...

Async/Page/Burst CellularRAM™ Memory MT45W1MW16BDGB Features

by user

on
Category: Documents
20

views

Report

Comments

Transcript

Async/Page/Burst CellularRAM™ Memory MT45W1MW16BDGB Features
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Features
Async/Page/Burst CellularRAM™ Memory
MT45W1MW16BDGB
Features
Figure 1:
• Single device supports asynchronous, page, and
burst operations
• Random access time: 70ns
• VCC, VCCQ voltages:
– 1.7–1.95V VCC
– 1.7–3.6V1 VCCQ
• Page mode read access
– Sixteen-word page size
– Interpage read access: 70ns
– Intrapage read access: 20ns
• Burst mode write access: continuous burst
• Burst mode read access:
– 4, 8, or 16 words, or continuous burst
– MAX clock rate: 104 MHz (tCLK = 9.62ns)
– Burst initial latency: 39ns (4 clocks) @ 104 MHz
– tACLK: 7ns @ 104 MHz
• Low power consumption
– Asynchronous read: <20mA
– Intrapage read: <15mA
– Intrapage read initial access, burst read:
– (39ns [4 clocks] @ 104 MHz) < 35mA
– Continuous burst read: <28mA
– Standby: 70µA
– Deep power-down: <10µA (TYP @ 25°C)
• Low-power features
– Temperature-compensated refresh (TCR)
– On-chip temperature sensor
– Partial-array refresh (PAR)
– Deep power-down (DPD) mode
Options
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_1.fm - Rev. H 4/08 EN
1
2
3
4
5
6
A
LB#
OE#
A0
A1
A2
CRE
B
DQ8
UB#
A3
A4
CE#
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSSQ
DQ11
A17
A7
DQ3
VCC
E
VCCQ
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
A19
A12
A13
WE#
DQ7
H
A18
A8
A9
A10
A11
NC
J
WAIT
CLK
ADV#
NC
NC
NC
Top View
(Ball Down)
Options (continued)
Designator
• Standby power
– Standard
• Operating temperature range
– Wireless (–30°C to +85°C)
– Industrial (–40°C to +85°C)
Designator
• Configuration
– 1 Meg x 16
• Package
– 54-ball VFBGA (“green”)
• Access time
– 70ns access
• Frequency
– 80 MHz
– 104 MHz
54-Ball VFBGA
MT45W1MW16BD
GB
None
WT1
IT2
Notes: 1. 3.6V I/O and –30°C exceed the CellularRAM
Workgroup 1.0 specifications.
2. Contact factory.
-70
8
1
Part Number Example:
MT45W1MW16BDGB-701WT
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Table of Contents
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Part Numbering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Valid Part Number Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Device Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Page Mode READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Burst Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Mixed-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
WAIT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
LB#/UB# Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Temperature-Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Partial-Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Deep Power-Down Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Access Using CRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Software Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Bus Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Burst Length (BCR[2:0]) Default = Continuous Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Burst Wrap (BCR[3]) Default = Burst No Wrap (Within Burst Length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Output Impedance (BCR[5]) Default = Outputs Use Full Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
WAIT Configuration (BCR[8]) Default = WAIT Transitions One Clock Before Data Valid/Invalid . . . . . . . . .25
WAIT Polarity (BCR[10]) Default = WAIT Active HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Latency Counter (BCR[13:11]) Default = Three-Clock Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Operating Mode (BCR[15]) Default = Asynchronous Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Partial-Array Refresh (RCR[2:0]) Default = Full Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Deep Power-Down (RCR[4]) Default = DPD Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Temperature-Compensated Refresh (RCR[6:5]) Default = On-Chip Temperature Sensor. . . . . . . . . . . . . . . .28
Page Mode Operation (RCR[7]) Default = Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Maximum and Typical Standby Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23zTOC.fm - Rev. H 4/08 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
List of Figures
List of Figures
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
54-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Functional Block Diagram – 1 Meg x 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Part Number Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Power-Up Initialization Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
READ Operation (ADV = LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
WRITE Operation (ADV = LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Page Mode READ Operation (ADV = LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Burst Mode READ (4-word Burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Burst Mode WRITE (4-word Burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Wired-OR WAIT Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Refresh Collision During READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Refresh Collision During WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Configuration Register WRITE in Asynchronous Mode Followed by READ ARRAY Operation . . . .19
Configuration Register WRITE in Synchronous Mode Followed by READ ARRAY Operation . . . . .20
Load Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Read Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Bus Configuration Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
WAIT Configuration (BCR[8] = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
WAIT Configuration (BCR[8] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
WAIT Configuration During Burst Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Latency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Refresh Configuration Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Typical Refresh Current vs. Temperature (ITCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
AC Input/Output Reference Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Output Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Initialization Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Asynchronous READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Asynchronous READ Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Page Mode READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Single-Access Burst READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4-Word Burst READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
READ Burst Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Continuous Burst READ Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition . .43
CE#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
LB#/UB#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
WE#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Asynchronous WRITE Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Burst WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Continuous Burst WRITE Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition .49
Burst WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Asynchronous WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Asynchronous WRITE Followed by Burst READ – ADV# LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Burst READ Followed by Asynchronous WRITE (WE#-Controlled) . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Burst READ Followed by Asynchronous WRITE Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Asynchronous WRITE Followed by Asynchronous READ – ADV# LOW . . . . . . . . . . . . . . . . . . . . . . . .55
Asynchronous WRITE Followed by Asynchronous READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
54-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23zLOF.fm - Rev. H 4/08 EN
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
List of Tables
List of Tables
Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
VFBGA Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Bus Operations – Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Bus Operations – Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Sequence and Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Latency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
16Mb Address Patterns for PAR (RCR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Maximum Standby Currents for Applying PAR and TCR Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Deep Power-Down Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Asynchronous READ Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Burst READ Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Asynchronous WRITE Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Burst WRITE Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Initialization Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23zLOT.fm - Rev. H 4/08 EN
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
General Description
General Description
Micron® CellularRAM™ is a high-speed, CMOS PSRAM memory device developed for
low-power, portable applications. The MT45W1MW16BDGB is a 16Mb DRAM core
device organized as 1 Meg x 16 bits. This device includes an industry-standard
burst mode Flash interface that dramatically increases read/write bandwidth compared
with other low-power SRAM or Pseudo SRAM offerings.
For seamless operation on a burst Flash bus, CellularRAM products incorporate a transparent self-refresh mechanism. The hidden refresh requires no additional support from
the system memory controller and has no significant impact on device read/write
performance.
Two user-accessible control registers define device operation. The bus configuration
register (BCR) defines how the CellularRAM device interacts with the system memory
bus and is nearly identical to its counterpart on burst mode Flash devices. The refresh
configuration register (RCR) is used to control how refresh is performed on the DRAM
array. These registers are automatically loaded with default settings during power-up
and can be updated anytime during normal operation.
Special attention has been focused on standby current consumption during self refresh.
CellularRAM products include three system-accessible mechanisms to minimize
standby current. Partial-array refresh (PAR) limits refresh to only that part of the DRAM
array that contains essential data. Temperature-compensated refresh (TCR) uses an onchip sensor to adjust the refresh rate to match the device temperature. The refresh rate
decreases at lower temperatures to minimize current consumption during standby. TCR
can also be set by the system for maximum device temperatures of +85°C, +45°C, and
+15°C. Deep power-down (DPD) halts the REFRESH operation altogether and is used
when no vital information is stored in the device. These three refresh mechanisms are
accessed through the RCR.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Functional Block Diagrams
Functional Block Diagrams
Figure 2:
Functional Block Diagram – 1 Meg x 16
A[19:0]
Address Decode
Logic
1,024K x 16
DRAM
MEMORY
ARRAY
Input/
Output
MUX
and
Buffers
DQ[7:0]
DQ[15:8]
Refresh Configuration
Register (RCR)
Bus Configuration
Register (BCR)
CE#
WE#
OE#
CLK
ADV#
CRE
WAIT
LB#
UB#
Control
Logic
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Functional block diagrams illustrate simplified device operation. See truth table, ball
descriptions, and timing diagrams for detailed information.
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Ball Descriptions
Ball Descriptions
Table 1:
VFBGA Ball Descriptions
VFBGA
Assignment
Symbol
Type
Description
G2, H1, D3, E4,
F4, F3, G4, G3,
H5, H4, H3, H2,
D4, C4, C3, B4,
B3, A5, A4, A3
J2
A[19:0]
Input
Address inputs: Inputs for addresses during READ and WRITE operations.
Addresses are internally latched during READ and WRITE cycles. The address lines
are also used to define the value to be loaded into the bus configuration register
or the refresh configuration register.
CLK
Input
J3
ADV#
Input
A6
CRE
Input
B5
CE#
Input
A2
OE#
Input
G5
WE#
Input
A1
B2
G1, F1, F2, E2,
D2, C2, C1, B1,
G6, F6, F5, E5,
D5, C6, C5, B6
J1
LB#
UB#
DQ[15:0]
Input
Input
Input/
Output
Clock: Synchronizes the memory to the system operating frequency during
synchronous operations. When configured for synchronous operation, the address
is latched on the first rising CLK edge when ADV# is active. CLK is static LOW or
HIGH during asynchronous access READ and WRITE operations and during PAGE
READ ACCESS operations.
Address valid: Indicates that a valid address is present on the address inputs.
Addresses can be latched on the rising edge of ADV# during asynchronous READ
and WRITE operations. ADV# can be held LOW during asynchronous READ and
WRITE operations.
Configuration register enable: When CRE is HIGH, WRITE operations load the
refresh configuration register or bus configuration register.
Chip enable: Activates the device when LOW. When CE# is HIGH, the device is
disabled and goes into standby or deep power-down mode.
Output enable: Enables the output buffers when LOW. When OE# is HIGH, the
output buffers are disabled.
Write enable: Determines if a given cycle is a WRITE cycle. If WE# is LOW, the cycle
is a WRITE to either a configuration register or to the memory array.
Lower byte enable: DQ[7:0].
Upper byte enable: DQ[15:8].
Data inputs/outputs.
WAIT
Output
E3, H6, J4, J5, J6
D6
E1
E6
D1
NC
VCC
VCCQ
VSS
VSSQ
–
Supply
Supply
Supply
Supply
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Wait: Provides data-valid feedback during burst READ and WRITE operations. The
signal is gated by CE#. WAIT is used to arbitrate collisions between REFRESH and
READ/WRITE operations. WAIT is asserted when a burst crosses a row boundary.
WAIT is also used to mask the delay associated with opening a new internal page.
WAIT is asserted and should be ignored during asynchronous and page mode
operations. WAIT is High-Z when CE# is HIGH.
Not internally connected.
Device power supply (1.7–1.95V): Power supply for device core operation.
I/O power supply (1.7–3.6V): Power supply for input/output buffers.
VSS must be connected to ground.
VSSQ must be connected to ground.
The CLK and ADV# inputs can be tied to VSS if the device is always operating in asynchronous or page mode. WAIT will be asserted but should be ignored during asynchronous and
page mode operations.
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operations
Bus Operations
Table 2:
Bus Operations – Asynchronous Mode
Mode
Power
CLK1
ADV#
CE#
OE#
WE#
CRE
LB#/
UB#
WAIT2
DQ[15:0]3
Notes
Read
Write
Standby
No operation
Configuration
Register
DPD
Active
Active
Standby
Idle
Active
L
L
L
L
L
L
L
X
X
L
L
L
H
L
L
L
X
X
X
H
H
L
X
X
L
L
L
L
L
H
L
L
X
X
X
Low-Z
Low-Z
High-Z
Low-Z
Low-Z
Data-Out
Data-In
High-Z
X
High-Z
4
4
5, 6
4, 6
Deep
power-down
L
X
H
X
X
X
X
High-Z
High-Z
7
Table 3:
Bus Operations – Burst Mode
Mode
Power
CLK1
ADV#
CE#
OE#
WE#
CRE
LB#/
UB#
WAIT2
DQ[15:0]3
Notes
Async read
Async write
Standby
No operation
Initial burst
read
Active
Active
Standby
Idle
Active
L
L
L
L
L
L
X
X
L
L
L
H
L
L
L
X
X
X
X
H
L
X
X
H
L
L
L
L
L
L
L
X
X
L
Low-Z
Low-Z
High-Z
Low-Z
Low-Z
Data-Out
Data-In
High-Z
X
X
4
4
5, 6
4, 6
4, 8
Initial burst
write
Active
L
L
H
L
L
X
Low-Z
X
4, 8
Burst
continue
Active
H
L
X
X
X
L
Low-Z
Data-In or
Data-Out
4, 8
Burst suspend
Configuration
register
Active
Active
X
X
L
L
L
H
H
X
L
L
H
X
X
Low-Z
Low-Z
High-Z
High-Z
4, 8
8
Deep
power-down
L
X
H
X
X
X
X
High-Z
High-Z
7
DPD
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
1. CLK must be LOW during async read and async write modes, and to achieve standby power
during standby and DPD modes. CLK must be static (HIGH or LOW) during burst suspend.
2. The WAIT polarity is configured through the bus configuration register (BCR[10]).
3. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When only LB# is in
select mode, DQ[7:0] are affected. When only UB# is in the select mode, DQ[15:8] are
affected.
4. The device will consume active power in this mode whenever addresses are changed.
5. When the device is in standby mode, address inputs and data inputs/outputs are internally
isolated from any external influence.
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve standby current.
7. DPD is maintained until RCR is reconfigured.
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Part Numbering Information
Part Numbering Information
Micron CellularRAM devices are available in several different configurations and densities (see Figure 3).
Figure 3:
Part Number Chart
MT 45
W 1M W
16
BD GB -70
8
WT ES
Production Status
Micron Technology
Blank = Production
Product Family
ES = Engineering Sample
45 = PSRAM/CellularRAM Memory
MS = Mechanical Sample
Operating Core Voltage
Operating Temperature
W = 1.7–1.95V
WT = –30°C to +85°C (see Note 1)
IT = –40°C to +85°C (contact factory)
Address Locations
Standby Power Options
M = Megabits
Blank = Standard
Operating Voltage
Frequency
W = 1.7–3.6V (see Note 1)
8 = 80 MHz
Bus Configuration
1 = 104 MHz
16 = x16
Access/Cycle Time
READ/WRITE Operation Mode
70 = 70ns
BD = Asynchronous/Page/Burst
Package Codes
GB = VFBGA “green” (6 x 9 grid, 0.75mm pitch, 6.0mm x 8.0mm x 1.0mm) 54-ball
Notes:
1. 3.6V I/O and –30°C exceed the CellularRAM Workgroup 1.0 specifications.
Valid Part Number Combinations
After building the part number from the part numbering chart above, visit to the Micron
Part Marking Decoder Web site at www.micron.com/partsearch to verify that the part
number is offered and valid. If the device required is not on this list, contact the factory.
Device Marking
Due to the size of the package, the Micron standard part number is not printed on the
top of the device. Instead, an abbreviated device mark comprised of a five-digit alphanumeric code is used. The abbreviated device marks are cross-referenced to the Micron
part numbers at www.micron.com/partsearch. To view the location of the abbreviated
mark on the device, refer to customer service note, CSN-11, “Product Mark/Label” at
www.micron.com/csn.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
9
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Functional Description
Functional Description
In general, the MT45W1MW16BDGB devices are high-density alternatives to SRAM and
Pseudo SRAM products, popular in low-power, portable applications.
The MT45W1MW16BDGB contains a 16,777,216-bit DRAM core organized as 1,048,576
addresses by 16 bits. This device implements the same high-speed bus interface found
on burst mode Flash products.
The CellularRAM bus interface supports both asynchronous and burst mode transfers.
Page mode accesses are also included as a bandwidth-enhancing extension to the asynchronous read protocol.
Power-Up Initialization
CellularRAM products include an on-chip voltage sensor used to launch the power-up
initialization process. Initialization will configure the BCR and the RCR with their default
settings (see Figure 17 on page 23 and Figure 22 on page 27). VCC and VCCQ must be
applied simultaneously. When they reach a stable level at or above 1.7V, the device will
require 150µs to complete its self-initialization process. During the initialization period,
CE# should remain HIGH. When initialization is complete, the device is ready for
normal operation.
Figure 4:
Power-Up Initialization Timing
Vcc = 1.7V
Vcc
VccQ
tPU > 150µs
Device ready for
Device Initialization normal operation
Bus Operating Modes
The MT45W1MW16BDGB CellularRAM products incorporate a burst mode interface
found on Flash products targeting low-power, wireless applications. This bus interface
supports asynchronous, page mode, and burst mode read and write transfers. The
specific interface supported is defined by the value loaded into the bus configuration
register. Page mode is controlled by the refresh configuration register (RCR[7]).
Asynchronous Mode
CellularRAM products power up in the asynchronous operating mode. This mode uses
the industry-standard SRAM control bus (CE#, OE#, WE#, LB#/UB#). READ operations
(Figure 5) are initiated by bringing CE#, OE#, and LB#/UB# LOW while keeping WE#
HIGH. Valid data will be driven out of the I/Os after the specified access time has
elapsed. WRITE operations (Figure 6 on page 11) occur when CE#, WE#, and LB#/UB#
are driven LOW. During asynchronous WRITE operations, the OE# level is a “Don't
Care,” and WE# will override OE#. The data to be written is latched on the rising edge of
CE#, WE#, or LB#/UB# (whichever occurs first). Asynchronous operations (page mode
disabled) can either use the ADV input to latch the address, or ADV can be driven LOW
during the entire READ/WRITE operation.
During asynchronous operation, the CLK input must be held static LOW or HIGH. WAIT
will be driven while the device is enabled and its state should be ignored. WE# LOW time
must be limited to tCEM.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
Figure 5:
READ Operation (ADV = LOW)
CE#
OE#
WE#
ADDRESS
ADDRESS VALID
DATA
DATA VALID
LB#/UB#
tRC = READ Cycle Time
Note:
Figure 6:
ADV must remain LOW for page mode operation.
WRITE Operation (ADV = LOW)
CE#
OE#
<tCEM
WE#
ADDRESS
ADDRESS VALID
DATA
DATA VALID
LB#/UB#
tWC = WRITE Cycle Time
DON’T CARE
Page Mode READ Operation
Page mode is a performance-enhancing extension to the legacy asynchronous READ
operation. In page-mode-capable products, an initial asynchronous read access is
performed, then adjacent addresses can be read quickly by simply changing the loworder address. Addresses A[3:0] are used to determine the members of the 16-address
CellularRAM page. Any change in addresses A[4] or higher will initiate a new tAA access
time. Figure 7 shows the timing for a page mode access. Page mode takes advantage of
the fact that adjacent addresses can be read in a shorter period of time than random
addresses. WRITE operations do not include comparable page mode functionality.
During asynchronous page mode operation, the CLK input must be held static LOW or
HIGH. CE# must be driven HIGH upon completion of a page mode access. WAIT will be
driven while the device is enabled and its state should be ignored. Page mode is enabled
by setting RCR[7] to HIGH. ADV must be driven LOW during all page mode read
accesses.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
The CE# LOW time is limited by refresh considerations. CE# must not stay LOW longer
than tCEM.
Figure 7:
Page Mode READ Operation (ADV = LOW)
<tCEM
CE#
OE#
WE#
ADDRESS
ADDRESS[0]
tAA
ADDRESS ADDRESS ADDRESS
[1]
[2]
[3]
tAPA
DATA
D[0]
tAPA
D[1]
tAPA
D[2]
D[3]
LB#/UB#
DON’T CARE
Burst Mode Operation
Burst mode operations enable high-speed synchronous READ and WRITE operations.
Burst operations consist of a multi-clock sequence that must be performed in an
ordered fashion. After CE# goes LOW, the address to access is latched on the next rising
edge of CLK that ADV# is LOW. During this first clock rising edge, WE# indicates whether
the operation is going to be a READ (WE# = HIGH, Figure 8 on page 13) or WRITE (WE#
= LOW, Figure 9 on page 14).
The size of a burst can be specified in the BCR as either fixed-length or continuous.
Fixed-length bursts consist of four, eight, or sixteen words. Continuous bursts have the
ability to start at a specified address and burst through the entire memory. The latency
count stored in the BCR defines the number of clock cycles that elapse before the initial
data value is transferred between the processor and CellularRAM device.
The WAIT output will be asserted as soon as CE# goes LOW and will be de-asserted to
indicate when data is to be transferred into (or out of ) the memory. WAIT will again be
asserted if the burst crosses the boundary between 128-word rows. Once the CellularRAM device has restored the previous row’s data and accessed the next row, WAIT will
be de-asserted and the burst can continue (see Figure 33 on page 43).
The processor can access other devices without incurring the timing penalty of the
initial latency for a new burst by suspending burst mode. Bursts are suspended by stopping CLK. CLK can be stopped HIGH or LOW. If another device will use the data bus
while the burst is suspended, OE# should be taken HIGH to disable the CellularRAM
outputs; otherwise, OE# can remain LOW. Note that the WAIT output will continue to be
active, and as a result no other devices should directly share the WAIT connection to the
controller. To continue the burst sequence, OE# is taken LOW, then CLK is restarted after
valid data is available on the bus.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
The CE# LOW time is limited by refresh considerations. CE# must not stay LOW longer
than tCEM unless row boundaries are crossed at least every tCEM. If a burst suspension
will cause CE# to remain LOW for longer than tCEM, CE# should be taken HIGH and the
burst restarted with a new CE# LOW/ADV# LOW cycle.
Figure 8:
Burst Mode READ (4-word Burst)
CLK
ADDRESS
VALID
A[19:0]
ADV#
Latency Code 2 (3 clocks)
CE#
OE#
WE#
WAIT
DQ[15:0]
D[0]
D[1]
D[2]
D[3]
LB#/UB#
DON’T CARE
READ Burst Identified
(WE# = HIGH)
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
UNDEFINED
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT
asserted during delay.
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
Figure 9:
Burst Mode WRITE (4-word Burst)
CLK
ADDRESS
VALID
A[19:0]
ADV#
Latency Code 2 (3 clocks)
CE#
OE#
WE#
WAIT
DQ[15:0]
D[0]
D[1]
D[2]
D[3]
LB#/UB#
DON’T CARE
WRITE Burst Identified
(WE# = LOW)
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT
asserted during delay.
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
Mixed-Mode Operation
The device can support a combination of synchronous READ and asynchronous WRITE
operations when the BCR is configured for synchronous operation. The asynchronous
WRITE operation requires that the clock (CLK) be held static LOW or HIGH during the
entire sequence. The ADV# signal can be used to latch the target address, or it can
remain LOW during the entire WRITE operation. CE# must return HIGH when transitioning between mixed-mode operations. Note that the tCKA period is the same as a
READ or WRITE cycle. This time is required to ensure adequate refresh. Mixed-mode
operation facilitates a seamless interface to legacy burst mode Flash memory controllers. See Figure 41 on page 51.
WAIT Operation
The WAIT output on a CellularRAM device is typically connected to a shared, systemlevel WAIT signal (see Figure 10). The shared WAIT signal is used by the processor to
coordinate transactions with multiple memories on the synchronous bus.
Figure 10:
Wired-OR WAIT Configuration
CellularRAM
WAIT
External
Pull-Up/
Pull-Down
Resistor
READY
Processor
WAIT
WAIT
Other
Device
Other
Device
Once a READ or WRITE operation has been initiated, WAIT goes active to indicate that
the CellularRAM device requires additional time before data can be transferred. For
READ operations, WAIT will remain active until valid data is output from the device. For
WRITE operations, WAIT will indicate to the memory controller when data will be
accepted into the CellularRAM device. When WAIT transitions to an inactive state, the
data burst will progress on successive clock edges.
During a Burst cycle, CE# must remain asserted until the first data is valid. Bringing CE#
HIGH during this initial latency may cause data corruption.
The WAIT output also performs an arbitration role when a READ or WRITE operation is
launched while an on-chip refresh is in progress. If a collision occurs, WAIT is asserted
for additional clock cycles until the refresh has completed (see Figures 11 and 12 on
page 17). When the refresh operation has completed, the READ or WRITE operation will
continue normally.
WAIT is also asserted when a continuous READ or WRITE burst crosses a row boundary.
The WAIT assertion allows time for the new row to be accessed and permits any pending
refresh operations to be performed.
LB#/UB# Operation
The LB# enable and UB# enable signals support byte-wide data transfers. During READ
operations, the enabled byte(s) are driven onto the DQ. The DQ associated with a
disabled byte are put into a High-Z state during a READ operation. During WRITE opera-
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
tions, any disabled bytes will not be transferred to the RAM array and the internal value
will remain unchanged. During an asynchronous WRITE cycle, the data to be written is
latched on the rising edge of CE#, WE#, LB#, or UB#, whichever occurs first.
When both the LB# and UB# are disabled (HIGH) during an operation, the device will
disable the data bus from receiving or transmitting data. Although the device will seem
to be deselected, it remains in an active mode as long as CE# remains LOW.
Figure 11:
CLK
A[19:0]
ADV#
CE#
OE#
WE#
LB#/UB#
WAIT
DQ[15:0]
Refresh Collision During READ Operation
VIH
VIL
VIH
VIL
VALID
ADDRESS
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
High-Z
VOH
D[0]
VOL
Additional WAIT states inserted to allow refresh completion.
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
D[1]
D[2]
D[3]
UNDEFINED
DON’T CARE
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT
asserted during delay.
16
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Bus Operating Modes
Figure 12:
CLK
A[19:0]
ADV#
CE#
OE#
WE#
LB#/UB#
WAIT
DQ[15:0]
Refresh Collision During WRITE Operation
VIH
VIL
VIH
VIL
VALID
ADDRESS
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
High-Z
VOH
D[0]
VOL
Additional WAIT states inserted to allow refresh completion.
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
D[1]
D[2]
D[3]
DON’T CARE
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT
asserted during delay.
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Low-Power Operation
Low-Power Operation
Standby Mode Operation
During standby, the device current consumption is reduced to the level necessary to
perform the DRAM refresh operation. Standby operation occurs when CE# is HIGH.
The device will enter a reduced power state upon completion of a READ or WRITE operation or when the address and control inputs remain static for an extended period of
time. This mode will continue until a change occurs to the address or control inputs.
Temperature-Compensated Refresh
Temperature-compensated refresh (TCR) allows for adequate refresh at different
temperatures. This CellularRAM device includes an on-chip temperature sensor. When
the sensor is enabled, it continually adjusts the refresh rate according to the operating
temperature. The on-chip sensor is enabled by default.
Three fixed refresh rates are also available, corresponding to temperature thresholds of
+15°C, +45°C, and +85°C. The setting selected must be for a temperature higher than the
case temperature of the CellularRAM device. If the case temperature is +35°C, the system
can minimize self refresh current consumption by selecting the +45°C setting. The +15°C
setting would result in inadequate refreshing and cause data corruption.
Partial-Array Refresh
Partial-array refresh (PAR) restricts refresh operation to a portion of the total memory
array. This feature enables the device to reduce standby current by refreshing only that
part of the memory array required by the host system. The refresh options are full array,
one-half array, one-quarter array, one-eighth array, or none of the array. The mapping of
these partitions can start at either the beginning or the end of the address map (see
Table 6 on page 28). READ and WRITE operations to address ranges receiving refresh will
not be affected. Data stored in addresses not receiving refresh will become corrupted.
When re-enabling additional portions of the array, the new portions are available immediately upon writing to the RCR.
Deep Power-Down Operation
Deep power-down (DPD) operation disables all refresh-related activity. This mode is
used if the system does not require the storage provided by the CellularRAM device. Any
stored data will become corrupted when DPD is enabled. When refresh activity has been
re-enabled by rewriting the RCR, the CellularRAM device will require 150µs to perform
an initialization procedure before normal operations can resume. During this 150µs
period, the current consumption will be higher than the specified standby levels, but
considerably lower than the active current specification.
DPD cannot be enabled or disabled by writing to the RCR using the software access
sequence; the RCR should be accessed using CRE instead.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
18
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Configuration Registers
Two user-accessible configuration registers define the device operation. The bus configuration register (BCR) defines how the CellularRAM interacts with the system memory bus
and is nearly identical to its counterpart on burst mode Flash devices. The refresh configuration register (RCR) is used to control how refresh is performed on the DRAM array.
These registers are automatically loaded with default settings during power-up and can
be updated any time the devices are operating in a standby state.
Access Using CRE
The configuration registers are loaded using either a synchronous or an asynchronous
WRITE operation when the configuration register enable (CRE) input is HIGH (see
Figure 13 on page 19 and Figure 14 on page 20). When CRE is LOW, a READ or WRITE
operation will access the memory array. The register values are placed on address pins
A[19:0]. In an asynchronous WRITE, the values are latched into the configuration
register on the rising edge of ADV#, CE#, or WE#, whichever occurs first; LB# and UB#
are “Don’t Care.” Access using CRE is WRITE only. The BCR is accessed when A[19] is
HIGH; the RCR is accessed when A[19] is LOW.
Figure 13:
Configuration Register WRITE in Asynchronous Mode Followed by READ ARRAY
Operation
CLK
A[18:0]
OPCODE
ADDRESS
tAVH
tAVS
Select Control Register
A191
ADDRESS
tAVS
CRE
tAVH
tVPH
ADV#
tVP
tCPH
Initiate Control Register Access
CE#
tCW
OE#
tWP
Write Address Bus Value
to Control Register
WE#
LB#/UB#
DQ[15:0]
DATA VALID
DON’T CARE
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
A[19] = LOW to load RCR; A[19] = HIGH to load BCR.
19
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Figure 14:
Configuration Register WRITE in Synchronous Mode Followed by READ ARRAY
Operation
CLK
Latch Control Register Value
A[18:0]
ADDRESS
OPCODE
tHD
tSP
Latch Control Register Address
A192
ADDRESS
tSP
CRE
tHD
tSP
ADV#
tHD
tCBPH3
tCSP
CE#
OE#
tSP
WE#
tHD
LB#/UB#
tCEW
WAIT
High-Z
High-Z
DATA
VALID
DQ[15:0]
DON’T CARE
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
1. Non-default BCR settings for CR WRITE in synchronous mode followed by READ ARRAY
operation: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. A[19] = LOW to load RCR; A[19] = HIGH to load BCR.
3. CE# must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused by refresh collisions require a corresponding number of additional CE# LOW cycles.
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Software Access
Software access of the configuration registers uses a sequence of asynchronous READ
and asynchronous WRITE operations. The contents of the configuration registers can be
read or modified using the software sequence.
The configuration registers are loaded using a four-step sequence consisting of two
asynchronous READ operations followed by two asynchronous WRITE operations (see
Figure 15). The read sequence is virtually identical except that an asynchronous READ is
performed during the fourth operation (see Figure 16). Note that a third READ cycle of
the highest address will cancel the access sequence until a different address is read.
The address used during all READ and WRITE operations is the highest address of the
CellularRAM device being accessed (FFFFFh for 16Mb); the content at this address is not
changed by using this sequence.
The data value presented during the third operation (WRITE) in the sequence defines
whether the BCR or the RCR is to be accessed. If the data is 0000h, the sequence will
access the RCR; if the data is 0001h, the sequence will access the BCR. During the fourth
operation, DQ[15:0] transfer data into or out of bits 15–0 of the configuration registers.
The use of the software sequence does not affect the ability to perform the standard
(CRE-controlled) method of loading the configuration registers. However, the software
nature of this access mechanism eliminates the need for the control register enable
(CRE) pin. If the software mechanism is used, the CRE pin can simply be tied to VSS. The
port line often used for CRE control purposes is no longer required.
Software access of the RCR should not be used to enter or exit DPD.
Figure 15:
Load Configuration Register
ADDRESS
READ
READ
WRITE
WRITE
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
CE#
OE#
WE#
Note 0ns (Min)
LB#/UB#
DATA
XXXXh
CR VALUE
IN
XXXXh
RCR: 0000h
BCR: 0001h
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DON'T CARE
If the data present when WE# falls is not 0000h or 0001h, it is possible that the maximum
address will be overwritten.
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Figure 16:
Read Configuration Register
ADDRESS
READ
READ
WRITE
READ
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
CE#
OE#
WE#
Note: 0ns (Min)
LB#/UB#
DATA
XXXXh
CR VALUE
OUT
XXXXh
RCR: 0000h
BCR: 0001h
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DON'T CARE
If the data present when WE# falls is not 0000h or 0001h, it is possible that the maximum
address will be overwritten.
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Bus Configuration Register
The BCR defines how the CellularRAM device interacts with the system memory bus.
Page mode operation is enabled by a bit contained in the RCR. Figure 17 describes the
control bits in the BCR. At power-up, the BCR is set to 9D4Fh.
The BCR is accessed using CRE and A[19] HIGH or through the configuration register
software sequence with DQ = 0001h on the third cycle.
Figure 17:
Bus Configuration Register Definition
A15
A19 A[18:16]
18–16
19
Register
Select
Reserved
A14 A13 A12A11 A10
15
14
Operating
Mode
Must be set to "0"
10
13 12 11
Latency
Counter
Reserved
WAIT
Polarity
Must be set to "0"
A8
A9
9
Reserved
A7
7
8
WAIT
Configuration (WC)
Must be set to "0"
BCR[13] BCR[12] BCR[11]
A5
A6
Clock
Configuration (CC)
Output
Impedance
Must be set to "0"
0
0
Code 0–Reserved
0
0
1
Code 1–Reserved
0
1
0
Code 2
0
1
1
Code 3 (Default)
1
0
0
Code 4–Reserved
1
0
1
Code 5–Reserved
1
1
0
Code 6–Reserved
1
WAIT Polarity
BCR[5]
0
Full Drive (default)
1
1/4 Drive
BCR[6]
WAIT Configuration
Asserted during delay
0
Not supported
1
Asserted one data cycle before delay (default)
1
Rising edge (default)
Operation Mode
BCR[2]
Register Select
Select BCR
0
Clock Configuration
0
Asynchronous access mode (default)
1
1
Output Impedance
Active HIGH (default)
1
Select RCR
Burst no wrap (default)
1
Synchronous burst access mode
0
Burst wraps within the burst length
1
Active LOW
0
BCR[19]
2
Burst Wrap (Note 1)
0
0
BCR[15]
3
Burst
Burst
Wrap (BW)* Length (BL)*
Code 7–Reserved
BCR[10]
BCR[8]
A2 A1 A0
Must be set to "0"
BCR[3]
1
Reserved
A3
Latency Counter
0
1
4
5
6
Reserved
A4
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
BCR[1] BCR[0]
Burst Length (Note 1)
0
0
1
4 words
0
1
0
8 words
0
1
1
16 words
1
1
1
Continuous burst (default)
All burst WRITEs are continuous.
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Table 4:
Sequence and Burst Length
Burst Wrap
4-Word
Burst
Length
8-Word
Burst Length
16-Word Burst length
Continuous Burst
Linear
Linear
Linear
Linear
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6
...
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13
0
1
2
0-1-2-3
1-2-3-4
2-3-4-5
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-8
2-3-4-5-6-7-8-9
3
3-4-5-6
3-4-5-6-7-8-9-10
Starting
Address
BCR[3] Wrap (Decimal)
0
Yes
0
1
2
3
4
5
6
7
...
14
15
1
No
4
4-5-6-7-8-9-10-11
5
5-6-7-8-9-10-11-12
6
6-7-8-9-10-11-1213
7-8-9-10-11-12-1314
7
...
14
15
0-1-2-3-4-5-6-…
1-2-3-4-5-6-7-…
2-3-4-5-6-7-8-…
3-4-5-6-7-8-9-…
4-5-6-7-8-9-10-…
5-6-7-8-9-10-11-…
6-7-8-9-10-11-127-8-9-10-11-12-13-…
...
14-15-16-17-18-19-20...
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14
15-16-17-18-19-2021...
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15
0-1-2-3-4-5-6-…
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16
1-2-3-4-5-6-7-…
2-3-4-5-6-7-8-9-10-11-12-13-14-15-162-3-4-5-6-7-8-…
17
3-4-5-6-7-8-9-10-11-12-13-14-15-16-173-4-5-6-7-8-9-…
18
4-5-6-7-8-9-10-11-12-13-14-15-16-174-5-6-7-8-9-10-…
18-19
5-6-7-8-9-10-11-12-13-...-15-16-17-185-6-7-8-9-10-11…
19-20
6-7-8-9-10-11-12-13-14-...-16-17-18-196-7-8-9-10-11-12…
20-21
7-8-9-10-11-12-13-14-...-17-18-19-207-8-9-10-11-12-13…
21-22
...
...
14-15-16-17-18-19-...-23-24-25-26-27- 14-15-16-17-18-19-2028-29
…
15-16-17-18-19-20-...-24-25-26-27-28- 15-16-17-18-19-20-2129-30
…
Burst Length (BCR[2:0]) Default = Continuous Burst
Burst lengths define the number of words the device outputs during a burst READ operation. The device supports a burst length of 4, 8, or 16 words. The device can also be set
in continuous burst mode where data is output sequentially without regard to address
boundaries; the internal address wraps to 000000h if the device is read past the last
address. WRITE bursts are always performed using continuous burst mode.
Burst Wrap (BCR[3]) Default = Burst No Wrap (Within Burst Length)
The burst wrap option determines if a 4-, 8-, or 16-word burst READ wraps within the
burst length or steps through sequential addresses. If the wrap option is not enabled, the
device outputs data from sequential addresses without regard to burst boundaries; the
internal address wraps to 000000h if the device is read past the last address.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Output Impedance (BCR[5]) Default = Outputs Use Full Drive Strength
The output driver strength can be altered to adjust for different data bus loading
scenarios. The reduced-strength option should be more than adequate in stacked chip
(Flash + CellularRAM) environments when there is a dedicated memory bus. The reduceddrive-strength option is included to minimize noise generated on the data bus during
READ operations. Normal output impedance should be selected when using a discrete
CellularRAM device in a more heavily loaded data bus environment. Partial drive is
approximately one-quarter full drive strength. Outputs are configured at full drive
strength during testing.
WAIT Configuration (BCR[8]) Default = WAIT Transitions One Clock Before Data Valid/Invalid
The WAIT configuration bit is used to determine when WAIT transitions between the
asserted and the de-asserted state with respect to valid data presented on the data bus.
The memory controller will use the WAIT signal to coordinate data transfer during
synchronous READ and WRITE operations. When BCR[8] = 0, data will be valid or invalid
on the clock edge immediately after WAIT transitions to the de-asserted or asserted
state, respectively (see Figures 18 and 20). When BCR[8] = 1, the WAIT signal transitions
one clock period prior to the data bus going valid or invalid (see Figures 19 and 20).
WAIT Polarity (BCR[10]) Default = WAIT Active HIGH
The WAIT polarity bit indicates whether an asserted WAIT output should be HIGH or
LOW. This bit will determine whether the WAIT signal requires a pull-up or pull-down
resistor to maintain the de-asserted state.
Figure 18:
WAIT Configuration (BCR[8] = 0)
CLK
WAIT
DQ[15:0]
High-Z
Data[0]
Data[1]
Data immediately valid (or invalid)
Note:
Figure 19:
Data valid/invalid immediately after WAIT transitions (BCR[8] = 0). See Figure 20 on
page 26.
WAIT Configuration (BCR[8] = 1)
CLK
WAIT
D[15:0]
High-Z
Data[0]
Data valid (or invalid) after one clock delay
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Valid/invalid data delayed for one clock after WAIT transitions (BCR[8] = 1). See Figure 20
on page 26.
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Figure 20:
WAIT Configuration During Burst Operation
CLK
BCR[8] = 0
Data valid in current cycle.
WAIT
BCR[8] = 1
Data valid in next cycle.
WAIT
DQ[15:0]
D[1]
D[0]
D[2]
D[3]
D[4]
DON’T CARE
Note:
Non-default BCR setting for WAIT during BURST operation: WAIT active LOW.
Latency Counter (BCR[13:11]) Default = Three-Clock Latency
The latency counter bits determine how many clocks occur between the beginning of a
READ or WRITE operation and the first data value transferred. Only latency code two
(three clocks) or latency code three (four clocks) is allowed (see Table 5 and Figure 21).
Operating Mode (BCR[15]) Default = Asynchronous Operation
The operating mode bit selects either synchronous BURST operation or the default
asynchronous mode of operation.
Table 5:
Latency Configuration
Max Input CLK Frequency (MHz)
Latency Configuration Code
2 (3 clocks)
3 (4 clocks) – default
Figure 21:
CLK
A[19:0]
ADV#
104 MHz
80 MHz
66 (15ns)
104 (9.62ns)
53 (18.75ns)
80 (12.50ns)
Latency Counter
VIH
VIL
VIH
VIL
VALID
ADDRESS
VIH
VIL
Code 2
DQ[15:0]
VOH
VALID
OUTPUT
VOL
Code 3
DQ[15:0]
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
(Default)
VOH
VOL
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
26
UNDEFINED
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Refresh Configuration Register
The refresh configuration register (RCR) defines how the CellularRAM device performs
its transparent self refresh. Altering the refresh parameters can dramatically reduce
current consumption during standby mode. Page mode control is also embedded into
the RCR. Figure 22 describes the control bits used in the RCR. At power-up, the RCR is set
to 0010h.
The RCR is accessed using CRE and A[19] LOW; or through the configuration register
software access sequence with DQ = 0000h on the third cycle (see “Configuration Registers” on page 19.)
Partial-Array Refresh (RCR[2:0]) Default = Full Array Refresh
The PAR bits restrict refresh operation to a portion of the total memory array. This
feature allows the device to reduce standby current by refreshing only that part of the
memory array required by the host system. The refresh options are full array, one-half
array, one-quarter array, one-eighth array, or none of the array. The mapping of these
partitions can start at either the beginning or the end of the address map (see Table 6 on
page 28).
Figure 22:
Refresh Configuration Register Mapping
A19
A[18:8]
19
18–8
Register
Select
RESERVED
A6
A7
7
6
PAGE
TCR
A5
A4
5
4
A1
A2
3
DPD
RESERVED
Register Select
PAR
RCR[2]
RCR[1]
RCR[0]
Refresh Coverage
0
Select RCR
0
0
0
Full array (default)
1
Select BCR
0
0
1
Bottom 1/2 array
0
RCR[7]
Page Mode Enable/Disable
0
Page Mode Disabled (default)
1
Page Mode Enable
RCR[6] RCR[5]
Maximum Case Temp.
RCR[4]
1
0
Bottom 1/4 array
0
1
1
Bottom 1/8 array
1
0
0
None of array
1
0
1
Top 1/2 array
1
1
0
Top 1/4 array
1
1
1
Top 1/8 array
Deep Power-Down
1
1
+85°C
0
DPD Enable
0
0
Internal sensor (default)
1
DPD Disable (default)
0
1
+45°C
1
0
+15°C
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Address Bus
0
1
2
A0
Must be set to "0"
All must be set to "0"
RCR[19]
A3
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Configuration Registers
Table 6:
16Mb Address Patterns for PAR (RCR[4] = 1)
RCR[2]
RCR[1]
RCR[0]
Active Section
Address Space
Size
Density
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full die
One-half of die
One-quarter of die
One-eighth of die
None of die
One-half of die
One-quarter of die
One-eighth of die
000000h–0FFFFFh
000000h–07FFFFh
000000h–03FFFFh
000000h–01FFFFh
0
80000h–0FFFFFh
C0000h–0FFFFFh
E0000h–0FFFFFh
1 Meg x 16
512K x 16
256K x 16
128K x 16
0 Meg x 16
512K x 16
256K x 16
128K x 16
16Mb
8Mb
4Mb
2Mb
0Mb
8Mb
4Mb
2Mb
Deep Power-Down (RCR[4]) Default = DPD Disabled
The deep power-down bit enables and disables all refresh-related activity. This mode is
used if the system does not require the storage provided by the CellularRAM device. Any
stored data will become corrupted when DPD is enabled. When refresh activity has been
re-enabled, the CellularRAM device will require 150µs to perform an initialization procedure before normal operations can resume.
Deep power-down is enabled when RCR[4] = 0, and remains enabled until RCR[4] is set to
“1.” DPD should not be enabled or disabled with the software access sequence; instead,
use CRE to access the RCR.
Temperature-Compensated Refresh (RCR[6:5]) Default = On-Chip Temperature Sensor
This CellularRAM device includes an on-chip temperature sensor that automatically
adjusts the refresh rate according to the operating temperature. The on-chip TCR is
enabled by clearing both of the TCR bits in the refresh configuration register (RCR[6:5] =
00b). Any other TCR setting enables a fixed refresh rate. When the on-chip temperature
sensor is enabled, the device continually adjusts the refresh rate according to the operating temperature.
The TCR bits also allow for adequate fixed-rate refresh at three different temperature
thresholds (+15°C, +45°C, and +85°C). The setting selected must be for a temperature
higher than the case temperature of the CellularRAM device. If the case temperature
is +35°C, the system can minimize self refresh current consumption by selecting the
+45°C setting. The +15°C setting would result in inadequate refreshing and cause
data corruption.
Page Mode Operation (RCR[7]) Default = Disabled
The page mode operation bit determines whether page mode is enabled for asynchronous READ operations. In the power-up default state, page mode is disabled.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
28
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Electrical Characteristics
Electrical Characteristics
Table 7:
Absolute Maximum Ratings
Notes:
Parameter
Rating
Voltage to any ball except VCC, VCCQ relative
to VSS
Voltage on VCC supply relative to VSS
Voltage on VCCQ supply relative to VSS
Storage temperature (plastic)
Operating temperature (case)
Wireless1
Industrial
Soldering temperature and time
10 seconds (solder ball only)
–0.5V to (4.0V or VCCQ + 0.3V, whichever is
less)
–0.2V to +2.45V
–0.2V to +4.0V
–55ºC to +150ºC
–30ºC to +85ºC
–40ºC to +85ºC
+260ºC
1. –30°C exceeds the CellularRAM Workgroup 1.0 specification of –25°C.
Stresses greater than those listed may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
29
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Electrical Characteristics
Table 8:
Electrical Characteristics and Operating Conditions
Wireless temperature1 (–30ºC < TC < +85ºC); Industrial temperature (–40ºC < TC < +85ºC)
Description
Conditions
Supply voltage
I/O supply voltage
Input high voltage
Input low voltage
Output high voltage
Output low voltage
Input leakage current
Output leakage current
IOH = –0.2mA
IOL = +0.2mA
VIN = 0 to VCCQ
OE# = VIH or
Chip disabled
Operating Current
Asynchronous random READ/
WRITE
Asynchronous page READ
VIN = VCCQ or 0V
Chip enabled,
IOUT = 0
Initial access, burst READ/WRITE
Symbol
VCC
VCCQ
VIH
VIL
VOH
VOL
ILI
ILO
1.95
3.6
VCCQ + 0.2
0.4
0.2 VCCQ
1
1
V
V
V
V
V
V
µA
µA
1
2, 3
4
5
5
mA
6
ICC1P
–70
15
mA
6
ICC2
104 MHz
80 MHz
104 MHz
80 MHz
104 MHz
80 MHz
Standard
35
30
28
22
33
25
70
mA
6
mA
6
mA
6
µA
7
ICC3W
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
1.7
1.7
1.4
–0.2
0.8 VCCQ
Notes
20
Continuous burst WRITE
Notes:
Units
–70
ICC3R
VIN = VCCQ or 0V
CE# = VCCQ
Max
ICC1
Continuous burst READ
Standby current
Min
ISB
1.
2.
3.
4.
5.
6.
–30°C and 3.6V I/O exceed the CellularRAM Workgroup 1.0 specifications.
Input signals may overshoot to VCCQ + 1.0V for periods less than 2ns during transitions.
VIH (MIN) value is not aligned with CellularRAM work group 1.0 specification of VCCQ - 0.4V.
Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions.
BCR[5] = 0b.
This parameter is specified with the outputs disabled to avoid external loading effects. The
user must add the current required to drive output capacitance expected in the actual system.
7. ISB (MAX) values measured with PAR set to FULL ARRAY and TCR set to +85°C. In order to
achieve low standby current, all inputs must be driven to either VCCQ or VSS. ISB might be
slightly higher for up to 500ms after power-up, after changes to the PAR array partition, or
when entering standby mode.
30
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Electrical Characteristics
Maximum and Typical Standby Currents
The following table and figure refer to the maximum and typical standby currents for the
MT45W1MW16BDGB device. The typical values shown in Figure 23 are measured with
the default on-chip temperature sensor control enabled. The maximum values shown in
Table 9 are measured with the relevant TCR bits set in the configuration register.
Table 9:
Maximum Standby Currents for Applying PAR and TCR Settings
TCR
PAR
+15°C (RCR[6:5] = 10b)
+45°C (RCR[6:5] = 01b)
+85°C (RCR[6:5] = 11b)
Units
45
40
37
37
35
60
55
50
50
45
70
65
60
60
55
µA
µA
µA
µA
µA
Full array
1/2 array
1/4 array
1/8 array
0 array
Notes:
Figure 23:
1. For RCR[6:5] = 00b (default) refer to Figure 23, Typical Refresh Current vs. Temperature
(ITCR) for typical values.
2. In order to achieve low standby current, all inputs must be driven to VCCQ or VSS. ISB might
be slightly higher for up to 500ms after power-up, after changes to the PAR array portion,
or when entering standby mode.
3. TCR values for 85°C are 100 percent tested. TCR values for 15°C and 45°C are sampled only.
4. Typical ISB currents for each PAR setting with the appropriate TCR selected, or temperature
sensor enabled.
Typical Refresh Current vs. Temperature (ITCR)
50
45
40
35
PAR FULL
PAR 1/2
PAR 1/4
PAR 0
ISB (µA)
30
25
20
15
10
5
°C
85
°C
75
°C
65
°C
55
°C
45
°C
35
°C
25
°C
15
°C
05
°C
°C
-0
5
-1
5
°C
-2
5
°C
-3
5
-4
5
°C
0
Temperature (°C)
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Typical ISB currents for each PAR setting with the appropriate TCR selected, or temperature
sensor enabled.
31
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Electrical Characteristics
Table 10:
Deep Power-Down Specifications
Description
Deep power-down
Table 11:
Conditions
Symbol
Typ
Units
VIN = VCCQ or 0V; +25°C
IZZ
10
µA
Capacitance
Description
Input capacitance
Input/output capacitance (DQ)
Notes:
Figure 24:
Conditions
Symbol
Min
Max
Units
Notes
TC = +25ºC; f = 1 MHz;
VIN = 0V
CIN
CIO
2.0
3.0
6.5
6.5
pF
pF
1
1
1. These parameters are verified in device characterization and are not 100 percent tested.
AC Input/Output Reference Waveform
VCCQ
Input
1
2
VCC/2
Test Points
3
VCCQ/2
Output
VSSQ
Notes:
Figure 25:
1. AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall
times (10% to 90%) < 1.6ns.
2. Input timing begins at VCC/2. Due to the possibility of a difference between VCC and VCCQ,
the input test point may not be shown to scale.
3. Output timing ends at VCCQ/2.
Output Load Circuit
Test Point
DUT
50
VccQ/2
30pF
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0b).
32
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Requirements
Timing Requirements
Table 12:
Asynchronous READ Cycle Timing Requirements
70ns
Parameter
1
Symbol
Address access time
ADV# access time
Page access time
Address hold from ADV# HIGH
Address setup to ADV# HIGH
LB#/UB# access time
LB#/UB# disable to DQ High-Z output
LB#/UB# enable to Low-Z output
Maximum CE# pulse width
CE# LOW to WAIT valid
Chip select access time
CE# LOW to ADV# HIGH
Chip disable to DQ and WAIT High-Z output
Chip enable to Low-Z output
Output enable to valid output
Output hold from address change
Output disable to DQ High-Z output
Output enable to Low-Z output
Page cycle time
READ cycle time
ADV# pulse width LOW
ADV# pulse width HIGH
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Min
t
t
AA
AADV
t
APA
t
AVH
tAVS
t
BA
tBHZ
tBLZ
tCEM
tCEW
tCO
tCVS
tHZ
tLZ
tOE
tOH
tOHZ
tOLZ
tPC
tRC
tVP
tVPH
Max
Units
70
70
20
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
5
10
70
8
10
1
8
7.5
70
10
8
10
20
5
8
3
20
70
10
10
Notes
4
3
2
4
3
4
3
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0b).
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 25 on page 32. The
High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 25 on page 32. The LowZ timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either
VOH or VOL.
4. Page mode enabled only.
33
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Requirements
Table 13:
Burst READ Cycle Timing Requirements
104 MHz
Parameter1
Symbol
Burst to READ access time
CLK to output delay
Burst OE# LOW to output delay
CE# HIGH between subsequent burst and
mixed-mode operations
Maximum CE# pulse width
CE# LOW to WAIT valid
CLK period
CE# setup time to active CLK edge
Hold time from active CLK edge
Chip disable to DQ and WAIT High-Z output
CLK rise or fall time
CLK to WAIT valid
Output HOLD from CLK
CLK HIGH or LOW time
Output disable to DQ High-Z output
Output enable to Low-Z output
Setup time to active CLK edge
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
Min
t
ABA
ACLK
t
BOE
t
CBPH
5
tCEM
CEW
tCLK
t
CSP
tHD
Max
Min
35
7
20
t
t
80 MHz
1
9.62
3
2
tHZ
tKHTL
tKOH
8
7.5
20
20
2
3
tKP
tOHZ
1
12.5
4.5
2
3
3
tSP
Notes
46.5
9
20
ns
ns
ns
ns
2
8
7.5
20
20
8
1.8
9
2
4
8
tOLZ
Units
5
8
1.6
7
tKHKL
Max
8
3
3
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3
3
4
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0b).
2. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns.
3. Low-Z to High-Z timings are tested with the circuit shown in Figure 25 on page 32. The
High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.
4. High-Z to Low-Z timings are tested with the circuit shown in Figure 25 on page 32. The LowZ timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either
VOH or VOL.
34
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Requirements
Table 14:
Asynchronous WRITE Cycle Timing Requirements
70ns
Parameter
Symbol
t
AS
AVH
t
AVS
t
AW
tBW
t
CEW
t
CKA
tCPH
tCVS
t
CW
tDH
tDW
tHZ
tLZ
tOW
tVP
tVPH
tVS
tWC
tWHZ
tWP
tWPH
tWR
Address and ADV# LOW setup time
Address hold from ADV# going HIGH
Address setup to ADV# going HIGH
Address valid to end of WRITE
LB#/UB# select to end of WRITE
CE# LOW to WAIT valid
Async address-to-burst transition time
CE# HIGH between subsequent asynchronous operations
CE# LOW to ADV# HIGH
Chip enable to end of WRITE
Data hold from WRITE time
Data WRITE setup time
Chip disable to WAIT High-Z output
Chip enable to Low-Z output
End WRITE to Low-Z output
ADV# pulse width
ADV# pulse width HIGH
ADV# setup to End of WRITE
WRITE cycle time
WRITE to DQ High-Z output
WRITE pulse width
WRITE pulse width HIGH
WRITE recovery time
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
t
Min
0
5
10
70
70
1
70
5
10
70
0
23
Max
7.5
8
10
5
10
10
70
70
8
46
10
0
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes
1
1
2
3
1. High-Z to Low-Z timings are tested with the circuit shown in Figure 25 on page 32. The LowZ timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either
VOH or VOL.
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 25 on page 32. The
High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.
3. WE# LOW time must be limited to tCEM (8µs).
35
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Requirements
Table 15:
Burst WRITE Cycle Timing Requirements
104 MHz
Parameter
Symbol
CE# HIGH between subsequent burst and
mixed-mode operations
Maximum CE# pulse width
CE# LOW to WAIT valid
Clock period
CE# setup to CLK active edge
Hold time from active CLK edge
Chip disable to WAIT High-Z output
CLK rise or fall time
Clock to WAIT valid
CLK HIGH or LOW time
Setup time to active CLK edge
Notes:
Figure 26:
t
Min
CBPH
CEW
CLK
tCSP
t
HD
tHZ
t
KHKL
tKHTL
tKP
tSP
t
Max
Min
5
tCEM
t
80 MHz
1
9.62
3
2
Max
5
8
7.5
20
20
1
12.5
4.5
2
8
1.6
7
8
7.5
20
20
8
1.8
9
3
3
4
3
Units
Notes
ns
1
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
1
1. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns.
Initialization Period
Vcc (MIN)
Vcc, VccQ = 1.7V
Table 16:
tPU
Device ready for
normal operation
Initialization Timing Parameters
-70
Parameter
Symbol
tPU
Initialization period (required before normal operations)
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
36
Min
Max
Units
150
µs
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Timing Diagrams
Figure 27:
Asynchronous READ
tRC
VIH
A[19:0]
VALID ADDRESS
VIL
tAA
ADV#
VIH
VIL
tHZ
CE#
VIH
VIL
LB#/UB#
tCO
tBA
VIH
tBHZ
VIL
tOE
OE#
WE#
tOHZ
VIH
VIL
VIH
VIL
tBLZ
tOLZ
tLZ
VOH
DQ[15:0]
High-Z
VOL
VALID OUTPUT
tCEW
tHZ
VOH
WAIT
VOL
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
37
UNDEFINED
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 28:
Asynchronous READ Using ADV#
A[19:0]
VIH
VALID ADDRESS
VIL
tAA
tAVS
tVPH
tAVH
VIH
ADV#
VIL
tAADV
tVP
tCVS
tHZ
VIH
CE#
VIL
tCO
tBA
tBHZ
VIH
LB#/UB#
VIL
tOE
tOHZ
VIH
OE#
VIL
VIH
WE#
tOLZ
tBLZ
VIL
tLZ
DQ[15:0]
VOH
High-Z
VALID OUTPUT
VOL
tCEW
WAIT
tHZ
VOH
VOL
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
38
UNDEFINED
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 29:
Page Mode READ
tRC
A[19:4]
VIH
VALID ADDRESS
VIL
VIH
A[3:0]
ADV#
VALID ADDRESS
VIL
VALID
ADDRESS
VALID
ADDRESS
tPC
tAA
VIH
VALID
ADDRESS
VIL
tCEM
tCO
VIH
tHZ
CE# VIL
LB#/UB#
tBHZ
tBA
VIH
VIL
tOHZ
tOE
VIH
OE#
VIL
VIH
WE#
tOLZ
tBLZ
VIL
VOH
DQ[15:0]
VOL
tAPA
tOH
tLZ
VALID
OUTPUT
High-Z
tCEW
VOL
VALID
OUTPUT
VALID
OUTPUT
tHZ
VOH
WAIT
VALID
OUTPUT
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
39
UNDEFINED
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 30:
Single-Access Burst READ Operation
tCLK
tKP
tKP
tKHKL
VIH
CLK
A[19:0]
VIL
VIH
VIL
tHD
tSP
VALID
ADDRESS
tSP
tHD
VIH
ADV#
VIL
tHD
tCEM
CE#
VIH
tCSP
tHZ
tABA
VIL
tOHZ
tBOE
VIH
OE#
VIL
tSP
WE#
tHD
tOLZ
VIH
VIL
VIH
LB#/UB#
VIL
tCEW
VOH
WAIT
tKHTL
High-Z
High-Z
VOL
DQ[15:0]
tKOH
tACLK
VOH
High-Z
VOL
VALID
OUTPUT
READ Burst Identified
(WE# = HIGH)
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DON’T CARE
UNDEFINED
1. Non-default BCR settings for single-access burst READ operation: Latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
40
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 31:
4-Word Burst READ Operation
tKHKL
CLK
A[19:0]
tKP
VIL
VIH
tSP
tHD
VALID
ADDRESS
VIL
tSP
ADV#
tKP
tCLK
VIH
tHD
VIH
VIL
tCEM
CE#
VIH
tCBPH
tHD
tABA
tCSP
VIL
tHZ
tBOE
OE#
VIH
VIL
tOHZ
tSP
WE#
LB#/UB#
tOLZ
tHD
VIH
VIL
VIH
VIL
tKHTL
tCEW
WAIT
VOH
VOL
High-Z
High-Z
tKOH
tACLK
DQ[15:0]
VOH
High-Z
VOL
VALID
OUTPUT
READ Burst Identified
(WE# = HIGH)
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE
UNDEFINED
Non-default BCR settings for 4-word burst READ operation: Latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
41
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 32:
READ Burst Suspend
tCLK
VIH
CLK VIL
tSP
VIH
A[19:0] VIL
tHD
VALID
ADDRESS
VALID
ADDRESS
tSP
tHD
VIH
ADV# VIL
tCBPH
tCEM
VIH
tHZ
tCSP
CE# VIL
tOHZ
OE#
tOHZ
VIH
VIL
VIH
tSP
tHD
WE# VIL
VIH
LB#/UB# VIL
tBOE
VOH
tOLZ
WAIT VOL High-Z
VOH
DQ[15:0] VOL
High-Z
tKOH
tOLZ
VALID
OUTPUT
High-Z
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
tBOE
VALID
OUTPUT
VALID
OUTPUT
tACLK
DON’T CARE
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
UNDEFINED
Non-default BCR settings for READ burst suspend: Latency code two (three clocks); WAIT
active LOW; WAIT asserted during delay.
42
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 33:
CLK
Continuous Burst READ Showing an Output Delay with BCR[8] = 0 for End-of-Row
Condition
VIH
VIL
tCLK
A[19:0]
VIH
VIL
ADV#
VIH
VIL
LB#/UB#
VIH
VIL
CE#
VIH
Note 3
VIL
OE#
VIH
VIL
WE#
VIH
VIL
tKHTL
tKHTL
WAIT
VOH
Note 2
VOL
DQ[15:0]
VOH
VALID
OUTPUT
VOL
VALID
OUTPUT
VALID
OUTPUT
tACLK
VALID
OUTPUT
tKOH
DON’T CARE
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
1. Non-default BCR settings for continuous burst READ showing an output delay, BCR[8] = 0
for end-of-row condition: Latency code two (three clocks); WAIT active LOW; WAIT asserted
during delay.
2. WAIT will be asserted a maximum of (2 × LC) cycles (BCR[8] = 0; WAIT asserted during delay).
LC = latency code (BCR[13:11]).
3. CE# must not remain LOW longer than tCEM.
43
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 34:
CE#-Controlled Asynchronous WRITE
tWC
A[19:0]
VIH
VALID ADDRESS
VIL
tAW
tWR
tAS
VIH
ADV#
CE#
VIL
tCW
VIH
tCPH
VIL
tBW
VIH
LB#/UB#
OE#
VIL
VIH
VIL
tWPH
tWP
VIH
WE#
VIL
tDW
DQ[15:0]
IN
VIH
DQ[15:0]
OUT
VOH
High-Z
VIL
VALID INPUT
tWHZ
tLZ
WAIT
tDH
VOL
tCEW
VOH
VOL
tHZ
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
44
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 35:
LB#/UB#-Controlled Asynchronous WRITE
tWC
A[19:0]
VIH
VALID ADDRESS
VIL
tAW
tAS
ADV#
tWR
VIH
VIL
tCW
CE#
LB#/UB#
OE#
VIH
VIL
tBW
VIH
VIL
VIH
VIL
tWP
tWPH
VIH
WE#
VIL
tDW
DQ[15:0]
IN
High-Z
VIL
VALID INPUT
tWHZ
tLZ
DQ[15:0]
OUT
VOH
VOL
tCEW
WAIT
tDH
VIH
tHZ
VOH
VOL
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
45
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 36:
WE#-Controlled Asynchronous WRITE
tWC
VIH
A[19:0]
VALID ADDRESS
VIL
tAW
tWR
VIH
ADV#
VIL
tCW
VIH
CE#
VIL
tBW
VIH
LB#/UB#
VIL
VIH
OE#
VIL
tAS
tWP
tWPH
VIH
WE#
VIL
tDW
DQ[15:0]
IN
High-Z
VIL
VALID INPUT
VOH
VOL
tCEW
tHZ
VOH
WAIT
tOW
tWHZ
tLZ
DQ[15:0]
OUT
tDH
VIH
VOL
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
46
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 37:
Asynchronous WRITE Using ADV#
A[19:0]
VIH
VALID ADDRESS
VIL
tAVS
tVS
tVPH
ADV#
tAVH
tVP
tAS
VIH
VIL
tAS
tAW
tCW
VIH
CE#
VIL
tBW
VIH
LB#/UB#
OE#
VIL
VIH
VIL
tWPH
tWP
WE#
VIH
VIL
tDW
DQ[15:0] VIH
IN VIL
DQ[15:0] VOH
OUT VOL
High-Z
VALID INPUT
tWHZ
tLZ
tCEW
WAIT
tOW
tHZ
VOH
VOL
tDH
High-Z
High-Z
DON’T CARE
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
47
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 38:
Burst WRITE Operation
tCLK
CLK
tKP
tKP
tKHKL
VIH
VIL
tSP
A[19:0]
VIL
VALID
ADDRESS
tSP
ADV#
tHD
VIH
tHD
VIH
VIL
tSP tHD
LB#/UB#
VIH
VIL
tCEM
CE#
VIH
tCSP
tHD
tCBPH
VIL
OE#
VIH
VIL
tSP
WE#
tHD
VIH
VIL
VOH
WAIT
VOL
tCEW
tKHTL
tHZ
High-Z
High-Z
tSP
tHD
VIH
DQ[15:0]
D[0]
VIL
WRITE Burst Identified
(WE# = LOW)
Note:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
D[1]
D[2]
D[3]
DON’T CARE
Non-default BCR settings for burst WRITE operation: Latency code two (three clocks);
WAIT active LOW; WAIT asserted.
48
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 39:
CLK
Continuous Burst WRITE Showing an Output Delay with BCR[8] = 0 for End-of-Row
Condition
VIH
VIL
tCLK
A[19:0]
VIH
VIL
ADV#
VIH
VIL
LB#/UB#
VIH
VIL
CE#
VIH
Note 4
VIL
VIH
WE#
VIL
VIH
OE#
VIL
tKHTL
tKHTL
WAIT
VOH
Note 3
VOL
tSP
tHD
VIH
DQ[15:0]
VALID INPUT
VIL
VALID INPUT
End of row
(A[6:0] = 7Fh)
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
VALID INPUT
Start of row
(A[6:0] = 00h)
(NOTE 4)
VALID INPUT
DON’T CARE
1. Non-default BCR settings for continuous burst WRITE, BCR[8] = 0; WAIT active LOW; WAIT
asserted during delay. Do not cross row boundaries with fixed latency.
2. CE# must not remain LOW longer than tCEM.
3. WAIT asserts for anywhere from LC to 2LC cycles. LC = latency code (BCR[13:11]).
4. Taking CE# HIGH or ADV# LOW on the start-of-row cycle will abort the burst and not write
the start-of-row data. Devices from different CellularRAM vendors can assert WAIT so that
the start-of-row data is input just before (as shown), or just after WAIT asserts. This difference in behavior will not be noticed by controllers that monitor WAIT, or that use WAIT to
abort on the start-of-row input cycle.
49
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 40:
Burst WRITE Followed by Burst READ
tCLK
CLK
VIH
VIL
A[19:0]
VIH
VIL
ADV#
VIH
VIL
tSP tHD
LB#/UB#
tSP
VALID
ADDRESS
tSP tHD
tSP tHD
tSP tHD
VIH
VIL
tCSP
CE#
OE#
tHD
VIH
VIL
tCBPH2
tABA
tCSP
VIH
VIL
tOHZ
tSP tHD
VIH
WE#
VIL
WAIT
tHD
VALID
ADDRESS
tSP tHD
VOH
VOL
DQ[15:0] VIH
IN/OUT VIL
tBOE
High-Z
tSP tHD
tACLK
VOH
High-Z
D[0]
D[1]
D[2]
D[3]
VOL
High-Z
High-Z
tKOH
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
VALID
OUTPUT
UNDEFINED
1. Non-default BCR settings for burst WRITE followed by burst READ: Latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
2. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns. Note that the CellularRAM
Workgroup 1.0 specification requires CE# to be clocked HIGH to terminate the burst.
3. Clock rates below 50 MHz (tCLK > 20ns) are allowed as long as tCSP specifications are met.
50
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 41:
Asynchronous WRITE Followed by Burst READ
tCLK
VIH
CLK VIL
A[19:0]
VIH
VIL
VIH
ADV#
VIL
VIH
LB#/UB# VIL
CE#
tWC
VALID ADDRESS
tAVS
tAVH
tVP
tCVS
tVS
tBW
tHD
tSP tHD
tCBPH2
tCW
tHD
tWR
tSP
tABA
tCSP
tOHZ
tAS
OE# VIL
DQ[15:0] VIH
IN/OUT VIL
tAW
tSP
VALID
ADDRESS
tVPH
VIH
VIL
VIH
VIH
WE# VIL
VOH
WAIT
VOL
tCKA
tWC
VALID ADDRESS
tAS
tWC
tWPH
tWP
tSP tHD
tCEW
tWHZ
High-Z
DATA
tDH
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DATA
tDW
VOH
VOL
tBOE
High-Z
tKOH
tACLK
High-Z
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE
VALID
OUTPUT
UNDEFINED
1. Non-default BCR settings for asynchronous WRITE followed by burst READ: Latency code
two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns. Note that the CellularRAM
Workgroup 1.0 specification requires CE# to be clocked HIGH to terminate the burst.
3. Clock rates below 50 MHz (tCLK > 20ns) are allowed as long as tCSP specifications are met.
51
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 42:
Asynchronous WRITE Followed by Burst READ – ADV# LOW
tCLK
VIH
CLK VIL
A[19:0]
VIH
VIL
VIH
ADV#
VIL
VIH
LB#/UB# VIL
CE#
tWC
VALID ADDRESS
tAVS
tAVH
tVP
tCVS
tVS
tBW
tHD
tSP tHD
tCBPH2
tCW
tHD
tWR
tSP
tABA
tCSP
tOHZ
tAS
OE# VIL
DQ[15:0] VIH
IN/OUT VIL
tAW
tSP
VALID
ADDRESS
tVPH
VIH
VIL
VIH
VIH
WE# VIL
VOH
WAIT
VOL
tCKA
tWC
VALID ADDRESS
tAS
tWC
tWPH
tWP
tSP tHD
tCEW
tWHZ
High-Z
DATA
tDH
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DATA
tDW
VOH
VOL
tBOE
High-Z
tKOH
tACLK
High-Z
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE
VALID
OUTPUT
UNDEFINED
1. Non-default BCR settings for asynchronous WRITE followed by burst READ: Latency code
two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of these conditions: a) clocked
CE# HIGH, or b) CE# HIGH for greater than 15ns. Note that the CellularRAM Workgroup 1.0
specification requires CE# to be clocked HIGH to terminate the burst.
3. Clock rates below 50 MHz (tCLK > 20ns) are allowed as long as tCSP specifications are met.
52
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 43:
Burst READ Followed by Asynchronous WRITE (WE#-Controlled)
tCLK
VIH
CLK
A[19:0]
VIL
tSP
VIH
tWC
tHD
VALID
ADDRESS
VALID
ADDRESS
VIL
tSP
tAW
tHD
tWR
VIH
ADV#
CE#
VIL
tHD
tCSP
VIH
tHZ
tABA
tCW
tCBPH1
VIL
tBOE
tOHZ
VIH
OE#
tAS
VIL
tSP
WE#
tHD
tOLZ
tWP
tWPH
VIH
VIL
tSP
tHD
tBW
VIH
LB#/UB#
VIL
tCEW
tKHTL
tCEW
tHZ
VOH
WAIT
High-Z
High-Z
VOL
DQ[15:0]
tKOH
tACLK
VOH
High-Z
VOL
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
tDH
VALID
INPUT
VALID
OUTPUT
READ Burst Identified
(WE# = HIGH)
Notes:
tDW
DON’T CARE
UNDEFINED
1. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns. Note that CellularRAM
Workgroup specification 1.0 requires CE# to be clocked HIGH to terminate the burst.
53
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 44:
Burst READ Followed by Asynchronous WRITE Using ADV#
CLK
A[19:0]
tCLK
VIH
VIL
VIH
tSP
VIL
tSP
VIH
ADV#
CE#
tHD
VALID
ADDRESS
VALID
ADDRESS
tVPH
tHD
WE#
tAVH
tVS
tVP
VIL
tAW
tHD
tCSP
VIH
tAS
tHZ
tABA
tCW
tCBPH1
VIL
tOHZ
tBOE
VIH
OE#
tAVS
VIL
tSP
VIH
VIL
VIH
tSP
tHD
tAS
tOLZ
tHD
tWP
tWPH
tBW
LB#/UB#
VIL
tCEW
VOH
WAIT
VOL
tKHTL
tCEW
High-Z
tACLK
DQ[15:0]
VOH
High-Z
VOL
tKOH
VALID
OUTPUT
READ Burst Identified
(WE# = HIGH)
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
tHZ
High-Z
tDW
tDH
VALID
INPUT
DON’T CARE
UNDEFINED
1. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than 15ns. Note that CellularRAM
Workgroup specification 1.0 requires CE# to be clocked HIGH to terminate the burst.
54
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 45:
A[19:0]
Asynchronous WRITE Followed by Asynchronous READ – ADV# LOW
VIH
VIL
VALID ADDRESS
VALID ADDRESS
tAW
VALID ADDRESS
tAA
tWR
VIH
ADV#
LB#/UB#
VIL
tBLZ
tBW
VIH
VIL
tCW
CE#
tBHZ
tCO
tCPH1
tHZ
VIH
VIL
tLZ
OE#
VIL
tWC
tWPH
tWP
WE#
WAIT
tOHZ
tOE
VIH
VIH
VIL
tHZ
tHZ
VOH
VOL
DQ[15:0] VIH
IN/OUT VIL
tOLZ
High-Z
DATA
tDH
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
DATA
High-Z
VOH
VALID
OUTPUT
VOL
tDW
DON’T CARE
UNDEFINED
1. When configured for synchronous mode (BCR[15] = 0), CE# must remain HIGH for at least
5ns (tCPH) to schedule the appropriate internal refresh operation. Otherwise, tCPH is only
required after CE#-controlled WRITEs.
55
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Timing Diagrams
Figure 46:
Asynchronous WRITE Followed by Asynchronous READ
A[19:0]
VIH
VIL
ADV#
LB#/UB#
CE#
VIH
VALID ADDRESS
tAVS
tVPH
VALID ADDRESS
tAVH
tAW
VALID ADDRESS
tAA
tWR
tAVS
tVP
tVS
tVP
VIL
VIH
VIL
tCW
VIH
tCPH1
tCVS
WE#
WAIT
tHZ
tCO
VIL
tLZ
tAS
OE#
tBHZ
tAADV
tBLZ
tBW
tCVS
tAVH
tOHZ
VIH
VIL
VIH
tAS
tWP
tWC
tWPH
tOLZ
VIL
VOH
VOL
DQ[15:0] VIH
IN/OUT VIL
Notes:
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
tOE
High-Z
DATA
tDH
DATA
tDW
VOH
VOL
VALID
OUTPUT
High-Z
DON’T CARE
UNDEFINED
1. When configured for synchronous mode (BCR[15] = 0), CE# must remain HIGH for at least
5ns (tCPH) to schedule the appropriate internal refresh operation. Otherwise, tCPH is only
required after CE#-controlled WRITEs.
56
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Package Dimensions
Package Dimensions
Figure 47:
54-Ball VFBGA
0.70 ±0.05
SEATING
PLANE
A
0.10 A
SOLDER BALL MATERIAL:
96.5% Sn, 3% Ag, 0.5% Cu
54X Ø0.37
SUBSTRATE MATERIAL:
PLASTIC LAMINATE
DIMENSIONS APPLY
TO SOLDER BALLS
POST REFLOW.
PRE-REFLOW BALL
DIAMETER IS 0.35
ON A 0.30 SMD
BALL PAD.
3.75
0.75
TYP
MOLD COMPOUND:
EPOXY NOVOLAC
BALL A1 ID
BALL A1 ID
4.00 ±0.05
BALL A6
BALL A1
8.00 ±0.10
6.00
3.00
0.75 TYP
1.875
3.00 ±0.05
1.00 MAX
6.00 ±0.10
Notes:
1. All dimensions in millimeters; MAX/MIN or typical, as noted.
2. Package width and length do not include mold protrusion; allowable mold protrusion is
0.25mm per side.
3. The MT45W1MW16BDGB uses “green” packaging.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
[email protected] www.micron.com Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. CellularRAM is a trademark of Micron Technology, Inc.
inside the U.S. and a trademark of Qimonda AG outside the U.S. All other trademarks are the property of their respective owners. This data
sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices.
Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
57
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Revision History
Revision History
Rev. H, Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .04/08
• Updated the MAX I/O voltage from 3.3V to 3.6V.
• Updated Figure 15 on page 21 and Figure 16 on page 22 to include the 0ns MIN spec.
• Changed tPU in Table 16 on page 36 from a MIN to a MAX value.
• Updated Figure 42 on page 52 to include the correct drawing.
Rev. G, Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/07
• Table 15, “Burst WRITE Cycle Timing Requirements,” on page 36: Corrected tCEM
parameter label from minimum to maximum.
Rev. F, Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/06
• Updated Rev. letter to F
Rev. F, Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .06/06
• Changed the title of Figure 10 to “Wired-OR Wait Configuration”
• Updated wording in the third paragraph of “WAIT Operation” on page 15 to the
following: “During a Burst cycle, CE# must remain asserted until the first data is valid.
Bringing CE# HIGH during this initial latency may cause data corruption.”
• Changed WAIT from “tCW” to “tCEW” in Figure 14
• Changed Min/Max columns from “-701” and “-708,” to “104 MHz” and “80 MHz” in
Table 5
• Changed “Output enable to Low-Z output” MIN value from 5 to 3 in Table 12
• Changed Min/Max columns from “-70” to “70ns” in Table 12
• Removed “CLK to DQ High-Z Output” and “CLK to Low-Z Output” rows from Table 13
• Changed “Output enable to Low-Z output” MIN value from 5 to 3 in Table 13
• Changed Min/Max columns from “-701” and “-708,” to “104 MHz” and “80 MHz” in
Table 13
• Changed Min/Max columns from “-70” to “70ns” in Table 14
• Changed Min/Max columns from “-701” and “-708,” to “104 MHz” and “80 MHz” in
Table 15
• Changed Min/Max columns from “-70” to “70ns” in Table 16
• Removed tWHZ lines and arrows in Figure 42
• Removed tWHZ lines and arrows in Figure 45
• Removed tWHZ lines and arrows in Figure 46
Rev. E, Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .02/06
• Changed document status to Production.
Rev. D, Preliminary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .01/06
• Changed VIH and VIL to VOH and VOL in Figure 27, 28, 29, 34, 35, 36, 37
• Updated Continuous burst READ and Standby specifications in “Features” section
• Updated document designator to Preliminary
• Deleted Tables 17–43.
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12/05
• Deleted “4-Word Burst READ Operation (with LB#/UB#)” timing diagram
• Changed file name to new standard: p23z16_b_cr1-0 to 16mb_burst_cr1_0_p23z
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/05
• Fixed exceptions to template (primarily minor formatting on page 1)
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
58
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
16Mb: 1 Meg x 16 Async/Page/Burst CellularRAM 1.0 Memory
Revision History
•
•
•
•
Page 1, Figure 1: changed E3 ball color to white
Page 1: changed multiple “-” to “–” for negative numbers (per style)
Eliminated holdover references to dual parts (pgs. 10 and 30)
Updated to state that “CLK must be held static LOW or HIGH” during async READ and
WRITE (pgs. 7, 10, 11, 14)
• Updated note 4 in Table 8 to eliminate reference to dual part (was “BCR[5:4] = 00b”)
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .08/05
• Initial release with “Advance” designation.
PDF: 09005aef81cb58ed/Source: 09005aef81c7a667
16mb_burst_cr1_0_p23z_2.fm - Rev. H 4/08 EN
59
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2005 Micron Technology, Inc. All rights reserved.
http://www.BDTIC.com/Micron
Fly UP