzer channels operating in parallel. The ParBERT generators and analyzers are clocked from separate very low-jitter signal generators, permitting both synchronous operation (TX and RX operating at the same data rate) and asynchronous operation (TX and RX operating at different frequencies with a data rate offset). An arbitrary waveform generator was used to provide a modulation source for both Sinusoidal Jitter Tolerance and Jitter Transfer testing. The arbitrary waveform generator can be programmed for up to 80 MHz modulation frequency. Two pairs of differential low-jitter reference clocks (GTP REFCLK) are provided from a 3.2 Gb/s data generator to clock the device under test. The data rate of the 3.2 Gb/s data generator was adjusted to generate the desired clock frequency. The 3.2 Gb/s data generator can be modulated with an arbitrary waveform generator for Jitter Transfer testing. The ATE system was programmed using the Agilent VEE GPIB programming language. Use of a programming language offers many benefits including repeatable and efficient operation. A custom test fixture was designed to interface the device’s high-speed I/O channels and REFCLK to the ParBERT, provide power, and configure the device. Device configuration was via JTAG. Test vectors can also be applied to the device through a 96-channel I/O interface. The basic design, used for all the test cases, connects the device RX to the ParBERT generator and the device TX to the ParBERT analyzer. Output from the PCS RX port was connected to the PCS TX port using FPGA on-chip fabric routing (fabric loopback). Configuration files (.BIT) used for the ATE were developed using Xilinx ISE® Design Tools. A standard configuration was used in all test cases. The DRP (Dynamic Re-Configuration Port) was used to change the attributes of the device for specific tests. The DUT incorporates external AC coupling of 100 nF on the RX pins. For most tests, the internal AC coupling was bypassed, except where noted otherwise in the test results. Characterization Test Methodology Each test consisted of a bench test and/or ATE tests. Each test set was run across process, voltage, and temperature (PVT). Silicon process corners, along with typical silicon, were used to provide data on the effects of process to each test. Similarly, the power supplies were varied from their nominal voltages by the percent of variance specified in the data sheet, typically ±5%. Devices under test were also temperature-forced at –40°C, 0°C, and 100°C, ambient. Each test looks for a specific characteristic of interest. The tests are designed, where possible, to test only the elements that can affect that specific test. Trend lines are provided, where appropriate, to illustrate the effect that a parameter has on the specific characteristic. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 31 R Chapter 1: Introduction This document is organized first by PMA transmitter characteristics, then by PMA receiver characteristics. Under these broad categories, specific tests are listed as subsections. Each subsection is broken down into four items, which repeat for each test: • Test Description • Test Setup • • ♦ Table: PLL Settings ♦ Table: Test Settings ♦ Table: Test Conditions Test Results ♦ Figure: Graphical results by data rate a ♦ Figure: Graphical results by data rate b ♦ Figure: Graphical results by data rate [. . .] Conclusion Test Description Test Description provides a high-level explanation of what the test does. Test Setup Sections Test Setup provides details of how the test was conducted, including all relevant GTP transceiver settings that were changed relative to those contained in Appendix A, “General GTP_DUAL Test Settings.” A PLL settings table is provided, which documents the per-rate settings for relevant PLL settings. Table 1-2 illustrates an example of one of these PLL settings tables. Table 1-2: Example PLL Settings Table Data Rate PLL Freq REFCLK PLL_DIVSEL_FB PLL_DIVSEL_REF (GHz) Freq (MHz) and DIV Post Divider (1) Oversample 100 Mb/s (OS) (2) 1.00 100 1 2 * 5 = 10 4 5 500 Mb/s (OS) (2) 1.25 125 1 2 * 5 = 10 1 5 500 Mb/s 1.00 100 1 2 * 5 = 10 4 1 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 1.25 Gb/s 1.25 125 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 250 1 1*5=5 1 1 1.5625 156.25 1 2 * 5 = 10 1 1 1.60 320 1 1*5=5 1 1 3.125 Gb/s 3.2 Gb/s Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. 2. (OS) means oversampled mode enabled. 32 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Test Setup and Methodology Another table is provided to show the settings of the FPGA that differ from the standard settings contained in Appendix A, “General GTP_DUAL Test Settings.” Table 1-3 shows an example settings table. Only the relevant parameters that differ from the standard settings are shown. Table 1-3: Example Test Settings Table GTP_Dual Port Settings PORT Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_Dual Attribute Settings ATTRIBUTE OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 & 500 Mb/s (OS) TRUE A table is also provided which details the relevant conditions of the particular test. Table 1-4 illustrates an example of one of these PLL settings tables. Definitions of some of the test parameters used in this table are as follows: • • • Loopback Mode – Refer to UG196, Virtex-5 RocketIO GTP Transceiver User Guide Pattern – Pattern(s) that were used for the particular test. Silicon Corner Used SS – Slow PMOS, Slow NMOS FS – Fast PMOS, Slow NMOS SF – Slow PMOS, Fast NMOS TT – Typical PMOS, Typical NMOS FF – Fast PMOS, Fast NMOS • • • GTP_DUAL Location Used – Locations of GTP_DUAL transceivers that were tested Junction Temperature – Junction or case temperature(s) at which the tests were run Test Board – Test Platform used: ML523 – Virtex-5 ML523 Characterization Platform Virtex-5 LXT FF1136 Test Fixture • • FR-4 Length – Length of GTP transceiver traces on specified test board REFCLK and PLL Rates – See the table referred to for rate-specific PLL settings Table 1-4: Example Test Conditions Table Test Parameter Loopback Mode Test Value Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, FS, SF, TT, FF GTP_DUAL Location Used X0Y1 Junction Temperature 100°C Power Supplies –5% Test Board ML52x, Virtex-5 Test Fixture Transmitter Termination Style AC Coupled, 50Ω to Ground FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 2-1) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 33 R Chapter 1: Introduction Finally, a diagram is provided for each test to illustrate the instrumentation used during the test. Conclusion Sections The conclusion provides a summary of the results where a summary is warranted. Characterization Test Conditions The data collected for this report was collected under specific test conditions. These conditions are generally across Process, Voltage and Temperature, as well as various data rates and PLL settings. The test conditions used for each test are documented within the Test Setup section of each test. This document serves as a general characterization report for Virtex-5 LXT devices. It is not designed to demonstrate compliance to specific standards. Xilinx produces standards-based characterization reports that detail specific setup and measurement requirements as per those standards. See the “References” section in the Preface for additional information. Importantly, the test setups used for this report are different than those used in the specific standards-based characterization reports. Results can differ between these reports due to the nature of the test setup and/or test conditions used in the creation of each report. Use the report appropriate for the intended use. See Table 1-4 for an example of test conditions used. Characterization Devices Xilinx used the Virtex-5 XC5VLX50T FPGA in a FF1136 package as its primary DUT. Devices were selected from fast process lots, slow process lots, and typical process lots. Each of these devices was tested at the specified temperature and voltage. Any test escapes that were found during characterization testing were retested for functional behavior using the production tester. The characterization test results were removed if they did not pass the production tests. 34 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Summary of Characterization Results Summary of Characterization Results Table 1-5 provides a quick reference to the characterization test results. Table 1-5: Summary of Characterization Results Test Conducted TX Near-End Output Eye Test Style Bench TX Jitter Generation ATE TX REFCLK to TX Jitter Transfer ATE TX Output Rise and Fall Time TX Bench TX Output Amplitude TX Bench TX Output Amplitude Squelched TX Bench TX Pre-Emphasis TX Bench TX Termination DC Resistance TX Bench RX Stressed Eye Jitter Tolerance ATE RX Sinusoidal Jitter Tolerance ATE RX Sinusoidal Jitter Tolerance with CDR Frequency Offset ATE RX CDR Frequency Tolerance ATE RX Input Sensitivity ATE RX Equalization Bench and ATE RX OOB Signal Detect ATE RX CID Run Length ATE RX Jitter Transfer Based on Data to Recovered Clock RX Bench RX Termination DC Resistance RX Bench www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 35 R Chapter 1: Introduction 36 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Chapter 2 PMA Transmitter Characterization TX Near-End Output Eye Test Description Eye diagrams are commonly used to evaluate the quality of signals at different points along a serial link. The TX near-end eye diagrams that follow are representative samples for different rates. Test Setup TX near-end output eye diagram data was collected using a differentially connected Agilent 86100A DCA for bench measurements. Figure 2-1 illustrates the equipment used for this test. The TX near-end eye diagrams are shown centered on 1.5 bit times per screen. The tests were run using a PRBS31 pattern for a capture duration of approximately 300 seconds using SS corner silicon, power supplies set at –5%, and case temperature of 100°C. These are representative diagrams only, and not intended to quantify any particular bit-error ratio (BER). www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 37 R Chapter 2: PMA Transmitter Characterization 71501C Jitter Analysis System Black denotes front panel connection. Blue denotes back panel connection. 3325B Modulator Main Signal Sync Out 10 MHz Ref In IEEE 83752A Sweeper NC 6108 Noise Generator FM Input IEEE 10 MHz Ref In 70820A MTA Chan1 Sync In IEEE 10 MHz Ref Out Divide by 20 Trigger Out 156.25 MHz Noise Out RF Output Chan2 81134A Pulse Generator Channel 11 Clk Out 3.125 Gb/s Power Divider 10 MHz Ref In 86130A Bitalyzer Pattern Generator Clk Out Clk In IEEE Data P Data N Error Detector Clk In Data In CLK/REF Input ML523 RXP 81130A Pattern Generator Trigger Out Clk P Clk N RXN 86100A Infinium DCA Scope 20 TXN Channel 1 TXP Channel 2 20 MGTREFCLKN MGTREFCLKP External Trigger RPT056_02_01_060107 Figure 2-1: TX Near-End Output Eye Measurement Bench Setup Two pairs of REFCLKs were used to clock the six GTP_DUALs in two groups of three GTP_DUALs. The REFCLKs were sourced from an Agilent 81130A data generator using a clock pattern. This particular test used only one GTP transceiver of the GTP_DUAL located at X0Y0. Table 2-1 shows the appropriate REFCLK frequency, and PLL ratio to create a proper PLL frequency for each of the tested data rates. Table 2-1: TX Near-End Output Eye PLL Settings Data Rate PLL Freq (GHz) 100 Mb/s (OS) 1.00 100 1 500 Mb/s (OS) 1.25 125 500 Mb/s 1.00 1.00 Gb/s 1.00 38 REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV Post Divider(1) Oversample 2 * 5 = 10 4 5 1 2 * 5 = 10 1 5 100 1 2 * 5 = 10 4 1 100 1 2 * 5 = 10 2 1 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 2-1: TX Near-End Output Eye TX Near-End Output Eye PLL Settings (Continued) PLL_DIVSEL_FB REFCLK Freq PLL_DIVSEL_REF and DIV (MHz) Post Divider(1) Oversample 2 * 5 = 10 2 1 1 2 * 5 = 10 1 1 200 1 2 * 5 = 10 2 1 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 2.5 Gb/s 1.25 125 1 2 * 5 = 10 1 1 2.5 Gb/s 1.25 250 1 1*5=5 1 1 3.125 Gb/s 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 Data Rate PLL Freq (GHz) 1.25 Gb/s 1.25 125 1 2.0 Gb/s 1.00 100 2.0 Gb/s 2.00 2.488 Gb/s Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE® software by Xilinx was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-2. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 2-2: TX Near End Output Eye Test Settings GTP_DUAL Port Settings Port INTDATAWIDTH Rate Affected Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE The test fixture uses a high-speed zero insertion force (ZIF) socket to connect the device under test (DUT) to the test equipment. Figure 2-1 shows a picture of the test testup. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 39 R Chapter 2: PMA Transmitter Characterization Various conditions were used to characterize the GTP transceivers. Conditions relevant to this test are contained in Table 2-3. Table 2-3: TX Near-End Output Eye Test Conditions Test Parameter Loopback Mode Test Value Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used X0Y1 Case Temperature 100°C Power Supplies –5% Test Board ML523 Transmitter Termination Style AC Coupled, 50Ω to Ground into the DCA FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 2-1) Results Figure 2-2 through Figure 2-15, captured near-end eye diagrams, are representative samples based upon the test conditions described in Table 2-3. TX Near-End Eye Diagram at 100 Mb/s, Oversampled RPT056_c2_02_040607 Figure 2-2: Representative TX Output Eye at 100 Mb/s (5X Oversampling) 40 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Near-End Output Eye TX Near-End Eye Diagram at 500 Mb/s, Oversampled RPT056_c2_03_040607 Figure 2-3: Representative TX Output Eye at 500 Mb/s (5X Oversampling) TX Near-End Eye Diagram at 500 Mb/s RPT056_c2_04_041107 Figure 2-4: Representative TX Output Eye at 500 Mb/s www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 41 R Chapter 2: PMA Transmitter Characterization TX Near-End Eye Diagram at 1.00 Gb/s RPT056_c2_05_053007 Figure 2-5: Representative TX Output Eye at 1.00 Gb/s TX Near-End Eye Diagram at 1.25 Gb/s RPT056_c2_06_040607 Figure 2-6: 42 Representative TX Output Eye at 1.25 Gb/s www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Near-End Output Eye TX Near-End Eye Diagram at 2.0 Gb/s, 100 MHz REFCLK RPT056_c2_12_032907 Figure 2-7: Representative TX Output Eye at 2.0 Gb/s, REFCLK 100 MHz TX Near-End Eye Diagram at 2.0 Gb/s, 200 MHz REFCLK RPT056_c2_13_032907 Figure 2-8: Representative TX Output Eye at 2.0 Gb/s, REFCLK 200 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 43 R Chapter 2: PMA Transmitter Characterization TX Near-End Eye Diagram at 2.488 Gb/s RPT056_c2_09_040607 Figure 2-9: Representative TX Output Eye at 2.488 Gb/s TX Near-End Eye Diagram at 2.5 Gb/s, 62.5 MHz REFCLK RPT056_c2_10_040607 Figure 2-10: 44 Representative TX Output Eye at 2.5 Gb/s, REFCLK 62.5 MHz www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Near-End Output Eye TX Near-End Eye Diagram at 2.5 Gb/s, 100 MHz REFCLK RPT056_c2_11_040607 Figure 2-11: Representative TX Output Eye at 2.5 Gb/s, REFCLK 100 MHz TX Near-End Eye Diagram at 2.5 Gb/s, 125 MHz REFCLK RPT056_c2_12_040607 Figure 2-12: Representative TX Output Eye at 2.5 Gb/s, REFCLK 125 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 45 R Chapter 2: PMA Transmitter Characterization TX Near-End Eye Diagram at 2.5 Gb/s, 250 MHz REFCLK RPT056_c2_13_041007 Figure 2-13: Representative TX Output Eye at 2.5 Gb/s, REFCLK 250 MHz TX Near-End Eye Diagram at 3.125 Gb/s RPT056_c2_19_032907 Figure 2-14: 46 Representative TX Output Eye at 3.125 Gb/s www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Near-End Output Eye TX Near-End Eye Diagram at 3.2 Gb/s RPT056_c2_15_040607 Figure 2-15: Representative TX Output Eye at 3.2 Gb/s TX Near-End Eye Diagram at 3.75 Gb/s RPT056_c2_102_040308 Figure 2-16: Representative TX Output Eye at 3.75 Gb/s www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 47 R Chapter 2: PMA Transmitter Characterization Conclusion The TX near-end output eye tests display representative eyes for the rates contained in Table 2-1. The near-end output eye diagrams in Figure 2-2 through Figure 2-15 illustrate GTP transceiver performance for the conditions listed in Table 2-2 and Table 2-3. TX Jitter Generation Test Description Eye width measurements of the transmitter output were performed by the Bath Tub Curve (BTC) method, whereas the random jitter component was extrapolated to 1E–12 BER to measure the transmitter output's total jitter (TJ). The TX jitter generation test measures the TJ and estimates random jitter (RJ) at the TX outputs of the device using a low-jitter REFCLK source. For each datapoint, deterministic jitter (DJ) was calculated as follows: DJ = TJ – RJ The reported jitter is broadband, with no filtering. TX jitter was measured with BTC method, using 10E9 bits of data. RJ was extrapolated from the measurements to BER = 1E– 12. Note that the data reported in the histogram tables contains local minimum and maximum data across all devices tested. As such, the reported minimum and maximum data columns may not appear to obey the above formula, but the data is correct. Table 2-20 shows a summary of the results for various data rates. Test Setup TX jitter data was collected using ATE. Figure 2-17 illustrates the equipment used for this test. Agilent ParBERT 13.5 Gb/s ATE was used to measure TX jitter on all 12 GTP transceivers simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP TX outputs. Temperature control was achieved through forced-air cooling/heating using a programmable Thermionics unit. Twelve GTP transceiver channels can be characterized simultaneously in a single pass. No filtering was used on the ParBERT, so the results include the entire noise spectrum. The device was configured using JTAG. Power was supplied from eight programmable power supplies through connectors on the side of the fixture. High-speed connections from the test fixture to the ParBERT were made through SMP and SMA coax connectors. Blind-mate connectors were used to permit quick removal of the test fixture. A low-profile, high-speed socket was used to collect the data. Two pairs of REFCLKs were used to clock the six GTP_DUAL tiles in two groups of three GTP_DUAL tiles. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 2-4 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. 48 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 2-4: TX Jitter Generation TX Jitter Generation Test PLL Parameters Data Rate PLL Freq REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (GHz) (MHz) and DIV Post Divider(1) Oversample 500 Mb/s (OS) 1.25 125 1 2 * 5 = 10 1 5 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 1.25 Gb/s 1.25 125 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.0 Gb/s 2.00 200 1 2 * 5 = 10 2 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 2.5 Gb/s 1.25 125 1 2 * 5 = 10 1 1 2.5 Gb/s 1.25 250 1 1*5=5 1 1 3.125 Gb/s 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Typical, slow, and fast corner material was characterized using the ATE system over voltage and temperature corners. All twelve GTP transceivers on each unit were tested. The configuration designs use fabric loopback in single-byte mode, with both TXUSRCLK and RXUSRCLK clocked from TXOUTCLK. The configuration provides connections to GTP_RESET, CDR_RESET, and the DRP interface. For all test cases, the RX was configured for termination to GND, with RX front end using internal AC coupling. Serial data to the RX was provided by the Agilent ParBERT Pattern Generator. This was converted to 8-bit or 10-bit data at the PMA deserializer and passed through the PCS. The RX parallel data port was connected to the TX parallel data port in the FPGA fabric. The 8-bit or 10-bit parallel data was then sent through the TX PCS and converted back to serial data at the TX PMA. The TX serial data was connected to the ParBERT Data Analyzer. Figure 2-17 shows a diagram of the test setup. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceivers was set up with the settings in Table 2-5. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 49 R Chapter 2: PMA Transmitter Characterization Table 2-5: TX Jitter Generation Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-6. Table 2-6: TX Jitter Generation Test Conditions Test Parameter Loopback Mode Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 locations Ambient Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates 50 Test Value Various (see Table 2-4) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c2_16_041907 Figure 2-17: ATE Test Setup for TX Jitter Generation Tests Results Figure 2-18 through Figure 2-29 and Table 2-7 through Table 2-18 present the TX jitter generation test results. Table 2-20 provides a summary chart of the results across various data rates. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 51 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 500 Mb/s Using Oversampling Virtex-5 GTP TX Jitter, 0.500 Gb/s, REFCLK = 100 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 450 400 Number of Data Points 350 300 250 200 150 100 50 TX Total Jitter (UI) Figure 2-18: 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.24 0.26 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 RPT056_c2_22_051807 TX Jitter Generation at 500 Mb/s, Oversampled, C and I Grade Note: Histogram was generated from 630 Mb/s data (minimum instrument speed). TX jitter as adjusted to 500 Mb/s using (630 Mb/s Jitter * 500 / 630). Table 2-7: TX Jitter Generation Measurement at 500 Mb/s Data Rate Parameter Min Max Average Std Dev Units 0.052 0.072 0.052 0.006 UI RJ, Random Jitter(1) – – – – UI DJ, Deterministic Jitter(1) – – – – UI TJ, Total Jitter Notes: 1. There are insufficient data points to establish RJ and DJ for this graph. 52 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 1.00 Gb/s Virtex-5 GTP TX Jitter, 1.00 Gb/s, REFCLK = 100 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 250 Number of Data Points 200 150 100 50 TX Total Jitter (UI) Figure 2-19: Table 2-8: 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.24 0.26 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 RPT056_c2_18_051807 TX Jitter Generation at 1.00 Gb/s, C and I Grade TX Jitter Generation Measurement at 100 Mb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.084 0.237 0.124 0.021 UI RJ, Random Jitter 0.048 0.119 0.072 0.010 UI DJ, Deterministic Jitter 0.005 0.187 0.053 0.023 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 53 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 1.25 Gb/s Virtex-5 GTP TX Jitter, 1.25 Gb/s, REFCLK = 125 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 450 400 Number of Data Points 350 300 250 200 150 100 50 TX Total Jitter (UI) Figure 2-20: Table 2-9: 0.50 0.48 0.46 0.44 0.42 0.40 0.38 RPT056_c2_19_051807 TX Jitter Generation at 1.25 Gb/s, C and I Grade TX Jitter Generation Measurement at 1.25 Gb/s Data Rate Parameter 54 0.36 0.34 0.32 0.30 0.28 0.24 0.26 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 Min Max Average Std Dev Units TJ, Total Jitter 0.084 0.186 0.123 0.015 UI RJ, Random Jitter 0.051 0.138 0.077 0.011 UI DJ, Deterministic Jitter 0.003 0.103 0.046 0.015 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 2.0 Gb/s Using 100 MHz REFCLK Virtex-5 GTP TX Jitter, 2.00 Gb/s, REFCLK = 100 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 250 Number of Data Points 200 150 100 50 TX Total Jitter (UI) Figure 2-21: Table 2-10: 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.24 0.26 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 RPT056_c2_20_051807 TX Jitter Generation at 2.00 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.00 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.154 0.270 0.198 0.021 UI RJ, Random Jitter 0.103 0.278 0.141 0.019 UI DJ, Deterministic Jitter 0.000 0.250 0.062 0.035 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 55 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 2.0 Gb/s Using 200 MHz REFCLK Virtex-5 GTP TX Jitter, 2.00 Gb/s, REFCLK = 200 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 140 Number of Data Points 120 100 80 60 40 20 TX Total Jitter (UI) Figure 2-22: Table 2-11: 0.50 0.48 0.46 0.44 0.42 0.40 0.38 RPT056_c2_21_051807 TX Jitter Generation at 2.00 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.00 Gb/s Data Rate Parameter 56 0.36 0.34 0.32 0.30 0.28 0.24 0.26 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 Min Max Average Std Dev Units TJ, Total Jitter 0.099 0.231 0.163 0.020 UI RJ, Random Jitter 0.073 0.212 0.108 0.016 UI DJ, Deterministic Jitter 0.000 0.108 0.055 0.018 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 2.488 Gb/s Virtex-5 GTP TX Jitter, 2.488 Gb/s, REFCLK = 155.52 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 350 Number of Data Points 300 250 200 150 100 50 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-23: Table 2-12: RPT056_c2_22_051807 TX Jitter Generation at 2.488 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.488 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.144 0.270 0.200 0.021 UI RJ, Random Jitter 0.078 0.256 0.139 0.017 UI DJ, Deterministic Jitter 0.001 0.149 0.062 0.019 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 57 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 2.5 Gb/s Using 62.5 MHz REFCLK Virtex-5 GTP TX Jitter, 2.5 Gb/s, REFCLK = 62.5 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 140 Number of Data Points 120 100 80 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-24: Table 2-13: RPT056_c2_23_051807 TX Jitter Generation at 2.5 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.5 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.211 0.358 0.271 0.028 UI RJ, Random Jitter 0.158 0.418 0.304 0.033 UI – – – – UI DJ, Deterministic Jitter (1) Notes: 1. RJ is overestimated, therefore DJ measurement is meaningless. 58 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 2.5 Gb/s Using 100 MHz REFCLK Virtex-5 GTP TX Jitter, 2.5 Gb/s, REFCLK = 100 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 200 180 Number of Data Points 160 140 120 100 80 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-25: Table 2-14: RPT056_c2_24_051807 TX Jitter Generation at 2.5 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.5 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.242 0.404 0.299 0.034 UI RJ, Random Jitter 0.148 0.379 0.235 0.029 UI DJ, Deterministic Jitter 0.000 0.328 0.065 0.034 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 59 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 2.5 Gb/s Using 125 MHz REFCLK Virtex-5 GTP TX Jitter, 2.5 Gb/s, REFCLK = 125 MHz, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 200 180 Number of Data Points 160 140 120 100 80 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-26: Table 2-15: RPT056_c2_25_051807 TX Jitter Generation at 2.5 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.5 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.154 0.295 0.205 0.023 UI RJ, Random Jitter 0.138 0.344 0.222 0.026 UI – – – – UI DJ, Deterministic Jitter (1) Notes: 1. RJ is overestimated, therefore DJ measurement is meaningless. 60 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 2.5 Gb/s Using 250 MHz REFCLK Virtex-5 GTP TX Jitter, 2.5 Gb/s, REFCLK = 250 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 300 Number of Data Points 250 200 150 100 50 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-27: Table 2-16: RPT056_c2_26_051807 TX Jitter Generation at 2.5 Gb/s, C and I Grade TX Jitter Generation Measurement at 2.5 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.116 0.249 0.181 0.023 UI RJ, Random Jitter 0.085 0.259 0.143 0.019 UI DJ, Deterministic Jitter 0.000 0.121 0.040 0.019 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 61 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 3.125 Gb/s Virtex-5 GTP TX Jitter, 3.125 Gb/s, REFCLK = 156.25 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 300 Number of Data Points 250 200 150 100 50 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-28: Table 2-17: TX Jitter Generation at 3.125 Gb/s, C and I Grade TX Jitter Generation Measurement at 3.125 Gb/s Data Rate Parameter 62 RPT056_c2_27_051807 Min Max Average Std Dev Units TJ, Total Jitter 0.156 0.320 0.229 0.024 UI RJ, Random Jitter 0.102 0.270 0.155 0.018 UI DJ, Deterministic Jitter 0.000 0.161 0.075 0.022 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation TX Jitter Generation at 3.2 Gb/s Virtex-5 GTP TX Jitter, 3.200 Gb/s, REFCLK = 320 MHz (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 180 Number of Data Points 160 140 120 100 80 60 40 20 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0 TX Total Jitter (UI) Figure 2-29: Table 2-18: RPT056_c2_28_051807 TX Jitter Generation at 3.2 Gb/s, C and I Grade TX Jitter Generation Measurement at 3.2 Gb/s Data Rate Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.154 0.357 0.227 0.033 UI RJ, Random Jitter 0.127 0.347 0.213 0.030 UI DJ, Deterministic Jitter 0.000 0.350 0.017 0.047 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 63 R Chapter 2: PMA Transmitter Characterization TX Jitter Generation at 3.75 Gb/s Virtex-5 GTP TX Jitter, 3.750 Gb/s, REFCLK = 187.5 MHz Number of Data Points (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 100°C) 600 500 400 300 200 100 TX Total Jitter (UI) Figure 2-30: Table 2-19: 0.50 0.48 0.46 0.44 0.42 RPT056_c2_103_040308 TX Jitter Generation at 3.75 Gb/s, C and I Grade TX Jitter Generation Measurement at 3.75 Gb/s Data Rate Parameter 64 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0 Min Max Average Std Dev Units TJ, Total Jitter 0.206 0.348 0.252 0.018 UI RJ, Random Jitter 0.117 0.245 0.174 0.017 UI DJ, Deterministic Jitter 0.009 0.148 0.079 0.019 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Jitter Generation Conclusion Table 2-20 provides a summary of the results by data rate. Table 2-20: Summary of Results for TX Jitter Generation Data Rate (Gb/s) REFCLK (MHz) TJ (Avg) RJ (1E–12 Avg) DJ (Avg) TJ Std Dev Units Notes 0.500 100 0.052 - - 0.006 UI Oversampling 1.000 100 0.124 0.072 0.053 0.021 UI 1.250 125 0.123 0.077 0.046 0.015 UI 2.000 100 0.198 0.141 0.062 0.021 UI 2.000 200 0.163 0.108 0.055 0.020 UI 2.488 155.52 0.200 0.139 0.062 0.021 UI 2.500 62.5 0.271 0.304 - 0.028 UI 2.500 100 0.299 0.235 0.065 0.034 UI 2.500 125 0.205 0.222 - 0.023 UI 2.500 250 0.181 0.143 0.040 0.023 UI 3.125 156.25 0.229 0.155 0.075 0.024 UI 3.200 320 0.227 0.213 0.017 0.033 UI 3.750 187.5 0.252 0.174 0.079 0.018 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com RJ Overestimated RJ Overestimated 65 R Chapter 2: PMA Transmitter Characterization TX REFCLK to TX Jitter Transfer Test Description The TX REFCLK to TX Jitter Transfer test was an ATE test designed to identify the amount of jitter that transfers from the REFCLK source to the PMA Transmitter. This test measures sinusoidal jitter transfer from REFCLK to the PMA transmitter outputs. The sinusoidal modulation was swept across the frequency spectrum in discrete steps and then fed into REFCLK. The corresponding modulation amplitudes were measured at the TX output. The ratio of TX output modulation amplitude to the REFCLK input modulation amplitude was measured as jitter transfer. Two results are reported for each measured data rate: a modulation frequency trend graph and a histogram that shows the –3 dB loop bandwidth. Additionally, a table shows the minimum, maximum, average, mean, and standard deviation values for the –3 dB loop bandwidth histogram Test Setup TX REFCLK to TX jitter transfer data was collected using ATE. Figure 2-31 illustrates the equipment setup used for this test. ATE was used to measure TX jitter on all twelve GTP transceivers simultaneously. A ParBERT analyzer was used to measure the Bit Error Ratio (BER) of each of the twelve GTP TX outputs. The reported jitter is broadband, with no filtering. TX jitter was measured using the Bath Tub Curve (BTC) method using 10E9 bits of data. The device was configured using JTAG. Power was supplied from eight programmable power supplies through connectors on the side of the fixture. High-speed connections from the device to the ParBERT were made through SMP and SMA coax connectors. Blind-mate connectors were used to permit quick removal of the test fixture. A low-profile, high-speed socket from Alta Nova was used to collect the data. Two pairs of REFCLKs were used to clock the six GTP_DUAL tiles in two groups of three GTP_DUAL tiles. The REFCLKs were sourced from a 3.2 Gb/s data generator, using a clock pattern. Table 2-21 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 2-21: TX REFCLK to TX Jitter Transfer Test PLL Parameters PLL_DIVSEL_FB REFCLK Freq PLL_DIVSEL_REF and DIV (MHz) Post Divider (1) Oversample 2 * 5 = 10 2 1 1 2 * 5 = 10 2 1 62.5 1 4 * 5 = 20 1 1 1.25 100 2 5 * 5 = 25 1 1 2.5 1.25 125 1 2 * 5 = 10 1 1 2.5 1.25 250 1 1*5=5 1 1 3.125 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 1.60 320 1 1*5=5 1 1 Data Rate (Gb/s) PLL Freq (GHz) 1.0 1.00 100 1 2.0 2.00 200 2.5 1.25 2.5 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. 66 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX REFCLK to TX Jitter Transfer Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-22. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 2-22: TX REFCLK to TX Jitter Transfer Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit data path 2.488 Gb/s 0: 8-bit data path GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-23. Table 2-23: TX REFCLK to TX Jitter Transfer Test Conditions Test Parameter Loopback Mode Test Value Fabric Pattern PRBS31 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board Virtex-5 FF1136 Test Fixture Board FR-4 Length 3.25 inches REFCLK and PLL Rates Various (see Table 2-21) Devices from typical, slow, and fast corner material were characterized using the ATE system over voltage and temperature corners. All twelve GTP transceivers on each unit were tested. The configuration designs use fabric loopback in single-byte mode, with both TXUSRCLK and RXUSRCLK clocked from TXOUTCLK. The configuration provides connections to GTP_RESET, CDR_RESET, and the DRP interface. For all test cases, the RX was configured for termination to GND with RX front end using internal AC coupling. Serial data to the RX, provided by the Agilent ParBERT Pattern Generator, was converted to 8-bit or 10-bit data at the PMA deserializer and passed through the PCS. The RX parallel data port was connected to the TX parallel data port in the FPGA fabric. The 8-bit or 10-bit data parallel data was then sent through the TX PCS and converted back to serial data at the TX PMA. The TX serial data was connected to the ParBERT Data Analyzer. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 67 R Chapter 2: PMA Transmitter Characterization The test fixture uses a high-speed ZIF socket to connect the DUT to the test equipment. Figure 2-31 shows a diagram of the test setup. IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c2_29_041907 Figure 2-31: 68 ATE Test Setup for TX REFCLK to TX Jitter Transfer Tests www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX REFCLK to TX Jitter Transfer Results TX Jitter Transfer at 1.0 Gb/s Virtex-5 GTP TX Jitter Transfer, 1.0 Gb/s, REFCLK = 100 MHz, PLL = 1.0 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1 Jitter Transfer Gain (dB) -1 -3 AVG -5 MIN -7 MAX -9 -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-32: Table 2-24: RPT056_c2_30_040308 TX Jitter Transfer vs. Modulation Frequency at 1.0 Gb/s TX Jitter Transfer Measurement at 1.0 Gb/s Date Rate Parameter –3 dB Loop Bandwidth Min Max Average Std Dev Units 20.0 35.0 27.0 2.5 MHz TX Jitter Transfer at 2.0 Gb/s, 200 MHz REFCLK Virtex-5 GTP TX Jitter Transfer, 2.0 Gb/s, REFCLK = 200 MHz, PLL = 2.0 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1 Jitter Transfer Gain (dB) -1 -3 AVG -5 MIN -7 MAX -9 -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-33: Table 2-25: RPT056_c2_32_051807 TX Jitter Transfer vs. Modulation Frequency at 2.00 Gb/s TX Jitter Transfer Measurement at 2.0 Gb/s Data Rate Parameter –3 dB Loop Bandwidth Min Max Average Std Dev Units 27.7 31.1 29.0 0.65 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 69 R Chapter 2: PMA Transmitter Characterization TX Jitter Transfer at 2.5 Gb/s, 62.5 MHz REFCLK Virtex-5 GTP TX Jitter Transfer, 2.5 Gb/s, REFCLK = 62.5 MHz, PLL = 1.25 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 3 Jitter Transfer Gain (dB) 1 -1 -3 -5 AVG -7 MIN -9 MAX -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-34: Table 2-26: RPT056_c2_34_051807 TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s TX Jitter Transfer Measurement at 2.5 Gb/s Data Rate Parameter –3 dB Loop Bandwidth Min Max Average Std Dev Units 6.0 11.8 8.8 1.0 MHz TX Jitter Transfer at 2.5 Gb/s, 100 MHz REFCLK Virtex-5 GTP TX Jitter Transfer, 2.5 Gb/s, REFCLK = 100 MHz, PLL = 1.25 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 3 Jitter Transfer Gain (dB) 1 -1 -3 -5 AVG -7 MIN -9 MAX -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-35: Table 2-27: TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s TX Jitter Transfer Measurement at 2.5 Gb/s Data Rate Parameter –3 dB Loop Bandwidth 70 RPT056_c2_36_051807 Min Max Average Std Dev Units 6.6 13.4 9.6 1.1 MHz www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX REFCLK to TX Jitter Transfer TX Jitter Transfer at 2.5 Gb/s, 125 MHz REFCLK Virtex-5 GTP TX Jitter Transfer, 2.5 Gb/s, REFCLK = 125 MHz, PLL = 1.25 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 3 Jitter Transfer Gain (dB) 1 -1 -3 -5 AVG -7 MIN -9 MAX -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-36: Table 2-28: RPT056_c2_38_051807 TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate Parameter –3 dB Loop Bandwidth Min Max Average Std Dev Units 20.9 33.6 26.5 2.1 MHz TX Jitter Transfer at 2.5 Gb/s, 250 MHz REFCLK Virtex-5 GTP TX Jitter Transfer, 2.5 Gb/s, REFCLK = 250 MHz, PLL = 1.25 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 3 Jitter Transfer Gain (dB) 1 -1 -3 -5 AVG -7 MIN -9 MAX -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-37: Table 2-29: RPT056_c2_40_051807 TX Jitter Transfer vs. Modulation Frequency at 2.5 Gb/s TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate Parameter -3 dB Loop Bandwidth Min Max Average Std Dev Units 9.9 16.2 12.9 1.0 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 71 R Chapter 2: PMA Transmitter Characterization TX Jitter Transfer at 3.125 Gb/s Virtex-5 GTP TX Jitter Transfer, 3.125 Gb/s, REFCLK = 156.25 MHz, PLL = 1.56 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 3 Jitter Transfer Gain (dB) 1 -1 -3 -5 -7 AVG -9 MIN -11 MAX -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-38: Table 2-30: RPT056_c2_42_051807 TX Jitter Transfer vs. Modulation Frequency at 3.125 Gb/s TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate Parameter -3 dB Loop Bandwidth Min Max Average Std Dev Units 22.3 29.8 25.0 1.2 MHz TX Jitter Transfer at 3.2 Gb/s Virtex-5 GTP TX Jitter Transfer, 3.2 Gb/s, REFCLK = 320 MHz, PLL = 1.56 GHz (Units = SS, TT, FF; VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1 Jitter Transfer Gain (dB) -1 -3 -5 AVG -7 MIN -9 MAX -11 -13 -15 1000 10000 100000 Modulation Frequency (KHz) Figure 2-39: Table 2-31: TX Jitter Transfer vs. Modulation Frequency at 3.2 Gb/s TX Jitter Transfer Measurement at 3.2 Gb/s Data Rate Parameter -3 dB Loop Bandwidth 72 RPT056_c2_44_051807 Min Max Average Std Dev Units 25.1 31.4 26.7 1.04 MHz www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX REFCLK to TX Jitter Transfer Conclusion The TX jitter transferred from REFCLK is documented in this section. Both modulation frequency and loop bandwidth are provided. Table 2-32 summarizes the minimum, maximum, average, and standard deviation of the –3dB loop bandwidth point. Table 2-32: TX Jitter Transfer Measurement Summary Parameter TX –3 dB Loop Bandwidth Rate Min Max Average Std Dev 1.0 Gb/s 20.0 35.0 27.0 2.5 MHz 2.0 Gb/s at 100 MHz 27.7 31.1 29.0 0.65 MHz 2.5 Gb/s at 62.5 MHz 6.0 11.8 8.8 1.0 MHz 2.5 Gb/s at 100 MHz 6.6 13.4 9.6 1.1 MHz 2.5 Gb/s at 125 MHz 20.9 33.6 26.5 2.1 MHz 2.5 Gb/s at 250 MHz 9.9 16.2 12.9 1.0 MHz 3.125 Gb/s 22.3 29.8 25.0 1.2 MHz 3.2 Gb/s 25.1 31.4 26.7 1.04 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com Units 73 R Chapter 2: PMA Transmitter Characterization TX Output Rise and Fall Time Test Description This test was designed to measure the 20% to 80% time for both rise and fall at maximum swing. Test Setup Transmitter output rise and fall time tests were conducted using a bench test set-up. The internal swing control port signals TXDIFFCTRL[2:0] and TXBUFDIFFCTRL[2:0] were set to 000. The Agilent N4901B Serial BERT generated data and drove a rotary relay to four GTP channels. The device operated in fabric loopback mode, whereas the received high-speed data was looped back to the high-speed transmitter at the FPGA fabric interface. The TX amplitude test was performed at differing data rates with a 00001111 data pattern. The TX peak-to-peak differential output voltage was measured using the Agilent DCA 86100A. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 2-33 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 2-33: TX Output Rise and Fall Time Test PLL Parameters Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV Post Divider (1) Oversample 1.00 1.00 100 1 2 * 5 = 10 2 1 2.5 1.25 125 1 2 * 5 = 10 1 1 3.2 1.60 320 1 1*5=5 1 1 3.75 1.875 187.5 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. A clock data pattern (00001111) was chosen for this test to reduce the effect of DJ(ISI) from the test fixture. The test fixture uses a high-speed ZIF socket to connect the DUT to the test equipment. Figure 2-40 shows a picture of the test setup. The Virtex-5 GTP transceiver characterization bench setup consisted of several components, such as the host PC with GUI, an ML523 characterization board, and test equipment. The entire system was controlled by a PC with a GUI interface. The GUI was written with the Agilent VEE software tool. The GUI interfaces with the FPGA's internal controller via 32-bit parallel cable. To perform the characterization test, the GUI (in the first step) set the Agilent 6624A System SC power supply voltage, and the Agilent N4901B Serial BERT data rate and pattern based on the test conditions. The Agilent 6624A System Controller Power Supply provided a separate voltage to each of 5V, MGTAVTTTX, MGTAVTTRX, MGTAVTTRXC, MGTAVCCPLL, MGTAVCC supplies. Other onboard regulators provided voltage for VCCO , VCCINT, and VCCAUX. The Agilent N4901B Serial BERT internal clock was used as master clock source for the entire system. The pattern generator differential output signals drive the RX-side inputs of 74 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time the FPGA. The patter generator's trigger output signal drove the Agilent 8133A Pulse Generator external clock input. Agilent 8133A Pulse Generator generated differential clock signals for the FPGA GTPs. After setting the equipment mentioned above, the system configured the FPGA and changed the TXDIFFCTRL setting. After configuring the FPGA, the system started to collect data using the Agilent 86100A Wide-Band Oscilloscope. This loop continued until all test conditions were covered. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-33. Table 2-34: TX REFCLK to TX Jitter Transfer Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH TXDIFFCTRL[2:0] TXBUFDIFFCTRL[2:0] Value All but 2.488 Gb/s 1:10-bit data path 2.488 Gb/s 0: 8-bit data path All rates 000 (max) GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-35. Table 2-35: TX Output Rise and Fall Time Test Conditions Test Parameter Loopback Mode Test Value Fabric Pattern 00001111 clock data pattern Silicon Corner Used SS, TT, FF GTP_DUAL Location Used Junction Temperature All 12 Locations –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 2-33) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 75 R Chapter 2: PMA Transmitter Characterization IEEE-488 (GPIB) Agilent 3646A Power Supplies Agilent 8133A Signal Generator LPT PC IEEE-488 (GPIB) CLK Splitter PC4 FR4 PCB 120 GTP_DUAL X0Y5 FR4 PCB 122 GTP_DUAL X0Y0 SAMs SAMs P/N Pair FPGA DUT Virtex-5 ML523 Characterization Platform Rotary Relay x2 A B C D Agilent 34999B Switch Control System P/N Pair Agilent 86100A DCA LPT RPT056_c2_46_052407 Figure 2-40: 76 Bench Test Setup for TX Output Rise and Fall Time Tests www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time Results TX Output Rise and Fall Time at 1.00 Gb/s Virtex-5 GTP TX Rise, 1.0 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 70 Number of Data Points 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Rise 20%-80% (ps) Figure 2-41: RPT056_c2_47_051807 TX Output Rise Time at 1.00 Gb/s Virtex-5 GTP TX Fall, 1.0 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 70 Number of Data Points 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Fall 80%-20% (ps) RPT056_c2_48_051807 Figure 2-42: TX Output Fall Time at 1.00 Gb/s Table 2-36: TX Output Rise and Fall Time at 1.00 Gb/s Parameter Min Max Average Std Dev Units TX Output Rise Time 136.9 157.9 147.2 4.4 ps TX Output Fall Time 116.4 158.0 131.0 6.26 ps www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 77 R Chapter 2: PMA Transmitter Characterization TX Output Rise and Fall Time at 2.5 Gb/s, 125 MHz REFCLK Virtex-5 GTP TX Rise, 2.5 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 90 Number of Data Points 80 70 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Rise 20%-80% (ps) Figure 2-43: RPT056_c2_49_051807 TX Output Rise Time at 2.5 Gb/s, 125 MHz REFCLK Virtex-5 GTP TX Fall, 2.5 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 50 45 Number of Data Points 40 35 30 25 20 15 10 5 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Fall 80%-20% (ps) Figure 2-44: Table 2-37: TX Output Rise and Fall Time at 2.5 Gb/s, 125 MHz REFCLK Parameter 78 RPT056_c2_50_051807 TX Output Fall Time at 2.5 Gb/s, 125 MHz REFCLK Min Max Average Std Dev Units TX Output Rise Time 130.5 151.8 139.3 4.28 ps TX Output Fall Time 100.8 132.0 117.4 6.7 ps www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time TX Output Rise and Fall Time at 3.2 Gb/s Virtex-5 GTP TX Rise, 3.2 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 60 Number of Data Points 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Rise 20%-80% (ps) Figure 2-45: RPT056_c2_51_051807 TX Output Rise Time at 3.2 Gb/s Virtex-5 GTP TX Fall, 3.2 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 70 Number of Data Points 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Fall 80%-20% (ps) Figure 2-46: Table 2-38: RPT056_c2_52_051807 TX Output Fall Time at 3.2 Gb/s TX Output Rise and Fall Time at 3.2 Gb/s Parameter Min Max Average Std Dev Units TX Output Rise Time 126.2 155.9 139.48 6.37 ps TX Output Fall Time 92.0 130.5 109.65 7.99 ps www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 79 R Chapter 2: PMA Transmitter Characterization TX Output Rise and Fall Time at 3.75 Gb/s Virtex-5 GTP TX Rise, 3.75 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 80 Number of Data Points 70 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Rise 20%-80% (ps) Figure 2-47: RPT056_c2_104_040308 TX Output Rise Time at 3.75 Gb/s Virtex-5 GTP TX Fall, 3.75 Gb/s (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 80 Number of Data Points 70 60 50 40 30 20 10 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 0 TX Fall 80%-20% (ps) RPT056_c2_105_040308 Figure 2-48: TX Output Fall Time at 3.75 Gb/s Table 2-39: TX Output Rise and Fall Time at 3.75 Gb/s Parameter 80 Min Max Average Std Dev Units TX Output Rise Time 118.3 149.6 135.09 5.78 ps TX Output Fall Time 98.0 128.7 110.20 5.45 ps www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time TX Output Rise and Fall Time as a Function of TXDIFFCTRL Virtex-5 GTP TX Rise vs. TXDIFFCTL (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 TX Rise 20%-80% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 2.5 Gb/s 100.00 3.2 Gb/s 3.7 Gb/s 90.00 80.00 000 011 TXDIFFCTL Figure 2-49: 110 RPT056_c2_53_040408 TX Output Rise Time as a Function of TXDIFFCTRL Virtex-5 GTP TX Fall vs. TXDIFFCTL (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 TX Fall 80%-20% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 2.5 Gb/s 100.00 3.2 Gb/s 3.7 Gb/s 90.00 80.00 000 011 TXDIFFCTL Figure 2-50: 110 RPT056_c2_54_040408 TX Output Fall Time as a Function of TXDIFFCTRL www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 81 R Chapter 2: PMA Transmitter Characterization TX Output Rise and Fall Time as a Function of Process Virtex-5 GTP TX Rise vs. Process (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 TX Rise 20%-80% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 2.5 Gb/s 100.00 3.2 Gb/s 3.7 Gb/s 90.00 80.00 SS TT Process Figure 2-51: FF RPT056_c2_55_040408 TX Output Rise Time as a Function of Process Virtex-5 GTP TX Fall vs. Process (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 1 Gb/s 150.00 2.5 Gb/s TX Fall 80%-20% (ps) 3.2 Gb/s 140.00 3.7 Gb/s 130.00 120.00 110.00 100.00 90.00 80.00 SS TT Process Figure 2-52: 82 FF RPT056_c2_56_040408 TX Output Fall Time as a Function of Process www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time TX Output Rise and Fall Time as a Function of Voltage Virtex-5 GTP TX Rise vs. Voltage (AVTTX = VNOM ±5%, Split: FF, SS, TT) 160.00 TX Rise 20%-80% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 2.5 Gb/s 100.00 3.2 Gb/s 3.7 Gb/s 90.00 80.00 AVTTTX–5% AVTTTX+5% Voltage Figure 2-53: RPT056_c2_57_040408 TX Output Rise Time as a Function of Voltage Virtex-5 GTP TX Fall vs. Voltage (AVTTX = VNOM ±5%, Split: FF, SS, TT) 160.00 TX Fall 80%-20% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 100.00 2.5 Gb/s 3.2 Gb/s 90.00 3.7 Gb/s 80.00 AVTTTX–5% AVTTTX+5% Voltage Figure 2-54: RPT056_c2_58_040408 TX Output Fall Time as a Function of Voltage www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 83 R Chapter 2: PMA Transmitter Characterization TX Output Rise and Fall Time as a Function of Temperature Virtex-5 GTP TX Rise vs. Temperature (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 TX Rise 20%-80% (ps) 150.00 140.00 130.00 120.00 110.00 1 Gb/s 100.00 2.5 Gb/s 3.2 Gb/s 90.00 3.7 Gb/s 80.00 –40 0 100 Temperature Figure 2-55: RPT056_c2_59_040708 TX Output Rise Time as a Function of Temperature Virtex-5 GTP TX Fall vs. Temperature (AVTTX = VNOM ± 5%, Split: FF, SS, TT) 160.00 TX Fall 80%-20% (ps) 150.00 140.00 1 Gb/s 2.5 Gb/s 3.2 Gb/s 3.7 Gb/s 130.00 120.00 110.00 100.00 90.00 80.00 –40 0 Temperature Figure 2-56: 84 100 RPT056_c2_60_040708 TX Output Fall Time as a Function of Temperature www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Rise and Fall Time Conclusion The histograms in this section illustrate the rise and fall response of the PMA transmitter across process, voltage, and temperature. Additionally, the above trend graphs illustrate the effects of process, voltage, and temperature on both output rise and fall time. A graph is also provided for rise and fall time, which illustrates the effects of setting TXDIFFCTRL to various values. Table 2-40 and Table 2-41 summarize the minimum, maximum, average, and standard deviation for TX rise and fall times. Table 2-40: Parameter Tx Rise Time Table 2-41: Parameter Tx Fall Time TX Rise Time Measurement Summary Rate Min Max Average Std Dev Units 1.0 Gb/s 136.9 157.9 147.2 4.4 ps 2.5 Gb/s at 125 MHz 130.5 151.8 139.3 4.3 ps 3.2 Gb/s 126.2 155.9 139.5 6.4 ps 3.75Gb/s 118.3 149.6 135.09 5.78 ps TX Fall Time Measurement Summary Rate Min Max Average Std Dev Units 1.0 Gb/s 116.4 158.0 131.0 6.3 ps 2.5 Gb/s at 125 MHz 100.8 132.0 117.4 6.7 ps 3.2 Gb/s 92.0 130.5 109.7 8.0 ps 3.75 Gb/s 98.0 128.7 110.20 5.45 ps www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 85 R Chapter 2: PMA Transmitter Characterization TX Output Amplitude Test Description Transmitter output amplitude tests were conducted using the same TX bench setup depicted in Figure 1-2, page 28. Figure 2-57 illustrates the equipment setup for these tests. The Agilent N4901B Serial BERT generates data and drives a rotary relay to four GTP channels. The device operates in fabric loopback mode, whereas the received high-speed data was looped back to the high-speed transmitter at the FPGA fabric interface. The TX-side amplitude test was performed at 2.5 Gb/s data rate with 00001111 data pattern. TX peak-to-peak differential output voltage was measured using Agilent DCA 86100A. Test Setup TX output amplitude data was collected using the TX bench setup. Figure 2-57 illustrates the equipment used for this test. The Agilent N4901B Serial BERT internal clock was used as the master clock source for the entire system. The pattern generator differential output signals drove the RX-side inputs of the FPGA. The pattern generator's trigger output signal drove the Agilent 8133A Pulse Generator's external clock input. The Agilent 8133A Pulse Generator generated differential clock signals for FPGA GTP transceivers. After setting this equipment, the system configured the FPGA and changed the TXDIFFCTRL setting. After configuring the FPGA system, the equipment started to collect data using the Agilent 86100A Wide-Band oscilloscope. The above loop continued until all test conditions were covered. The internal swing control port signals TXDIFFCTRL [2:0] and TXBUFDIFFCTRL [2:0] were set to 000. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 2-42 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 2-42: TX Output Amplitude Test PLL Parameters Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV Post Divider (1) Oversample 1.00 1.00 100 1 2 * 5 = 10 2 1 2.5 1.25 125 1 2 * 5 = 10 1 1 3.2 1.60 320 1 1*5=5 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. A clock data pattern (00001111) was chosen for this test to reduce the effect of DJ(ISI) from the test fixture. The test fixture uses a high-speed ZIF socket to connect the DUT to the test equipment. Figure 2-57 shows a picture of the test setup. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-43. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. 86 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude Table 2-43: TX Output Amplitude Test Settings GTP_DUAL Port Settings Port Rate Affected Value INTDATAWIDTH 1: 10-bit datapath TXBUFDIFFCTRL0[2:0] TXBUFDIFFCTRL1[2:0] All 000, 011, 110 TXDIFFCTRL0[2:0] TXDIFFCTRL1[2:0] GTP_DUAL Attribute Settings Attribute Rate Affected Value TXDIFFBOOST_0 FALSE TXDIFFBOOST_1 All TXPREEMPHASIS0[2:0] 000 TXPREEMPHASIS1[2:0] Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-44. Table 2-44: TX Output Amplitude Test Conditions Test Parameter Loopback Mode Test Value Fabric Pattern Clock Pattern 00001111 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 2-42) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 87 R Chapter 2: PMA Transmitter Characterization IEEE-488 (GPIB) Agilent 3646A Power Supplies Agilent 8133A Signal Generator LPT PC IEEE-488 (GPIB) CLK Splitter PC4 FR4 PCB 120 GTP_DUAL X0Y5 FR4 PCB 122 GTP_DUAL X0Y0 SAMs SAMs P/N Pair FPGA DUT Virtex-5 ML523 Characterization Platform Rotary Relay x2 A B C D Agilent 34999B Switch Control System P/N Pair Agilent 86100A DCA LPT RPT056_c2_61_052407 Figure 2-57: Bench Test Setup for TX Output Amplitude Tests Results Figure 2-58 through Figure 2-69 illustrate the TX amplidtude test results. NOTE: The bimodal distribution show in Figure 2-58 to Figure 2-60 and Figure 2-63 to Figure 2-65 occurs because of sweeping across power supply settings. Figure 2-61 and Figure 2-62 show this separation more clearly. 88 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude TX Amplitude Test, Histograms by Process Virtex-5 GTP TX Amplitude, All Rates, SS (Units = SS, VCC = VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 60 Number of Data Points 50 40 30 20 10 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) Figure 2-58: RPT056_c2_67_051807 TX Amplitude, Across All Rates, Silicon = SS Virtex-5 GTP TX Amplitude, All Rates, TT (Units = TT, VCC = VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 40 Number of Data Points 35 35 25 20 15 10 5 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) Figure 2-59: RPT056_c2_63_051807 TX Amplitude, Across All Rates, Silicon = TT Virtex-5 GTP TX Amplitude, All Rates, FF (Units = FF, VCC = VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 40 Number of Data Points 35 35 25 20 15 10 5 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) Figure 2-60: RPT056_c2_64_051807 TX Amplitude, Across All Rates, Silicon = FF www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 89 R Chapter 2: PMA Transmitter Characterization TX Amplitude Test, Histograms by Voltage Virtex-5 GTP TX Amplitude, All Rates, VMIN (Units = TT, FF, SS, VCC = VNOM – 5% V, Temp = –40°C, 0°C, 100°C) 100 90 Number of Data Points 80 70 60 50 40 30 20 10 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) Figure 2-61: RPT056_c2_65_051807 TX Amplitude, across All Rates, VCC = VMIN Virtex-5 GTP TX Amplitude, All Rates, VMAX (Units = TT, FF, SS, VCC = VNOM + 5% V, Temp = –40°C, 0°C, 100°C) 100 90 Number of Data Points 80 70 60 50 40 30 20 10 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) Figure 2-62: 90 RPT056_c2_66_051807 TX Amplitude, across All Rates, VCC = VMAX www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude TX Amplitude Test, Histograms by Temperature Virtex-5 GTP TX Amplitude, All Rates, –40°C (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C) 40 Number of Data Points 35 30 25 20 15 10 5 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 0 TX Differential Peak-Peak (V) RPT056_c2_67_051807 Figure 2-63: TX Amplitude, across All Rates, Temp = –40°C Virtex-5 GTP TX Amplitude, All Rates, 0°C (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = 0°C) 45 Number of Data Points 40 35 30 25 20 15 10 5 TX Differential Peak-Peak (V) Figure 2-64: 1.38 1.3 1.34 1.26 1.22 1.18 1.1 1.14 1.06 1.02 0.98 0.9 0.94 0.86 0.82 0.78 0.7 0.74 0 RPT056_c2_68_051807 TX Amplitude, Across All Rates, Temp = 0°C Virtex-5 GTP TX Amplitude, All Rates, 100°C (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = 100°C) 45 Number of Data Points 40 35 30 25 20 15 10 5 TX Differential Peak-Peak (V) Figure 2-65: 1.46 1.42 1.38 1.34 1.3 1.26 1.22 1.18 1.1 1.14 1.06 1.02 0.98 0.94 0.9 0.86 0.82 0.78 0.7 0.74 0 RPT056_c2_69_051807 TX Amplitude, Across All Rates, Temp = 100°C www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 91 R Chapter 2: PMA Transmitter Characterization TX Amplitude Test, Trends by Process Virtex-5 GTP TX Amplitude Process Split vs. TXDIFFCTRL (Data Rate = 1, 2.5, 3.2 Gb/s, AVTTX = VNOM ± 5%, Temp = –40°C, 0°C, 100°C) 1.400 1.200 FF SS TT VDPPOUT (V) 1.000 0.800 0.600 0.400 0.200 0.000 0 11 TXDIFFCTRL Figure 2-66: 110 RPT056_c2_70_051807 TX Amplitude, Process Split vs. TXDIFFCTRL TX Amplitude Test, Trends by Voltage Virtex-5 GTP TX Amplitude MGTAVTTTX Supply Trend vs. TXDIFFCTRL (Data Rate = 1, 2.5, 3.2 Gb/s, Split: FF, SS, TT Temp = –40°C, 0°C, 100°C) 1.400 1.200 1.16V 1.28V VDPPOUT (V) 1.000 0.800 0.600 0.400 0.200 0.000 0 11 TXDIFFCTRL Figure 2-67: 92 110 RPT056_c2_71_051807 TX Amplitude, MGTAVTTTX Supply vs. TXDIFFCTRL Trend www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude TX Amplitude Test, Trends by Temperature Virtex-5 GTP TX Amplitude Temperature vs. TXDIFFCTRL (Data Rate = 1, 2.5, 3.2 Gb/s, MGTAVTTTX = VNOM ± 5%, Split = SS, TT, FF) 1.400 1.200 –40°C 0°C 100°C VDPPOUT (V) 1.000 0.800 0.600 0.400 0.200 0.000 0 11 TXDIFFCTRL Figure 2-68: 110 RPT056_c2_72_051807 TX Amplitude, Temperature vs. TXDIFFCTRL TX Amplitude Test, Trends by Data Rate Virtex-5 GTP TX Amplitude Data Rate vs. TXDIFFCTRL (MGTAVTTTX = VNOM ± 5%, Split: FF, SS, TT Temp = –40°C, 0°C, 100°C) 1.400 1.200 1 Gb/s 2.5 Gb/s 3.2 Gb/s VDPPOUT (V) 1.000 0.800 0.600 0.400 0.200 0.000 0 11 TXDIFFCTRL Figure 2-69: 110 RPT056_c2_73_051807 TX Amplitude, Data Rate vs. TXDIFFCTRL www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 93 R Chapter 2: PMA Transmitter Characterization Conclusion Table 2-45 is a summary of the preceding histograms, demonstrating TX output amplitude across various conditions of test. Table 2-45: TX Output Amplitude Summary Parameter Min Max Average Std Dev Units TX Amplitude, SS Si 0.990 1.271 1.129 0.070 V TX Amplitude, TT Si 1.065 1.298 1.164 0.066 V TX Amplitude, FF Si 1.085 1.325 1.192 0.068 V TX Amplitude, VMIN 0.990 1.192 1.100 0.038 V TX Amplitude, VMAX 1.073 1.325 1.224 0.040 V TX Amplitude, –40°C 0.990 1.325 1.162 0.078 V TX Amplitude, 0°C 1.025 1.316 1.170 0.073 V TX Amplitude, 100°C 1.038 1.277 1.153 0.066 V Figure 2-70 shows a qualitative summary of TX Amplitude with no pre-emphasis enabled. RPT056_c2_98_051807 Figure 2-70: 94 Qualitative TX Amplitude Swept across TXDIFFCTRL www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude Squelched TX Output Amplitude Squelched Test Description The TX output amplitude squelched test was designed to measure the TX output amplitude in Out Of Band (OOB) mode where the output gets squelched in order to produce an OOB signal to the receiver. This test executes a squelching command and then measures the output amplitude. Test Setup Transmitter output amplitude tests were conducted using the same TX bench setup depicted in Figure 1-2, page 28. Figure 2-71 illustrates the equipment setup for these tests. Unlike the TX output amplitude tests in the “TX Output Amplitude” section, this test squelched the output and then measured the resultant TX amplitude. Agilent N4901B Serial BERT generated data and drove four channels of the high-speed multiplexer. The high-speed multiplexer drove data to four different GTP transceivers of the FPGA. The device operated in fabric loopback mode, whereas the received high-speed data was looped back to the high-speed transmitter at the FPGA fabric interface. The TX-side amplitude test was performed at 2.5 Gb/s data rate with 00001111 data pattern. A squelch command was applied and then the TX peak-to-peak differential output voltage was measured using Agilent DCA 86100A. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 2-46 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 2-46: TX Output Amplitude (Squelched) Test PLL Parameters Data Rate (Gb/s) PLL Freq (GHz) 2.5 1.25 REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV 125 1 Post Divider (1) Oversample 1 1 2 * 5 = 10 Notes: 1. Post divider is the appropriate settings for PLL_TXDIVSELOUT[1:0] and PLL_TXDIVSEL_COMM_OUT. A clock data pattern (00001111) was chosen for this test to reduce the effect of DJ(ISI) from the test fixture. The test fixture uses a high-speed ZIF socket to connect the DUT to the test equipment. Figure 2-71 shows a picture of the test setup. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-47. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 95 R Chapter 2: PMA Transmitter Characterization Table 2-47: TX Output Amplitude (Squelched) Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-48. Table 2-48: TX Output Amplitude (Squelched) Test Conditions Test Parameter Loopback Mode Fabric Pattern Clock Pattern 00001111 Silicon Corner Used SS, TT, FF, GTP_DUAL Location Used Junction Temperature All 12 Locations –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL rates 96 Test Value Various (see Table 2-46) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Output Amplitude Squelched IEEE-488 (GPIB) Agilent 8133A Signal Generator Agilent 3646A Power Supplies LPT PC IEEE-488 (GPIB) CLK Splitter PC4 FR4 PCB 120 GTP_DUAL X0Y5 FR4 PCB 122 GTP_DUAL X0Y0 FPGA DUT Virtex-5 ML523 Characterization Platform SAMs SAMs P/N Pair Rotary Relay x2 A B C D Agilent 34999B Switch Control System P/N Pair Agilent 86100A DCA LPT RPT056_c2_74_052407 Figure 2-71: Bench Test Setup for TX Output Amplitude (Squelched) Tests www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 97 R Chapter 2: PMA Transmitter Characterization Results TX Output Amplitude OOB Squelched Virtex-5 GTP TX OOB Squelched Amplitude (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 140 Number of Data Points 120 100 80 60 40 20 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 0 TX OOB Squelched Amplitude (mV) Figure 2-72: Table 2-49: RPT056_c2_75_051807 TX Output Amplitude Histogram when OOB Squelched, 2.5 Gb/s TX Output Fall Time at 2.5 Gb/s, 125 MHz REFCLK Parameter TX Output Amplitude, OOB Squelched Min Max Average Std Dev Units 2.75 4.25 3.54 0.30 mV RPT056_c2_76_052107 Figure 2-73: TX Output Amplitude Squelched, 2.5 Gb/s Conclusion Figure 2-72 and Figure 2-73 demonstrate the PMA transmitter characteristics when OOB squelched. This data is within data sheet specification. 98 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis TX Pre-Emphasis Test Description TX pre-emphasis tests were bench tests designed to measure the effects on the PMA transmitter for various settings of TX_PREEMPHASIS as well as the effects of Process, Voltage, and Temperature (PVT). Data is presented in both VSMALL / VLARGE percentage as well as VSMALL / VLARGE dB at various rates. Additionally, TX_PREEMPHASIS was varied, and the resultant trend graph is presented. PVT trend graphs are also presented to illustrate the effects of PVT on the pre-emphasis. Test Setup TX pre-emphasis tests were conducted using the same TX bench setup depicted in Figure 1-2, page 28. Figure 2-74 illustrates the equipment used for this test. The Agilent N4901B Serial BERT generated data and drove four channels of the high-speed multiplexer. The high-speed multiplexer drove data to four different GTP transceivers of the FPGA. The device operated in fabric loopback mode, whereas the received high-speed data was looped back to the high-speed transmitter at the FPGA fabric interface. The TX pre-emphasis test was performed at various data rates with 00001111 data pattern. The TX output voltage was measured using Agilent DCA 86100A, with a focus on measuring the pre-emphasis. The TX pre-emphasis was tested at various rates at maximum setting. Data is presented in both VSMALL / VLARGE and VSMALL / VLARGE dB percentages. Additionally, at 3.2 Gb/s, TX pre-emphasis was measured at both minimum and maximum settings to illustrate the range of TX pre-emphasis. PVT was varied across the specified data rates and trend data was extracted to illustrate the effects that PVT has on TX_PREEMPHASIS when set to maximum (111). Data was further collected at 3.2 Gb/s while varying TX_PREEMPHASIS from 000 to 111 to demonstrate the percentage of change that each step has across PVT. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 2-50 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 2-50: TX Pre-emphasis Test PLL Parameters PLL_DIVSEL_FB REFCLK Freq PLL_DIVSEL_REF and DIV (MHz) Post Divider (1) Oversample 2 * 5 = 10 4 5 1 2 * 5 = 10 1 5 100 1 2 * 5 = 10 4 1 1.00 100 1 2 * 5 = 10 2 1 1.25 Gb/s 1.25 125 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.0 Gb/s 2.00 200 1 2 * 5 = 10 2 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 Data Rate PLL Freq (GHz) 100 Mb/s (OS) 1.00 100 1 500 Mb/s (OS) 1.25 125 500 Mb/s 1.00 1.00 Gb/s www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 99 R Chapter 2: PMA Transmitter Characterization Table 2-50: TX Pre-emphasis Test PLL Parameters (Continued) PLL_DIVSEL_FB REFCLK Freq PLL_DIVSEL_REF and DIV (MHz) Post Divider (1) Oversample 2 * 5 = 10 1 1 1 1*5=5 1 1 156.25 1 2 * 5 = 10 1 1 1.60 320 1 1*5=5 1 1 1.875 187.5 1 2 * 5 = 10 1 1 Data Rate PLL Freq (GHz) 2.5 Gb/s 1.25 125 1 2.5 Gb/s 1.25 250 3.125 Gb/s 1.5625 3.2 Gb/s 3.75 Gb/s Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. A clock data pattern (00001111) was chosen for this test to reduce the effect of DJ(ISI) from the test fixture. The test fixture uses a high-speed ZIF socket to connect the DUT to the test equipment. Figure 2-74 shows a picture of the test setup. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-51. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 2-51: TX Pre-emphasis Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-52. Table 2-52: TX Pre-emphasis Test Conditions Test Parameter Loopback Mode Fabric Pattern Clock Pattern 00001111 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates 100 Test Value Various (see Table 2-50) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis IEEE-488 (GPIB) Agilent 3646A Power Supplies Agilent 8133A Signal Generator LPT PC IEEE-488 (GPIB) CLK Splitter PC4 FR4 PCB 120 GTP_DUAL X0Y5 FR4 PCB 122 GTP_DUAL X0Y0 SAMs SAMs P/N Pair FPGA DUT Virtex-5 ML523 Characterization Platform Rotary Relay x2 A B C D Agilent 34999B Switch Control System P/N Pair Agilent 86100A DCA LPT RPT056_c2_77_052407 Figure 2-74: Bench Test Setup for TX Pre-emphasis Tests Results Figure 2-75 illustrates conceptually how TX pre-emphasis works. A minimum and maximum output amplitude are shown. TX pre-emphasis is shown on the histograms in this section as Vsmall / Vlarge . Vsmall Vlarge RPT056_c2_99_052107 Figure 2-75: Pre-emphasis Concept Showing Min and Max Voltage Levels www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 101 R Chapter 2: PMA Transmitter Characterization TX Pre-emphasis Test, Minimum Setting Virtex-5 GTP TX Pre-emphasis, Min = 000 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 700 Number of Data Points 600 500 400 300 200 100 0 0 10 20 30 40 50 60 70 80 TX Pre-emphasis VSMALL/VLARGE (%) Figure 2-76: Table 2-53: 90 100 RPT056_c2_78_051807 TX Pre-emphasis, Minimum Setting, 2.5 Gb/s, 125 MHz REFCLK TX Pre-emphasis, Minimum Setting at 2.5 Gb/s, 125 MHz REFCLK Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 000 93.82 99.94 98.39 1.08 % TX Pre-emphasis Test, Maximum Setting Virtex-5 GTP TX Pre-emphasis, Max = 111, (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 300 Number of Data Points 250 200 150 100 50 0 0 10 20 30 40 50 60 70 80 TX Pre-emphasis VSMALL/VLARGE (%) Figure 2-77: Table 2-54: 102 90 100 RPT056_c2_79_051807 TX Pre-emphasis, Maximum Setting at 2.5 Gb/s, 125 MHz REFCLK TX Pre-emphasis, Maximum Setting at 2.5 Gb/s, 125 MHz REFCLK Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 60.27 73.93 68.58 2.80 % www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis TX Pre-emphasis Test, Max Setting, 1 Gb/s, Percentage Virtex-5 GTP TX Pre-emphasis 1Gb/s, Max = 111, (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 20 40 60 80 100 TX Pre-emphasis (%) Figure 2-78: Table 2-55: 120 RPT056_c2_80_051807 TX Pre-emphasis, Max Setting, 1 Gb/s, Percentage TX Pre-emphasis, Max Setting, 1 Gb/s, Percentage Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 49.7 65.9 54.2 3.797 % TX Pre-emphasis Test, Max Setting, 1 Gb/s, dB Virtex-5 GTP TX Pre-emphasis 1Gb/s, Max = 111, (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 1 2 3 4 5 TX Pre-emphasis (dB) 6 RPT056_c2_81_051807 Figure 2-79: TX Pre-emphasis, Max Setting, 1 Gb/s, dB Table 2-56: TX Pre-emphasis, Max Setting, 1 Gb/s, dB Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 3.5 4.4 3.8 0.211 dB www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 103 R Chapter 2: PMA Transmitter Characterization TX Pre-emphasis Test, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, % Virtex-5 GTP TX Pre-emphasis 2.5 Gb/s, Max = 111, (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 20 40 60 80 100 TX Pre-emphasis (%) Figure 2-80: 120 RPT056_c2_82_051807 TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, Percentage TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, Percentage Table 2-57: Parameter TX_PREEMPHASIS[2:0] = 111 Min Max Average Std Dev Units 41.0 57.6 46.4 3.614 % TX Pre-emphasis Test, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB Virtex-5 GTP TX Pre-emphasis 2.5 Gb/s, Max = 111 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 100 90 Number of Data Points 80 70 60 50 40 30 20 10 0 0 1 2 3 4 5 TX Pre-emphasis (dB) Figure 2-81: Table 2-58: 104 6 RPT056_c2_83_051807 TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB TX Pre-emphasis, Max Setting, 2.5 Gb/s, 125 MHz REFCLK, dB Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 3.0 4.0 3.3 0.212 dB www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis TX Pre-emphasis Test, Max Setting, 3.2 Gb/s, Percentage Virtex-5 GTP TX Pre-emphasis 3.2 Gb/s, Max = 111 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 20 40 60 80 100 TX Pre-emphasis (%) Figure 2-82: Table 2-59: 120 RPT056_c2_84_051807 TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 37.4 56.5 42.3 3.771 % TX Pre-emphasis Test, Max Setting, 3.2 Gb/s, dB Virtex-5 GTP TX Pre-emphasis 3.2 Gb/s, Max = 111 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 1 2 3 4 5 TX Pre-emphasis (dB) Figure 2-83: Table 2-60: 6 RPT056_c2_85_051807 TX Pre-emphasis, Max Setting, 3.2 Gb/s, dB TX Pre-emphasis, Max Setting, 3.2 Gb/s, Percentage Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 2.8 3.9 3.1 0.226 dB www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 105 R Chapter 2: PMA Transmitter Characterization TX Pre-emphasis Test, Max Setting, 3.75 Gb/s, Percentage Virtex-5 GTP TX Pre-emphasis 3.75 Gb/s, Max = 111 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 20 40 60 80 100 TX Pre-emphasis (%) Figure 2-84: Table 2-61: 120 RPT056_c2_106_040708 TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 35.2 52.6 41.8 3.557 % TX Pre-emphasis Test, Max Setting, 3.75 Gb/s, dB Virtex-5 GTP TX Pre-emphasis 3.75 Gb/s, Max = 111 (Units = TT, FF, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 120 Number of Data Points 100 80 60 40 20 0 0 1 2 3 4 5 TX Pre-emphasis (dB) Figure 2-85: Table 2-62: 106 6 RPT056_c2_107_040708 TX Pre-emphasis, Max Setting, 3.75 Gb/s, dB TX Pre-emphasis, Max Setting, 3.75 Gb/s, Percentage Parameter Min Max Average Std Dev Units TX_PREEMPHASIS[2:0] = 111 2.6 3.7 3.0 0.216 dB www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, % Virtex-5 GTP TX Pre-emphasis = 111, MGTAVTTTX Supply Trend vs. Temperature (Data Rate = 1, 2.5, 3.2 Gb/s, Split: FF, SS, TT) 46.0 TX Median Pre-emphasis (%) 45.5 45.0 44.5 44.0 Vmin Vmax 43.5 43.0 42.5 –40°C 0°C Temperature Figure 2-86: 100°C RPT056_c2_86_051807 TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, % TX Pre-emphasis Test, MGTAVTTTX Supply Trend vs. Temperature, dB Virtex-5 GTP TX Pre-emphasis = 111, MGTAVTTTX Supply Trend vs. Temperature (Data Rate = 1, 2.5, 3.2 Gb/s, Split: FF, SS, TT) 3.28 3.26 TX Median Pre-emphasis (dB) 3.24 3.22 3.2 3.16 3.16 Vmin 3.14 Vmax 3.12 3.1 3.08 –40°C 0°C Temperature Figure 2-87: 100°C RPT056_c2_87_051807 TX Pre-emphasis Test, AVTTX Supply Trend vs. Temperature, dB www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 107 R Chapter 2: PMA Transmitter Characterization TX Pre-emphasis Test, Percentage vs. Data Rate Virtex-5 GTP TX Pre-emphasis = 111, Percentage vs. Data Rate (Split: FF, SS, TT, Temp = –40°C, 0°C, 100°C, VCC=VNOM ±5%) 70 TX Pre-emphasis (%) 60 50 40 30 Ave Min 20 Max 10 0 1 2.5 Data Rate Figure 2-88: 3.2 RPT056_c2_88_051807 TX Pre-emphasis Test, Percentage vs. Data Rate TX Pre-emphasis Test, dB vs. Data Rate Virtex-5 GTP TX Pre-emphasis = 111, dB vs. Data Rate (Split: FF, SS, TT, Temp = –40°C, 0°C, 100°C, VCC=VNOM ±5%) 5 4.5 TX Pre-emphasis (%) 4 3.5 3 2.5 2 Ave Min 1.5 Max 1 0.5 0 1 2.5 Data Rate Figure 2-89: 108 3.2 RPT056_c2_89_051807 TX Pre-emphasis Test, dB vs. Data Rate www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Pre-Emphasis TX Pre-emphasis Test, Percent by TXPREEMPHASIS Settings at 3.2 Gb/s Virtex-5 GTP TX Pre-emphasis 2.5 Gb/s (Temp = –40°C, 0°C, 100°C, VCC=VNOM ±5%) 70.00 Pre-emphasis (%) 60.00 Ave Min Max 50.00 40.00 30.00 20.00 10.00 0.00 0 1 2 3 4 5 TXPreEmph Setting Figure 2-90: 6 7 RPT056_c2_95_052407 TX Pre-emphasis Test, by TXPREEMPHASIS Settings at 3.2 Gb/s Virtex-5 GTP TX Pre-emphasis 3.2 Gb/s (Temp = –40°C, 0°C, 100°C, VCC=VNOM ±5%) 0.00 Avg Min Max Pre-emphasis (dB) -0.50 -1.00 -1.50 -2.00 -2.50 -3.00 -3.50 0 1 2 3 4 TXPreEmph Setting Figure 2-91: 5 6 7 RPT056_c2_91_052407 TX Pre-emphasis Test, dB by TXPREEMPHASIS Settings at 3.2 Gb/s www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 109 R Chapter 2: PMA Transmitter Characterization Conclusion The TX pre-emphasis tests demonstrate the effects on TX pre-emphasis across PVT, data rate, and TX_PREEMPHASIS settings. These results are contained in Figure 2-76 to Figure 2-91 and Table 2-53 to Table 2-60. Figure 2-92 demonstrates a DCA scope picture of differing TX pre-emphasis settings. It provides a visual reference for the TX pre-emphasis settings. RPT056_c2_100_051807 Figure 2-92: 110 Qualitative Measurement of the Different Pre-emphasis Settings www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Termination DC Resistance TX Termination DC Resistance Test Description This test measures the DC resistance of the TX pair. Test Setup TX termination resistance was measured across the TXP and TXN pair, using a highprecision DVM after setting RREF to 50Ω ± 1%, while also setting TERMINATION_CTRL to OFF (00000) and TERMINATION_OVERLOAD to FALSE. Measurements were taken across PVT as well as differing GTP transceiver locations. Figure 2-93, page 112 illustrates the equipment used for this test. Temperature forcing equipment was used to precisely control the temperature of the DUT. Figure 2-94 illustrates how Virtex-5 LXT devices terminate both RX and TX. Since this test was done at DC conditions, no REFCLKs were used. Table 2-63 reflects these DC conditions. Virtex-5 GTP transceivers support one common resistor calibration circuit block for trimming the input termination resistor to match line impedance to minimize reflections. Figure 2-94, page 113 shows the general block diagram for the resistor calibration macro. It requires an external resistor that sets up a reference current for comparison. Current through the external resistor was compared against the current through the internal variable resistor R0, which was then adjusted accordingly by the finite state machine (FSM). An external precision resistor used was specified at 50Ω with 1% tolerance. Measured resistance was 49.9 to 50.1Ω, less than 1%. Table 2-63: TX Termination Resistance PLL Parameters Data Rate (Gb/s) PLL Freq (GHz) N/A N/A REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV N/A N/A N/A Post Divider (1) Oversample N/A N/A Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 2-64. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 2-64: TX Termination Resistance Test Settings GTP_DUAL Port Settings Port Rate Affected Value N/A N/A N/A GTP_DUAL Attribute Settings Attribute Rate Affected www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com Value 111 R Chapter 2: PMA Transmitter Characterization Table 2-64: TX Termination Resistance Test Settings (Continued) GTP_DUAL Port Settings Port Rate Affected Value TERMINATION_CTRL[4:0] N/A 00000 TERMINATION_OVRD N/A FALSE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 2-65. Table 2-65: TX Termination Resistance Test Conditions Test Parameter Test Value Loopback Mode None Pattern N/A Silicon Corner Used SS, TT, FF GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 2-63) 8060A DVM TXP MGTAVTTTX TXN RPT056_c2_92a_052807 Figure 2-93: 112 Bench Test Setup for TX Termination Resistance Tests www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R TX Termination DC Resistance RX/TX Termination Override/Offset Code Other GTP_DUAL Tiles North of the Center BRcal MGTRREF Package Pin Comparator MGTAVTTTX RREF External 50Ω Precision Resistor rCtrl[0:4] Internal Resistor Network “Master” GTP_DUAL Tile for Resistor Calibration Override/Offset Code RX/TX Termination Other GTP_DUAL Tiles South of the Center RPT056_c2_93_042207 Figure 2-94: RX and TX Termination for GTP Transceivers in LXT Devices www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 113 R Chapter 2: PMA Transmitter Characterization Results Figure 2-95 and Table 2-66 provide the results from the TX DC resistance measurement tests. TX DC Resistance Measurements Virtex-5 GTP TX Impedance, Differential, C-Grade (VNOM, VNOM ± 5% V, Temp = 0°C, 25°C, 100°C) 200 180 Number of Data Points 160 140 120 100 80 60 40 20 0 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 DC Termination Resistance Figure 2-95: Table 2-66: RPT056_c2_94_051807 TX Termination DC Resistance Histogram TX Termination DC Resistance Summary Parameter TX Termination at DC Min Max Average Std Dev Units 97.00 111.80 103.69 1.86 Ω Conclusion The TX Termination DC resistance was measured and data presented above in Figure 2-95 and Figure 2-66. 114 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Chapter 3 PMA Receiver Characterization RX Stressed Eye Jitter Tolerance Test Description The RX stressed eye jitter tolerance test was designed to measure the PMA receiver’s tolerance-to- jitter on the input data stream. It is a test to failure, meaning that the input eye was continually deteriorated until a bit error occured. To accomplish this, a fixed input amplitude was set, and sinusoidal jitter was added until the bit failure occured. A BER of 10E–12 was used as the standard. Test Setup RX stressed eye jitter tolerance was collected using Automated Test Equipment (ATE). Figure 3-1, page 117 illustrates the equipment used for this test. The test was conducted using a fixed input amplitude of 185 mV with a fixed 0.38 U.I. of Deterministic Jitter (DJ) and a fixed 0.18 U.I. of Random Jitter (RJ). Sinusoidal Jitter (SJ) was then added to the link until the link failed. The histograms reflect the amount of SJ added where the link last correctly operated to 1E–12 BER. The RX channel was AC-coupled, and the RX Equalization was set to 100%. A PRBS31 pattern was used. Agilent ParBERT 13.5 Gb/s ATE equipment was used to measure RX jitter on all twelve GTP transceivers simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP TX outputs. Temperature control was achieved through forced-air cooling/heating using a programmable Termionics unit. Twelve GTP transceiver channels can be characterized simultaneously in a single pass. The device was configured using JTAG. Power was supplied from eight programmable power supplies through connectors on the side of the fixture. High-speed connections from the device to the ParBERT were made through SMP and SMA coax connectors. Blind-mate connectors were used to permit quick removal of the test fixture. A low-profile, high-speed socket from Alta Nova was used to collect the data. Two pairs of REFCLKs were used to clock the six GTP_DUAL tiles into two groups of three tiles. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-1 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 115 R Chapter 3: PMA Receiver Characterization Table 3-1: RX Stressed Eye Jitter Tolerance Test PLL Parameters REFCLK Freq PLL_DIVSEL_REF PLL_DIVSEL_FB and DIV Post Divider (1) Data Rate PLL Freq Oversample 3.2 Gb/s 1.60 GHz 320 MHz 1 1*5=5 1 1 3.75 Gb/s 1.875 GHz 187.5 MHz 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software by Xilinx was used to configure the FPGA and set the parameters of the GTP transceivers. Each transceiver was set up with the settings in Table 3-2. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-2: RX Stressed Eye Jitter Tolerance Test Test Settings GTP_DUAL Port Settings Port Rate Affected Value 3.2 Gb/s, 3.75 Gb/s 1: 10-bit datapath INTDATAWIDTH GTP_DUAL Attribute Settings Attribute Rate Affected Value 3.2 Gb/s, 3.75 Gb/s FALSE OVERSAMPLE_MODE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 3-3. Table 3-3: RX Stressed Eye Jitter Tolerance Test Conditions Test Parameter Loopback Mode Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates 116 Test Value Various (see Table 3-1) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Stressed Eye Jitter Tolerance IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_01_041907 Figure 3-1: ATE Test Setup for RX Stressed Eye Jitter Tolerance Tests (ATE Measurement) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 117 R Chapter 3: PMA Receiver Characterization Results RX Stressed Eye Composite Jitter Tolerance, 80 MHz, 3.2 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 250 Number of Data Points 200 150 100 50 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Total Jitter = 0.38 DJ + 0.18 RJ + U.I. SJ 80 MHz Figure 3-2: RPT056_c3_02_052307 RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 80 MHz, 3.2 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.38 U.I. of Deterministic Jitter (DJ) and 0.18 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.38 U.I. DJ + 0.18 U.I. RJ + measured U.I. of SJ. Table 3-4: RX Stressed Eye SJ Jitter Tolerance, 80 MHz, 3.2 Gb/s Data Rate Parameter RX Composite Jitter Tolerance Min Max Average Std Dev Units 0.403 0.676 0.598 0.049 U.I. RX Stressed Eye Composite Jitter Tolerance, 20 MHz 3.2 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) Number of Data Points 200 150 100 50 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Total Jitter = 0.38 DJ + 0.18 RJ + U.I. SJ 20 MHz Figure 3-3: RPT056_c3_03_052307 RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 20 MHz, 3.2 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.38 U.I. of Deterministic Jitter (DJ) and 0.18 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.38 U.I. DJ + 0.18 U.I. RJ + measured U.I. of SJ. Table 3-5: RX Stressed Eye SJ Jitter Tolerance, 20 MHz, 3.2 Gb/s Data Rate Parameter RX Composite Jitter Tolerance 118 Min Max Average Std Dev Units 0.379 0.598 0.506 0.048 U.I. www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Stressed Eye Jitter Tolerance RX Stressed Eye Composite Jitter Tolerance, 22 KHz, 3.2 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 500 Number of Data Points 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Total Jitter = 0.38 DJ + 0.18 RJ + U.I. SJ 22 MHz Figure 3-4: 28 30 32 34 RPT056_c3_04_052307 RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 22 KHz, 3.2 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.38 U.I. of Deterministic Jitter (DJ) and 0.18 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.38 U.I. DJ + 0.18 U.I. RJ + measured U.I. of SJ. Table 3-6: RX Stressed Eye SJ Jitter Tolerance, 22 KHz, 3.2 Gb/s Data Rate Parameter RX Composite Jitter Tolerance Min Max Average Std Dev Units 11.4 25.3 25.3 0 U.I. RX Stressed Eye Composite Jitter Tolerance, 80 MHz, 3.75 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 30 Number of Data Points 25 20 15 10 5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Total Jitter = 0.44 DJ + 0.11 RJ + U.I. SJ 80 MHz RPT056_c3_78_040708 Figure 3-5: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 80 MHz, 3.75 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.44 U.I. of Deterministic Jitter (DJ) and 0.11 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.44 U.I. DJ + 0.11 U.I. RJ + measured U.I. of SJ. Table 3-7: RX Stressed Eye SJ Jitter Tolerance, 80 MHz, 3.75 Gb/s Data Rate Parameter RX Composite Jitter Tolerance Min Max Average Std Dev Units 0.259 0.550 0.413 0.070 U.I. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 119 R Chapter 3: PMA Receiver Characterization RX Stressed Eye Composite Jitter Tolerance, 20 MHz 3.75 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 35 Number of Data Points 30 25 20 15 10 5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Total Jitter = 0.44 DJ + 0.11 RJ + U.I. SJ 20 MHz RPT056_c3_79_040708 Figure 3-6: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 20 MHz, 3.75 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.44 U.I. of Deterministic Jitter (DJ) and 0.11 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.44 U.I. DJ + 0.11 U.I. RJ + measured U.I. of SJ. Table 3-8: RX Stressed Eye SJ Jitter Tolerance, 20 MHz, 3.75 Gb/s Data Rate Parameter RX Composite Jitter Tolerance Min Max Average Std Dev Units 0.165 0.470 0.355 0.068 U.I. RX Stressed Eye Composite Jitter Tolerance, 22 KHz, 3.75 Gb/s Data Rate Virtex-5 GTP RX Composite Jitter Tolerance (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 90 Number of Data Points 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Total Jitter = 0.44 DJ + 0.11 RJ + U.I. SJ 22 MHz 28 30 32 34 RPT056_c3_80_040708 Figure 3-7: RX Stressed Eye, Histogram of SJ w/ Fixed DJ & RJ, 22 KHz, 3.75 Gb/s Note: This histogram demonstrates the amount of Sinusoidal Jitter (SJ) added to 0.44 U.I. of Deterministic Jitter (DJ) and 0.11 U.I. of Random Jitter (RJ) in which the link last passed a 1E–12 BER. The Total Jitter for the channel would be 0.44 U.I. DJ + 0.11 U.I. RJ + measured U.I. of SJ. Table 3-9: RX Stressed Eye SJ Jitter Tolerance, 22 KHz, 3.75 Gb/s Data Rate Parameter RX Composite Jitter Tolerance 120 Min Max Average Std Dev Units 14.0 25.5 25.3 1.30 U.I. www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Stressed Eye Jitter Tolerance RX Stressed Eye, Channel Stress RPT056_c3_05_040708 Figure 3-8: RX Stressed Eye, DCAj Channel Stress at 3.2 Gb/s Conclusion Table 3-10 provides a summary of the RX Stressed Eye SJ Jitter Tolerance tests. Table 3-10: RX Stressed Eye SJ Jitter Tolerance, Summary of Results Parameter RX Composite Jitter Tolerance. 3.2 Gb/s RX Composite Jitter Tolerance. 3.75 Gb/s SJ Freq Min Max Average Std Dev 22 KHz 11.4 25.3 25.3 0 UI 20 MHz 0.379 0.598 0.506 0.048 UI 80 MHz 0.403 0.676 0.598 0.049 UI 22 KHz 14.0 25.5 25.3 1.30 UI 20 MHz 0.165 0.470 0.355 0.068 UI 80 MHz 0.259 0.550 0.413 0.070 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com Units 121 R Chapter 3: PMA Receiver Characterization RX Sinusoidal Jitter Tolerance Test Description This test measured the tolerance to the sinusoidal jitter on the RX inputs. Test Setup RX sinusoidal jitter data was collected using ATE. Figure 3-9, page 124 illustrates the equipment used for this test. Agilent ParBERT 13.5 Gb/s ATE equipment was used to measure RX jitter on all twelve GTPs simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP TX outputs to a BER of 10E12. Temperature control was achieved through forced-air cooling/heating using a programmable Thermionics unit. Twelve GTP channels were characterized simultaneously in a single pass. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-11 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 3-11: RX Sinusoidal Jitter Tolerance Test PLL Parameters Data Rate PLL Freq REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (GHz) (MHz) and DIV Post Divider (1) Oversample 100 Mb/s (OS) 1.00 100 1 2 * 5 = 10 4 5 500 Mb/s (OS) 1.25 125 1 2 * 5 = 10 1 5 500 Mb/s 1.00 100 1 2 * 5 = 10 4 1 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 1.25 Gb/s 1.25 125 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.0 Gb/s 2.00 200 1 2 * 5 = 10 2 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 2.5 Gb/s 1.25 125 1 2 * 5 = 10 1 1 2.5 Gb/s 1.25 250 1 1*5=5 1 1 3.125 Gb/s 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each transeiver was set up with the settings in Table 3-12. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. 122 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance Table 3-12: RX Sinusoidal Jitter Tolerance Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 3-13. Table 3-13: RX Sinusoidal Jitter Tolerance Test Conditions Test Parameter Loopback Mode Test Value Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used Junction Temperature All 12 Locations –40°C, 0°C, 100°C Power Supplies ±5% Test Board Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates Various (see Table 3-11) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 123 R Chapter 3: PMA Receiver Characterization IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 FR4 PCB 12 Pair GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_06_042007 Figure 3-9: 124 RX Sinusoidal Jitter Tolerance Tests www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance Results RX Sinusoidal Jitter Tolerance Test Results for 100 Mb/s (Oversampled) Virtex-5 GTP RX Jitter Tolerance OS 100 Mb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 450 Number of Data Points 400 350 300 250 200 150 100 50 0 0 0.1 0.3 0.5 0.7 RX Jitter Tolerance (U.I.) Figure 3-10: Table 3-14: RPT056_c3_07_052307 RX SJ Tolerance, 100 Mb/s (OS) RX Sinusoidal Jitter Test, 100 Mb/s (Oversampled) Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.300 0.500 0.498 0.020 UI RX Sinusoidal Jitter Tolerance Test Results for 500 Mb/s (Oversampled) Virtex-5 GTP RX Jitter Tolerance OS 500 Mb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RX Jitter Tolerance (U.I.) Figure 3-11: Table 3-15: 0.9 1 RPT056_c3_08_052307 RX SJ Tolerance, 500 Mb/s (OS) RX Sinusoidal Jitter Test, 500 Mb/s (Oversampled) Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.400 0.600 0.508 0.044 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 125 R Chapter 3: PMA Receiver Characterization RX Sinusoidal Jitter Tolerance Test Results for 500 Mb/s Virtex-5 GTP RX Jitter Tolerance 500 Mb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RX Jitter Tolerance (U.I.) Figure 3-12: Table 3-16: 0.9 1 RPT056_c3_09_052307 RX SJ Tolerance, 500 Mb/s RX Sinusoidal Jitter Test, 500 Mb/s Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.400 0.700 0.610 0.047 UI RX Sinusoidal Jitter Tolerance Test Results for 1.00 Gb/s Virtex-5 GTP RX Jitter Tolerance 1.0 Gb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 700 Number of Data Points 600 500 400 300 200 100 0 0 0.2 0.4 0.6 0.8 RX Jitter Tolerance (U.I.) Figure 3-13: Table 3-17: RX SJ Tolerance, 1.00 Gb/s RX Sinusoidal Jitter Test, 1.00 Gb/s Parameter RX Sinusoidal Jitter Tolerance 126 1 RPT056_c3_10_052307 Min Max Average Std Dev Units 0.400 0.800 0.718 0.114 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance RX Sinusoidal Jitter Tolerance Test Results for 1.25 Gb/s Virtex-5 GTP RX Jitter Tolerance 1.25 Gb/s (125 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 140 Number of Data Points 120 100 80 60 40 20 RX Jitter Tolerance (U.I.) Figure 3-14: Table 3-18: 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 RPT056_c3_11_040708 RX SJ Tolerance, 1.25 Gb/Sec RX Sinusoidal Jitter Test, 1.25 Gb/s Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.42 0.80 0.652 0.094 UI RX Sinusoidal Jitter Tolerance Test Results for 2.0 Gb/s, 100 MHz REFCLK Virtex-5 GTP RX Jitter Tolerance 2.0 Gb/s (100 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 1200 Number of Data Points 1000 800 600 400 200 RX Jitter Tolerance (U.I.) Figure 3-15: Table 3-19: 1 0.95 0.9 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c3_12_052307 RX SJ Tolerance, 2.0 Gb/s, 100 MHz REFCLK RX Sinusoidal Jitter Test, 2.00 Gb/s, 100 MHz REFCLK Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.461 0.510 0.510 0.005 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 127 R Chapter 3: PMA Receiver Characterization RX Sinusoidal Jitter Tolerance Test Results for 2.488 Gb/s Virtex-5 GTP RX Jitter Tolerance 2.488 Gb/s (155.25 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 RX Jitter Tolerance (U.I.) Figure 3-16: Table 3-20: 1 0.95 0.9 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c2_112_052307 RX SJ Tolerance, 2.488 Gb/s RX Sinusoidal Jitter Test, 2.488 Gb/s Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.351 0.544 0.529 0.048 UI RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 62.5 MHz REFCLK Virtex-5 GTP RX Jitter Tolerance 2.5 Gb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 2500 Number of Data Points 2000 1500 1000 500 RX Jitter Tolerance (U.I.) Figure 3-17: Table 3-21: 1 0.95 0.9 RPT056_c3_14_052307 RX SJ Tolerance, 2.5 Gb/s, 62.5 MHz REFCLK RX Sinusoidal Jitter Test, 2.5 Gb/s, 62.5 MHz REFCLK Parameter RX Sinusoidal Jitter Tolerance 128 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 Min Max Average Std Dev Units 0.488 0.544 0.544 0.002 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 100 MHz REFCLK Virtex-5 GTP RX Jitter Tolerance 2.5 Gb/s (100 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 1000 900 Number of Data Points 800 700 600 500 400 300 200 100 RX Jitter Tolerance (U.I.) Figure 3-18: Table 3-22: 1 0.9 0.95 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c3_15_052307 RX SJ Tolerance, 2.5 Gb/s, 100 MHz REFCLK RX Sinusoidal Jitter Test, 2.5 Gb/s, 100 MHz REFCLK Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.331 0.547 0.512 0.058 UI RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 125 MHz REFCLK Virtex-5 GTP RX Jitter Tolerance 2.5 Gb/s (62.5 MHz & 125 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 2500 Number of Data Points 2000 1500 1000 500 RX Jitter Tolerance (U.I.) Figure 3-19: Table 3-23: 1 0.9 0.95 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c3_16_052307 RX SJ Tolerance, 2.5 Gb/s, 125 MHz REFCLK RX Sinusoidal Jitter Test, 2.5 Gb/s, 125 MHz REFCLK Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.488 0.544 0.544 0.002 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 129 R Chapter 3: PMA Receiver Characterization RX Sinusoidal Jitter Tolerance Test Results for 2.50 Gb/s, 250 MHz REFCLK Virtex-5 GTP RX Jitter Tolerance 2.5 Gb/s (250 MHz) (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 RX Jitter Tolerance (U.I.) Figure 3-20: Table 3-24: 1 0.9 0.95 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c3_17_052307 RX SJ Tolerance, 2.5 Gb/s, 250 MHz REFCLK RX Sinusoidal Jitter Test, 2.5 Gb/s, 250 MHz REFCLK Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.475 0.564 0.563 0.007 UI RX Sinusoidal Jitter Tolerance Test Results for 3.125 Gb/s Virtex-5 GTP RX Jitter Tolerance 3.125 Gb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 900 Number of Data Points 800 700 600 500 400 300 200 100 RX Jitter Tolerance (U.I.) Figure 3-21: Table 3-25: 1 0.95 0.9 RPT056_c3_18_052307 RX SJ Tolerance, 3.125 Gb/s RX Sinusoidal Jitter Test, 3.125 Gb/s Parameter RX Sinusoidal Jitter Tolerance 130 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 Min Max Average Std Dev Units 0.353 0.684 0.616 0.056 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance RX Sinusoidal Jitter Tolerance Test Results for 3.2 Gb/s Virtex-5 GTP RX Jitter Tolerance 3.2 Gb/s (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 500 450 Number of Data Points 400 350 300 250 200 150 100 50 RX Jitter Tolerance (U.I.) Figure 3-22: Table 3-26: 1 0.95 0.9 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 RPT056_c3_19_052307 RX SJ Tolerance, 3.2 Gb/s RX Sinusoidal Jitter Test, 3.2 Gb/s Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.431 0.702 0.564 0.045 UI RX Sinusoidal Jitter Tolerance Test Results for 3.75 Gb/s Virtex-5 GTP RX Jitter Tolerance 3.75 Gb/s (Units = TT, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 1400 Number of Data Points 1200 1000 800 600 400 200 RX Jitter Tolerance (U.I.) Figure 3-23: Table 3-27: 1 0.95 0.9 0.85 0.800 0.750 0.700 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.05 0.000 0 RPT056_c3_81_040708 RX SJ Tolerance, 3.75 Gb/s RX Sinusoidal Jitter Test, 3.75 Gb/s Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.337 0.649 0.482 0.049 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 131 R Chapter 3: PMA Receiver Characterization Conclusion Table 3-28 shows a summary of the RX sinusoidal jitter tolerance. Table 3-28: RX Sinusoidal Jitter Tolerance Summary Results Parameter RX Sinusoidal Jitter Tolerance Rate Min Max Average Std Dev Units 100 Mb/s (OS) 0.300 0.500 0.498 0.020 UI 500 Mb/s (OS) 0.400 0.600 0.508 0.044 UI 500 Mb/s 0.400 0.700 0.610 0.047 UI 1.0 Gb/s 0.400 0.800 0.718 0.114 UI 1.25 Gb/s 0.420 0.800 0.652 0.094 UI 2.0 Gb/s at 100 MHz 0.461 0.510 0.510 0.005 UI 2.488 Gb/s 0.351 0.544 0.529 0.048 UI 2.5 Gb/s at 62.5 MHz 0.488 0.544 0.544 0.002 UI 2.5 Gb/s at 100 MHz 0.331 0.547 0.512 0.058 UI 2.5 Gb/s at 125 MHz 0.488 0.544 0.544 0.002 UI 2.5 Gb/s at 250 MHz 0.475 0.564 0.563 0.007 UI 3.125 Gb/s 0.353 0.684 0.616 0.056 UI 3.2 Gb/s 0.431 0.702 0.564 0.045 UI 3.75 Gb/s 0.337 0.649 0.482 0.049 UI RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Test Description This test measured the tolerance to sinusoidal jitter (SJ) at the RX input with a clock-data recovery (CDR) offset. This test is similar to the test described in “RX Sinusoidal Jitter Tolerance,” page 122. This test applies sinusoidal jitter but also offsets the RX data from the nominal data rate by ±1000 ppm. Test Setup RX sinusoidal jitter tolerance with clock data recovery (CDR) data was collected using ATE. Figure 3-9, page 124 illustrates the equipment used for this test. Agilent ParBERT 13.5 Gb/s ATE equipment was used to measure RX jitter on all twelve GTPs simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP TX outputs. Temperature control was achieved through forced-air cooling/heating using a programmable Thermionics unit. Twelve GTP channels were characterized simultaneously in a single pass. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-29 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. 132 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 3-29: RX Sinusoidal Jitter Tolerance with CDR Frequency Offset RX Sinusoidal Jitter Tolerance - CDR Freq. Offset Test, PLL Parameters Data Rate PLL Freq (GHz) REFCLK Freq PLL_DIVSEL_FB PLL_DIVSEL_REF (MHz) and DIV Post Divider (1) Oversample 500 Mb/s (OS) 1.25 125 1 2 * 5 = 10 1 5 500 Mb/s 1.00 100 1 2 * 5 = 10 4 1 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 125 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each transceiver was set up with the settings in Table 3-30. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-30: RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Test Settings GTP_DUAL Port Settings Port Rate Affected Value All 1: 10-bit datapath INTDATAWIDTH GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 500 Mb/s (OS) FALSE 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 3-31. Table 3-31: RX Sinusoidal Jitter Tolerance with CDR Freq. Offset Test Conditions Test Parameter Loopback Mode Test Value Fabric Pattern PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used Junction Temperature All 12 Locations –40°C, 0°C, 100°C Power Supplies ±5% www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 133 R Chapter 3: PMA Receiver Characterization Table 3-31: RX Sinusoidal Jitter Tolerance with CDR Freq. Offset Test Conditions (Continued) Test Parameter Test Value Test Board Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates Various (see Table 3-29) IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_20_042007 Figure 3-24: 134 RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Tests www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance with CDR Frequency Offset Results RX SJ Tolerance with CDR Frequency Offset Results, 500 Mb/s (Oversampled) Virtex-5 GTP RX ± 1000 ppm + SJ JT, OS 500 Mb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 0.1 0.2 0.3 0.4 0.5 0.6 RX ±1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-25: Table 3-32: 0.7 0.8 RPT056_c3_21_052307 RX SJ Tolerance w/ CDR Frequency Offset, 500 Mb/s (OS) RX SJ Tolerance with CDR Frequency Offset, 500 Mb/s (OS) Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.300 0.500 0.398 0.020 UI RX SJ Tolerance with CDR Frequency Offset Results, 500 Mb/s Virtex-5 GTP RX ± 1000 ppm + SJ JT, 500 Mb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 0.1 0.2 0.3 0.4 0.5 0.6 RX ±1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-26: Table 3-33: 0.7 0.8 RPT056_c3_22_052307 RX SJ Tolerance w/ CDR Frequency Offset, 500 Mb/s RX SJ Tolerance with CDR Frequency Offset, 500 Mb/s (OS) Parameter RX Sinusoidal Jitter Tolerance Min Max Average Std Dev Units 0.400 0.500 0.494 0.027 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 135 R Chapter 3: PMA Receiver Characterization RX SJ Tolerance with CDR Frequency Offset Results, 1.00 Gb/s Virtex-5 GTP RX ± 1000 ppm + SJ JT, 1.0 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1400 Number of Data Points 1200 1000 800 600 400 200 0 0 0.2 0.4 0.6 RX ±1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-27: Table 3-34: 0.8 RPT056_c3_23_052307 RX SJ Tolerance w/ CDR Frequency Offset, 1.00 Gb/s RX SJ Tolerance w/ CDR Frequency Offset, 1.00 Gb/s Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.400 0.600 0.540 0.098 UI RX SJ Tolerance with CDR Freq. Offset Results, 2.0 Gb/s, 100 MHz REFCLK Virtex-5 GTP RX ± 1000 ppm + SJ JT, 2.00 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2500 Number of Data Points 2000 1500 1000 500 0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.6 0.63 0.65 0.68 0.7 0.73 0.75 0.78 0.8 0 RX ± 1000 ppm + SJ JT 20 MHz Sinusoidal (UI) 136 RPT056_c3_24_052307 Figure 3-28: RX SJ Tolerance w/ CDR Frequency Offset, 2.0 Gb/s, 100 MHz REFCLK Table 3-35: RX SJ Tolerance w/ CDR Frequency Offset, 2.00 Gb/s, 100 MHz REFCLK Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.335 0.480 0.472 0.017 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Sinusoidal Jitter Tolerance with CDR Frequency Offset RX SJ Tolerance with CDR Freq. Offset Results, 2.50 Gb/s, 62.5 MHz REFCLK Virtex-5 GTP RX ± 1000 ppm + SJ JT, 2.50 Gb/s (62.5 MHz), I-Grade 600 (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) Number of Data Points 500 400 300 200 100 0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.6 0.63 0.65 0.68 0.7 0.73 0.75 0.78 0.8 0 RX ± 1000 ppm + SJ JT 20 MHz Sinusoidal (UI) RPT056_c3_25_052307 Figure 3-29: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 62.5 MHz REFCLK Table 3-36: RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 62.5 MHz REFCLK Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.317 0.592 0.486 0.039 UI RX SJ Tolerance with CDR Freq. Offset Results, 2.50 Gb/s, 125 MHz REFCLK Virtex-5 GTP RX ± 1000 ppm + SJ JT, 2.50 Gb/s (125 MHz), I-Grade 800 (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) Number of Data Points 700 600 500 400 300 200 100 0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.6 0.63 0.65 0.68 0.7 0.73 0.75 0.78 0.8 0 RX ± 1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-30: Table 3-37: RPT056_c3_26_052307 RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 125 MHz REFCLK RX SJ Tolerance w/ CDR Frequency Offset, 2.5 Gb/s, 125 MHz REFCLK Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.372 0.592 0.522 0.039 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 137 R Chapter 3: PMA Receiver Characterization RX SJ Tolerance with CDR Frequency Offset Results, 3.2 Gb/s Virtex-5 GTP RX ± 1000 ppm + SJ JT, 3.20 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 450 Number of Data Points 400 350 300 250 200 150 100 50 0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.6 0.63 0.65 0.68 0.7 0.73 0.75 0.78 0.8 0 RX ± 1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-31: Table 3-38: RPT056_c3_27_052307 RX SJ Tolerance w/ CDR Frequency Offset, 3.2 Gb/s RX SJ Tolerance w/ CDR Frequency Offset, 3.2 Gb/s Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.317 0.730 0.524 0.083 UI RX SJ Tolerance with CDR Frequency Offset Results, 3.75 Gb/s Virtex-5 GTP RX ± 1000 ppm + SJ JT, 3.75 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 225 Number of Data Points 200 175 150 125 100 75 50 25 0 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 0.28 0.30 0.33 0.35 0.38 0.40 0.43 0.45 0.48 0.50 0.53 0.55 0.58 0.60 0.63 0.65 0.68 0.70 0.73 0.75 0.78 0.80 0 RX ± 1000 ppm + SJ JT 20 MHz Sinusoidal (UI) Figure 3-32: Table 3-39: 138 RPT056_c3_82_041008 RX SJ Tolerance w/ CDR Frequency Offset, 3.75 Gb/s RX SJ Tolerance w/ CDR Frequency Offset, 3.75 Gb/s Parameter Min Max Average Std Dev Units RX SJ Tolerance with CDR Freq. Offset 0.318 0.736 0.531 0.101 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CDR Frequency Tolerance Conclusion Table 3-40 shows a summary of the RXsinusoidal jitter tolerance with CDR frequency offset test results. Table 3-40: RX SJ Tolerance with CDR Frequency Offset Summary Results Parameter Rate RX SJ Tolerance with CDR Freq offset Min Max Average Std Dev Units 500 Mb/s (OS) 0.300 0.500 0.398 0.020 UI 500 Mb/s 0.400 0.500 0.494 0.027 UI 1.0 Gb/s 0.400 0.600 0.540 0.098 UI 2.0 Gb/s at 100M 0.335 0.480 0.472 0.017 UI 2.5 Gb/s at 62.5M 0.317 0.592 0.486 0.046 UI 2.5 Gb/s at 125 M 0.372 0.592 0.522 0.039 UI 3.2 Gb/s 0.317 0.730 0.524 0.083 UI 3.75 Gb/s 0.318 0.736 0.531 0.101 UI RX CDR Frequency Tolerance Test Description In a typical application, the TX and RX channels use separate clock domains resulting in frequency differences between the TX and RX sides. This test measured the BER with various fixed data rates on the TX channel while increasing/decreasing the data rate on the RX channel. Test Setup The ATE system normally operates with the TX and RX channels operating at the same data rate (synchronously). For the RX CDR frequency tolerance test, the system was programmed to use a fixed data rate for the TX and a differing data rate for the RX channel. Agilent ParBERT 13.5 Gb/s ATE equipment was used to measure RX jitter on all twelve GTPs simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP TX outputs. Temperature control was achieved through forced-air cooling/heating using a programmable Thermionics unit. Twelve GTP channels were characterized simultaneously in a single pass. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-41 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 3-41: RX CDR Offset Test PLL Parameters PLL_DIVSEL_FB Post Divider (1) and DIV Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF 1.25 1.25 125 1 2 * 5 = 10 2 1 2.0 1.00 100 1 2 * 5 = 10 1 1 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com Oversample 139 R Chapter 3: PMA Receiver Characterization Table 3-41: RX CDR Offset Test PLL Parameters (Continued) PLL_DIVSEL_FB Post Divider (1) and DIV Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF 2.488 1.244 155.52 1 2*4=8 1 1 2.5 1.25 62.5 1 4 * 5 = 20 1 1 2.5 1.25 125 1 2 * 5 = 10 1 1 2.5 1.25 250 1 1*5=5 1 1 3.125 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 1.60 320 1 1*5=5 1 1 3.75 1.875 187.5 1 2 * 5 = 10 1 1 Oversample Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-42. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-42: RX CDR Offset Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTPs for this test. Conditions relevant to this test are contained in Table 3-43 Table 3-43: RX CDR Offset Test Conditions Test Parameter Loopback Mode Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF, FS, SF GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board 140 Test Value Virtex-5 LXT FF1136 Test Fixture www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CDR Frequency Tolerance Table 3-43: RX CDR Offset Test Conditions (Continued) Test Parameter Test Value FR-4 Length 3.25 inches REFCLK and PLL Rates Various (see Table 3-41) IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 FR4 PCB 12 Pair GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_28_042107 Figure 3-33: ATE Test Setup for RX CDR Offset Tests www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 141 R Chapter 3: PMA Receiver Characterization Results RX CDR Offset at 1.25 Gb/s, 125 MHz REFCLK Virtex-5 GTP CDR Offset, 1.25 Gb/s, I-Grade (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-34: Table 3-44: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_29_052307 RX CDR Offset at 1.25 Gb/s, C and I Grade, 125 MHz REFCLK RX CDR Offset at 1.25 Gb/s Data Rate, 125 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –1600 –6400 –5362 1131 ppm RX CDR Offset, Plus 1600 6400 3817 1218 ppm RX CDR Offset at 2.0 Gb/s, 100 MHz REFCLK Virtex-5 GTP CDR Offset, 2.00 Gb/s, I-Grade (Units = TT, SF, FF, FS, SS, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-35: Table 3-45: 7000 6000 RPT056_c3_30_052307 RX CDR Offset at 2.0 Gb/s, C and I Grade, 100 MHz REFCLK RX CDR Offset at 2.0 Gb/s Data Rate, 100 MHz REFCLK Parameter 142 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 Min Max Average Std Dev Units RX CDR Offset, Minus –2000 –6900 –6045 570 ppm RX CDR Offset, Plus 2000 7000 4011 923 ppm www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CDR Frequency Tolerance RX CDR Offset at 2.488 Gb/s, 155.5 MHz REFCLK Virtex-5 GTP CDR Offset, 2.488 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1200 Number of Data Points 1000 800 600 400 200 CDR Offset (ppm) Figure 3-36: Table 3-46: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_31_052307 RX CDR Offset at 2.488 Gb/s, C and I Grade, 155.5 MHz REFCLK RX CDR Offset at 2.488 Gb/s Data Rate, 155.5 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –3215 –8038 –7121 1131 ppm RX CDR Offset, Plus 2411 8841 6450 1470 ppm RX CDR Offset at 2.5 Gb/s, 62.5 MHz REFCLK Virtex-5 GTP CDR Offset, 2.50 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-37: Table 3-47: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_32_052307 RX CDR Offset at 2.5 Gb/s, C and I Grade, 62.5 MHz REFCLK RX CDR Offset at 2.5 Gb/s Data Rate, 62.5 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –3000 –6900 –6007 540 ppm RX CDR Offset, Plus 2000 7000 3886 1121 ppm www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 143 R Chapter 3: PMA Receiver Characterization RX CDR Offset at 2.5 Gb/s, 125 MHz REFCLK Virtex-5 GTP CDR Offset, 2.50 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-38: Table 3-48: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_33_052307 RX CDR Offset at 2.5 Gb/s, C and I Grade, 125 MHz REFCLK RX CDR Offset at 2.5 Gb/s Data Rate, 125 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –3000 –6900 –6015 527 ppm RX CDR Offset, Plus 2000 7000 3835 1125 ppm RX CDR Offset at 2.5 Gb/s, 250 MHz REFCLK Virtex-5 GTP CDR Offset, 2.50 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-39: Table 3-49: 7000 6000 5000 RPT056_c3_34_052307 RX CDR Offset at 2.5 Gb/s, C and I Grade, 250 MHz REFCLK RX CDR Offset at 2.5 Gb/s Data Rate, 250 MHz REFCLK Parameter 144 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 Min Max Average Std Dev Units RX CDR Offset, Minus –3200 –6400 –6301 414 ppm RX CDR Offset, Plus 2000 6400 3640 1015 ppm www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CDR Frequency Tolerance RX CDR Offset at 3.125 Gb/s, 156.25 MHz REFCLK Virtex-5 GTP CDR Offset, 3.125 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-40: Table 3-50: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_35_052307 RX CDR Offset at 3.125 Gb/s, C and I Grade, 156.25 MHz REFCLK RX CDR Offset at 3.125 Gb/s Data Rate, 156.25 MHz REFCLK, Minus Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –1920 –6400 –6102 692 ppm RX CDR Offset, Plus 1920 7040 4029 1260 ppm RX CDR Offset at 3.2 Gb/s, 320 MHz REFCLK Virtex-5 GTP CDR Offset, 3.20 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1400 Number of Data Points 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-41: Table 3-51: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_36_052307 RX CDR Offset at 3.2 Gb/s, C and I Grade, 320 MHz REFCLK RX CDR Offset at 3.2 Gb/s Data Rate, 320 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –3000 –6900 –4472 1105 ppm RX CDR Offset, Plus 2000 7000 2801 786 ppm www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 145 R Chapter 3: PMA Receiver Characterization RX CDR Offset at 3.75 Gb/s, 187.5 MHz REFCLK Virtex-5 GTP CDR Offset, 3.75 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 1400 Number of Data Points 1200 1000 800 600 400 200 CDR Offset (ppm) Figure 3-42: Table 3-52: 7000 6000 5000 4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 0 RPT056_c3_82_041008 RX CDR Offset at 3.75 Gb/s, C and I Grade, 187.5 MHz REFCLK RX CDR Offset at 3.2 Gb/s Data Rate, 320 MHz REFCLK Parameter Min Max Average Std Dev Units RX CDR Offset, Minus –2000 –6900 –3890 934 ppm RX CDR Offset, Plus 2000 5000 2665 759 ppm Conclusion Table 3-53 provides a summary of the RX CDR offset test results where the CDR offset was minus PPM. Table 3-54 provides a summary of the RX CDR offset test results where the CDR offset was plus PPM. Table 3-53: RX CDR Offset Test Summary Results, Minus Parameter RX CDR Offset, Minus 146 Rate Min Max Average Std Dev Units 1.25 Gb/s –1600 –6400 –5362 1331 ppm 2.0 Gb/s at 100 MHz –2000 –6900 –6045 570 ppm 2.488 Gb/s –3215 –8038 –7121 1131 ppm 2.5 Gb/s at 62.5 MHz –3000 –6900 –6007 540 ppm 2.5 Gb/s at 125 MHz –3000 –6900 –6015 527 ppm 2.5 Gb/s at 250 MHz –3200 –6400 –6301 414 ppm 3.125 Gb/s –1920 –6400 –6102 692 ppm 3.2 Gb/s –3000 –6900 –4473 1105 ppm 3.75 Gb/s –2000 –6900 –3890 934 ppm www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table 3-54: RX Input Sensitivity RX CDR Offset Test Summary Results, Plus Parameter RX CDR Offset, Plus Rate Min Max Average Std Dev Units 1.25 Gb/s 1600 6400 3817 1218 ppm 2.0 Gb/s at 100 MHz 2000 7000 4011 923 ppm 2.488 Gb/s 2411 8841 6450 1470 ppm 2.5 Gb/s at 62.5 MHz 2000 7000 3886 1121 ppm 2.5 Gb/s at 125 MHz 2000 7000 3835 1125 ppm 2.5 Gb/s at 250 MHz 2000 6400 3640 1015 ppm 3.125 Gb/s 1920 7040 4029 1260 ppm 3.2 Gb/s 2000 7000 2801 786 ppm 3.75 Gb/s 2000 5000 2665 759 ppm RX Input Sensitivity Test Description This test measured the receiver’s input sensitivity on the data input of the PMA RX side. Test Setup RX input sensitivity data was collected using ATE. Figure 3-43 illustrates the equipment used for this test. The RX input sensitivity test was designed to measure a given amplitude with a BER limit at 1E–12. To accomplish this, the test sweeps across the RX input amplitude starting at 400 mV and decreasing in 15 mV steps until failure occurs. The histograms record the last step in which the RX input was error-free for that particular measurement. Measurements were made across the conditions listed in Table 3-57. ATE was used to measure RX input sensitivity on all 12 GTP transceivers simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP RX inputs. The ATE measures these errors and records them as a set of histogram points across the data rates tested. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-55 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 3-55: RX Input Sensitivity Test PLL Parameters Data Rate PLL_DIVSEL_FB PLL Freq REFCLK Freq Post Divider (1) Oversample PLL_DIVSEL_REF and DIV (GHz) (MHz) 100 Mb/s (OS) 1.00 100 1 2 * 5 = 10 4 5 500 Mb/s (OS) 1.25 125 1 2 * 5 = 10 1 5 500 Mb/s 1.00 100 1 2 * 5 = 10 4 1 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 1.25 Gb/s 1.25 125 1 2 * 5 = 10 2 1 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 147 R Chapter 3: PMA Receiver Characterization Table 3-55: RX Input Sensitivity Test PLL Parameters (Continued) Data Rate PLL_DIVSEL_FB PLL Freq REFCLK Freq Post Divider (1) Oversample PLL_DIVSEL_REF and DIV (GHz) (MHz) 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 3.125 Gb/s Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-56. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-56: RX Input Sensitivity Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 3-57. Table 3-57: RX Input Sensitivity Test Conditions Test Parameter Loopback Mode Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates 148 Test Value Various (see Table 3-55) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Input Sensitivity IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_37_042107 Figure 3-43: ATE Test Setup for RX Input Sensitivity Tests www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 149 R Chapter 3: PMA Receiver Characterization Results RX Input Sensitivity at 100 Mb/s Using Oversampling Virtex-5 GTP RX Sensitivity (DIFF), 0.100 Gb/s OS (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 400 Number of Data Points 350 300 250 200 150 100 50 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential RPT056_c3_38_052307 Figure 3-44: RX Input Sensitivity at 100 Mb/s, C and I Grade, Oversampled Table 3-58: RX Input Sensitivity at 100 Mb/s Data Rate, Oversampled Parameter RX Input Sensitivity Min Max Average Std Dev Units 15 120 60 18 mV RX Input Sensitivity at 500 Mb/s Using Oversampling Virtex-5 GTP RX Sensitivity (DIFF), 0.500 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 350 Number of Data Points 300 250 200 150 100 50 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential RPT056_c3_39_052307 Figure 3-45: RX Input Sensitivity at 500 Mb/s, C and I Grade, Oversampled Table 3-59: TX Generation Measurement at 500 Mb/s Date Rate, Oversampled Parameter RX Input Sensitivity 150 Min Max Average Std Dev Units 15 105 60 18 mV www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Input Sensitivity RX Input Sensitivity at 500 Mb/s Virtex-5 GTP RX Sensitivity (DIFF), 0.500 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 350 Number of Data Points 300 250 200 150 100 50 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-46: Table 3-60: RPT056_c3_40_052407 RX Input Sensitivity at 500 Mb/s, C and I Grade RX Input Sensitivity at 500 Mb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 15 105 60 18 mV RX Input Sensitivity at 1.00 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 1.00 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 350 Number of Data Points 300 250 200 150 100 50 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-47: Table 3-61: RPT056_c3_41_052407 RX Input Sensitivity at 1.00 Gb/s, C and I Grade RX Input Sensitivity at 1.00 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 15 120 60 18 mV www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 151 R Chapter 3: PMA Receiver Characterization RX Input Sensitivity at 1.25 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 1.25 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 700 Number of Data Points 700 600 500 400 300 200 100 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-48: Table 3-62: RPT056_c2_141_052407 RX Input Sensitivity at 1.25 Gb/s, C and I Grade RX Input Sensitivity at 1.25 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 30 135 60 18 mV RX Input Sensitivity at 2.0 Gb/s, 100 MHz REFCLK Virtex-5 GTP RX Sensitivity (DIFF), 2.0 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 200 180 Number of Data Points 160 140 120 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-49: Table 3-63: RX Input Sensitivity at 2.0 Gb/s, C and I Grade, 100 MHz REFCLK RX Input Sensitivity at 2.0 Gb/s Data Rate Parameter RX Input Sensitivity 152 RPT056_c3_43_05240 Min Max Average Std Dev Units 30 135 60 18 mV www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Input Sensitivity RX Input Sensitivity at 2.488 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 2.488 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-50: Table 3-64: RPT056_c3_44_052407 RX Input Sensitivity at 2.488 Gb/s, C and I Grade RX Input Sensitivity at 2.488 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 30 135 75 18 mV RX Input Sensitivity at 2.5 Gb/s, 125 MHz REFCLK Virtex-5 GTP RX Sensitivity (DIFF), 2.5 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-51: Table 3-65: RPT056_c3_45_052407 RX Input Sensitivity at 2.5 Gb/s, C and I Grade, 125 MHz REFCLK RX Input Sensitivity at 2.5 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 30 135 75 18 mV www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 153 R Chapter 3: PMA Receiver Characterization RX Input Sensitivity at 3.125 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 3.125 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 900 Number of Data Points 800 700 600 500 400 300 200 100 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-52: Table 3-66: RPT056_c3_46_052407 RX Input Sensitivity at 3.125 Gb/s, C and I Grade RX Input Sensitivity at 3.125 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 30 135 75 18 mV RX Input Sensitivity at 3.2 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 3.2 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 180 Number of Data Points 160 140 120 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-53: Table 3-67: RX Input Sensitivity at 3.2 Gb/s, C and I Grade RX Input Sensitivity at 3.2 Gb/s Data Rate Parameter RX Input Sensitivity 154 RPT056_c3_47_052407 Min Max Average Std Dev Units 15 120 75 18 mV www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Input Sensitivity RX Input Sensitivity at 3.75 Gb/s Virtex-5 GTP RX Sensitivity (DIFF), 3.75 Gb/s (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 900 800 Number of Data Points 700 600 500 400 300 200 100 0 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 RX Sensitivity, mV Differential Figure 3-54: Table 3-68: RPT056_c3_84_041108 RX Input Sensitivity at 3.75 Gb/s, C and I Grade RX Input Sensitivity at 3.75 Gb/s Data Rate Parameter RX Input Sensitivity Min Max Average Std Dev Units 45 165 92.28 18.73 mV Conclusion Table 3-69 provides a summary of the RX input sensitivity results. Table 3-69: RX Input Sensitivity Summary Results Parameter RX Input Sensitivity Rate Min Max Average Std Dev Units 100 Mb/s (OS) 15 120 60 18 mV 500 Mb/s (OS) 15 105 60 18 mV 500 Mb/s 15 105 60 18 mV 1.0 Gb/s 15 120 60 18 mV 1.25 Gb/s 30 135 60 18 mV 2.0 Gb/s 100 MHz REFCLK 30 135 60 18 mV 2.488 Gb/s 30 135 75 18 mV 2.5 Gb/s 125 MHz REFCLK 30 135 75 18 mV 3.125 Gb/s 30 135 75 18 mV 3.2 Gb/s 15 120 75 18 mV 3.75 Gb/s 45 165 92.28 18.73 mV www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 155 R Chapter 3: PMA Receiver Characterization RX Equalization Test Description The purpose of this test was to characterize the effectiveness of the GTP receiver equalizer to filter out the channel-loss-related ISI component of deterministic jitter. Test Setup Two different setups were used for this test. The first was an RX bench setup illustrated in Figure 3-55, page 158. The resultant data set for the RX bench setup is contained in Table 3-73 and Table 3-74. The second setup was the ATE setup illustrated in Figure 3-56, page 159. The resultant data set for the ATE setup is contained in Figure 3-57 to Figure 3-62 and Table 3-75 to Table 3-79. RX Equalization Bench Setup The RX equalization bench test setup, shown in Figure 3-55, consists of the Agilent N4901B Serial J-BERT with interference channel option, Xilinx Virtex-5 ML523 Characterization Platform, Agilent 86100A DCA-J scope, power supplies, SMA cables, and a PC. J-BERT data outputs were connected to the GTP DUT RX through the interference channel. The Agilent J-BERT interference channel has several FR-4 trace length options that can be inserted in the DUT’s receive data path. The DUT was placed in the RX-to-TX loopback mode. Data errors were checked back at the J-BERT error detector. The Agilent DCA-J was used to measure the passing traces’ amplitude loss and ISI jitter components. The GTP RX equalizer was tested for each of the possible equalization settings and when the equalization was disabled. The Agilent Serial J-BERT generates data that was passed through the selected trace length from the interference channel. Data was looped from RX to TX through the GTP under test, and bit errors were monitored back at the J-BERT error detector. For each of the equalization settings, interference channel trace length was increased in 4-inch steps until bit errors were first detected. When errors were detected, the interference channel length was reverted back to the previous passing length, and the test was run for fifteen minutes to make sure the link was solid and was passing with zero errors. The test was repeated for each of the possible equalization settings and for the equalizer disabled. The whole set of tests was repeated at one high-end, one middle-range, and one lower-end data range frequency. Once the passing trace length has been established for each case, trace length dB loss was measured at one-half the frequency of each data rate tested. In addition, the ISI-related DJ component of each passing trace length at each tested data rate was measured using an Agilent DCA-J communications analyzer. CJPAT data pattern was used, which DCA-J can easily and accurately resolve into jitter components. For lower data rate tests, additional FR-4 trace length was required and added externally to the J-BERT interference channel trace lengths using the Xilinx Nelco Quad Serial Loop board (NQSL). RX Equalization ATE Setup The RX equalization ATE setup, shown in Figure 3-56 measures the composite jitter tolerance at various rates with various settings of the RX equalization using the Agilent ParBERT. A specific amount of DJ and RJ were injected into the system and the resultant composite jitter tolerance was measured. 156 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Equalization A REFCLK was used to clock the GTP transceivers. The REFCLK was sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-70 shows the appropriate REFCLK frequency, and PLL multiplier to create a proper PLL frequency for each of the tested data rates Table 3-70: RX Equalization Test PLL Settings Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF PLL_DIVSEL_FB Post Divider (1) and DIV 1.25 1.25 125 1 2 * 5 = 10 2 1 2.5 1.25 100 2 5 * 5 = 25 1 1 2.5 1.25 125 1 5 * 4 = 20 1 1 2.5 1.25 250 1 2 * 5 = 10 1 1 3.125 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 1.60 320 1 1*5=5 1 1 3.75 1.875 187.5 1 2 * 5 = 10 1 1 Oversample Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-71. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-71: RX Equalization Test Settings GTP_DUAL Port Settings Port Rate Affected Value N/A N/A N/A GTP_DUAL Attribute Settings Attribute Rate Affected Value All 0 (enabled) All 00, 01, 10, 11 All 0000 RXENEQB0 RXENEQB1 RXEQMIX0[1:0] RXEQMIX1[1:0] RXEQPOLE0[3:0] RXEQPOLE1[3:0] www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 157 R Chapter 3: PMA Receiver Characterization Various conditions were used to characterize the GTP transceivers. Conditions relevant to this test are contained in Table 3-72. Table 3-72: RX Equalization Test Conditions Test Parameter Test Value Loopback Mode Fabric Loopback Pattern CJPAT, PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% ML523, Test Boards Virtex-5 LXT FF1136 Test Fixture FR-4 Length 4.25 inches, 3.25 inches respectively REFCLK and PLL Rates Various (see Table 3-70) IEEE-488 (GPIB) Agilent 8648C Signal Generator FR4 PCB P/N Pair A B C Rotary Relay x2 A SMAs P/N Pair 120 GTP_DUAL X0Y5 P/N Pair B C SMAs Agilent N4901B Serial BERT PC Splitter FR4 PCB Rotary Relay x2 LPT2 PC 4 CLK Agilent 6624A Power Supplies 122 GTP_DUAL X0Y0 D P/N Pair D FPGA DUT Xilinx Virtex-5 ML523 Characterization Platform Agilent 34999B Switch Control System P/N Pair RPT056_c2_101_052107 Figure 3-55: RX Equalization Bench Setup 158 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Equalization IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_48_042107 Figure 3-56: RX Equalization ATE Test Setup Results Test results for the bench testing are reported as a table of tested data rates, device types, environmental/supply conditions, passing trace length, dB loss at one half the tested data rate, and the DJ contribution of the selected passing trace length. These can be found in Table 3-73. Additionally, Table 3-74 reports the results from a stress test run for 15 minute using a CJPAT pattern and the specified FR-4 trace length. Test results for the ATE testing are reported as a set of histograms and tables of total jitter at 3.2 Gb/s rate and across various RX equalizer settings. Data is reported with 0.4 UI of DJ and 0.17 of RJ added. Additionally, the RX equalizer was swept across 0%, 25%, 37.5%, 50% and 67.5% equalization. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 159 R Chapter 3: PMA Receiver Characterization RX Equalization Test, Stress Test Table 3-73: Data Rate 1.25 Gb/s 2.5 Gb/s 3.2 Gb/s 3.75 Gb/s RX Equalization Test Results PLL Freq 1.25 GHz 1.25 GHz 1.60 GHz 1.87 GHz RXENEQB0/1 Max Passed Min Passed ISI (UI), dB Loss RXEQMIX0/1[1:0] (1) Trace Length Trace Length From DCA-J (1/2 Data Rate) (in) (in) @ PRBS7 1 00 76 69 0.34 –7.45 0 00 88 80 0.49 –9.68 0 01 84 76 0.43 –8.87 0 10 84 76 0.43 –8.87 0 11 92 88 0.55 –10.87 1 00 36 29 0.14 –6.09 0 00 48 44 0.38 –10.52 0 01 40 44 0.29 –9.42 0 10 40 36 0.22 –8.31 0 11 56 52 0.55 –12.73 1 00 20 16 0.14 –6.11 0 00 36 32 0.45 –10.90 0 01 32 24 0.30 –8.52 0 10 28 20 0.20 –7.03 0 11 44 40 0.63 –13.15 1 00 16 9 0.08 –4.08 0 00 32 24 0.36 –9.50 0 01 24 24 0.36 –9.50 0 10 20 16 0.19 –6.47 0 11 36 32 0.60 –12.15 Notes: 1. RXEQMIX0[1:0] and RXEQMIX1[1:0] set the wideband/high-pass mix ratio for the RX equalization circuit. Please see UG196, Virtex-5 RocketIO GTP Transceiver User Guide, for details on their setting. Table 3-74: RX Stress Test, Various Rates, Various FR-4 Trace Lengths Data Rate PLL Freq REFCLK FR-4 RXENEQB0/1 RXEQMIX0/1[1:0] (1) Pattern Conditions Freq Length 1.25 Gb/s 1.25 GHz 125 MHz 0 11 CJPAT 30 in 2.5 Gb/s 1.25 GHz 100 MHz 0 11 CJPAT 45 in 2.5 Gb/s 1.25 GHz 250 MHz 0 11 CJPAT 45 in 3.2 Gb/s 1.60 GHz 156.25 MHz 0 11 CJPAT 90 in Per Table 3-72 Time Result 15 min Passed 15 min Passed 15 min Passed 15 min Passed Notes: 1. RXEQMIX0[1:0] and RXEQMIX1[1:0] set the wideband/high-pass mix ratio for the RX equalization circuit. Please see UG196, Virtex-5 RocketIO GTP Transceiver User Guide, for details on their setting. 160 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Equalization RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer Off Virtex-5 GTP (Equalizer OFF) Composite Jitter Tolerance (VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 160 Number of Data Points 140 120 100 80 60 40 20 Figure 3-57: Table 3-75: 1 0.95 0.9 0.8 Total Jitter = 0.4 DJ + 0.17 RJ + SJ 0.85 0.7 0.75 0.6 0.65 0.55 0.5 0.4 0.45 0.3 0.35 0.2 0.25 0.15 0.1 0 0.05 0 RPT056_c3_50_052407 RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = Off RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = Off Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.000 0.319 0.213 0.085 UI RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 25% Virtex-5 GTP RX (Equalizer 25%) Composite Jitter Tolerance (VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 160 Number of Data Points 140 120 100 80 60 40 20 Figure 3-58: Table 3-76: 1 0.95 0.9 0.8 0.85 0.7 Total Jitter = 0.4 DJ + 0.17 RJ + SJ 0.75 0.65 0.6 0.55 0.5 0.4 0.45 0.3 0.35 0.25 0.2 0.15 0.1 0 0.05 0 RPT056_c3_51_052407 RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 25% RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 25% Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.171 0.421 0.277 0.052 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 161 R Chapter 3: PMA Receiver Characterization RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 37% Virtex-5 GTP RX (Equalizer 37%) Composite Jitter Tolerance (VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 90 Number of Data Points 80 70 60 50 40 30 20 10 Table 3-77: 1 0.95 0.9 0.8 Total Jitter = 0.4 DJ + 0.17 RJ + SJ Figure 3-59: 0.85 0.7 0.75 0.6 0.65 0.55 0.5 0.4 0.45 0.3 0.35 0.2 0.25 0.15 0.1 0 0.05 0 RPT056_c3_52_052407 RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 37% RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 37% Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.205 0.533 0.330 0.075 UI RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 50% Virtex-5 GTP RX (Equalizer 50%) Composite Jitter Tolerance (VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 100 90 Number of Data Points 80 70 60 50 40 30 20 10 Figure 3-60: Table 3-78: 162 1 0.95 0.9 0.8 0.85 0.7 Total Jitter = 0.4 DJ + 0.17 RJ + SJ 0.75 0.65 0.6 0.55 0.5 0.4 0.45 0.3 0.35 0.25 0.2 0.15 0.1 0 0.05 0 RPT056_c3_53_042107 RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 50% RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 50% Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.222 0.610 0.445 0.080 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Equalization RX Equalization Test, Composite Jitter Tolerance at 3.2 Gb/s, RX Equalizer 62% Virtex-5 GTP RX (Equalizer 62%) Composite Jitter Tolerance (VCC = VNOM, VNOM ± 5% V, Temp = –40°, 0°C, 100°C) 100 90 Number of Data Points 80 70 60 50 40 30 20 10 Total Jitter = 0.4 DJ + 0.17 RJ + SJ Figure 3-61: Table 3-79: 1 0.9 0.95 0.8 0.85 0.7 0.75 0.6 0.65 0.5 0.55 0.4 0.45 0.3 0.35 0.2 0.25 0.1 0.15 0 0.05 0 RPT056_c2_152_052407 RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 62% RX Equalization Test, CJ Tolerance at 3.2 Gb/s, RX EQ = 62% Parameter Min Max Average Std Dev Units TJ, Total Jitter 0.330 0.660 0.523 0.073 UI RX Equalization Test, Mean Sinusoidal Jitter Tolerance vs. RX Equalizer Settings, 3.125 Gb/s Virtex-5 GTP RX Equalizer Mean SJ Tolerance vs. Equalizer Setting (In Addition to DJ = 0.4 UI, RJ = 0.17 UI, SJ = As Noted) 0.8 MEAN 0.7 Jitter Tolerance SJ (UI) MIN 0.6 MAX 0.5 0.4 0.3 0.2 0.1 0 25% 37.5 50% RX Equalizer High Frequency % 62.5 RPT056_c3_55_052407 Figure 3-62: RX Equalization Test, Mean SJ Tolerance at 3.2 Gb/s vs. RX EQ Settings Table 3-80: RX Equalization Test, Mean SJ Tolerance at 3.2 Gb/s vs. RX EQ Settings Parameter Min Max Mean Std Dev Units TJ, Total Jitter, 0% RX EQ 0.000 0.319 0.173 0.095 UI TJ, Total Jitter, 25% RX EQ 0.171 0.421 0.274 0.052 UI TJ, Total Jitter, 37.5% RX EQ 0.205 0.533 0.340 0.075 UI TJ, Total Jitter, 50% RX EQ 0.222 0.610 0.438 0.080 UI TJ, Total Jitter, 62.5% RX EQ 0.330 0.660 0.509 0.073 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 163 R Chapter 3: PMA Receiver Characterization RX OOB Signal Detect Test Description This test was designed to measure when the OOB signal was detected. The test measures the voltage at which the OOB was detected across various settings of OOBDETECT_THRESHOLD. Test Setup The RX OOB signal detect test was conducted using Automated Test Equipment (ATE). Figure 3-63, page 165 illustrates the equipment used for this test. ATE equipment was used to measure response of each of the 12 GTP transceivers simultaneously. The Agilent ParBERT produces OOB signals and then checks to see if the GTP transceiver responded to the OOB. The OOBDETECT_THRESHOLD_0(_1) were changed from 000 to 111 while the ParBERT controlled the OOB amplitude and measurements were made. The number of GTP transceivers that responded at a particular OOB threshold voltage are plotted at the specific OOBx setting in Figure 3-64, page 166. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-81 shows the appropriate REFCLK frequency, and PLL multiplier to create a proper PLL frequency for each of the tested data rates. Table 3-81: RX OOB Signal Detect Test PLL Parameters Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF 2.5 1.00 100 1 PLL_DIVSEL_FB Post Divider (1) and DIV 2 * 5 = 10 Oversample 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-82. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-82: RX OOB Signal Detect Test Settings GTP_DUAL Port Settings Port INTDATAWIDTH Rate Affected Value All 1: 10-bit datapath GTP_DUAL Attribute Settings Attribute OOBDETECT_THRESHOLD_0 OOBDETECT_THRESHOLD_1 OVERSAMPLE_MODE 164 Rate Affected Value All 000 to 111 All FALSE www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX OOB Signal Detect Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained inTable 3-83. Table 3-83: RX OOB Signal Detect Test Conditions Test Parameter Test Value Loopback Mode Fabric Loopback Pattern OOB Pattern Silicon Corner Used SS, TT, FF GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Boards Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates Various (see Table 3-81) IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 12 Pair FR4 PCB GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_56_042207 Figure 3-63: ATE Test Setup for RX OOB Signal Detect Tests www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 165 R Chapter 3: PMA Receiver Characterization Results Virtex-5 GTP RX OOB by Setting (Temperature = 100°C, –40°C, 0°C; VCC = VNOM, VNOM ± 5%; Data Rate 2.50 Gb/s) 1400 OOB0 Number of Data Points 1200 OOB1 OOB2 1000 OOB3 OOB4 800 OOB5 OOB6 600 OOB7 400 200 0 0 20 40 60 80 100 120 140 160 OOB (mV) 180 200 RPT056_c3_57_052407 Figure 3-64: RX OOB Signal Detect Results by OOB Setting at 2.5 Gb/s Table 3-84: RX OOB Signal Detect Results by OOB Setting at 2.5 Gb/s Parameter Min Max Average Std Dev Units RX OOB Threshold, OOB0 30.00 120.00 77.46 13.41 mV RX OOB Threshold, OOB1 45.00 120.00 85.20 12.95 mV RX OOB Threshold, OOB2 60.00 135.00 91.97 13.39 mV RX OOB Threshold, OOB3 60.00 135.00 98.64 13.40 mV RX OOB Threshold, OOB4 75.00 150.00 104.80 13.88 mV RX OOB Threshold, OOB5 75.00 165.00 111.78 14.28 mV RX OOB Threshold, OOB6 75.00 165.00 118.29 14.42 mV RX OOB Threshold, OOB7 90.00 180.00 127.17 15.49 mV Virtex-5 GTP RX OOB6, 2.50 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1200 Number of Data Points 100 800 600 400 200 0 0 30 60 90 120 150 180 210 240 270 RX OOB Threshold Figure 3-65: Table 3-85: 330 360 RX OOB Signal Detect Example Distribution, OOB RX OOB6 Signal Detect Results at 2.5 Gb/s Parameter RX OOB Threshold, OOB6 166 300 RPT056_c3_58_052407 Min Max Average Std Dev Units 75.00 165.00 118.29 14.42 mV www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CID Run Length RX CID Run Length Test Description This test was designed to identify when the RX side of the GTP transceiver starts to detect bit errors when a consecutive identical digits (CID) pattern was being received. The test was conducted on the ATE using the ParBERT to send a repetitive pattern. The pattern was modified until a GTP transceiver begins to fail. Each failure it tallied and then presented in a histogram to demonstrate the number of CID that the GTP transceiver can accept before the RX begins to fail. Test Setup ATE equipment was used to measure the RX CID Run Length on all 12 GTP transceivers simultaneously. A ParBERT analyzer was used to measure the BER of each of the GTP RX inputs. The ParBERT was also used to transmit a specific pattern to the RX. This pattern consists of five parts, as illustrated below. The first part was a PRBS31 pattern, which is followed by a pattern of all ones, followed by another PRBBS31 pattern, then a pattern of all zeros, and finally a padding to fill in the balance of ParBERT pattern memory. RX was stressed with increasing CID run lengths until an error was detected. The repeated applied pattern was: PRBS31 (15K bits) All 1s (RUN-LENGTH) PRBS31 (15K bits) All 0s (RUN-LENGTH) PAD The PAD section of the pattern was required for the ParBERT to put the pattern on a memory boundary. RX CID run length data was collected using ATE. Figure 3-66, page 169 illustrates the equipment used for this test. Two REFCLKs were used to clock the GTP transceivers. The REFCLKs were sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-86 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested rates. Table 3-86: RX CID Run Length Test PLL Parameters Data Rate PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF PLL_DIVSEL_FB and DIV Post Divider (1) Oversample 500 Mb/s 1.00 100 1 2 * 5 = 10 4 1 1.00 Gb/s 1.00 100 1 2 * 5 = 10 2 1 2.0 Gb/s 1.00 100 1 2 * 5 = 10 1 1 2.488 Gb/s 1.244 155.52 1 2*4=8 1 1 2.5 Gb/s 1.25 62.5 1 4 * 5 = 20 1 1 2.5 Gb/s 1.25 100 2 5 * 5 = 25 1 1 2.5 Gb/s 1.25 125 1 2 * 5 = 10 1 1 2.5 Gb/s 1.25 250 1 1*5=5 1 1 3.125 Gb/s 1.5625 156.25 1 2 * 5 = 10 1 1 3.2 Gb/s 1.60 320 1 1*5=5 1 1 3.75 Gb/s 1.875 187.5 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 167 R Chapter 3: PMA Receiver Characterization Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-87. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-87: RX CID Run Length Test Settings GTP_DUAL Port Settings Port Rate Affected INTDATAWIDTH Value All but 2.488 Gb/s 1: 10-bit datapath 2.488 Gb/s 0: 8-bit datapath GTP_DUAL Attribute Settings Attribute OVERSAMPLE_MODE Rate Affected Value All but 100 and 500 Mb/s (OS) FALSE 100 and 500 Mb/s (OS) TRUE Various conditions were used to characterize the GTP transceivers for this test. Conditions relevant to this test are contained in Table 3-88. Table 3-88: RX CID Run Length Test Conditions Test Parameter Loopback Mode Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF, SF, FS GTP_DUAL Location Used All 12 Locations Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Boards Virtex-5 LXT FF1136 Test Fixture FR-4 Length 3.25 inches REFCLK and PLL Rates 168 Test Value Various (see Table 3-86) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CID Run Length IEEE-488 (GPIB) Clock Generator Power Supply PC PC4 FR4 PCB 12 Pair GTP FR4 PCB 12 Pair FPGA DUT Virtex-5 Characterization Load Board Agilent ParBERT RPT056_c3_60_042207 Figure 3-66: ATE Test Setup for RX CID Run Length Tests www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 169 R Chapter 3: PMA Receiver Characterization Results RX CID Run Length Test Results at 500 Mb/s, External AC Virtex-5 GTP RX Run Length, 500 Mb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 400 800 1200 1600 2000 RX Run Length (UI) Figure 3-67: Table 3-89: 2400 RPT056_c3_61_052407 RX CID Run Length at 500 Mb/s, C & I Grades RX CID Run Length Test at 500 Mb/s Parameter RX CID Run Length Min Max Average Std Dev Units 2000 - 2000 0 UI RX CID Run Length Test Results at 1.00 Gb/s, External AC Virtex-5 GTP RX Run Length, 1.00 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 800 Number of Data Points 700 600 500 400 300 200 100 0 0 400 800 1200 1600 RX Run Length (UI) Figure 3-68: Table 3-90: 2400 RPT056_c3_62_052407 RX CID Run Length at 1.00 Gb/s, C & I Grades RX CID Run Length Test at 1.00 Gb/s Parameter RX CID Run Length 170 2000 Min Max Average Std Dev Units 2000 - 2000 0 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CID Run Length RX CID Run Length Test Results at 2.0 Gb/s, 100 MHz REFCLK, External AC Virtex-5 GTP RX Run Length, 2.00 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2000 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 400 800 1200 1600 RX Run Length (UI) Figure 3-69: Table 3-91: 2000 2400 RPT056_c3_63_052407 RX CID Run Length at 2.00 Gb/s, 100 MHz REFCLK, C & I Grades RX CID Run Length Test at at 2.00 Gb/s, 100 MHz REFCLK, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 2000 - 2000 0 UI RX CID Run Length Test Results at 2.488 Gb/s, Internal AC Virtex-5 GTP RX Run Length, 2.488 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1600 Number of Data Points 1400 1200 1000 800 600 400 200 0 72 80 128 256 750 RX Run Length (UI) Figure 3-70: Table 3-92: 1200 2000 RPT056_c3_64_052407 RX CID Run Length Test at 2.488 Gb/s, C & I Grades RX CID Run Length Test at 2.488 Gb/s, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 750 2000 1544 459 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 171 R Chapter 3: PMA Receiver Characterization RX CID Run Length Test Results at 2.5 Gb/s, 62.5 MHz REFCLK, External AC Virtex-5 GTP RX Run Length, 2.50 Gb/s (/20), I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2000 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 400 800 1200 1600 RX Run Length (UI) Figure 3-71: Table 3-93: 2000 2400 RPT056_c3_65_052407 RX CID Run Length at 2.5 Gb/s, 62.5 MHz REFCLK, C & I Grades RX CID Run Length Test at 2.5 Gb/s, 62.5 MHz REFCLK, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 2000 - 2000 0 UI RX CID Run Length Test Results at 2.5 Gb/s, 100 MHz REFCLK, Internal AC Virtex-5 GTP RX Run Length, 2.50 Gb/s (100 MHz Ref), I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 72 80 128 256 750 RX Run Length (UI) 2000 RPT056_c3_66_052407 Figure 3-72: RX CID Run Length Test at 2.5 Gb/s, 100 MHz REFCLK, C & I Grades Table 3-94: RX CID Run Length Test at 2.5 Gb/s, 100 MHz REFCLK, C & I Grades Parameter RX CID Run Length 172 1200 Min Max Average Std Dev Units 128 2000 1328 524 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CID Run Length RX CID Run Length Test Results at 2.5 Gb/s, 125 MHz REFCLK, External AC Virtex-5 GTP RX Run Length, 2.50 Gb/s (/10), I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2000 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 400 800 1200 1600 RX Run Length (UI) Figure 3-73: Table 3-95: 2000 2400 RPT056_c3_67_052407 RX CID Run Length at 2.5 Gb/s, 125 MHz REFCLK, C & I Grades RX CID Run Length Test at 2.5 Gb/s, 125 MHz REFCLK, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 2000 - 2000 0 UI RX CID Run Length Test Results at 3.125 Gb/s, Internal AC Virtex-5 GTP RX Run Length, 3.125 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 72 80 128 256 750 RX Run Length (UI) Figure 3-74: Table 3-96: 1200 2000 RPT056_c3_68_052407 RX CID Run Length at 3.125 Gb/s, C & I Grades RX CID Run Length Test at 3.125 Gb/s, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 256 2000 1436 505 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 173 R Chapter 3: PMA Receiver Characterization RX CID Run Length Test Results at 3.2 Gb/s, External AC Virtex-5 GTP RX Run Length, 3.20 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2000 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 400 800 1200 1600 2000 RX Run Length (UI) Figure 3-75: Table 3-97: 2400 RPT056_c3_69_052407 RX CID Run Length at 3.2 Gb/s, C & I Grades RX CID Run Length Test at 3.2 Gb/s, C & I Grades Parameter RX CID Run Length Min Max Average Std Dev Units 2000 - 2000 0 UI RX CID Run Length Test Results at 3.75 Gb/s, External AC Virtex-5 GTP RX Run Length, 3.75 Gb/s, I-Grade (Units = TT, FF, SS, FS, SF, VCC = VNOM, VNOM ± 5% V, Temp = 0°C, –40°C, 100°C) 2000 1800 Number of Data Points 1600 1400 1200 1000 800 600 400 200 0 0 400 800 1200 1600 RX Run Length (UI) Figure 3-76: Table 3-98: 2400 RPT056_c3_85_041108 RX CID Run Length at 3.75 Gb/s, C & I Grades RX CID Run Length Test at 3.75 Gb/s, C & I Grades Parameter RX CID Run Length 174 2000 Min Max Average Std Dev Units 2000 2000 2000 0 UI www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX CID Run Length Conclusion Table 3-99 presents a summary of results for the RX CID Run Length test. Table 3-99: RX CID Run Length Test, Summary Parameter RX CID Run Length Rate Int/Ext AC Min Max Average Std Dev Units 500 Mb/s Ext 2000 - 2000 0 UI 1.0 Gb/s Ext 2000 - 2000 0 UI 2.0 Gb/s 100 MHz REFCLK Ext 2000 - 2000 0 UI 2.488 Gb/s Int 750 2000 1544 459 UI 2.5 Gb/s 62.5 MHz REFCLK Ext 2000 - 2000 0 UI 2.5 Gb/s 100 MHz REFCLK Int 128 2000 1328 524 UI 2.5 Gb/s 125 MHz REFCLK Ext 2000 - 2000 0 UI 3.125 Gb/s Int 256 2000 1436 505 UI 3.2 Gb/s Ext 2000 - 2000 0 UI 3.75 Gb/s Ext 2000 2000 2000 0 UI www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 175 R Chapter 3: PMA Receiver Characterization RX Jitter Transfer Based on Data to Recovered Clock Test Description This test measured the amount of jitter presented on the recovered clock based upon jitter present in the data. The results demonstrate the frequency response of the CDR to data input jitter. Test Setup The GTP reference clock input was characterized for its input jitter tolerance as a function of modulation frequency at three data rates: 1.00 Gb/s, 2.0 Gb/s, and 2.5 Gb/s. The Agilent N4901B Serial BERT was used to provide RX input data test patterns and check for errors after the input was looped through the device. For each test case, the jitter modulation frequency was swept from 1 KHz to 300 MHz, and the jitter amplitude to the passed points was plotted as a function of frequency. Reference clock input jitter tolerance measurements were performed using the test setup as shown in Figure 3-77. IEEE-488 (GPIB) Agilent 8648C Signal Generator CLK FR4 PCB 122 GTP_DUAL X0Y0 FPGA DUT Virtex-5 ML523 Characterization Platform SAMs A B C D FR4 PCB P/N Pair SAMs P/N Pair 120 GTP_DUAL X0Y5 LPT2 PC PC4 Splitter Rotary P/N Relay x2 Pair Agilent M4901B Serial BERT Agilent 6624A Power Supplies Rotary Relay x2 A B C D P/N Pair Agilent 34999B Switch Control System P/N Pair RPT056_c2_167_041807 Figure 3-77: 176 RX Jitter Transfer to Recovered Clock Test Bench Setup www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Jitter Transfer Based on Data to Recovered Clock A REFCLK was used to clock the GTP transceivers. The REFCLK was sourced from a 3.2 Gb/s data generator using a clock pattern. Table 3-100 shows the appropriate REFCLK frequency and PLL multiplier to create a proper PLL frequency for each of the tested data rates Table 3-100: RX Jitter Transfer to Recovered Clock Test PLL Settings Data Rate (Gb/s) PLL Freq (GHz) REFCLK Freq (MHz) PLL_DIVSEL_REF PLL_DIVSEL_FB and DIV Post Divider (1) Oversample 1.00 1.00 100 1 2 * 5 = 10 2 1 2.0 1.00 100 1 2 * 5 = 10 1 1 2.5 1.25 125 1 2 * 5 = 10 1 1 Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-101. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-101: RX Jitter Transfer to Recovered Clock Test Settings GTP_DUAL Port Settings Port Rate Affected Value All 1: 10-bit datapath INTDATAWIDTH GTP_DUAL Attribute Settings Attribute Rate Affected Value All FALSE All TRUE All TRUE All 6C08040 OVERSAMPLE_MODE RCV_TERM_GND_0 RCV_TERM_GND_1 RCV_TERM_MID_0 RCV_TERM_MID_1 PMA_CDR_SCAN_0 PMA_CDR_SCAN_1 Various conditions were used to characterize the GTP transceivers. Conditions relevant to this test are contained in Table 3-102. Table 3-102: RX Jitter Transfer to Recovered Clock Test Conditions Test Parameter Loopback Mode Test Value Fabric Loopback Pattern PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used X0Y1, X0Y5 Junction Temperature –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates Various (see Table 3-100) www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 177 R Chapter 3: PMA Receiver Characterization Results RX Jitter Transfer to Recovered Clock Test, Trends Virtex-5 GTP RX Jitter Transfer to Recovered Clock (Temp = –40°C, 0°C, 100°C, MGTAVTTRX = 1.2V ± 5%, Split: SS, TT, FF) 3 JPP(Out) / JPP(In) (dB) 0 -3 -6 1 Gb/s -9 2 Gb/s 2.5 Gb/s -12 -15 -18 0.01 0.1 1 10 Modulation Frequency (MHz) RPT056_c3_71_050508 Figure 3-78: RX Jitter Transfer to Recovered Clock, Trends RX Jitter Transfer to Recovered Clock Test, 1.00 Gb/s Virtex-5 GTP RX Jitter Transfer to Recovered Clock 1.0 Gb/s (Split = SS, TT, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 90 Number of Data Points 80 70 60 50 40 30 20 10 –3 dB Frequency (MHz) Figure 3-79: Table 3-103: 5 4.5 4.75 4 RPT056_c3_72_050508 RX Jitter Transfer to Recovered ClockK, 1.00 Gb/s RX Jitter Transfer to Recovered Clock, 1.00 Gb/s Parameter RX Transfer Jitter BW –3dB 178 4.25 3.5 3.75 3 3.25 2.5 2.75 2 2.25 1.75 1.5 1 1.25 0.5 0.75 0 0.25 0 Min Max Average Std Dev Units 0.644 1.750 0.909 0.179 MHz www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Jitter Transfer Based on Data to Recovered Clock RX Jitter Transfer to Recovered Clock Test, 2.0 Gb/s Virtex-5 GTP RX Jitter Transfer to Recovered Clock 2.0 Gb/s (Split = SS, TT, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) 60 Number of Data Points 50 40 30 20 10 –3 dB Frequency (MHz) Figure 3-80: Table 3-104: 5 4.5 4.75 4 4.25 3.5 3.75 3 3.25 2.5 2.75 2 2.25 1.5 1.75 1 1.25 0.5 0.75 0 0.25 0 RPT056_c3_73_050508 RX Jitter Transfer to Recovered Clock, 2.0 Gb/s, 100 MHz REFCLK RX Jitter Transfer to Recovered Clock, 2.0 Gb/s, 100 MHz REFCLK Parameter Min Max Average Std Dev Units RX Transfer Jitter BW –3dB 0.711 1.870 1.171 0.250 MHz RX Jitter Transfer to Recovered Clock Test, 2.5 Gb/s Virtex-5 LX50, RX Jitter Transfer to Recovered Clock 2.5 Gb/s (Split = SS, TT, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) Number of Data Points 25 20 15 10 5 –3 dB Frequency (MHz) Figure 3-81: Table 3-105: 5 4.5 4.75 4 4.25 3.5 3.75 3 3.25 2.5 2.75 2 2.25 1.75 1.5 1 1.25 0.5 0.75 0 0.25 0 RPT056_c3_74_050508 RX Jitter Transfer to Recovered Clock, 2.5 Gb/s, 125 MHz REFCLK RX Jitter Transfer to Recovered Clock, 2.5 Gb/s, 125 MHZ REFCLK Parameter RX Transfer Jitter BW –3dB Min Max Average Std Dev Units 1.444 3.868 2.345 0.577 MHz www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 179 R Chapter 3: PMA Receiver Characterization Conclusion Table 3-106 presents a summary of results for the RX jitter transfer test. Table 3-106: RX Jitter Transfer to Recovered Clock Test, Summary Parameter 180 Rate Min Max Average Std Dev Units RX Transfer Jitter BW –3dB 1.0 Gb/s 0.644 1.750 0.909 0.179 MHz RX Transfer Jitter BW –3dB 2.0 Gb/s @ 100 MHz 0.711 1.870 1.171 0.250 MHz RX Transfer Jitter BW –3dB 2.5 Gb/s @ 125 MHz 1.444 3.868 2.345 0.577 MHz www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Termination DC Resistance RX Termination DC Resistance Test Description This test measured the DC resistance of the RX pair. Test Setup RX termination resistance was measured across the RXP and RXN pair using a high precision DVM after setting RREF to 50Ω ±1%, while also setting TERMINATION_CTRL off (00000) and TERMINATION_OVERLOAD to FALSE. Measurements were taken across PVT as well as differing GTP transceiver locations. Figure 3-82, page 183 illustrates the equipment used for this test. Temperature forcing equipment was used to precisely control the temperature of the DUT. Figure 3-83, page 184 illustrates how Virtex-5 LXT devices terminate both RX and TX. Since this test was done at DC conditions, no REFCLKs were used. Table 3-107 reflects these DC conditions. Virtex-5 GTP transceivers support one common resistor calibration circuit block for trimming the input termination resistor to match line impedance to minimize reflections. Figure 3-83, page 184 shows the general block diagram for the resistor calibration macro. It requires an external resistor that sets up a reference current for comparison. Current through the external resistor was compared against the current through the internal variable resistor R0, which was then adjusted accordingly by the finite state machine (FSM). An external precision resistor was specified at 50Ω with 1% tolerance. Measured resistance was 49.9Ω to 50.1Ω, less than 1%. Table 3-107: RX Transfer Jitter Test PLL Settings Data Rate PLL Freq (Gb/s) (GHz) N/A N/A REFCLK Freq (MHz) PLL_DIVSEL_REF N/A N/A PLL_DIVSEL_FB Post Divider (1) and DIV N/A Oversample N/A N/A Notes: 1. The appropriate settings for PLL_TXDIVSEL_OUT_n, PLL_TXDIVSEL_COMM_OUT, and PLL_RXDIVSEL_OUT_n. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 181 R Chapter 3: PMA Receiver Characterization Additionally, a PC running ISE software was used to configure the FPGA and set the parameters of the GTP transceivers. Each GTP transceiver was set up with the settings in Table 3-108. Only those settings that differ from Appendix A, “General GTP_DUAL Test Settings” or were otherwise important for this specific test are listed. Table 3-108: RX Transfer Jitter Test Settings GTP_DUAL Port Settings Port Rate Affected Value N/A N/A N/A GTP_DUAL Attribute Settings Attribute Rate Affected Value N/A FALSE TERMINATION_CTRL[4:0] N/A 00000 TERMINATION_OVRD N/A FALSE AC_CAP_DIS_0 AC_CAP_DIS_1 Various conditions were used to characterize the GTP transceivers. Conditions relevant to this test are contained in Table 3-109. Table 3-109: RX Termination Resistance Test Conditions Test Parameter Loopback Mode N/A Pattern PRBS31 Silicon Corner Used SS, TT, FF GTP_DUAL Location Used Junction Temperature All 12 Locations –40°C, 0°C, 100°C Power Supplies ±5% Test Board ML523 FR-4 Length 4.25 inches REFCLK and PLL Rates 182 Test Value Various (see Table 3-107) www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Termination DC Resistance 8060A DVM RXP MGTAVTTRX RXN RPT056_c3_75a_052807 Figure 3-82: RX Termination Resistance Test Setup www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 183 R Chapter 3: PMA Receiver Characterization RX/TX Termination Override/Offset Code Other GTP_DUAL Tiles North of the Center BRcal MGTRREF Package Pin RREF External 50Ω Precision Resistor Comparator MGTAVTTTX rCtrl[0:4] Internal Resistor Network “Master” GTP_DUAL Tile for Resistor Calibration Override/Offset Code RX/TX Termination Other GTP_DUAL Tiles South of the Center RPT056_c3_76_042207 Figure 3-83: 184 RX Termination Resistor Calibration Macro www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R RX Termination DC Resistance Results The device automatically calibrated its termination value each time the part was configured; consequently, for each measurement, the device was reprogrammed ten times and the Min and Max value of these ten trials was recorded. Table 3-110 summarizes the results from these tests. Virtex-5 GTP RX Impedance, Differential, I-Grade (VNOM, VNOM ± 5% , All Splits, Temp = 0°C, 25°C, 100°C) 40 Number of Data Points 35 30 25 20 15 10 5 RX Termination DC Resistance Figure 3-84: Table 3-110: 123 125 121 119 117 115 113 111 109 107 105 103 99 101 97 95 93 91 89 87 0 RPT056_c3_77_052407 RX Termination DC Resistance Historgram RX Termination DC Resistance Measurement Parameter RX Termination DC Resistance Min Max Average Std Dev Units 102.10 116.40 108.20 2.85 Ω Conclusion Table 3-110 summarizes the results for RX termination resistor measurement across the conditions listed in Table 3-107 through Table 3-109. www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 185 R Chapter 3: PMA Receiver Characterization 186 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Chapter 4 GTP_DUAL Transceiver Power Consumption GTP_DUAL Transceiver PMA Power Consumption (ATE Measurement) GTP_DUAL transceiver PMA power consumption is measured by recording the source current values from the respective PMA power supplies when all 12 GTP transceivers in the LX50T device are active. Measurement is repeated for all devices tested across process, voltage and temperature combinations. Test conditions, devices, and setup for this test are the same as described in the PMA ATE RX/TX tests in the previous sections. Table 4-1 provides the average and standard deviation power consumption values of all cases tested, at the data rates specified in the table. The PMA power consumption numbers are listed in the last two columns in mW, first for the GTP transceiver pairs (GTP_DUAL), where both channels share the PLL, and the last column shows the single GTP transceiver PMA plus the PLL power. Table 4-1: Average and Deviation Power Consumption Description Test Case GTP Transceiver Power, mW Method The GTP transceiver is operated at the specified data rate, and current is measured for each of the PMA analog power supplies when all 12 GTP transceivers are active. Then PAVCCPLL is divided by 6 and the rest of the supplies are divided by 12. Power per GTP transceiver is calculated as: PAVCCPLL + (PAVCC + PAVTTTX + PAVTTRX)/2 Configuration/ Standard Data rates = 1.250/2.488/2.500/3.125 Gb/s Pattern PRBS31, Input Amplitude = 250mV S/E Conditions VCC = NOM, ±5%, Temp = –40°C to 100 C (I-Grade) Results (2.500 Gb/s) AVERAGE = 98mW, Std Dev = 10.4 mW, AVERAGE + 3.5δ = 134 mW www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 187 R Chapter 4: GTP_DUAL Transceiver Power Consumption Table 4-2: Results Power by Supply Rail (1) Data Rate 1.25 Gb/s, 125 MHz REFCLK 2.488 Gb/s, 155.52 MHz REFCLK 2.5 Gb/s, 100 MHz REFCLK 2.5 Gb/s, 250 MHz REFCLK 3.125 Gb/s, 156.25 MHz REFCLK 3.75 Gb/s, 187.50 MHz REFCLK Total Power PMGTAVTTTX PMGTAVCCPLL PMGTAVTTRXC PMGTAVTTRX PMGTAVCC PGTP_DUAL PGTP_SINGLE Units AVG 416.6 207.8 0.1 0.3 295.4 153.4 94.0 mW STDEV 53.7 36.4 0.1 0.1 71.2 17.9 9.8 mW mW MIN 244.4 90.7 0.0 0.1 205.7 112.3 69.0 MAX 504.1 334.8 0.5 0.6 554.0 210.0 121.9 mW AVG 424.8 204.5 0.1 0.3 339.7 161.6 97.8 mW STDEV 55.6 21.9 0.1 0.1 74.2 19.3 10.3 mW MIN 248.0 90.7 0.0 0.1 207.3 116.5 69.8 mW MAX 521.7 246.6 0.5 0.6 606.1 220.7 127.6 mW AVG 428.1 202.4 0.1 0.3 337.9 161.5 97.6 mW STDEV 55.0 31.8 0.1 0.1 75.6 19.0 10.4 mW MIN 244.1 90.4 0.0 0.1 204.0 114.4 68.8 mW MAX 514.2 342.9 0.4 0.6 602.3 217.1 125.3 mW AVG 426.5 213.6 0.1 0.3 341.8 163.7 99.7 mW STDEV 57.8 28.4 0.1 0.1 76.4 19.1 10.0 mW MIN 240.4 176.6 0.0 0.2 249.1 115.5 74.6 mW MAX 529.7 318.6 0.5 0.6 605.3 221.5 128.4 mW AVG 430.2 245.6 0.1 0.3 365.3 173.6 107.2 mW STDEV 57.5 28.6 0.1 0.1 76.3 20.1 10.9 mW MIN 243.9 90.7 0.0 0.1 206.4 124.3 69.7 mW MAX 530.9 298.4 0.4 0.6 632.4 231.5 136.1 mW AVG 447.0 318.5 2.3 0.3 413.5 197.2 125.0 mW STDEV 43.3 25.3 0.3 0.1 55.1 17.6 10.1 mW MIN 365.2 253.8 1.8 0.1 317.1 166.7 106.7 mW MAX 546.5 364.3 3.1 0.5 537.2 231.3 145.2 mW Notes: 1. Cumulative power of six GTP_DUAL sites operating at the indicated rate. Virtex-5 GTP Single Transceiver Power, I-Grade (Units = TT, FS, SF, SS, FF, VCC = VNOM, VNOM ± 5% V, Temp = –40°C, 0°C, 100°C) (Datarate/refclk = 2.5/250Mhz, 2.5/100Mhz, 3.125G/156Mhz, 2488G/155Mhz, 1.25G/125Mhz) 35 Number of Datapoints 30 25 1.25G 2.488G 2.5G_100 2.5G_250 3.125G 20 15 10 5 0 0 20 40 60 80 100 120 140 Power (mW) Figure 4-1: 188 160 180 200 220 240 RPT056_c4_01_052407 GTP Single Transceiver Power Consumption at Differing Rates www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Appendix A General GTP_DUAL Test Settings Table A-1 and Table A-2 indicate relevant parameters that affect the results of the characterization tests. Unless otherwise specified, the values listed in these tables apply to every test. Table A-1 shows the how the ports are setup, while Table A-2 shows the attributes for the GTP_DUAL model. Table A-1: Relevant GTP_DUAL Port Settings Port Dir Description Set Value CLKIN In Reference clock input to the shared PMA PLL. REFCLK CRCCLK In CRC clock. Default Sets the internal datapath width for the GTP_DUAL tile. INTDATAWIDTH RXENEQB0 RXENEQB1 RXEQMIX0[1:0] RXEQMIX1[1:0] RXEQPOLE0[3:0] RXEQPOLE1[3:0] In Enables receiver equalization (active Low). 1 In Sets the wideband/high-pass mix ratio for the RX equalizer. 00 In Sets high-pass filter pole location for the RX equalizer. 0000 In Controls the strength of the TX pre-drivers. Tie this port to the same value as TXDIFFCTRL. 100 In Controls the operation of the TX 8B/10B encoder on a per-byte basis. In Controls the transmitter differential output swing. 000 In Controls the relative strength of the main drive and the pre-emphasis. 000 TXBYPASS8B10B0[1:0] TXBYPASS8B10B1[1:0] TXDIFFCTRL0[2:0] TXDIFFCTRL1[2:0] TXPREEMPHASIS0[2:0] TXPREEMPHASIS1[2:0] www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 Varies. See test setup tables. In TXBUFDIFFCTRL0[2:0] TXBUFDIFFCTRL1[2:0] 0: 8-bit internal datapath width 1: 10-bit internal datapath width www.xilinx.com 11 189 R Appendix A: General GTP_DUAL Test Settings Table A-2: Relevant GTP_DUAL Attribute Settings Attribute Description CHAN_BOND_1_MAX_SKEW_0 CHAN_BOND_1_MAX_SKEW_1 CHAN_BOND_2_MAX_SKEW_0 CHAN_BOND_2_MAX_SKEW_1 AC_CAP_DIS_0 AC_CAP_DIS_1 Sets the maximum amount of lane skew allowed when using channel bonding. Must be set less than 1/2 the minimum distance between channel bonding sequences. Default Disables built-in AC coupling capacitors on receiver inputs when set to TRUE. TRUE CLK25_DIVIDER Sets the divider used to divide CLKIN REFCLK / 5 down to an internal rate close to 25 MHz. CLKINDC_B Must be set to TRUE. Oscillators driving the dedicated reference clock inputs must be AC coupled. OOB_CLK_DIVIDER Sets the squelch clock rate based on CLKIN. OOBDETECT_THRESHOLD_0 OOBDETECT_THRESHOLD_1 Sets the minimum differential voltage between RXN and RXP before a signal is considered a PCI electrical idle or a SATA OOB signal. TRUE 4 000 OVERSAMPLE_MODE Enables 5X oversampling. PLL_DIVSEL_FB Controls the feedback divider of the shared PMA PLL. Varies. See test setup tables. PLL_DIVSEL_REF Controls the reference clock divider of the shared PMA PLL. Varies. See test setup tables. PLL_RXDIVSEL_OUT_0 Defines the nominal line rate for the receiver based on the shared PMA PLL rate PLL_RXDIVSEL_OUT_1 PLL_SATA_0 PLL_SATA_1 PLL_TXDIVSEL_COMM_OUT PLL_TXDIVSEL_OUT_0 PLL_TXDIVSEL_OUT_1 190 Set Value FALSE Varies. See test setup tables. Varies. See test setup tables. Tie to FALSE. When FALSE, allows TX SATA operations to work at the SATA1 or SATA2 rate. FALSE Sets a common line rate divider for both GTP transceivers in a tile. Can be used instead of PLL_TXDIVSEL_OUT if both transceivers are using the same TX divider value. 1 Sets the divider for the TX line rate for each GTP transceiver. www.BDTIC.com/XILINX www.xilinx.com Varies. See test setup tables. Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 R Table A-2: Relevant GTP_DUAL Attribute Settings (Continued) Attribute Description PMA_CDR_SCAN_0 Set Value Allows direct control of the CDR sampling point 6C08040 Adjusts CDR operation for oversampling and PLL_RXDIVSEL_OUT settings. This value enables the second-order loop filter. 0DCE089 Sets the RX termination voltage to GND. Used with internal and external AC coupling to support PCI Express TXDETECTRX functionality. FALSE Activates the internal RX termination voltage. Set to TRUE when RX built-in AC coupling is used. FALSE Sets RX termination voltage to VTTRX. FALSE TERMINATION_CTRL[4:0] Controls internal termination calibration circuit. 10100 TERMINATION_OVRD Selects whether the external 50Ω precision resistor, connected to the GTPRREF pin, or an override value is used, as defined by TERMINATION_CTRL. FALSE Changes the strength of the TX driver and pre-emphasis buffers. When set to TRUE, the pre-emphasis percentage is boosted or increased. Please see UG196, Virtex-5 RocketIO GTP Transceiver User Guide, for nominal differential swing and preemphasis values. Overall differential swing is reduced when TX_DIFF_BOOST is TRUE. FALSE PMA_CDR_SCAN_1 PMA_RX_CFG_0 PMA_RX_CFG_1 RCV_TERM_GND_0 RCV_TERM_GND_1 RCV_TERM_MID_0 RCV_TERM_MID_1 RCV_TERM_VTTRX_0 RCV_TERM_VTTRX_1 TX_DIFF_BOOST_0 TX_DIFF_BOOST_1 www.BDTIC.com/XILINX Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008 www.xilinx.com 191 R Appendix A: General GTP_DUAL Test Settings 192 www.BDTIC.com/XILINX www.xilinx.com Virtex-5 GTP Characterization Report RPT056 (v1.1) May 20, 2008