This complete the proof. REMARK 1. - If we set ~(r) =q·r for some q<l
by user
Comments
Transcript
This complete the proof. REMARK 1. - If we set ~(r) =q·r for some q<l
- 5 - This complete the proof. REMARK 1. - If we set ~(r) = q·r for some q <l, ~ is a contractive gauge function. It fo11ows that the L.Ciric's Theorem 1 ([2J) is a specia1 case of Theorem 2. REMARK 2. - We sha11 reca11 that a version of Theorem 2 is given in [3] by the first author. In [3J one assume conditions which ensure that (1) is true for every Xo in M and (2) is true for a n = n(x) and J 1 ={(O,O)} ,J 2=J 3=0. B I B L I OG RA P HY [lJ BROWOER,F.E., Remcvr./u on 6-ixed pc..<.n.t 06 conbta.c..ti.ve Theory Hethods Appl.,3,5(1979), 657-661. [2J CIRIC, L., On mppU1g<l w.U:h a conbta.c..ti.ve UeJLa.-te, Pub1. Inst.Hath., Nouve11e serie, 26(40), 1979, 79-82. [3] teolLemo. di ,:unto 6,ù,<lo peJt t!La<I601UllaZi.o.ni.. bU. l.UlO <lpaU.o un.i.60Jlme eli. Hau.6do1L66 con una UeJuLta. con.tJta.tt.<.va ..Ut ogni. ,:unto (to appear on Le Matematiche - Catania). CONSERVA, V., Un Acc.efto.to peJt .ea. pu.b~ne <lu palLeJte 6avoILevole del. PILO 6. G. MLlNI ;t;ype, Nonl inear Anal.