...

This report

by user

on
Category:

disease

167

views

Report

Comments

Transcript

This report
Bibliometric Analysis of the FP7 High Impact Project on
Advanced Immunization Technologies
November 2015
EXECUTIVE SUMMARY
A highly innovative project was launched October 1, 2011 to develop new vaccination
strategies: ADITEC (Advanced Immunization Technologies). This project, funded through the
7th Framework Programme of the European Union, aims to accelerate the development of
novel and powerful immunization technologies for the next generation of human vaccines.
Scientists from 43 partner institutions in 13 different countries collaborate in the ADITEC
project.
This report presents an analysis performed by ADITEC management on publications
resulting from research funded by the ADITEC project and bearing the ADITEC funding
acknowledgement.
The number of citations, as well as Journal Impact Factors (JIF) were used as an indicators
of research quality and co-authorship as an index of collaboration. This information was
gathered using Scopus and in few occasions, Publish or Perish in addition to SCImago
Journal & Country Rank.
HIGH NUMBER OF ADITEC PUBLICATIONS
To date, ADITEC projects have produced 148 publications. The number of publications
with an ADITEC project acknowledgement has increased each year since the beginning of
the project in 2012. This trend is to be expected to continue as the project gets underway
and new data becomes available.
ADITEC PUBLICATIONS ARE OF HIGH QUALITY
88 % of papers were published in journal with impact factors in Quartile 1 of their
respective subject categories. The total Journal Impact Factor (JIF) of all ADITEC
publications is 1010 with an average of 7.21. The highest JIF was 54.42.
Page 1
ADITEC PROJECT RESEARCH IS HIGHLY CITED
The quality of ADITEC funded research, as measured by raw number of citations, has been
maintained while output has grown. The raw citation impact of ADITEC project research
publications is 1645 in four years with and average number of 11.1 citations per paper.
ADITEC PROMOTES PARTNERSHIPS
Research funded through the ADITEC project is highly collaborative. About 72% of all
ADITEC publications were cross-sector (for example, between academic institutions and
the governmental organizations). 23% involved multiple ADITEC project partners and 69%
involved multiple organizations. 30 countries were represented in author affiliations.
KEY FINDINGS FROM THE ANALYSIS
As many published articles are still quite recent, the full impact of the research is not yet
identifiable. Over the next months and years as dissemination grows, the impact of this
project’s research will continue to grow beyond the numbers we see today.
ADITEC has published a total of 148 unique publications to date and continues to show
substantial growth. Research publications/year increased between 2012 and 2015, with a
50% increase from 2012 to 2013 and then a 67% increase from ’13 to 2014. (Data on 2015
through September only.)
# Publications per Year
60
50
40
30
20
10
55
38
2014
2015
33
22
0
2012
2013
Page 2
ADITEC publications appeared in 74 different peer reviewed journals. The total Journal
Impact Factor (JIF) of all ADITEC publications is 1010 with an average of 7.21.
Number of Articles Published and Title
of Journals
1
1
1
1
1
1
2
3
2
2
2
2
1
1
1
6
2
1
1
1
3
5
1
2
1
1
1
1
1
1
1
1
2
5
1
New England J Medicine
Nature
Nature Reviews Immunology
Cell
Nature Biotechnology
Nature Reviews: Microbiology
Immunity
Journal of Experimental Medicine
J Clinical Investigation
Immunological Reviews
Cell Host Microbe
Trends in Immunology
American Journal of Respiratory and Critical Care
Medicine
Nature Protocols
J. of Allery and Clinical Immunology
PNAS
Cold Spring Harbor Perspectives in Medicine
PloS Pathogens
Journal of Controlled Release
Trends in Microbiology
Current Opinion in Immunology
Science Translational Medicine
Current Opinion in Biotechnology
Seminars in Immunology
European Respiratory Society Monograph
Molecular Therapy
Mucosal Immunology
AIDS
Seminars in Immunopathology
Retrovirology
Arteriosclerosis, Thrombosis and Vascular Biology
Nanomedicine
J Internal Medicine
J Infectious Disease
Clinical Science
Impact
Factor
54.42
42.351
33.836
33.116
23.268
21.182
19.748
13.85
13.765
12.909
12.194
12.031
11.986
11.74
11.248
9.681
9.63
9.127
8.078
7.91
7.867
7.8
7.711
7.25
7.125
7.04
6.963
6.557
6.482
6.47
6.338
5.824
5.785
5.778
5.629
Page 3
7
2
2
2
1
2
2
1
17
2
2
1
2
15
2
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
7
1
Journal of Immunology
J Virology
European Journal of Immunology
Journal of Biological Chemistry
Biochimica et Biophys Acta
Annals of the New York Academy of Sciences
Expert Review of Vaccines
Immunology and Cell Biology
PloS one
Infection and Immunity
Applied and Environmental Microbiology
Pharmaceutical Research
Microbial Cell Factories
Vaccine
Immunobiology
Cytometry
Biogerontology
Current Opinion in Pulmonary Medicine
Journal of Biomedical Optics
Molecular Immunology
Lancet Respiratory Medicine
Genes And Immunity
International Journal of Tuberculosis and Lung Disease
BMC Microbiology
BMC Infectious Disease
Tuberculosis (Edinb)
Sensors
International Archives of Allergy and Immunology
Immunology Letters
Archives of Dermatological Research
J Vaccines and Vaccination
Protein Expression and Purification
Viral Immunology
ASMscience
Frontiers of Immunology
EBioMedicine
5.52
5.076
4.97
4.773
4.66
4.375
4.217
4.147
4.092
4.074
3.952
3.952
3.55
3.458
3.205
3.066
3.01
2.957
2.945
2.917
2.917
2.913
2.731
2.73
2.56
2.54
2.457
2.433
2.367
1.902
1.8
1.695
1.636
unknown
unknown
unknown
Page 4
Most ADITEC papers were published in journals with impact factors in Quartile 1 of their
respective subject categories.
Subject Category Quartile Counts
Quartile 1
131
88%
Quartile 2
12
7%
Quartile 3
2
1%
Quartile 4
2
1%
ADITEC papers are highly-cited, with 1645 raw citations in four years for the 148 articles
published to date with an average citation per paper of 11.1. The most cited article, cited
118 times, was published in 2012 in the Journal of Experimental medicine. 54% of all
ADITEC publications appeared in open access journals.
Number of Raw Citations per Year
57
2012
2013
315
2014
2015
1645
Total
Citations
716
557
More than two-thirds (71%) of ADITEC papers were collaborative between institutions,
with nearly a quarter of the published research resulting from collaborations of more than
one ADITEC partner (24%). About 49% of all published research has resulted from
international collaborations.
Page 5
Over three-quarters (82%) of all ADITEC papers were published by researchers
affiliated with more than one sector.
Author Affiliations by Sector
120
academic
31
corp
69
govt
14
medical
33
other
0
50
100
150
Scientists from 30 different countries involved in authoring papers resulting from
ADITEC sponsored research. Below is a diagram identifying the country affiliations of
authors represented and the number of ADITEC publications affiliated with that country.
Frequency and Distribution of ADITEC Collaborators
Page 6
Scientific Publications Resulting From ADITEC Support
1. Andersen P and Joshua S. Woodworth Tuberculosis vaccines – rethinking the current paradigm
Trends in Immunology , 35 (8) 387 - 395 DOI: 10.1016/j.it.2014.04.006
2. Andersen P, Urdahl K. TB vaccines; promoting rapid and durable protection in the lung. Curr
Opin Immunol. 2015 Aug;35:55-62. doi: 10.1016/j.coi.2015.06.001.
3. Andersen, P., S. H.E. Kaufmann: Novel vaccination strategies against tuberculosis. Cold Spring
Harb Perspect Med4(6): a018523. (2014), doi: 10.1101/cshperspect.a018523.
4. Bardelli M, Alleri L, et al. Ex Vivo Analysis of Human Memory B Lymphocytes Specific for A and B
Influenza Hemagglutinin by Polychromatic Flow-Cytometry. PLoS ONE 8(8): e70620. (2013)
doi:10.1371/journal.pone.0070620.
5. Boer MC, et al. CD8+ Regulatory T Cells, and Not CD4+ T Cells, Dominate Suppressive Phenotype
and Function after In Vitro Live Mycobacterium bovis-BCG Activation of Human Cells. PLoS One.
9(4) :e94192;2014 DOI:10.1371/journal.pone.0094192
6. Boer, MC., et al, CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated
human CD8+CD39+ regulatory T cells European Journal of Immunology 29 MAY 2013 DOI:
10.1002/eji.20124328.
7. Boianelli A, et al A A Stochastic Model for CD4+ T Cell Proliferation and Dissemination Network
in Primary Immune Response PLoS One. 2015 Aug 24;10(8):e0135787. doi:
10.1371/journal.pone.0135787
8. Bøje S, et al. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFNg+ CMI responses protects against a genital infection in minipigs. Immunology and Cell Biology
2015 Aug 13. doi: 10.1038/icb.2015.79
9. Bonavita E,et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent
inflammation in cancer. Cell.2015 Feb 12;160(4):700-14. doi: 10.1016/j.cell.2015.01.004.
10. Boon M., et al. Short-term high-fat diet increases macrophage markers in skeletal muscle
accompanied by impaired insulin signaling in healthy male subjects. Clin Sci (Lond). 2015 Jan
1;128(2):143-51. doi: 10.1042/CS20140179.
11. Boraschi D., et al. The gracefully aging immune system. Sci Transl Med 2013;185:185ps8
12. Bottazzi B, et al .Recognition of Neisseria meningitidis by the Long Pentraxin PTX3 and Its Role as
an
Endogenous
Adjuvant.
PLoS
One. 2015
Mar
18;10(3):e0120807.
doi:
10.1371/journal.pone.0120807.
13. Bottazzi, B. et al. Multiplexed label-free optical biosensor for medical diagnostics. Journal of
biomedical optics 19, 17006, doi:10.1117/1.JBO.19.1.017006 (2014).
14. Calabro, S, et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none
of the individual components induce a comparable adjuvant effect Vaccine 16 May 2013 doi:
10.1016/j.vaccine.2013.05.007
15. Canovi, M. et al., A new surface plasmon resonance-based immunoassay for rapid, reproducible
and sensitive quantification of pentraxin-3 in human plasma. Sensors (Basel). 14, 10864-75, doi:
10.3390/s140610864. 2014.
Page 7
16. Capone S, et al. Fusion of HCV Nonstructural Antigen to MHC Class II-associated Invariant Chain
Enhances T-cell Responses Induced by Vectored Vaccines in Nonhuman Primates. Mol Ther.2014
May;22(5):1039-47. doi: 10.1038/mt.2014.15
17. Ciabattini A, Pettini E, and Medaglini D. CD4+ T Cell Priming as Biomarker to Study Immune
Response to Preventive Vaccines Front Immunol. 2013; 4: 421. doi: 10.3389/fimmu.2013.00421
18. Ciabattini A, Prota G, Christensen D, Andersen P, Pozzi G, Medaglini D. Characterization of the
antigen-specific CD4+ T cell response induced by prime-boost strategies with CAF01 and CpG
adjuvants administered by the Intranasal and Subcutaneous Routes. Front Immunol. 2015 Aug
28;6:430. doi: 10.3389/fimmu.2015.00430
19. Cirelli E, et al, et al. Retinoic Acid Promotes Mucosal and Systemic Immune Responses after
Mucosal Priming and Systemic Boosting in Mice. J Vaccines 6: 265. (2015) doi:10.4172/21577560.1000265
20. Cliff JM, et al. The human immune response to tuberculosis and its treatment: a view from the
blood. Immunol Rev. 2015 Mar;264(1):88-102. doi: 10.1111/imr.12269
21. Climent N, et al Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes
induces HIV-1-specific T cell responses Vaccine. 2014 Oct 29;32(47):6266-76. doi:
10.1016/j.vaccine.2014.09.010
22. Commandeur S, et al. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium
tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method. PLoS One.
2014 Jun 6;9(6):e99203. doi: 10.1371/journal.pone.0099203.
23. Commandeur, S et al. The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen
Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice.
Vaccine. 2014 Jun 17;32(29):3580-8. doi: 10.1016/j.vaccine.2014.05.005.
24. Cunha, C. et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. New Engl J
Med. 370, 421-432, doi:10.1056/NEJMoa1211161 2014
25. Dadaglio G, et al and C. Leclerc. Antigen targeting to CD11b+ DCs in association with TLR4/TRIF
signalling promotes strong CD8+ T cell responses. J. Immunol. 2014,193, 1787-1798 doi:
10.4049/jimmunol.1302974.
26. Daigo, K., Mantovani, A. & Bottazzi, B. The yin-yang of long pentraxin PTX3 in inflammation and
immunity. Immunology letters, 2014 Sep;161(1):38-43 doi:10.1016/j.imlet.2014.04.012 2014.
27. Daleke-Schermerhorn Mh, et al. Decoration of outer membrane vesicles with multiple antigens
using an autotransporter approach. Appl Environ Microbiol. 2014 Jul 18. pii: AEM.01941-14
28. De Gregorio E, Rappuoli R. From empiricism to rational design: a personal perspective of the
evolution of vaccine development. Nat Rev Immunol. 14(7):505-14. doi:10.1038/nri3694.
29. de Paus RA, et al The influence of influenza virus infections on the development of tuberculosis.
Tuberculosis (Edinb). 93:338-42;2013.
30. Dong, H et al. Induction of protective immunity against Mycobacterium tuberculosis by delivery of
ESX antigens into airway dendritic cells. Mucosal Immunology May;6(3):522-34. , 2012 doi:
10.1038/mi.2012.92.
31. Doni A et al, Mantovani, A. Interactions of the humoral pattern recognition molecule PTX3 with
the
complement
system.
Immunobiology,
2012.
Nov;217(11):1122-8.
doi:
10.1016/j.imbio.2012.07.004
Page 8
32. Doni A, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in
a tissue repair mode. J Exp Med. 2015 Jun 1;212(6):905-25. doi: 10.1084/jem.20141268 .
33. Dorhoi A, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung
neutrophil recruitment. J Clin Invest. 2013 Nov 1;123(11):4836-48.
34. Dorhoi A, et al. Reverse Translation in Tuberculosis: Neutrophils Provide Clues for Understanding
Development of Active Disease. Front Immunol. 2014 Feb 5;5:36
35. Dormitzer P et al, Rappuoli, R, Structural vaccinology starts to deliver. Nature Reviews
Microbiology, 2012. 10, 807-813 December 2012 doi:10.1038/nrmicro2893
36. Duque-Correa, M.A., et al Macrophage arginase-1 controls bacterial growth and pathology in
hypoxic
tuberculosis
granulomas.
Proc.
Natl.
Acad.
Sci.
USA
www.pnas.org/cgi/doi/10.1073/pnas.1408839111 (2014)
37. Dutruel C et al Vaccine. TRANSVAC workshop on standardisation and harmonisation of analytical
platforms for HIV, TB and malaria vaccines: 'How can big data help?'.2014 Jul 31;32(35):4365-8.
doi: 10.1016/j.vaccine.2014.06.014. Epub 2014 Jun 17.
38. Elliott TOJP, et al Dysregulation of Apoptosis Is a Risk Factor for Tuberculosis Disease
Progression J Infect Dis. first published online April 20, 2015 DOI:10.1093/infdis/jiv238
39. Epaulard O, et al. Macrophage- and Neutrophil-Derived TNF-α Instructs Skin Langerhans Cells To
Prime Antiviral Immune Responses.
J Immunol. 2014 Sep 1;193(5):2416-26. doi:
10.4049/jimmunol.1303339.
40. Farinacci, M., S. Weber, S.H.E. Kaufmann: The recombinant tuberculosis vaccine rBCG
ΔureC::hly+ induces apoptotic vescicles for improved priming of CD4+ and CD8+ T cells.
Vaccine, 30: 7608-7614 2012
41. Finco O. and Rappuoli R Designing Vaccines for the Twenty-First Century Society
Immunol. 2014; 5: 12. Jan 23, 2014doi: 10.3389/fimmu.2014.00012
Front
42. Fiorino, F., etal, Prime-boost strategies in mucosal immunization affect local IgA production and
the type of Th response. Front Immunol. 2013; 4: 128 doi: 10.3389/fimmu.2013.00128
43. Galdiero MR et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology.
2013 Nov;218(11):1402-10. doi: 10.1016/j.imbio.2013.06.003.
44. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity.
2013 Dec 12;39(6):1003-18. doi: 10.1016/j.immuni.2013.11.010.
45. Geluk A, et al Front Immunol. Innovative Strategies to Identify M. tuberculosis Antigens and
Epitopes Using Genome-Wide Analyses. Society Front Immunol 2014 Jun 25;5:256. doi:
10.3389/fimmu.2014.00256. eCollection 2014.
46. Goeijenbier M, et al, BMC Microbiol. 2014;14:134. Activation of coagulation and tissue fibrin
deposition in experimental influenza in ferrets. doi: 10.1186/1471-2180-14-134
47. Guenounou, S., et al. OMIP-016: Characterization of antigen-responsive macaque and human Tcells. Cytometry Part A, 83A:182–184. 2013 doi: 10.1002/cyto.a.22233
48. Haks MC, et al. Focused human gene expression profiling using dual-color reverse transcriptase
multiplex ligation-dependent probe amplification (dcRT-MLPA). Vaccine, 2015 Vaccine. 2015
Apr 24. pii: S0264-410X(15)00518-6. doi: 10.1016/j.vaccine.2015.04.054
Page 9
49. Hell Knudsen NP, et al. New TB vaccine with high predicted population coverage and
compatibility with modern diagnostics. PNAS 111(3):1097-1101, 2014.
50. Hervas-Stubbs S, et al. Conventional but not plasmacytoid dendritic cells foster the systemic
virus-induced type I IFN response needed for efficient CD8 T cell priming. J Immunol. 2014 Aug
1;193(3):1151-61. doi: 10.4049/jimmunol.1301440.
51. Hjelm A, et al Autotransporter-based antigen display in bacterial ghosts. Appl Environ Microbiol.
2015 Jan; 81(2):726. doi: 10.1128/AEM.02733-14.
52. Hoang T, et al, Protein Energy Malnutrition during Vaccination Has Limited Influence on Vaccine
Efficacy but Abolishes Immunity if Administered during Mycobacterium tuberculosis Infection
Infection and Immunity. 83(5): 2118-26 doi: IAI.03030-14.
53. Inforzato A, et al. PTX3 as a paradigm for the interaction of pentraxins with the Complement
system. Semin Immunol. 2013 Jun 6 :. doi: 10.1016/j.smim.2013.05.002.
54. Inforzato Aet al The“sweet”side of a long pentraxin:howglycosylationaffects PTX3 functions in
innate immunity and inflammation. Front.Immun. 2013 . doi: 10.3389/fimmu.2012.00407
55. Jaillon S et al. Prototypic long pentraxin PTX3 is present in breast milk, spreads in tissues, and
protects neonate mice from Pseudomonas aeruginosa lung infection.J Immunol. 2013 Aug
15;191(4):1873-82. doi: 10.4049/jimmunol.1201642
56. Jaillon S, et al. The long pentraxin PTX3 as a key component of humoral innate immunity and a
candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol. 2014;165:165-78.
doi: 10.1159/000368778. PMID: 25531094.
57. Jaillon S. etal., Neutrophils in innate and adaptive immunity, Seminars in Immunopathology July
2013, Volume 35, Issue 4, pp 377-394 DOI 10.1007/s00281-013-0374-8
58. Jaillon, S. et al. The Humoral Pattern Recognition Molecule PTX3 Is a Key Component of Innate
Immunity
against
Urinary
Tract
Infection.
Immunity
40,
621-632,
doi:10.1016/j.immuni.2014.02.015 2014
59. Jiménez-Sánchez G, etal. Preparation and in vitro evaluation of imiquimod loaded polylactidebased micelles as potential vaccine adjuvants Pharm Res. 2015 Jan;32(1):311-20. doi:
10.1007/s11095-014-1465-5.
60. Job ER, , et al Serum Amyloid P Is a Sialylated Glycoprotein Inhibitor of Influenza A Viruses. 2013
PLoS ONE 8(3): e59623. doi:10.1371/journal.pone.0059623
61. Job, E. R. et al. A single amino acid substitution in the hemagglutinin of H3N2 subtype influenza A
viruses is associated with resistance to the long pentraxin PTX3 and enhanced virulence in mice. J
Immunol 192, 271-281, doi:10.4049/jimmunol.1301814 2014
62. Jong et al. A structurally informed autotransporter platform for efficient heterologous protein
secretion and display. Microbial Cell Factories, 2012. Jun 18;11:85. doi: 10.1186/1475-285911-85
63. Jong W. et al An autotransporter display platform for the development of multivalent
recombinant bacterial vector vaccines.
Microb Cell Fact. 2014 Nov 25;13(1):162
doi:10.1186/s12934-014-0162-8
64. Joosten SA, Fletcher HA, Ottenhoff THM A Helicopter Perspective on TB Biomarkers: Pathway
and Process Based Analysis of Gene ExpressionData Provides New Insight into TB Pathogenesis.
PLoS ONE 8(9) (2013): e73230. doi:10.1371journal.pone.0073230
Page 10
65. Kakeda M, et al. Innate immune cells express IL-17A/F in acute generalized exanthematous
pustulosis and generalized pustular psoriasis. Arch Dermatol Res. 2014, 306:933-8. doi:
10.1007/s00403-014-1488-0
66. Karlsen K, et al. A stable nanoparticulate DDA/MMG formulation acts synergistically with CpG
ODN 1826 to enhance the CD4⁺ T-cell response. Nanomedicine 2014. 2014 Dec;9(17):2625-38.
doi: 10.2217/nnm.14.197
67. Kaufmann SH Tuberculosis vaccine development at a divide. Curr Opin Pulm Med.2014
May;20(3):294-300. doi: 10.1097/MCP.0000000000000041.
68. Kaufmann SH, et al. The BCG replacement vaccine VPM1002: from drawing board to clinical
trial.Expert Rev Vaccines. 2014 May;13(5):619-30. doi: 10.1586/14760584.2014.905746.
69. Kaufmann SH, et al. Progress in tuberculosis vaccine development and host-directed therapies-a
state of the art review. Lancet Respir Med. 2014 Apr;2(4):301-320. doi: 10.1016/S22132600(14)70033-5
70. Kaufmann SH, McElrath MJ, Lewis DJ, Del Giudice G. 2014. Challenges and responses in human
vaccine development. Curr Opin Immunol. 28:18-26
71. Kaufmann, S.H.E., A. Dorhoi: Inflammation in tuberculosis: interactions, imbalances and
interventions. (Special issue: Host pathogens) Curr. Opin. Immunol. 25:441–449 2013
72. Kaufmann, S.H.E.: Tuberculosis vaccine development: strength lies in tenacity. Trends Immunol.
33: 373–379 2012
73. Kaufmann, SHE and Gengenbacher, M.. Recombinant live vaccine candidates against
tuberculosis. Current Opinion in Biotechnology, 2012. . Dec;23(6):900-7. doi:
10.1016/j.copbio.2012.03.007
74. Kaufmann, SHE., Tuberculosis vaccines: Time to think about the next generation. Seminars in
Immunology 21 May 2013 doi.org/10.1016/j.smim.2013.04.006
75. Kinnear E, Caproni LJ, Tregoning JS+. 2015. A Comparison of Red Fluorescent Proteins to Model
DNA Vaccine Expression by Whole Animal In Vivo Imaging PLoS One. 2015 Jun 19;10
(6):e0130375. doi: 10.1371/journal.pone.0130375
76. Knaul JK, etal. Lung-residing myeloid-derived suppressors display dual functionality in murine
pulmonary tuberculosis.. Am J Respir Crit Care Med. 2014 Nov 1;190(9):1053-66. doi:
10.1164/rccm.201405-0828OC
77. Knezevic I, Moorthy V, Sheets R. WHO consultation on clinical evaluation of vaccines, 17-18 July
2014, WHO Headquarters, Geneva, Switzerland. Vaccine. 2015 Apr 21;33(17):1999-2003. doi:
10.1016/j.vaccine.2015.01.056
78. Knudsen NP, et alTuberculosis vaccine with high predicted population coverage and
compatibility with modern diagnostics. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1096-101.
doi: 10.1073/pnas.1314973111.
79. Korsholm KS et al. Induction of CD8+ T-cell responses against subunit antigens by the novel
cationic liposomal CAF09 adjuvant. Vaccine. 2014 Jun 30;32(31):3927-35. doi:
10.1016/j.vaccine.2014.05.050. Epub 2014 May 28
80. Lachmandas E The effect of hyperglycaemia on in vitro cytokine production and macrophage
infection with Mycobacterium tuberculosis
PLoS One. 2015 Feb 9;10(2):e0117941
doi:10.1371/journal.pone.0117941.
Page 11
81. Legaz S, et al. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to
functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo. Protein
Expr Purif. 2015 Sep;113:94-101. doi: 10.1016/j.pep.2015.05.009
82. Lehner T and Wang Y. 2013. The role of stress-induced activation of HSP70 in dendritic cells,
CD4+ T cell, memory and adjuvanticity. Chapter in book entitled Moonlighting Cell Stress Proteins
in Microbial Infections, Heat Shock Proteins. Ed. B Henderson. Springer Science.
83. Lehner T and Wang Y. 2013. The potential mechanism of HSP70-derived stimulating peptide
epitope in autoimmune Vitiligo. Sci. Trans. Med. (letter) 5:174.
84. Lemoine S, et al Dectin-1 co-activation of neonatal DCs corrects TLR-dependent TH1 deficiency. J
Allerg Clin Immunol. 2015, doi:10.1016/j.jaci.2015.02.030
85. Lewis DJM, et al 2013. The effect of vaginal immunization in women with HIVgp140 and HSP70
on HIV-1 replication, innate and T cell adaptive immunity. J.Virol. 9 July 2014 ,
doi:10.1128/JVI.01621-14
86. Lindenstrøm T, Knudsen NP, Agger EM, Andersen, P., Control of Chronic Mycobacterium
tuberculosis Infection by CD4 KLRG1- IL-2-Secreting Central Memory Cells.P.J Immunol. 2013 Jun
15;190(12):6311-9. doi: 10.4049/jimmunol.1300248
87. Maertzdorf J et al, Molecular signatures for vaccine development Vaccine 2015 Apr 6. pii:
S0264-410X(15)00394-1. doi: 10.1016/j.vaccine.2015.03.075.
88. Maertzdorf, J et al. Common Patterns and disease-related signatures in tuberculosis and
sarcoidosis. PNAS, 2012 May 15;109(20):7853-8. doi: 10.1073/pnas.1121072109
89. Maertzdorf, J et al. Enabling biomarkers for tuberculosis control .The International Journal of
Tuberculosis and Lung Disease. 2012. 16:1140-1148
90. Maertzdorf, J., S. H.E. Kaufmann, J. Weiner III: Toward a unified biosignature for tuberculosis.
Cold Spring Harb Perspect Med, doi: 10.1101/cshperspect.a018531. 4(6): a018531 (2014)
91. Mantovani A and M Locati Tumor-Associated Macrophages as a Paradigm of Macrophage
Plasticity, Diversity, and Polarization: Lessons and Open Questions Arterioscler Thromb Vasc
Biol 2013;33:1478-1483 doi:10.1161/ATVBAHA.113.300168
92. Mantovani A, etal. The long pentraxin PTX3: a paradigm for humoral pattern recognition
molecules. Ann N Y Acad Sci. 2013 May doi: 10.1111/nyas.12043
93. Mastelic Gavillet B, et al MF59 Mediates Its B Cell Adjuvanticity by Promoting T Follicular Helper
Cells and Thus Germinal Center Responses in Adult and Early Life. J Immunol. 2015 May
15;194(10):4836-45. doi: 10.4049/jimmunol.1402071. Epub 2015 Apr 13
94. McElhaney J.E., Coler R.N., Baldwin S.L., Immunologic correlates of protection and potential role
for adjuvants to improve influenza vaccines in older adults, Expert Review Vaccines 12(7), 759766(2013)
95. Michelini Z, et al Murine granulocyte 1 macrophage colony stimulating factor expressed from a
bicistronic SIV-based Integrase defective lentiviral vector does not enhance T-cell responses in
mice. Viral Immunology 27:512-520, 2014. doi: 10.1089/vim.2014.0062.
96. Mihret, A., et al Combination of gene expression patterns in whole blood discriminate between
tuberculosis infection states. BMC Infect. Dis. 14:257. doi: 10.1186/1471-2334-14-257 (2014)
Page 12
97. Negri DR, et al. Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral
vector-based vaccines. Retrovirology. 2012;9:69 2012 doi: 10.1186/1742-4690-9-69
98. Nouailles G, et al CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic
inflammation in tuberculosis. J Clin Invest. 2014 Mar 3;124(3):1268-82. doi: 10.1172/JCI72030
99. Olafsdottir T, Lindqvist M, Harandi AM. Molecular signatures of vaccine adjuvants.
Vaccine. 2015 May 16. pii: S0264-410X(15)00596-4. doi: 10.1016/j.vaccine.2015.04.099.
100. Olsen AW et al, Protection Against Chlamydia trachomatis Infection and Upper Genital Tract
Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the
Major Outer Membrane Protein J Infect Dis.2015 Mar 6. pii: jiv137 [Epub ahead of print].
101. Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted
by human antigen targets in a urogenial Chlamydia trachomatis mouse model. Vaccine 32(6):
685-692, 2014
102. Ottenhoff T H.M.and Kaufmann S.H.E State of the art in vaccine development against TB
European Respiratory Society Monograph, Vol. 58. 2012. P.59-71 Published online November
29, 2012 doi:10.1183/1025448x.10015912
103. Ottenhoff TH et al. Genome-wide expression profiling identifies type 1 interferon response
pathways
in
active
tuberculosis.
PLoS
One.
2012;7(9):e45839.
doi:
10.1371/journal.pone.0045839
104. Ottenhoff TH. New pathways of protective and pathological host defence to mycobacteria. Trends
Microbiol. 2012 Sep;20(9):419-28. doi: 10.1016/j.tim.2012.06.00
105. Ottenhoff, T. H. M The knowns and unknowns of the immunopathogenesis of tuberculosis [State of
the art] The International Journal of Tuberculosis and Lung Disease, Volume 16,Number 11, 1
November 2012 , pp. 1424-1432 doi.org/10.5588/ijtld.12.0479
106. Pappas L et al, Rapid development of broadly influenza neutralizing antibodies through
redundant mutations. Nature.2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764.
Epub 2014 Oct 5.
107. Pavot V, Rochereau N, Lawrence P, Girard MP, Genin C, Verrier B, Paul S et al. Recent progress in
HIV vaccines inducing mucosal immune responses AIDS. 2014 Jul 31;28(12):1701-18
2. doi:10.1097/QAD.0000000000000308
108. Pavot. V, Charlotte Primard, Bernard Verrier et al., Encapsulation of Nod1 and Nod2 receptor
ligands into poly(lactic acid) nanoparticles potentiates their immune properties. Journal of
Controlled Release 2013 Volume 167, Issue 1, 10 April 2013, p.60–67
doi.org/10.1016/j.jconrel.2013.01.015
109. Pettini E, et al. Vaginal immunization to elicit primary T-cell activation and dissemination PLoS
One. 2013 Dec 5;8(12):e80545. doi: 10.1371/journal.pone.0080545.
110. Pritz T, et al. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol. 2015
Mar;45(3):738-46 . doi: 10.1002/eji.201444878. .
111. Prota G, et al Peptide-specific population identified by MHC class II tetramers differentiates into
several T helper subtypes upon immunization with CAF01 adjuvanted H56 tuberculosis vaccine
formulation. Vaccine 2015, doi: 10.1016/j.vaccine.2015.09.024
112. Rappuoli R, Medaglini D. Big Science for Vaccine Development. Vaccine. 2014 Jun 25. pii:
S0264-410X(14)00872-X. doi: 10.1016/j Vaccine.2014.06.071.
Page 13
113. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12288-93. doi: 10.1073/pnas.1402981111
114. Rappuoli, R, Medaglini D. ADITEC: Joining Forces for Next-Generation Vaccines. Science
Translational Medicine 2012 Apr 4;4(128):128cm4. doi: 10.1126/scitranslmed.3003826
115. Rasid O, et al Enhanced inflammatory potential of CD4+ T cells that lack proteasome
immunosubunit expression in a T-cell transfer-based colitis model. PlosOne 2014 9(4):e95378
doi: 10.1371/journal.pone.0095378.
116. Richard M, et al. Low Virulence and Lack of Airborne Transmission of the Dutch Highly
Pathogenic Avian Influenza Virus H5N8 in Ferrets. (2015) PLoS ONE 10(6): e0129827.
doi:10.1371/journal.pone.0129827
117. Ronacher K Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS anddiabetes
mellitus Immunol Rev. 2015 Mar;264(1):121-37. doi: 10.1111/imr.12257.
118. Rossi A, et al. Optimization of mucosal responses after intramuscular immunization with
integrase defective lentiviral vector. PLoS One. Sep 11;9(9):e107377, 2014.
Doi:10.1371/journal.pone.0107377
119. Russell RF, et al. The partial attenuation of Small Hydrophobic (SH) gene deleted RSV is
associated with elevated IL-1β responses. J. Virol. 89: 8974-81.2015 doi: 10.1128/JVI.01070-15
120. Saiga H, et al. The Recombinant BCG ΔureC::hly Vaccine Targets the AIM2 Inflammasome to
Induce Autophagy and Inflammation. J Infect Dis. 2014 Dec 11. pii: jiu675
121. Saletti, G., et al, C., Enzyme-linked immunospot assays for direct ex vivo measurement of vaccineinduced human humoral immune responses in blood. Nature Protocols 2013 Jun;8(6):1073-87.
doi: 10.1038/nprot.2013.058
122. Schiraldi M et al,. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by
forming a complex with CXCL12 and signaling via CXCR4 J Exp Med. 2012 Mar 12; 209(3):55163. doi: 10.1084/jem.20111739
123. Sloot R, et al. Biomarkers can identify pulmonary tuberculosis in HIV-infected drug users months
prior to clinical diagnosis. EBioMedicine, in press doi: 10.1016/j.ebiom.2014.12.001.
124. Spensieri F, et al. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after
vaccination, exert helper function, and predict antibody responses. Proc Natl Acad Sci U S A. 2013
Aug 27;110(35):14330-5. doi: 10.1073/pnas.1311998110
125. Tientcheu LD, et al. Differential transcriptomic and metabolic profiles of M. africanum- and M.
tuberculosis-infected patients after, but not before, drug treatment. Genes Immun. 2015 Jun 4.
doi: 10.1038/gene.2015.21.
126. Tregoning J, Kinnear E Using Plasmids as DNA Vaccines for Infectious Diseases Microbiolspec
November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0028-2014
127. van den Brand JM,et al Comparision of.temporal and spatial dynamics of seasonal H3N2,
pandemic H1N1 and highly-pathogenic avian H5N1 virus infections in ferrets. PLoS
One.2012;7(8):e42343. doi:10.1371/journal.pone.0042343
128. van der Vaart M et al DRAM1 links pathogen recognition via TLR-MYD88 to autophagic defense
against
tuberculosis.
Cell
Host
Microbe.
2014
Jun
11;15(6):753-67.
doi:
10.1016/j.chom.2014.05.005.
Page 14
129. van Laarhoven Arjan, et al Low Induction of Proinflammatory Cytokines Paral van Soolingen lels
Evolutionary Success of Modern Strains within the Mycobacterium tuberculosis Beijing Genotype
Infect. Immun. October 2013 81:10 3750-3756; published ahead of print 29 July 2013,
doi.org/10.1128/IAI.00282-13.
130. van Meijgaarden KE, et al. Human CD8+ T-cells recognizing peptides from Mycobacterium
tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb
inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathogens, Mar
24;11(3):e1004671. doi: 10.1371/journal.ppat.1004671 (2015) .
131. van Ulsen P, et al. Type V secretion: from biogenesis to biotechnology. Biochim Biophys Acta.
2014 Aug;1843(8):1592-611. doi: 10.1016/j.bbamcr.2013.11.006
132. Venereau E et al, Uguccioni, M. Mutually exclusive redox forms of HMGB1 promote cell
recruitment on proinflammatory cytokine release. J Exp Med. 2012 Aug 27;209(9):1519-28. doi:
10.1084/jem.20120189
133. Venereau E, Schiraldi, M., Uguccioni, M., Bianchi, ME., HMGB1 and leukocyte migration during
trauma and sterile inflammation. Molecular Immunology 2013. Aug;55(1):76-82.
doi:10.1016/j.molimm.2012.10.037
134. Vogelzang A, et al. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus
Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. J Infect Dis. 2014
Jun 18. pii: jiu347.
135. Vono M, et al. The adjuvant MF59 induces ATP release from muscle that potentiates response to
vaccination. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21095-100. doi:
10.1073/pnas.1319784110
136. Walzl G Clinical Immunology and Multiplex Biomarkers of Human Tuberculosis Cold Spring
Harbor Perspect Med.2014 Dec 4;5(4). pii: a018515. doi: 10.1101/cshperspect.a018515.
137. Wang Y et al. The Role of Innate APOBEC3G and Adaptive AID Immune Responses in HLA-HIV/SIV
Immunized SHIV Infected Macaques.
PlosOne. 2012; 7(4): e34433
doi:
10.1371/journal.pone.0034433
138. Wang Y, et al .Stress activated DC induce dual ILelicit CD4+ memory T cells and IFN stimulated genes J Biol Chem. 2015 Apr 23
doi:10.1074/jbc.M115.645754.
139. Wang Yet al A comparative study of stress-mediated immunological functions with the
adjuvanticity of alum. J Biol Chem. 2012 May 18;287(21):17152-60. doi:
10.1074/jbc.M112.347179
140. Wegmann F. et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens.
Nat Biotechnol. 2012 Sep;30(9):883-8
141. Weinberger B, et al. The stimulatory effect of the TLR4-mediated adjuvant glucopyranosyl lipid A
is well preserved in old age. Biogerontology. 2015 May 9. [Epub ahead of print] PubMed PMID:
5957253.
142. Weinberger Bet al. Recall Responses to Tetanus and Diphtheria Vaccination Are Frequently
Insufficient in Elderly Persons. PlosOne. 8(12): e82967, 2013
143. Weiner J 3rd, Kaufmann SH. Recent advances towards tuberculosis control: vaccines and
biomarkers. J Intern Med. 2014 May;275(5):467-80. doi: 10.1111/joim.12212.
Page 15
144. Weiner, J, J. Maertzdorf, S.H.E. Kaufmann: The dual role of biomarkers for understanding basic
principles and devising novel intervention strategies in tuberculosis. Ann. N.Y. Acad. Sci. 1283:
22-29. 2013
145. Wilson GJ, et al The C-type lectin receptor CLECSF8/CLEC4Dis a keycomponent of antimycobacterial immunity. Cell Host & Microbe 17, 252–259 (2015). doi:
10.1016/j.chom.2015.01.004.
146. Zak DE, Aderem A. Systems integration of innate and adaptive immunity. Vaccine. (2015). Sep
29;33(40):5241-8. doi: 10.1016/j.vaccine.2015.05.098
147. Zhang X. et al CD4 T Cells with Effector Memory Phenotype and Function Develop in the Sterile
Environment of the Fetus Sci Transl Med 6, 238ra72 (2014); DOI: 10.1126/scitranslmed.3008.
148. Zhang Xet al. Plasmacytoid DC engagement by Flu vaccine as a surrogate strategy for driving Th1
responses in human neonatal settings. J. Infect Dis. 2014. doi: 10.1093/infdis/jiu103.
Page 16
Fly UP