Superconductivity, broken symmetry and the Higgs mechanism in
by user
Comments
Transcript
Superconductivity, broken symmetry and the Higgs mechanism in
Superconductivity, broken symmetry and the Higgs mechanism in condensed matter Dirk van der Marel Université de Genève Università degli Studi di Pavia, 14 november 2013 The Making of Mass Detection of the Higgs particle at LHC Symmetry breaking and the Higgs mechanism in a Superconductor Leggett’s exciton and Other Collective Modes Università degli Studi di Pavia, 14 november 2013 Let There Be Mass • Mass causes: -Inertia -Gravitational field • Einstein noticed that you can’t tell the difference between these two effects • But Einstein didn’t explain what actually causes mass Painting by John Philipp (Berlin 1929) Università degli Studi di Pavia, 14 november 2013 1964: Higgs, Guralnik, Hagen, Kibble, Brout, and Englert explained what causes mass François Englert and Peter W. Higgs Nobel Prize for Physics 2013 As Higgs phrased it, "this phenomenon is just the relativistic analog of the plasmon phenomenon to which Anderson has drawn attention: that the scalar zero-mass excitations of a superconducting neutral Fermi gas become longitudinal plasmon modes of finite mass when the gas is charged." P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508. F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321. G. S. Guralnik, C. R. Hagen, and T. B. Kibble, Phys. Rev. Lett. 13 (1964) 585. P. W. Anderson, Phys. Rev. 112, 1900 (1958). Università degli Studi di Pavia, 14 november 2013 g A1 A2 A3 υeL eL eR g’ B Ge g g’ φ Electro-Weak Lagrangian L= 2 1 1 − ∂µ Aν − ∂ν Aµ + gAµ × Aν − ∂µ Bν − ∂ν Bµ 4 4 ( ) ( ) 2 Gauge Fields ______ $ ν '$ $ ν ' ' ig ig' − && e ))&∂µ − Aµ ⋅ σ L + Bµ )&& e )) 2 2 (% e ( % e (% Lepton -Field + L-G Coupling 2 2 2 Higgs-Field + 2 $ ' 1 ig ig' µ t λ t − &∂µ − Aµ ⋅ σ + Bµ )ϕ + (ϕ ϕ ) − (ϕ ϕ ) H-G Coupling 2% 2 2 ( 2 4 + ______ $ / ' -$ ν e ' & ϕ + ) ) −Ge ,&& eR − H.c.0 Lepton -Higgs Coupling ) 0 -% e (L &% ϕ )( . 1 Università degli Studi di Pavia, 14 november 2013 Spontaneous Symmetry Breaking Mexican hat Set a ball on the tip of a Mexican Hat. The ball decides “spontaneously” where to fall. There is no influence on the ball’s path of choice. The trough of the sombrero represents Higgs field lowest energy states. Higgs field amplitude Università degli Studi di Pavia, 14 november 2013 υeL W α A1+ iA2 W* α A1- iA2 <φ0> Z α gA3+g’B e <φ0 > = | µ/λ | mW= <φ0 > g / 2 mZ= <φ0 > (g2+g’2)1/2 / 2 electron mass = Ge<φ0 > A α g’A3-gB Symmetry breaking Higgs: <φ>=φ0 Gauge-fields, Aj, B : E = pc Coupling of φ and A1, A2, A3, B: mW c2= 80 GeV mZ c2= 91 GeV Università degli Studi di Pavia, 14 november 2013 1. 1. The universe is full of an invisible field called the Higgs field 2. When matter moves, the Higgs field “drags” on it – a bit like a celebrity being slowed down by admirers. 3. A particle’s mass is determined by how strongly it interacts with the Higgs field. ↓ 2. ↓ 3. Università degli Studi di Pavia, 14 november 2013 The Making of Mass à Detection of the Higgs particle at LHC Symmetry breaking and the Higgs mechanism in a Superconductor Leggett’s exciton and Other Collective Modes Università degli Studi di Pavia, 14 november 2013 THE LARGE HADRON COLLIDER (CERN) proton proton collider 14 TeV 27 km de circonférence 1 collision every 25 ns ATLAS -Higgs particle -CP violation -Quark-Gluon Plasma CMS Università degli Studi di Pavia, 14 november 2013 THE LARGE HADRON COLLIDER (CERN) Assembly of the CMS detector 15 The ATLAS dectector ATLAS-LHC-CERN Collaboration, Phys. Lett. B 716, 1 (2012). CMS-LHC-CERN Collaboration, Phys. Lett. B 716, 30 (2012). Symmetry breaking Higgs: <φ>=φ0 Amplitude Fluctuations around φ0 Higgs: mHc2 = 125 GeV Università degli Studi di Pavia, 14 november 2013 Università degli Studi di Pavia, 14 november 2013 The Making of Mass Detection of the Higgs particle at LHC à Symmetry breaking and the Higgs mechanism in a Superconductor Leggett’s exciton and Other Collective Modes Università degli Studi di Pavia, 14 november 2013 Back to 1911 mercury H. Kamerling Onnes Bardeen, Cooper, Schrieffer If electrons attract each other….. HOT COLD ….they form Cooper pairs when T < TBCS Center of mass momentum of j’th Cooper pair: Kj Università degli Studi di Pavia, 14 november 2013 which, once formed, condense immediately in a Bose-Einstein condensate of Cooper-pairs: T < TBCS << TBEC N Ky Kx Center of mass momentum of j’th Cooper pair: Kj = 0 Bose-Einstein condensate of Cooper-pairs Quantum Phenomena Magnetic Flux Penetrating a Superconductor Integer Multiples of h/2e Vortices Vortices interact with each other à vortex lattice (Abrikosov ) Università degli Studi di Pavia, 14 november 2013 Spontaneous symmetry breaking: Δ≠0 Δ gap amplitude P. W. Anderson, Phys. Rev. 112, 1900 (1958): Collective modes of Δ, phase and density Amplitudon mass: mH c2 ≅ 2Δ Università degli Studi di Pavia, 14 november 2013 Δ gap amplitude NbSe2 Università degli Studi di Pavia, 14 november 2013 Photon ωout Photon ωin Raman Spectroscopy = Photon Energy Loss Spectroscopy Superconductor Università degli Studi di Pavia, 14 november 2013 Photon ωout Photon ωin 2 K, SC 8 K, N 0.0 2.5 5.0 Superconductor NbSe2 EXP: R. Sooryakumar, M. V. Klein, PRL. 45 (1980) 660. 7.5 -1 Energy Loss (cm ) ωin - ωout (meV) THE: P. B. Littlewood & C. M. Varma, PRL. 47 (1981) 811. 29 Δ≠0 Amplitudon mass in NbSe2: mH c2 = 2 meV Università degli Studi di Pavia, 14 november 2013 P. W. Anderson, Phys. Rev. 112, 1900 (1958) Light particles in vacuum (photons) c = 3108 m/s Light particles inside a material (polaritons) v = c / ε1/2 ε = dielectric permeability Dirty metal Longitudinal: ωp,L = 0 Transverse: ωp,T= pv Superconductor with superfluid density ns Longitudinal: ωp,L = (4πe2 ns /me)1/2 Transverse: ωp,T = (p2v2 + ωp2)1/2 Plasmons (longitudinal) & Plasma-polaritons (transverse) 25 (meV) 15 ωEp 20 10 Transverse Longitudinal 5 0 0 250 500 750 1000 -1 p / h (cm ) 1250 1500 High Tc cuprates C J C J C J Ca Cu ϕi-1 , Ni-1 O Bi Sr Cu ϕi , N i Inter Layer Plasmon J 1 2 2& H = ( φi − φi+1 ) + ( N i − N i+1 ) ( 2 2C ' ⇒ ω p = JC ( "#φi , N j $% = iδi, j ) Università degli Studi di Pavia, 14 november 2013 Inter Layer Plasmon of Bi2Sr2CaCu2O8 ω = 0.19 meV K. Kadowaki et al., PRB 56, 5617 (1997) t= 2 ε (1+ ε ) iω d e 2 ε /c r= 1− ε 1+ ε Università degli Studi di Pavia, 14 november 2013 −1 " % ω p2 −1 Longitudinal modes - Energy Loss function: L (ω ) = Im = Im $$ −1'' ε (ω ) ω ω + i / τ ( ) # & La1.85Sr0.15CuO4 Tc= 30 K 2 ω p,S T < Tc ; = Δ(T ) τ ω p2 Undamped superfluid L(ω) L (ω ) ∝ δ (ω − ω p,S ) T > Tc ; ω pτ << 1 Overdamped ω p2τ L (ω ) ≅ ω J. H. Kim, DvdM et al., Physica C 247, 297 (1995). 0 5 10 15 ω (meV) Università degli Studi di Pavia, 14 november 2013 20 25 Transverse modes: Polariton dispersion 8K 30 K 33 K 25 Eω (meV) 20 La1.85Sr0.15CuO4 Tc= 30 K 15 10 0 ( ) p=c ω ε ω −1 5 0 250 500 750 1000 1250 1500 -1 p / h (cm ) D. van der Marel, J. of Superconductivity: Incorporating Novel Magnetism, 559, 17 (2004) . Symmetry breaking BCS: Δ≠0 Coupling of Δ and A : Photon mass in La1.85Sr0.15CuO4 = 6 meV Università degli Studi di Pavia, 14 november 2013 −1 " % ω p2 $ Energy Loss function: L (ω ) = Im $ −1'' # ω (ω + i / τ ) & ω pτ > 1 : Underdamped plasmon Electric field Current Bi2Sr2CaCu2O8 Inelastic Electron Scattering L(ω) Optical C. N. Presura, Ph D thesis, Rijksuniversiteit Groningen, (2003). S Nakai et al., Physica Scripta 41, 596 (1990). (eV) 0.90 Intra Layer Plasmon of Bi2Sr2CaCu2O8 Tc2 Tc 0.89 ωp T (K) H. J. A. Molegraaf et al., Science 295, 2239 (2002) The Making of Mass Detection of the Higgs particle at LHC Symmetry breaking and the Higgs mechanism in a Superconductor àLeggett’s exciton and Other Collective Modes Università degli Studi di Pavia, 14 november 2013 Leggett excitons in two-band superconductors A.J. Leggett, Progr Theor. Phys. 36, 901 (1966) ϕ1 , N 1 ϕ2 , N 2 Josephson coupling: Inertia Finite compressibility : Restoring potential J 1 2 2& φ − φ + N − N ( 1 2) ( 1 2) ( J 2 2κ 0 ' ⇒ ωL = κ0 ( "#φi , N j $% = iδi, j ) H= Università degli Studi di Pavia, 14 november 2013 Transverse Optical Plasmons in Bilayer Superconductors DvdM & A. Tsvetkov, Czech. J. Phys. 46, 3165 (1996) SmLaCuO4 CuO2 LaO LaO CuO2 C1 ω p,1 = J1C1 J1 Sm O2 Sm C2 ω p,2 = J 2C2 J2 CuO2 LaO LaO CuO2 C1 ω p,1 = J1C1 J1 Sm O2 Sm C2 ω p,2 = J 2C2 J2 CuO2 LaO LaO CuO2 C1 ω p,1 = J1C1 J1 Transverse optical plasmons & Leggett excitons DvdM & A. Tsvetkov, PRB 64, 024530 (2001) δ (ω ) ωT ε1(ω) ε1(ω) ωε2(ω) ωε2(ω) ωT L(ω) ωp,1 0 ε (ω ) = ε s ω p,1 2 2 2 2 ω − ω ω − ω ( p,1 ) ( p,2 ) ω 2 (ω 2 − ωT2 + i0 + ) ω p,2 ω L(ω) ωp,2 2 2 ; ω p,1 < ωT2 < ω p,2 0.5 1.0 1.5 2.0 ω (meV) D.Dulic et al. PRL 86, 4144 (2001) Transverse optical plasmons & Leggett excitons DvdM & A. Tsvetkov, PRB 64, 024530 (2001) 4 4 Plasmons Polaritons ωp (meV) 3 3 2 ωp,2 m2 2 ωT 1 1 ωp,1 m1 0 0.6 0.4 0.2 -1 pz/h (A ) 0.0 20 40 -1 p// / h (cm ) 60 0 Leggett excitons in two-band superconductors Symmetry breaking BCS: Δ1≠0 : Δ2≠0 2 Higgs bosons & 1 Leggett exciton Coupling of Δ1 , Δ2 and A : Two photon flavors in SmLaCuO4 : m1c2 = 0.8 meV m2c2 = 1.6 meV Università degli Studi di Pavia, 14 november 2013 Collective Modes in Superconductors Fluctuation of Appellation Parity Spin No. of gaps No. of bands Probe Observed ? |Δ| Higgs mode even 0 1 1 Raman y ϕ Josephson Plasmon Resonance odd 0 1 1 EELS/ Optics y ϕ Josephson Polariton odd 0 1 1 Optics y ϕu− ϕd Bound Paramagnon even 1 1 1 INS y Δs / Δ p BardasisSchrieffer odd 1 2 1 INS n Δd / Δ s BardasisSchrieffer even 0 2 1 Raman y ϕ1g − ϕ2g Leggett Exciton even 0 1 2 Raman y ϕ1g − ϕ2u Leggett Exciton / Transverse Optical JPR odd 0 1 2 Optics y E. S. Reich, Nature 495, 22 (2013) PRL 100, 205701 (2008) PRB 88, 060508(R) (2013) PRL 111, 057002 (2013) arXiv:1108.5207 49 Summary" " The mass of elementary particles is generated by the Higgs mechanism" " Unifying principles connect observations on elementary particles and phenomena in condensed matter. " " Photons in a superconducting material acquire a non-zero mass due to their coupling to the superconducting condensate. " " Under certain conditions a collective mode is observed, similar to the Higgs particle. " " These and many other phenomena in elementary particles and condensed matter are marvelous by the beauty and simplicity of the principles uniting them, despite conditions and energy scales being so vastly different." " V. L. Ginzburg, L. D. Landau, Zh. Eksp. Teor. Fiz. 20 (1950) 1064. J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108 (1957) 1175. P. W. Anderson, Phys. Rev. 112, 1900 (1958). Y. Nambu, Phys. Rev. Lett. 4 (1960) 380. J. Goldstone, Nuovo Cimento 19 (1961) 154. J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127 (1962) 965. J. Schwinger, Phys. Rev. 125 (1962) 397. P. W. Anderson, Phys. Rev. 130 (1963) 439. P. W. Higgs, Phys. Lett. 12 (1964) 132. P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508. F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321. G. S. Guralnik, C. R. Hagen, and T. B. Kibble, Phys. Rev. Lett. 13 (1964) 585. A. J. Leggett, Prog. Theor. Phys. 36 (1966) 901. S. Weinberg, Phys. Rev. Lett. 19 (1967) 1261. G. ’t Hooft, Nucl. Phys. B 35 (1971) 167. R. Sooryakumar, M. V. Klein, Phys. Rev. Lett. 45 (1980) 660. P. B. Littlewood, C. M. Varma, Phys. Rev. Lett. 47 (1981) 811. A. Bardasis and J. R. Schrieffer, Phys. Rev. 121 (1960) 1050 . D. van der Marel, Phys. Rev. B 51 (1995) 1147. K. Kadowaki, I. Kakeyam, M. B. Gaifullin, et al., Phys. Rev. B 56 (1997), 5617 D. van der Marel and A. A. Tsvetkov, Phys. Rev. B 64 (2001) 024530. D. van der Marel, J. of Superconductivity: Incorporating Novel Magnetism, 17 (2004) 559. ATLAS-Collaboration,Phys. Lett. B 716 (2012) 1. CMS-Collaboration, Phys. Lett. B 716 (2012) 30. Università degli Studi di Pavia, 14 november 2013