Comments
Description
Transcript
PISA Esercizi Liberati
OECD Programme for International Student Assessment 2012 PISA 2012 ESERCIZI LIBERATIMATEMATICA Maggio, 2013 Consortium: Australian Council for Educational Research (ACER, Australia) cApStAn Linguistic Quality Control (Belgium) Deutsches Institut für Internationale Pädagogische Forschung (DIPF, Germany) Educational Testing Service (ETS, USA) Institutt for Lærerutdanning og Skoleutvikling (ILS, Norway) Leibniz - Institute for Science and Mathematics Education (IPN, Germany) National Institute for Educational Policy Research (NIER, Japan) The Tao Initiative: CRP - Henri Tudor and Université de Luxembourg - EMACS (Luxembourg) Unité d'analyse des systèmes et des pratiques d'enseignement (aSPe, Belgium) Westat (USA) Sommario SEZIONE 1: PISA 2012 ESERCIZI INDAGINE PRINCIPALE ACQUISTO DI UN APPARTAMENTO ............................................................. 2 VELOCITÀ DI FLUSSO ................................................................................... 4 CLASSIFICHE ................................................................................................. 7 CARGO A VELA ............................................................................................ 10 SALSA ........................................................................................................... 12 SALITA DEL MONTE FUJI ............................................................................ 13 ELENA LA CICLISTA ..................................................................................... 16 QUALE MACCHINA SCEGLIERE? ............................................................... 18 GARAGE ....................................................................................................... 19 PORTA GIREVOLE ....................................................................................... 23 SEZIONE 2: PISA 2012 ESERCIZI TEST PILOTA CHIAVETTA USB .......................................................................................... 25 APPARECCHI DIFETTOSI ............................................................................ 30 GELATERIA ................................................................................................... 34 MACCHIA DI PETROLIO ............................................................................... 38 LETTORI MP3 ............................................................................................... 40 PINGUINI ....................................................................................................... 42 ENERGIA EOLICA......................................................................................... 45 UNA COSTRUZIONE CON I DADI ................................................................ 49 APPARTAMENTO DI VACANZA ................................................................... 51 NOLEGGIO DI DVD....................................................................................... 54 TELEVISIONE VIA CAVO ............................................................................. 57 VENDITA DI GIORNALI ................................................................................. 59 SEZIONE 3: PISA 2006 ESERCIZI GIRO IN AUTOMOBILE ................................................................................. 63 STATURA ...................................................................................................... 65 REALIZZARE UN LIBRETTO ........................................................................ 66 BICICLETTE .................................................................................................. 68 Esercizi Liberati-PISA 2012 1 PISA 2012 ESERCIZI INDAGINE PRINCIPALE SEZIONE 1: ACQUISTO DI UN APPARTAMENTO Questa è la piantina dell’appartamento che i genitori di Giorgio vogliono acquistare da un’agenzia immobiliare. Scala: 1 cm rappresenta 1 m Cucina Bagno Salotto Terrazza Camera da letto Domanda 1: ACQUISTO DI UN APPARTAMENTO PM00FQ01 – 0 1 9 Per stimare la superficie (area) totale dell’appartamento (terrazza e muri compresi), è possibile misurare la dimensione di ogni stanza, calcolare l’area di ognuna, e poi sommare tutte queste aree. Tuttavia esiste un metodo più efficiente di stimare l’area totale con il quale è sufficiente misurare quattro lunghezze. Indica sulla piantina riportata sopra le quattro lunghezze necessarie per stimare l’area totale dell’appartamento. ACQUISTO DI UN APPARTAMENTO: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare un ragionamento applicato agli spazi per mostrare su una piantina (o con un altro metodo) il numero minimo di dimensioni laterali necessarie per determinare la superficie di una piantina Sottoambito matematico: Spazio e forma Contesto: Personale Processo: Formulare Esercizi Liberati-PISA 2012 2 Punteggio pieno Codice 1: Indica le quattro dimensioni necessarie per stimare l’area dell’appartamento sulla piantina. Esistono 9 soluzioni possibili, come indicato negli schemi seguenti. A = (9,7m x 8,8m) – (2m x 4,4m), A = 76,56m [Ha chiaramente utilizzato solo 4 dimensioni per misurare e calcolare l’area richiesta.] 2 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 3 VELOCITÀ DI FLUSSO Le infusioni intravenose (flebo) servono per somministrare fluidi e medicamenti ai pazienti. Le infermiere devono calcolare la velocità di flusso D di un’infusione in gocce al minuto. A questo scopo utilizzano la formula dove d è il ritmo di flusso misurato in gocce al millilitro (ml) v è il volume (in ml) dell’infusione n è la durata dell’infusione in numero di ore. Domanda 1: VELOCITÀ DI FLUSSO PM903Q01 – 0 1 2 9 Un’infermiera vuole raddoppiare la durata di un’infusione. Descrivi con precisione come cambia D se n viene raddoppiato ma d e v non cambiano. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. VELOCITÀ DI FLUSSO: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Spiegare qual è l’effetto prodotto sul valore del risultato quando si raddoppia una variabile in una formula, sapendo che tutte le altre variabili Esercizi Liberati-PISA 2012 4 restano costanti Sottoambito matematico: Trasformazioni e relazioni Contesto: Professionale Processo: Applicare Punteggio pieno Codice 2: La spiegazione descrive sia il senso dell’effetto che la sua proporzione. Si dimezza. E’ la metà. D diminuirà del 50%. D sarà grande la metà. Punteggio parziale Codice 1: Risposta che indica correttamente sia il senso dell’effetto sia la sua proporzione, ma non entrambi. D diventa più piccolo. [No c’è la proporzio e ell’effetto] C’è una variazione del 5 %. [No c’è il se so ell’effetto] D aumenta del 50% [Il se so ell’effetto è sbagliato ma la sua proporzio e è corretta.] Nessun punteggio Codice 0: Altre risposte. Anche D si raddoppierà. [ La proporzio e e il se so ell’effetto so o errati entrambi.] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 5 Domanda 3: VELOCITÀ DI FLUSSO PM903Q03 – 0 1 9 Le infermiere devono anche calcolare il volume v dell’infusione in funzione della velocità di flusso D. Un’infusione con una velocità di flusso di 5 gocce al minuto deve essere somministrata ad un paziente per 3 ore. Per questa infusione, il ritmo di flusso è di 25 gocce per millilitro. Qual è il volume di questa infusione in ml? Volume dell’infusione: ........................ ml VELOCITÀ DI FLUSSO: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Trasformare un’equazione e sostituirvi due variabili con due valori numerici dati Sottoambito matematico: Trasformazioni e relazioni Conteso: Professionale Processo: Applicare Punteggio pieno Codice 1: 360 o una soluzione correttamente trasformata con delle variabili sostitutive corrette. 360 (60 × 3 × 50) ÷ 25 [Trasformazione e sostituzione corrette] Nessun punteggio Codice 0: altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 6 CLASSIFICHE A gennaio sono usciti i nuovi CD dei gruppi RockXte e Canguri Mannari, seguiti a febbraio dai CD dei gruppi Soli al mondo e Metallari folk. Il seguente grafico illustra le vendite dei CD di questi gruppi da gennaio a giugno. Numero di CD venduti al mese Vendite di CD al mese 2’250 2’ RockXte 0 Canguri Mannari 1’750 Soli al mondo 1’500 Metallari folk 1’25 1’ 750 500 250 0 Gen Feb Mar Apr Mag Giu Mese Domanda 1: CLASSIFICHE PM918Q01 Quanti CD ha venduto il gruppo Metallari folk ad aprile? A B C D 250 500 1’ 1’27 CLASSIFICHE: INDICAZIONI PER LA CORREZIONE D1 OBIETTIVO DELLA DOMANDA: Descrizione: Leggere un grafico a colonne Sottoambito matematico: Incertezza e dati Contesto: Sociale Processo: Interpretare Esercizi Liberati-PISA 2012 7 Punteggio pieno Codice 1: B 500 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Domanda 2: CLASSIFICHE PM918Q02 In quale mese il gruppo Soli al mondo ha venduto per la prima volta più CD del gruppo Canguri Mannari? A B C D Nessun mese Marzo Aprile Maggio CLASSIFICHE: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Leggere un grafico a colonne e confrontare l’altezza di due colonne Sottoambito matematico : Incertezza e dati Contesto : Sociale Processo : Interpretare Punteggio pieno Codice 1: C Aprile Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 8 Domanda 5: CLASSIFICHE PM918Q05 Il manager dei Canguri Mannari è preoccupato perché il numero di CD venduti del gruppo è diminuito da febbraio a giugno. Quale sarà il volume di vendite stimato del gruppo per il mese di luglio, se continua la stessa tendenza negativa? A B C D 70 CD 370 CD 670 CD 1’34 CD CLASSIFICHE: INDICAZIONI PER LA CORREZIONE D 5 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare un grafico a colonne e stimare il numero di CD che sarà venduto nel futuro, ammettendo che persista una tendenza lineare Sottoambito matematico : Incertezza e dati Contesto: Sociale Processo: Interpretare Punteggio pieno Codice 1: B 370 CD Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 9 CARGO A VELA Il novantacinque per cento del commercio mondiale viene effettuato via mare, tramite circa 50’000 petroliere, mercantili e portacontainer. La maggior parte di questi cargo funziona a gasolio. © by skysails Alcuni ingegneri hanno intenzione di mettere a punto un sistema che sfrutti la potenza del vento per aiutare i cargo. Propongono di fissare un grande aquilone avente funzione di una vela sui cargo e sfruttare così la potenza del vento per ridurre il consumo di gasolio e diminuire l’impatto di questo carburante sull’ambiente. Domanda 4: CARGO A VELA PM923Q04 – 0 1 9 A causa del prezzo elevato del gasolio (0,42 zed al litro), i proprietari del cargo Tempesta stanno valutando se dotarlo di una vela. In base alle stime, una vela di questo tipo consentirebbe di ridurre il consumo totale di gasolio del 20% circa. Nome: Tempesta Tipo: cargo Lunghezza: 117 metri Larghezza: 18 metri Capacità di carico: 12’000 tonnellate Velocità massima: 19 nodi Consumo annuo di gasolio senza vela: circa 3’500’000 litri Esercizi Liberati-PISA 2012 10 Dotare la Tempesta di una vela costa 2’5 ’ zed. Dopo quanti anni approssimativamente, il risparmio di gasolio avrà coperto il costo della vela? Giustifica la tua risposta con l’aiuto di calcoli. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. Numero di anni : ……………………….. CARGO A VELA: INDICAZIONI PER LA CORREZIONE D 4 OBIETTIVO DELLA DOMANDA: Descrizione: Risolvere una situazione della vita reale che implica un risparmio dei costi e un consumo di diesel Sottoambito matematico: Trasformazioni e relazioni Contesto: Scientifico Processo: Formulare Punteggio pieno Codice 1: Risposte che vanno da 8 a 9 anni in cui vengono forniti calcoli (matematici) corretti. Consumo annuo di gasolio senza vela: 3,5 milioni di litri, al prezzo di 0,42 zed/litri, costo del gasolio senza vela: 1’47 ’ zed. Se risparmia il 20% di gasolio grazie alla vela, il risparmio sarà di 1’47 ’ zed x 0,2 = 294’ zed all’anno. Quindi 2’5 ’ ÷ 294’ 8,5: la vela diventa conveniente, in senso economico, dopo circa 8 o 9 anni. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 11 SALSA Domanda 2: SALSA PM924Q02 – 0 1 9 Stai preparando il condimento per l’insalata. Ecco una ricetta per preparare 100 millilitri (ml) di condimento: Olio 60 ml Aceto 30 ml Salsa di soia 10 ml Quanti millilitri (ml) di olio ti servono per preparare 150 ml di condimento? Risposta: .............................................. ml SALSE: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Applicare il concetto di proporzione in una situazione di vita reale per calcolare la quantità necessaria di un ingrediente in una ricetta Sottoambito matematico: Quantità Contesto: Personale Processo: Formulare Punteggio pieno Codice 1: 90 Nessun punteggio Codice 0: Altre risposte. 1,5 volte di più. [Deve calcolare la quantità necessaria.] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 12 SALITA DEL MONTE FUJI Il monte Fuji è un famoso vulcano spento, situato in Giappone. Domanda 1: SALITA DEL MONTE FUJI PM942Q01 Il monte Fuji è aperto al pubblico solo dal 1° luglio al 27 agosto ogni anno. Circa 2 ’ persone salgono sul monte Fuji durante questo periodo. In media, quante persone salgono sul monte Fuji ogni giorno? A B C D E 340 710 3’4 7’1 7’4 SALITA DEL MONTE FUJI: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Identificare un tasso medio quotidiano a partire dal numero totale e da una durata determinata (dati conosciuti). Sottoambito matematico: Quantità Contesto: Sociale Processo: Formulare Punteggio pieno Codice 1: C 3’4 Nessun credito Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 13 Domanda 2: SALITA DEL MONTE FUJI PM942Q02 – 0 1 9 Il sentiero Gotemba, che conduce alla cima del monte Fuji, è lungo circa 9 chilometri (km). Gli escursionisti devono essere tornati dall’escursione di 18 km entro le 20.00. Toshi stima di poter salire sulla montagna ad una velocità media di 1,5 chilometri all’ora e di scendere raddoppiando questa velocità. Queste velocità tengono già conto delle pause per mangiare e dei momenti di riposo. In base alle velocità stimate da Toshi, a che ora, al massimo, deve iniziare la sua escursione in modo da poter essere tornato per le 20.00? ................................................................................................................................. SALITA DEL MONTE FUJI: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Calcolare l’ora di partenza per un percorso a partire da due velocità diverse, da una distanza totale da percorrere e da un’ora di arrivo. Sottoambito matematico: Trasformazioni e relazioni Contesto: Sociale Processo: Formulare Punteggio pieno Codice 1: alle 11.00 (del mattino) [Co o se za “ el matti o”. O ogni altra forma equivalente per scri ere quest’orario, per esempio: alle 11h00.] Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 14 Domanda 3: SALITA DEL MONTE FUJI PM942Q03 – 0 1 2 9 Durante la sua escursione sul sentiero Gotemba, Toshi porta con sé un podometro per contare i suoi passi. Il suo podometro indica che ha fatto 22’5 passi mentre saliva. Stima la lunghezza media del passo di Toshi durante la salita di 9 chilometri lungo il sentiero Gotemba. Dai la tua risposta in centimetri (cm). Risposta: .............................................. cm SALITA DEL MONTE FUJI: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Dividere una lunghezza data in km per un determinato numero e esprimere il quoziente in cm. Sottoambito matematico: Quantità Contesto: Sociale Processo: Applicare Punteggio pieno Codice 2: 40 Punteggio parziale Codice 1: Risposte con la cifra 4, basate su una conversione errata in centimetri 0,4 [Risposta espressa in metri.] 4’000 [Conversione errata] Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 15 ELENA LA CICLISTA Elena ha ricevuto una nuova bicicletta. Sul manubrio c’è un tachimetro. Il tachimetro indica a Elena la distanza percorsa e la velocità media per il tragitto fatto. Domanda 1: ELENA LA CICLISTA PM957Q01 Durante un giro in bicicletta, Elena ha percorso 4 km nei primi 10 minuti, poi 2 km nei 5 minuti successivi. Quale delle seguenti affermazioni è corretta? A La velocità media di Elena nei primi 10 minuti è superiore rispetto ai 5 minuti seguenti. B La velocità media di Elena nei primi 10 minuti è la stessa che nei 5 minuti seguenti. C La velocità media di Elena nei primi 10 minuti è inferiore rispetto ai 5 minuti seguenti. D Non è possibile trarre conclusioni sulla velocità media di Elena a partire dalle informazioni fornite. ELENA LA CICLISTA: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Calcolare una velocità media per l’insieme del tragitto a partire dalle velocità medie e dalle durate dei percorsi delle due parti del tragitto Sottoambito matematico: Trasformazioni e relazioni Contesto: Personale Processo: Applicare Punteggio pieno Codice 1: 20 Esercizi Liberati-PISA 2012 16 Distanza totale della passeggiata: 6 + 4 = 10 km; velocità media: 10 0,5 = 20 km/h. 2/3 × 18 + 1/3 × 24 = 20 Nessun punteggio Codice 0: Altre risposte. 21 [Metodo errato: medie delle velocità per due tragitti (18 e 24).] Codice 9: Non risponde. Domanda 3: ELENA LA CICLISTA PM957Q03 – 0 1 9 Elena è andata in bicicletta da casa sua fino al fiume, che dista 4 km. Ha impiegato 9 minuti. È rientrata a casa passando per una scorciatoia di 3 km. Ha impiegato solo 6 minuti. Qual è stata la velocità media di Elena (in km/h) durante il tragitto di andata e ritorno al fiume? Velocità media del tragitto: ................. km/h ELENA LA CICLISTA: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Calcolare una velocità media di due tragitti partendo da due distanze percorse e dalla durata dei percorsi Sottoambito matematico: Trasformazioni e relazioni Contesto: Personale Processo: Applicare Punteggio pieno Codice 1: 28 Nessun punteggio Codice 0: Altre risposte. 28,3 [Metodo errato: media delle velocità per due tragitti (26,67 et 30).] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 17 QUALE MACCHINA SCEGLIERE? Cristina ha appena ottenuto la sua patente e vuole comprare la sua prima macchina. La tabella qui sotto, avuta da un concessionario del suo quartiere, mostra le caratteristiche di quattro macchine. Modello Alma Bolt Castella Diva Anno 2003 2000 2001 1999 Prezzo di vendita esposto (in zed) 4’800 4’450 4’250 3’990 105’000 115’000 128’000 109’000 1,79 1,796 1,82 1,783 Chilometraggio (in chilometri) Cilindrata (in litri) Domanda 3: QUALE MACCHINA SCEGLIERE PM985Q03 – 0 1 9 Cristina dovrà pagare una tassa supplementare equivalente al 2,5% del prezzo di vendita esposto della macchina. A quanto ammonta la tassa supplementare per l’Alma? Tassa supplementare in zed: .............. QUALE MACCHINA SCEGLIERE? INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVI DELLA DOMANDA: Descrizione: Calcolare il 2,5% di un valore in migliaia in un contesto finanziario Sottoambito matematico: Quantità Contesto: Personale Processo: Applicare Punteggio pieno Codice 1: 120 Nessun punteggio Codice 0: Altre risposte. 2,5% di 4’8 zed. [Il calcolo deve essere svolto.] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 18 GARAGE La gamma di base di un costruttore di garage comprende modelli con una sola finestra e una sola porta. Giorgio sceglie il seguente modello dalla gamma di base. Porta e finestra sono collocate come indicato qui sotto. PM991Q01 Domanda 1: GARAGE Le illustrazioni qui sotto mostrano diversi modelli di base visti da dietro. Soltanto una di queste illustrazioni corrisponde al modello scelto da Giorgio, riportato qui sopra. Quale modello ha scelto Giorgio? Fai un cerchio intorno ad A, B, C o D. A B C D GARAGE: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare le proprie competenze in materia di spazio per identificare una rappresentazione 3D che corrisponde ad un’altra rappresentazione 3D data Sottoambito matematico: Spazio e forma Contesto: Professionale Processo: Formulare Esercizi Liberati-PISA 2012 19 Punteggio completo Codice 1: Illustrazione C Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 20 PM991Q02 – 00 11 1 2 21 99 Domanda 2: GARAGE I due piani qui sotto indicano le dimensioni (in metri) del garage scelto da Giorgio. 2,50 1,00 1,00 2,40 2,40 0,50 1,00 2,00 1,00 0,50 6,00 Vista di fronte Vista di lato Nota: Lo schema non è in scala. Il tetto è composto da due parti rettangolari identiche. Calcola l’area totale del tetto. Scrivi qui sotto i passaggi che fai per arrivare alla tua risposta. . ................................................................................................................................ ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. GARAGE: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare un piano e calcolare l’area di un rettangolo utilizzando il teorema di Pitagora o una misura Sottoambito matematico: Spazio e forma Contesto: Professionale Processo: Applicare Punteggio pieno Codice 21:Qualsiasi valore fra 31 e 33 sia senza procedimento corretto, sia con un procedimento che utilizza il teorema di Pitagora (o che include alcuni elementi che mostrino che questo metodo sia stato utilizzato). [L’u ità i misura (m²) non è richiesta.] 12 × 2,6 = 31,2 Esercizi Liberati-PISA 2012 21 12√7,25 m2 2 12 × 2,69 = 32,28 m 2 12 × 2,7 = 32,4 m Punteggio parziale Codice 11: ll procedimento indica un corretto uso del teorema di Pitagora, ma fa errori di calcolo o utilizza una lunghezza sbagliata, oppure omette di raddoppiare l’area del tetto. 2,5 + 1 = 6 ; 12 × √ errore di calcolo.] 2 2 2 + 1 = 5 ; 2 x x √5 6 × 2,6 = 15,6 [No ra 2 2 29,39 [Uso corretto del teorema di Pitagora con un 2 2 ,8 m [La lunghezza non è corretta.] oppia l’area el tetto.] Codice 12: Il procedimento non indica l’uso del teorema di Pitagora, ma utilizza un valore accettabile per la larghezza del tetto (tutti i valori in un intervallo tra 2,6 e 3) e i calcoli sono svolti correttamente. 2,75 × 12 = 33 3 × 6 × 2 = 36 Nessun punteggio Codice 00: Altre risposte. 2,5 × 12 = 30 [La stima ella larghezza el tetto o si tro a ell’i ter allo accettabile tra 2,6 a 3.] 3,5 × 6 × 2 = 42 [La stima ella larghezza el tetto o si tro a ell’i ter allo accettabile tra 2,6 a 3.] Codice 99: Non risponde. Esercizi Liberati-PISA 2012 22 PORTA GIREVOLE Una porta girevole è composta da tre «ante», che girano all’interno di uno spazio circolare. Il diametro interno di questo spazio è di 2 metri (200 centimetri). Le tre ante della porta dividono lo spazio in tre settori uguali. Lo schema qui sotto mostra le ante della porta in tre posizioni differenti, viste dall’alto. Entrata Ante 200 cm Uscita Domanda 1: PORTA GIREVOLE PM995Q01 – 0 1 9 Quanto misura (in gradi) l’angolo formato da due ante della porta? Misura dell’angolo: .............................…..º PORTA GIREVOLE: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Calcolare l’angolo al centro di un settore di un cerchio Sottoambito matematico: Spazio e forma Contesto: Scientifico Processo: Applicare Punteggio pieno Codice 1: 120 (Accettare l’a golo rie tra te equi ale te: 240.) Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 23 Domanda 2: PORTA GIREVOLE PM995Q02 – 0 1 9 Circolazione d’aria possibile Le due aperture della porta (gli archi punteggiati nello schema) in questa posizione hanno le stesse dimensioni. Se queste aperture fossero troppo larghe, le ante girevoli non potrebbero chiudere ermeticamente lo spazio e l’aria potrebbe circolare liberamente fra l’entrata e l’uscita, causando una perdita o una ritenzione indesiderata di calore. Questa situazione è mostrata nello schema accanto. Qual è la lunghezza massima (in centimetri, cm) che l’arco di ogni apertura della porta può avere, in modo che l’aria non possa mai circolare liberamente fra l’entrata e l’uscita? ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. Lunghezza massima dell’arco: ..................cm PORTA GIREVOLE: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare un modello geometrico che emerge da una situazione della vita quotidiana per calcolare la lunghezza di un arco. Sottoambito matematico: Spazio e forma Contesto: Scientifico Processo: Formulare Punteggio pieno Codice 1: Qualsiasi risposta nell’intervallo fra 1 3 e 1 5. [Accettare risposte calcolate 1 come 1/6 della circonferenza; ad esempio: 3 .] Accettare come risposta anche 100, solo se è chiaro che questa risposta eri a all’utilizzo i π = 3. Nota: se la risposta 100 non è accompagnata dal procedimento, è possibile che essa sia stata ottenuta semplicemente indovinando che la lunghezza deve essere la stessa di quella del raggio (lunghezza di una singola anta). Nessun punteggio Codice 0: Altre risposte. 209. [ndica la lunghezza totale delle aperture piuttosto che la lunghezza di ciascuna di esse. ] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 24 SEZIONE 2: PISA 2012 ESERCIZI TEST PILOTA CHIAVETTA USB Una chiavetta USB è una piccola periferica portatile per computer che permette di memorizzare dati. Ivano ha una chiavetta USB per memorizzare musica e foto. La sua chiavetta ha una capacità di 1 GB (1’ MB). Il grafico seguente mostra lo spazio utilizzato attualmente sulla sua chiavetta. Spazio utilizzato sulla chiavetta USB Musica (650 MB) Foto (198 MB) Spazio disponibile (152 MB) Esercizi Liberati-PISA 2012 25 PM00AQ01– 0 1 9 Domanda 1: CHIAVETTA USB Ivano vuole trasferire un album di foto da 350 MB sulla sua chiavetta USB, ma lo spazio disponibile non è sufficiente. Non vuole cancellare nessuna foto e preferisce piuttosto cancellare due album di musica al massimo. Ecco le dimensioni degli album musicali memorizzati sulla chiavetta di Ivano: Album Dimensione Album 1 100 MB Album 2 75 MB Album 3 80 MB Album 4 55 MB Album 5 60 MB Album 6 80 MB Album 7 75 MB Album 8 125 MB Cancellando al massimo due album di musica, Ivano può liberare spazio a sufficienza sulla sua chiavetta USB per aggiungere l’album di foto? Fai un cerchio intorno a «Sì» o «No» e scrivi i calcoli che fai per arrivare alla tua risposta. Risposta: Sì / No ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. CHIAVETTA USB: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare e utilizzare informazioni sulla capacità di memorizzazione per trovare una soluzione corrispondente a un dato criterio Sottoambito matematico: Quantità Contesto: Personale Processo: Interpretare Punteggio pieno Codice 1: SÌ, in modo esplicito o implicito, E identifica due album (o le dimensioni) che insieme Esercizi Liberati-PISA 2012 26 occupano almeno 198 MB di spazio di memoria. Ivano deve cancellare 198 MB (350 – 152): potrebbe cancellare due album che assieme occupano più di 198 MB, come gli album 1 e 8. Sì, potrebbe cancellare gli album 7 e 8, liberando uno spazio di 152 + 75 + 125 = 352 MB. Funzionerebbe con gli album 7 e 8. [Il “Sì” è implicito.] 100 + 125 > 198. È possibile! [Risposta minima ma i valori menzionati corrispondono ai due album 1 e 8. Il “Sì” è implicito.] Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 27 PM00AQ02 Domanda 2: CHIAVETTA USB Durante le settimane seguenti, Ivano cancella qualche foto e file musicali, ma aggiunge anche nuovi file di foto e musica. La tabella seguente mostra lo spazio utilizzato attualmente sulla sua chiavetta: Musica 550 MB Foto 338 MB Spazio disponibile 112 MB Suo fratello gli regala una nuova chiavetta USB con una capacità di 2 GB (2’ MB) che è completamente vuota. Ivano trasferisce il contenuto della sua vecchia chiavetta USB su quella nuova. Quale dei seguenti grafici rappresenta lo spazio utilizzato sulla nuova chiavetta USB? Fai un cerchio intorno a A, B, C o D. A B Musica Musica Foto Foto Spazio disponibile Spazio disponibile C D Musica Musica Foto Foto Spazio disponibile Spazio disponibile CHIAVETTA USB: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA : Descrizione: Capire il rapporto tra la formulazione sintattica di un problema e il linguaggio simbolico e formale necessario alla sua rappresentazione matematica Sottoambito matematico: Incertezza e dati Contesto: Personale Processo: Interpretare Esercizi Liberati-PISA 2012 28 Punteggio pieno Codice 1: D Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 29 APPARECCHI DIFETTOSI La ditta Elettrix fabbrica due tipi di apparecchi elettronici: lettori audio e video. Alla fine della produzione giornaliera, i lettori vengono testati e quelli difettosi vengono scartati e mandati in riparazione. La tabella seguente indica il numero medio giornaliero di lettori di ogni tipo fabbricati e la percentuale media giornaliera di lettori difettosi. Tipo di lettore Numero medio giornaliero di lettori fabbricati Percentuale media giornaliera di lettori difettosi Lettori video 2’000 5% Lettori audio 6’000 3% PM00EQ01 Domanda 1: APPARECCHI DIFETTOSI Ecco tre affermazioni sulla produzione giornaliera alla Elettrix. Queste affermazioni sono corrette? Fai un cerchio intorno a «Sì» o «No» per ciascuna affermazione. Affermazione Questa affermazione è corretta? Un terzo dei lettori prodotti giornalmente sono lettori video. Sì / No In ogni lotto di 100 lettori video fabbricati, ce ne sono esattamente 5 difettosi. Sì / No Se un lettore audio viene scelto a caso nella produzione giornaliera per essere testato, la probabilità che abbia bisogno di essere riparato è di 0,03. Sì / No APPARECCHI DIFETTOSI: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare informazioni statistiche che implicano incertezza Sottoambito matematico: Incertezza e dati Contesto: Professionale Processo: Formulare Punteggio pieno Codice 1: Tutte e tre le risposte sono corrette. Nell’ordine: No, No, Sì. Nessun punteggio Codice 0: Altre risposte. Esercizi Liberati-PISA 2012 30 Codice 9: Non risponde. Domanda 2: APPARECCHI DIFETTOSI PM00EQ02 – 0 1 9 Uno dei collaudatori afferma quanto segue: «In media, i lettori video mandati giornalmente in riparazione sono di più rispetto ai lettori audio mandati giornalmente in riparazione.» Decidi se l’affermazione del collaudatore è corretta oppure no. Fornisci un’argomentazione matematica per giustificare la tua risposta. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ APPARECCHI DIFETTOSI: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare e utilizzare informazioni statistiche per spiegare se un’affermazione a proposito di queste informazioni è vera Sottoambito matematico: Incertezza e dati Contesto: Professionale Processo: Interpretare Punteggio pieno Codice 1: Spiegazione che utilizza correttamente le informazioni della tabella (globalmente o specificatamente) per spiegare perché il collaudatore fa un’affermazione errata L’affermazione del collaudatore non è corretta; 5% di 2’ fa 1 , ma 3% di ’ fa 18 . Quindi, in media, 180 lettori audio vengono mandati in riparazione, che è di più di 100 lettori video mandati in media in riparazione. Il collaudatore non ha fatto un’affermazione corretta; la percentuale dei lettori video difettosi è del 5%, che è quasi due volte la percentuale dei lettori audio difettosi. Ma la ditta fabbrica ’ lettori audio, che corrisponde a tre volte il numero dei lettori video: quindi, il numero effettivo dei lettori audio mandati in riparazione è più alto. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 31 PM00EQ03 – 0 1 9 Domanda 3: APPARECCHI DIFETTOSI Anche la ditta Tronics fabbrica lettori audio e video. Alla fine della produzione giornaliera, i lettori della ditta Tronics vengono testati e quelli difettosi vengono scartati e mandati in riparazione. Le tabelle seguenti confrontano il numero medio giornaliero di lettori di ogni tipo fabbricati e la percentuale media giornaliera di lettori difettosi, per le due ditte. Ditta Numero medio giornaliero di lettori video fabbricati Percentuale media giornaliera di lettori difettosi Elettrix 2’000 5% Tronics 7’000 4% Numero medio giornaliero di lettori audio fabbricati Percentuale media giornaliera di lettori difettosi Elettrix 6’000 3% Tronics 1’000 2% Ditta Quale delle due ditte, Elettrix o Tronics, ha la percentuale totale più bassa di lettori difettosi? Utilizza i dati delle tabelle qui sopra per i tuoi calcoli e scrivi questi calcoli. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ APPARECCHI DIFETTOSI: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA : Descrizione: Utilizzare le informazioni sulla produzione quotidiana dei due prodotti per calcolare quale delle due ditte ha la percentuale globale d’apparecchi difettosi più bassa Sottoambito matematico: Incertezza e dati Contesto: Professionale Processo: Formulare Punteggio pieno Codice 1: Risposta con il calcolo corretto del numero globale medio di apparecchi difettosi per le Esercizi Liberati-PISA 2012 32 due ditte (Elettrix: 280 e Tronics: 300) o le percentuali globali medie di apparecchi difettosi (Elettrix: 3,5% e Tronics: 3,75%) e conclusione che la ditta Elettrix ha una percentuale globale di apparecchi difettosi inferiore. [Nota: poiché le due ditte producono 8’000 u ità, o è ecessario calcolare la perce tuale.] La ditta Elettrix. Perché 5% di 2’ è 1 e 3% di ’ è 18 , quindi in media, ogni giorno 280 lettori della ditta Elettrix vengono mandati in riparazione; 28 su 8’ da una percentuale totale di lettori difettosi di circa 3,5%. Un calcolo simile per la ditta Tronics indica una percentuale totale di lettori difettosi del 3,75%. Entrambe producono 8’ unità al giorno. La ditta Elettrix ha dunque un tasso più basso perché ha solo 280 apparecchi difettosi al giorno, paragonati ai 300 al giorno della Tronics. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 33 GELATERIA Ecco la piantina della gelateria di Maria. Maria sta ristrutturando il locale. La zona di servizio è circondata da un bancone. Porta d’entrata Ingresso Bancone posti a sedere Zona di servizio Nota: Ogni quadrato della griglia rappresenta 0,5 metri per 0,5 metri. Domanda 1: GELATERIA PM00LQ01 – 0 1 2 9 Maria vuole applicare una nuova bordatura lungo il bordo esterno del bancone. Qual è la lunghezza totale della bordatura di cui ha bisogno? Scrivi qui sotto i passaggi che fai per arrivare alla tua risposta. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ GELATERIA: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare il teorema di Pitagora o usare correttamente una misura per trovare una dimensione su un disegno in scala Esercizi Liberati-PISA 2012 34 Sottoambito matematico: Spazio e forma Contesto: Professionale Processo: Applicare Punteggio pieno Codice 2: Risposte nell’intervallo da 4,5 a 4,55 (risposte in metri) o da 445 a 455 (risposte in centimetri) con o senza procedimento. [L’i ter allo co se te u errore di misura di ± 1 mm. Le unità di misura non sono richieste.] Punteggio parziale Codice 1: Procedimento in parte corretto (per esempio: utilizzo del teorema di Pitagora o lettura della scala) ma con un errore, come l’uso non corretto della scala o un errore di calcolo. da 8,9 a 9,1 m o da 890 a 910 cm [Non ha utilizzato la scala.] 2,5 m o 250 cm (o 5 unità). [Ha usato il teorema i Pitagora per calcolare l’ipote usa i 5 unità (2,5 metri), ma non ha aggiunto i cateti.] Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Domanda 2: GELATERIA PM00LQ02 – 0 1 2 9 Maria vuole rifare anche il pavimento nel suo locale. Qual è la superficie (area) totale del pavimento del locale, escludendo la zona di servizio e il bancone? Scrivi qui sotto i passaggi che fai per arrivare alla tua risposta. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ GELATERIA: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare una griglia in scala per calcolare l’area di una superficie composta da più elementi Sottoambito matematico: Spazio e forma Contesto: Professionale Processo: Applicare Punteggio pieno Codice 2: 31,5 [Con o senza unità di misura e con o senza procedimento. Nota: il procedimento sarà mostrato probabilmente sulla griglia. Ignorare le unità di misura errate poiché per otte ere 31,5 l’allie o ha la orato i metri] Esercizi Liberati-PISA 2012 35 Punteggio parziale Codice 1: Procedimento che mostra chiaramente un uso corretto della griglia per calcolare l’area ma che non usa correttamente la scala o con un errore aritmetico. 126 [La risposta i ica che l’area è stata calcolata correttame te, ma se za utilizzare la scala per ottenere il valore reale.] 7,5 x 5 (= 37,5) – 3 x 2,5 (= 7,5) – ½ x 2 x 1,5 (= 1,5) = 28,5 m². [Ha sottratto l’area el tria golo invece di sommarla al momento di di i ere l’area totale i aree più piccole.] 63. [Errore ell’utilizzo ella scala, i isio e per 2 piuttosto che per 4 per co ertire i metri.] Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. PM00LQ03 – 0 1 9 Domanda 3: GELATERIA Tavolo Sedie 1,5 metri Maria vuole mettere nel suo locale dei moduli composti da un tavolo e quattro sedie come quello illustrato sopra. Il cerchio rappresenta l’area del pavimento necessaria per ogni modulo. Per garantire uno spazio sufficiente ai clienti quando sono seduti, ogni modulo, rappresentato dal cerchio, va collocato rispettando le condizioni seguenti: ogni modulo va collocato ad almeno 0,5 metri dai muri. ogni modulo va collocato ad almeno 0,5 metri dagli altri moduli. Qual è il numero massimo di moduli che Maria può collocare nella zona in grigio del suo locale destinata ai posti a sedere? Numero di moduli: .............................. GELATERIA: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Determinare il numero di moduli che possono essere posizionati in un locale rettangolare a partire dai disegni in scala di ciascun elemento e da due condizioni Sottoambito matematico: Spazio e forma Contesto: Professionale Processo: Applicare Esercizi Liberati-PISA 2012 36 Punteggio pieno Codice 1: 4 Nessun punteggio Codice 0: Altre risposte. 2 :4 = 5 [Questo metodo si basa su una sovrastima della superficie. Non è possibile far stare 5 moduli completi in questo spazio rispettando le due condizioni.] Codice 9: Non risponde. Esercizi Liberati-PISA 2012 37 MACCHIA DI PETROLIO Una petroliera ha urtato una roccia in alto mare che ha squarciato la stiva nella quale il petrolio viene immagazzinato. La petroliera si trovava a circa 65 km da terra. Dopo qualche giorno la macchia di petrolio si è allargata, come si può vedere nella cartina qui sotto. Costa Mare Terra Macchia di petrolio 1 cm rappresenta 10 km Petroliera Domanda 1: MACCHIA DI PETROLIO PM00RQ01 – 0 1 9 Utilizzando la scala della cartina, stima la superficie (area) della macchia di petrolio in chilometri quadrati (km²). Risposta: ............................................. km² MACCHIA DI PETROLIO: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Stimare un’area irregolare su una cartina utilizzando una scala data Esercizi Liberati-PISA 2012 38 Sottoambito matematico: Spazio e forma Contesto: Scientifico Processo: Applicare Punteggio pieno Codice 1: Qualsiasi risposta compresa nell’intervallo tra 2’2 diversità ragionevole di metodi.] e 3’3 . [Per permettere una Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 39 LETTORI MP3 Città della Musica, specialista in MP3 Lettore MP3 Cuffie Altoparlanti 155 zed 86 zed 79 zed PM904Q03 Domanda 3: LETTORI MP3 La Città della Musica fa una promozione: se compri due o più articoli offre uno sconto del 20% sul prezzo di vendita normale di questi articoli. Gianni può spendere 200 zed. Che cosa può permettersi di comprare approfittando di questa promozione? Fai un cerchio intorno a «Sì» o «No» per ciascuna delle alternative seguenti. Articoli Gianni può comprare questi articoli con 200 zed? Lettore MP3 e cuffie Sì / No Lettore MP3 e altoparlanti Sì / No Tutti e tre gli articoli: lettore MP3, cuffie e altoparlanti Sì / No LETTORI MP3: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Decidere se una certa somma di denaro è sufficiente per comprare una serie di articoli, tenendo conto di una determinata percentuale di sconto Sottoambito matematico: Quantità Contesto: Personale Processo: Interpretare Punteggio pieno Codice 1: Tutte e tre le risposte sono corrette. Nell’ordine: Sì, Sì, No. Esercizi Liberati-PISA 2012 40 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. PM904Q04 Domanda 4: LETTORI MP3 Il prezzo di vendita normale degli articoli MP3 include un margine di guadagno del 37,5%. Il prezzo senza questo margine di guadagno viene definito «prezzo all’ingrosso». Il margine di guadagno viene calcolato in percentuale sul prezzo all’ingrosso. Le formule seguenti presentano una relazione corretta tra il prezzo all’ingrosso i e il prezzo di vendita normale v? Fai un cerchio intorno a «Sì» o «No» per ciascuna delle formule seguenti. Formula i i La formula è corretta? ,375 Sì / No – ,375 Sì / No 1,375i Sì / No , 25 Sì / No i LETTORI MP3: INDICAZIONI PER LA CORREZIONE D 4 OBIETTIVO DELLA DOMANDA: Descrizione: Decidere quale formula algebrica stabilisce correttamente la relazione fra due variabili monetarie, di cui una comprende un margine di guadagno fisso espresso in percentuale Sottoambito matematico: Trasformazioni e relazioni Contesto: Professionale Processo: Formulare Punteggio pieno Codice 1: Tutte e quattro le risposte sono corrette. Nell’ordine: No, No, Sì, No. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 41 PINGUINI Il fotografo naturalista Jean Baptiste ha partecipato a una spedizione di un anno e ha scattato numerose foto ai pinguini e ai loro piccoli. In particolare, si è interessato alla crescita di varie colonie di pinguini. PM921Q02 – 0 1 9 Domanda 2: PINGUINI Jean si chiede come evolverà la dimensione di una colonia di pinguini nel corso degli anni successivi. Per determinare tale evoluzione, formula le seguenti ipotesi: all’inizio dell’anno la colonia consiste di 1 ’ ogni coppia di pinguini alleva un piccolo ad ogni primavera. alla fine dell’anno, il 2 % di tutti i pinguini (adulti e piccoli) muore. pinguini (5’ coppie). Alla fine del primo anno, di quanti pinguini (adulti e piccoli) sarà composta la colonia? Numero di pinguini: ............................ PINGUINI: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: comprendere una situazione di vita reale per poter calcolare un numero concreto basato su una variazione (che include aumenti e diminuzioni di percentuale) Sottoambito matematico: Quantità Contesto: Scientifico Processo: Formulare Punteggio pieno Codice 1: 12’ Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 42 PM921Q04 Domanda 4: PINGUINI Tornato dalla spedizione, Jean Baptiste controlla su Internet quanti piccoli alleva in media una coppia di pinguini. Trova il seguente grafico a colonne per tre tipi di pinguino: Papua, Saltarocce e di Magellano. Numero annuo di piccoli allevati da ogni coppia di pinguini Numero medio di piccoli allevati da ogni coppia di pinguini 1,2 1,0 0,8 Papua 0,6 Saltarocce di Magellano 0,4 0,2 0 2000 2001 2002 2003 2004 2005 Anno 2006 2007 2008 In base al grafico qui sopra, le seguenti affermazioni su questi tre tipi di pinguini sono vere o false? Fai un cerchio intorno a «Vero» o «Falso» per ciascuna delle seguenti affermazioni. Affermazione L’affermazione è vera o falsa? Nel 2000 il numero medio di piccoli allevati da ogni coppia di pinguini era superiore a 0,6. Vero / Falso Nel 2 , in media, meno dell’8 % delle coppie di pinguini ha allevato un piccolo. Vero / Falso Entro il 2015 circa, questi tre tipi di pinguini saranno estinti. Vero / Falso Il numero medio di piccoli allevati da ogni coppia di pinguini di Magellano è diminuito fra il 2001 e il 2004. Vero / Falso PINGUINI: INDICAZIONI PER LA CORREZIONE D 4 OBIETTIVO DELLA DOMANDA: Descrizione: Analizzare affermazioni diverse relative a un determinato grafico a colonne Sottoambito matematico: Incertezza e dati Esercizi Liberati-PISA 2012 43 Contesto: Scientifico Processo: Interpretare Punteggio pieno Codice 1: Tutte e quattro le risposte sono corrette. Nell’ordine: Vero, Vero, Falso, Vero. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 44 ENERGIA EOLICA Nella città di Zedopoli si sta pensando di costruire diversi impianti eolici per produrre elettricità. Il comune di Zedopoli ha raccolto informazioni sul seguente modello. Modello: Altezza della torre: Numero di pale rotanti: Lunghezza di una pala: Velocità massima di rotazione: Costo della costruzione: Resa: Costi di manutenzione: Efficienza: E-82 138 metri 3 40 metri 20 rotazioni al minuto 3’2 ’ zed 0,10 zed per kWh prodotto 0,01 zed per kWh prodotto In funzione il 97% dell’anno Nota: il Chilowattora (kWh) è un’unità di misura dell’energia elettrica. PM922Q01 Domanda 1: ENERGIA EOLICA Stabilisci se le seguenti affermazioni sull’impianto eolico E-82 possono essere dedotte in base alle informazioni fornite. Fai un cerchio intorno a «Sì» o «No» per ciascuna delle seguenti affermazioni. Affermazione Questa affermazione può essere dedotta in base alle informazioni fornite? La costruzione di tre impianti costerà in totale più di 8’ ’ di zed. Sì / No I costi di manutenzione dell’impianto corrispondono a circa il 5% della sua resa. Sì / No I costi di manutenzione dell’impianto dipendono dal numero di kWh prodotti. Sì / No L’impianto non è in funzione per esattamente 97 giorni all’anno Sì / No ENERGIA EOLICA: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Analizzare informazioni diverse relative a uno scenario dato Sottoambito matematico: Trasformazioni e relazioni Contesto: Scientifico Processo: Interpretare Esercizi Liberati-PISA 2012 45 Punteggio pieno Codice 1: Tutte e quattro le risposte sono corrette. Nell’ordine: Sì, No, Sì, No. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. PM922Q03 – 0 1 9 Domanda 3: ENERGIA EOLICA La città di Zedopoli ha deciso di costruire alcuni impianti eolici E-82 su un terreno quadrato (lunghezza = larghezza = 500 m). In base alle norme vigenti sulle costruzioni, la distanza minima fra le torri di due impianti eolici di questo modello deve essere uguale a cinque volte la lunghezza di una pala. Il sindaco della città ha fatto una proposta per la disposizione degli impianti eolici sul terreno. Questa proposta è illustrata nello schema qui accanto. Spiega perché la proposta del sindaco non rispetta le norme sulle costruzioni. Giustifica la tua risposta con l’aiuto di calcoli. 250 m 250 m = torre dell’impianto eolico Nota: Lo schema non è in scala. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ENERGIA EOLICA: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare il teorema di Pitagora in un contesto reale Sottoambito matematico: Spazio e forma Contesto: Scientifico Processo: Applicare Punteggio pieno Codice 1: La risposta mostra che la distanza minima fra le torri degli impianti eolici (nell’intervallo da 175 a 177 m) è inferiore alla lunghezza obbligatoria di cinque pale (200 m). Gli impianti non possono essere disposti in questo modo, dato che a volte la distanza fra di loro è di soli √1252 1252 177 m, il che è inferiore a 200 m. Distanza in diagonale: 176,8; 5 pale = 200; 176,8 < 200. Esercizi Liberati-PISA 2012 46 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. PM922Q04 – 0 1 2 9 Domanda 4: ENERGIA EOLICA Qual è la velocità massima alla quale ruotano le estremità delle pale dell’impianto eolico? Scrivi il tuo procedimento e dai il risultato in chilometri orari (km/h). Fai riferimento alle informazioni relative al modello E-82. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Velocità massima: ............................... km/h ENERGIA EOLICA: INDICAZIONI PER LA CORREZIONE D 4 OBIETTIVO DELLA DOMANDA: Descrizione: Risolvere un problema in un contesto cinetico Sottoambito matematico: Trasformazioni e relazioni Contesto: Scientifico Processo: Applicare Punteggio pieno Codice 2: Una velocità nell’intervallo da 288 a 3 2, incluso il valore esatto di 9 con o senza procedimento. (o equivalente), La velocità massima di rotazione è di 20 rotazioni al minuto; la distanza per rotazione è di 2 x x 40 m 250 m, dunque 20 x 250 m/min 5’ m/min 83 m/s 300 km/h. 20 rotazioni al minuto = 1200 rotazioni/h = 1200 x 2 x 40 m/h = 96 km/h Punteggio parziale Codice 1: Risposte corrette ma non espresse in km/h. Queste risposte propongono dei valori inclusi nell’intervallo da 288' a 3 1'714 m/h, da 4’8 a 5’ 29 m/min e da 8 a 84 m/sec. Il procedimento non è richiesto. Si può ritenere che valori in questi intervalli siano stati ottenuti grazie a un metodo corretto, tranne che per la conversione delle unità in km/h. 2x x 40 m 250 m, dunque 20 x 250 m/min 5’ Esercizi Liberati-PISA 2012 m/min 83 m/s. 47 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 48 UNA COSTRUZIONE CON I DADI La figura qui sotto mostra una costruzione realizzata con sette dadi identici le cui facce sono numerate da 1 a 6. Vista dall’alto Guardando la costruzione dall’alto sono visibili solo 5 dadi. Domanda 1: UNA COSTRUZIONE CON I DADI PM937Q01 – 0 1 2 9 In totale, quanti punti sono visibili guardando la costruzione dall’alto? Numero di punti visibili: ……………….. UNA COSTRUZIONE CON I DADI: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare una determinata prospettiva partendo dalla fotografia di una costruzione in 3 dimensioni Sottoambito matematico: Spazio e forma Contesto: Personale Processo: Interpretare Punteggio pieno Codice 2: 17 Punteggio parziale Codice 1: 16 16 o 17. [Questo i ica che l’allie o è i gra o i interpretare il modello sopra ma pure che è i eciso. No ha utilizzato l’i formazio e seco o la quale i a i so o i e tici.] Nessun punteggio Codice 0: Altre risposte. Esercizi Liberati-PISA 2012 49 Codice 9: Non risponde. Esercizi Liberati-PISA 2012 50 APPARTAMENTO DI VACANZA Cristina trova questo appartamento di vacanza in vendita su Internet. Sta pensando di comprarlo per affittarlo ai vacanzieri. Numero di locali: 1 x sala da pranzo e salotto 1 x camera 1 x bagno Superficie: 60 metri quadrati (m²) Posteggio: Sì Tempo del percorso fino al centro città: 10 minuti Distanza dalla spiaggia: 350 metri (m) in linea d’aria Occupazione media dei vacanzieri nel corso degli ultimi 10 anni: 315 giorni all’anno Esercizi Liberati-PISA 2012 Prezzo: 200’000 zed 51 PM962Q01 – 0 1 9 Domanda 1: APPARTAMENTO DI VACANZA Per valutare il prezzo dell’appartamento di vacanza, Cristina chiede la stima ad un esperto. Per stimare il valore di un appartamento di vacanza, l’esperto impiega i seguenti criteri: Prezzo al m² Criteri che aumentano il valore Prezzo di base: 2’5 Tempo del percorso fino al centro città: Più di 15 minuti: + 0 zed Da 5 a 15 minuti: +1 ’ zed Meno di 5 minuti: +2 ’ zed Più di 2 km: Da 1 a 2 km: Da 0,5 a 1 km: + 0 zed + 5’ +1 ’ No: + 0 zed Sì: + 35’ Distanza dalla spiaggia (in linea d’aria): Posteggio: zed al m² zed zed Meno di 0,5 km: + 15’ zed zed Se il valore stimato dall’esperto è superiore al prezzo di vendita dell’annuncio, il prezzo di vendita è considerato come «molto buono» per il potenziale acquirente (in questo caso Cristina). Dimostra, in base ai criteri dell’esperto, che il prezzo di vendita proposto è «molto buono» per Cristina. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ APPARTAMENTO DI VACANZA: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Valutare un certo numero di criteri rispetto al prezzo di vendita annunciato di un appartamento di vacanza per ottenere una valutazione corretta Sottoambito matematico: Quantità Contesto: Sociale Processo: Applicare Punteggio pieno Codice 1: Una risposta che menzioni che la stima del prezzo dell’appartamento in base ai criteri dell’esperto è di 21 ’ zed. Il totale dell’esperto è pari a 21 ’ zed, ossia un prezzo superiore a quello annunciato di 2 ’ , dunque si tratta di un prezzo molto buono. Esercizi Liberati-PISA 2012 52 Il totale di 21 ’ 210'000 zed zed è superiore al prezzo annunciato. Nessun punteggio Code 0: Altre risposte. Code 9: Non risponde. PM962Q02 Domanda 2: APPARTAMENTO DI VACANZA L’occupazione media dell’appartamento da parte di vacanzieri è stata di 315 giorni all’anno nel corso degli ultimi 10 anni. Stabilisci se è possibile fare le seguenti affermazioni a partire da questa informazione. Fai un cerchio intorno a «Sì» o «No» per ciascuna affermazione. Affermazione È possibile fare la seguente affermazione a partire dai dati forniti? Si può affermare con certezza che l’appartamento di vacanza è stato occupato esattamente 315 giorni da vacanzieri nel corso di almeno uno degli ultimi 10 anni. Sì / No In teoria, è possibile che nel corso degli ultimi 10 anni l’appartamento sia stato occupato da vacanzieri per più di 315 giorni ogni anno. Sì / No In teoria, è possibile che nel corso di uno degli ultimi 1 anni l’appartamento non sia stato occupato per nulla da vacanzieri. Sì / No Osservazione: Considera che ci sono 365 giorni in un anno. APPARTAMENTO DI VACANZA: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare il significato di un valore medio specifico Sottoambito matematico: Incertezza e dati Contesto: Sociale Processo: Interpretare Punteggio pieno Codice 1: Le tre risposte sono corrette. Nell’ordine: No, No, Si. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 53 NOLEGGIO DI DVD Giulia lavora in un negozio di noleggio di DVD e di videogiochi. In questo negozio il costo dell’abbonamento annuale è di 1 zed. Il prezzo del noleggio di DVD per gli abbonati è meno elevato che per i non abbonati, come indicato nella tabella sottostante. Prezzo di noleggio di un DVD per i non abbonati Prezzo di noleggio di un DVD per gli abbonati 3,20 zed 2,50 zed Domanda 1: NOLEGGIO DI DVD PM977Q01 – 0 1 9 L’anno scorso Antonio era abbonato al negozio di noleggio di DVD. Nel corso dell’anno Antonio ha speso in totale 52,5 zed, incluso il costo dell’abbonamento annuale. Quanto avrebbe speso Antonio per noleggiare lo stesso numero di DVD se non fosse stato abbonato? Numero di zed: .................................... NOLEGGIO DI DVD: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare dati finanziari per risolvere un problema a più tappe Sottoambito matematico: Quantità Contesto: Personale Processo: Applicare Punteggio pieno Codice 1: 54,40. [Accettare le risposte che dimostrano un metodo corretto ma incompleto o con degli errori minori] 52,5 – 10 = 42,5 ; 42,5 ÷ 2,5 = 17 ; 17 x 3,30 = 56,10 zed. [Metodo corretto con un errore minore di trascrizione (3,30 al posto di 3,20)] Nessun punteggio Codice 0: Altre risposte. Esercizi Liberati-PISA 2012 54 Codice 9: Nessuna risposta. Domanda 2: NOLEGGIO DI DVD PM977Q02 – 00 11 12 21 22 23 24 99 Qual è il numero minimo di DVD che un abbonato deve noleggiare per coprire il costo dell’abbonamento annuale? Scrivi qui sotto i passaggi che fai per arrivare alla tua risposta. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Numero di DVD: .................................. NOLEGGIO DI DVD: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Utilizzare dati di costo per calcolare il numero di DVD che bisogna noleggiare per rendere redditizio il costo di un abbonamento Sottoambito matematico: Quantità Contesto: Personale Processo: Formulare Punteggio pieno Codice 21:15 [Calcolo algebrico con ragionamento corretto.] 3,20x = 2,50x + 10 0,70x = 10 x = 10 ÷ 0,70 = 14,2 circa, ma deve essere un numero intero, dunque 15 DVD. 3,20x > 2,50x + 10 [Stessi passaggi come ell’esempio prece e te ma applicati ad una disequazione.] Codice 22:15 [Calcolo aritmetico con ragionamento corretto.] Per un DVD, un abbonato risparmia 0,70 zed. Dato che ha già pagato 10 zed all’inizio, deve almeno risparmiare questa somma per coprire il costo dell’abbonamento. 10 ÷ 0,70 = 14,2... ossia 15 DVD. Code 23: 15 [Risoluzione corretta con un procedimento per tentativi ed errori.] 10 DVD = 32 zed per i non abbonati e 25 zed + 10 zed = 35 zed per gli abbonati. Bisogna dunque provare con un numero più grande di 10. 15 DVD costano 48 zed ai non abbonati e 37,50 + 10 = 47,50 zed agli abbonati. Provando con un numero più piccolo: 14 DVD = 44,80 zed per i non abbonati e 35 + 10 = 45 zed per gli abbonati. La risposta dunque è 15 DVD. Codice 24: 15 senza ragionamento o senza procedimento. Punteggio parziale Codice 11: Un metodo corretto (algebrico, aritmetico o per tentativi ed errori) ma con un errore minore che conduce a una risposta plausibile diversa da 15. 10 ÷ (3,2 – 2,5) = 10 ÷ 1,3 = 7,7. Numero di DVD = 8. Esercizi Liberati-PISA 2012 55 Codice 12: Il calcolo è corretto ma l’allievo non arrotonda correttamente o non arrotonda per niente poiché non prende in considerazione il contesto. 14 14,2 14,3 14,28… Nessun punteggio Codice 00: Altre risposte. Codice 99: Non risponde. Esercizi Liberati-PISA 2012 56 TELEVISIONE VIA CAVO La tabella seguente mostra i dati sul numero di nuclei familiari che hanno una televisione (TV) in cinque paesi. La tabella mostra anche la percentuale di nuclei familiari che hanno una TV e sono anche abbonati alla televisione via cavo. Paese Numero di nuclei familiari che hanno una TV Percentuale di nuclei familiari che hanno una TV fra tutti i nuclei familiari Percentuale di nuclei familiari abbonati alla televisione via cavo fra i nuclei familiari che hanno una TV Giappone 48,0 milioni 99,8% 51,4% Francia 24,5 milioni 97,0% 15,4% Belgio 4,4 milioni 99,0% 91,7% Svizzera 2,8 milioni 85,8% 98,0% Norvegia 2,0 milioni 97,2% 42,7% Fonti: UIT, Indicatore delle telecomunicazioni nel mondo 2004/2005 UIT, Rapporto sullo sviluppo delle telecomunicazioni/TIC nel mondo 2006 Domanda 2: TELEVISIONE VIA CAVO PM978Q02 – 00 11 12 99 Carlo esamina le informazioni fornite nella tabella riguardanti la Francia e la Norvegia. Carlo afferma: «Visto che la percentuale di tutti i nuclei familiari che hanno una TV è quasi la stessa in entrambi i paesi, si può dire che la Norvegia ha più nuclei familiari abbonati alla televisione via cavo.» Spiega perché quest’affermazione è sbagliata. Spiega come hai trovato la risposta. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ TELEVISIONE VIA CAVO: INDICAZIONI PER LA CORREZIONE D2 OBIETTIVO DELLA DOMANDA: Descrizione: Interpretare e utilizzare dati sui nuclei familiari e gli abbonamenti alla televisione via cavo per spiegare perché una data affermazione è sbagliata Sottoambito matematico: Incertezza e dati Contesto: Sociale Processo: Interpretare Esercizi Liberati-PISA 2012 57 Punteggio pieno Codice 11: La risposta menziona che Carlo deve prendere in considerazione il numero effettivo di nuclei familiari che hanno una TV in entrambi i paesi. [Accettare termini come “popolazio e/abita ti” quali si o imi i “ uclei familiari”.] Si sbaglia, dato che in Francia ci sono circa 22 milioni di nuclei familiari in più che hanno una TV, e anche se ce ne sono solo 15,4% che sono abbonati alla TV via cavo, fa di più che in Norvegia. Perché la popolazione in Francia è circa 10 volte superiore a quella della Norvegia e in Norvegia i nuclei familiari abbonati alla TV via cavo sono solo circa 3 volte tanto rispetto alla Francia. Codice 12 : Risposta fondata sul calcolo del numero reale di nuclei familiari abbonati alla TV via cavo in entrambi i casi. Perché la Francia ha 24,5 × 0,154 = 3,8 milioni di nuclei familiari abbonati alla televisione via cavo, mentre la Norvegia ne ha 2,0 × 0,427, ciò che corrisponde a circa 0,8 milioni di nuclei familiari. La Francia ha dunque più abbonati alla televisione via cavo. Nessun punteggio Codice 00: Altre risposte. Codice 99: Non risponde. Esercizi Liberati-PISA 2012 58 VENDITA DI GIORNALI Due giornali di Zedlandia cercano venditori. I cartelli pubblicitari qui sotto indicano quanto i due giornali pagano i venditori. CORRIERE DI ZEDLANDIA GIORNALE DI ZEDLANDIA HAI BISOGNO DI SOLDI? LAVORO BEN PAGATO CHE RICHIEDE POCO TEMPO! VENDI IL NOSTRO GIORNALE Verrai pagato: 0,20 zed a giornale per le prime 240 copie vendute in una settimana, poi 0,40 zed per ogni giornale supplementare venduto. Vendi il Giornale di Zedlandia e guadagna 60 zed a settimana, più 0,05 zed in più per ogni giornale venduto. Domanda 1: VENDITA DI GIORNALI PM994Q01 – 0 1 9 In media, Federico vende 350 copie del Corriere di Zedlandia ogni settimana. Quanto guadagna in media ogni settimana? Importo in zed: .................................... VENDITORI DI GIORNALI: INDICAZIONI PER LA CORREZIONE D 1 OBIETTIVO DELLA DOMANDA: Descrizione: Identificare informazioni pertinenti di un modello matematico semplice per calcolare un determinato numero Sottoambito matematico: Trasformazioni e relazioni Contesto: Professionale Processo: Formulare Punteggio pieno Codice 1: 92 o 92,00 48 + 44 [Sufficiente per mostrare la comprensione del processo e della soluzione] 350 – 240 = 90; 240 x 0,2 = 48; 90 x 0,4 = 36. Importo in zed: 84. [Metodo corretto, con un piccolo errore di calcolo] Nessun punteggio Codice 0: Altre risposte. Esercizi Liberati-PISA 2012 59 Codice 9: Non risponde. Domanda 2: VENDITA DI GIORNALI PM994Q02 – 0 1 9 Cristina vende il Giornale di Zedlandia. In una settimana ha guadagnato 74 zed. Quanti giornali ha venduto in quella settimana? Numero di giornali venduti: ................ VENDITA DI GIORNALI: INDICAZIONI PER LA CORREZIONE D 2 OBIETTIVO DELLA DOMANDA: Descrizione: Identificare informazioni pertinenti e tradurle in un modello matematico semplice per calcolare un determinato numero. Sottoambito matematico: Trasformazioni e relazioni Contesto: Professionale Processo: Formulare Punteggio pieno Codice 1: 280 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 60 PM994Q03 Domanda 3: VENDITA DI GIORNALI Gianni decide di candidarsi come venditore di giornali. Deve scegliere fra il Corriere di Zedlandia e il Giornale di Zedlandia. Quale dei seguenti grafici rappresenta correttamente quanto i due giornali pagano i loro venditori? Fai un cerchio intorno ad A, B, C o D. Giornale di Zedlandia Corriere di Zedlandia Retribuzione settimanale (in zed) B Giornale di Zedlandia Corriere di Zedlandia Numero di giornali venduti Numero di giornali venduti C D Giornale di Zedlandia Corriere di Zedlandia Numero di giornali venduti Retribuzione settimanale (in zed) Retribuzione settimanale (in zed) Retribuzione settimanale (in zed) A Giornale di Zedlandia Corriere di Zedlandia Numero di giornali venduti VENDITA DI GIORNALI: INDICAZIONI PER LA CORREZIONE D 3 OBIETTIVO DELLA DOMANDA: Descrizione: Identificare modelli matematici corretti quando due funzioni lineari sono rappresentate graficamente Sottoambito matematico: Trasformazioni e relazioni Contesto: Professionale Processo: Interpretare Punteggio pieno Codice 1: Grafico C Nessun punteggio Codice 0: Altre risposte. Esercizi Liberati-PISA 2012 61 Codice 9:Non risponde. Esercizi Liberati-PISA 2012 62 SEZIONE 3: PISA 2006 ESERCIZI GIRO IN AUTOMOBILE Carla è uscita a fare un giro in automobile. Durante il giro, un gatto le ha tagliato la strada improvvisamente. Carla ha frenato bruscamente e ha evitato il gatto. Un po’ scossa, Carla decide di tornare a casa. Il seguente grafico è una rappresentazione semplificata della velocità dell’automobile durante il giro. Giro di Carla 72 60 Velocità (km/h) 48 36 24 12 0 9:00 9:04 9:08 9:12 Tempo (h) Domanda 2: GIRO IN AUTOMOBILE M302Q02 - 0 1 9 A che ora Carla ha frenato bruscamente per evitare il gatto? Risposta: ............................................... GIRO IN AUTOMOBILE: INDICAZIONI PER LA CORREZIONE D2 Punteggio pieno Codice 1: 9.06 OPPURE Le nove e sei. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 63 Domanda 3: GIRO IN AUTOMOBILE M302Q03 - 0 1 9 Il percorso fatto da Carla per tornare a casa è più breve del tratto che lei ha percorso da casa fino all’incontro con il gatto? Spiega brevemente la tua risposta utilizzando le informazioni contenute nel grafico. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ GIRO IN AUTOMOBILE: INDICAZIONI PER LA CORREZIONE D3 Punteggio pieno Codice 1: Risponde che il percorso di ritorno è più corto, con una spiegazione pertinente. La spiegazione deve menzionare DISTINTAMENTE la velocità media inferiore E il fatto che il percorso di ritorno è stato effettuato circa nello stesso tempo di quello d’andata (o una spiegazione equivalente). Da notare che il punteggio pieno è da attribuire anche a tutte le spiegazioni fondate sul fatto che l’area sotto la curva corrispondente al percorso di ritorno è più piccola. La prima parte è più lunga rispetto al percorso di ritorno – ha impiegato lo stesso tempo, ma, nella prima parte, Carla ha viaggiato molto più velocemente che nella seconda parte. Il percorso che Carla ha effettuato per ritornare a casa è più corto perché l'ha percorso in meno tempo sebbene viaggiasse meno velocemente. Nessun punteggio Codice 0: Risposta corretta senza una spiegazione adeguata. Era più corto perché quando ha frenato bruscamente aveva appena superato la metà del tempo. La strada verso casa era più breve. Occupava solo 8 caselle mentre il percorso fin lì ne occupava 9. OPPURE Altre risposte No, erano uguali perché ha impiegato sei minuti per tornare indietro ma guidava più piano. Esaminando il grafico, se si include il tempo che Carla ha impiegato rallentando per il gatto, è probabilmente più veloce di qualche secondo, ma arrotondando è lo stesso. Dal grafico possiamo dire che la distanza fino al punto in cui Carla si è fermata era la stessa della distanza per tornare a casa. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 64 STATURA In una classe ci sono 25 allieve. L’altezza media delle allieve è 13 cm. M421Q01 - 0 1 9 STATURA Spiega come viene calcolata l’altezza media. STATURA: INDICAZIONI PER LA CORREZIONE D1 Punteggio pieno Codice 1: Spiegazioni che includono: sommare le singole altezze e dividere la somma per 25. Si somma l’altezza di ogni allieva e si divide la somma per il numero delle allieve. Prendi le altezze di tutte le allieve, le sommi e dividi il risultato per il numero di allieve, in questo caso 25. La somma di tutte le altezze espresse nella stessa unità divisa per il numero di allieve. Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 65 REALIZZARE UN LIBRETTO Domanda 1: REALIZZARE UN LIBRETTO M598Q01 - 0 1 9 Figura 1 La Figura 1 mostra come realizzare un libretto. Le istruzioni sono riportate di seguito: prendere un foglio di carta e piegarlo due volte; cucire con punti metallici il bordo a; tagliare in b per aprire i due bordi. Il risultato è un libretto di otto pagine. Figura 2 La Figura 2 mostra un lato di un foglio di carta usato per realizzare questo libretto. I numeri delle pagine sono stati scritti prima sul foglio. La linea in neretto indica dove la carta verrà tagliata dopo averla piegata. Esercizi Liberati-PISA 2012 66 Scrivi i numeri 1, 4, 5 e 8 nelle caselle della seguente figura in modo da mostrare quale numero di pagina si trova direttamente sul retro di ciascuna pagina numerata con 2, 3, 6 e 7. REALIZZARE UN LIBRETTO: INDICAZIONI PER LA CORREZIONE D1 Punteggio pieno Codice 1: Numeri di pagina inseriti correttamente nelle seguenti posizioni (ignorare l’orientamento dei numeri): 1 8 4 5 Nessun punteggio Codice 0: Altre risposte. Codice 9: Non risponde. Esercizi Liberati-PISA 2012 67 BICICLETTE Giulio, Sabrina e Pietro fanno un giro usando biciclette di diverse misure. La seguente tabella fornisce la distanza percorsa dalle loro biciclette ad ogni giro completo di ruota. Distanza percorsa in cm 1 giro 2 giri 3 giri 4 giri 5 giri 6 giri Pietro 96 192 288 384 480 … Sabrina 160 320 480 640 800 … Giulio 190 380 570 760 950 … M810Q03 - 00 11 12 21 99 Domanda 1: BICICLETTE La bicicletta di Pietro ha le ruote con una circonferenza di 96 cm (o 0,96 m). È una bicicletta a tre marce con un rapporto basso, uno intermedio e uno alto. I rapporti di riduzione della bicicletta di Pietro sono: Basso 3:1 Intermedio 6:5 Alto 1:2 Quanti giri di pedale occorreranno a Pietro per percorrere 960 m con il rapporto intermedio? Scrivi qui sotto i passaggi che fai per arrivare alla risposta. NOTA: Un rapporto di riduzione di 3:1 significa che 3 giri completi di pedale producono un giro completo della ruota. BICICLETTE: INDICAZIONI PER LA CORREZIONE D3 Punteggio pieno Codice 21: 1’2 giri di pedale, con un metodo pienamente corretto. Da notare che la risposta corretta, anche se il procedimento non è mostrato, implica un metodo pienamente corretto a cui deve essere assegnato il punteggio pieno. 9 m richiedono 1’ giri di ruota, che corrispondono a 1'000 6 1'200 5 giri di pedale Punteggio parziale Codice 11: 12 giri di pedale, calcolati con un metodo corretto, anche se non mostrato, ma senza la corretta conversione delle unità. 960 m richiedono 10 giri di ruota (lo studente ha dimenticato che la distanza nella tabella 6 viene fornita in cm), che corrispondono a 10 =12 giri di pedale 5 Codice 12: Metodo corretto ma con altri piccoli errori di calcolo o calcolo incompleto. 3 giri di pedale producono 2,5 giri di ruota e 1 giro di ruota = 0,96 metri, quindi 3 giri di pedale = 2,4 metri. Di conseguenza, per 960 m occorrono 400 giri di pedale. Per fare 9 m occorrono 1’ giri di ruota (9 / ,9 ), per cui con un rapporto intermedio occorrono 833 giri di pedale (5/ di 1’ ). [Il metodo è corretto, ma il rapporto è stato invertito.] Esercizi Liberati-PISA 2012 68 5 x 0,96 = 4,8, e 960/4,8 = 200, per cui 200 giri di pedale. Ora 200/5 = 40 e 40 x 6 = 240. Per cui occorrono 240 giri di pedale. [Un solo errore, la prima moltiplicazione per 5, ma altrimenti un metodo corretto.] Nessun punteggio Codice 00: Altre risposte. 9 ’ /5 19’2 , e 19'2 x 115’2 giri di pedale. [La circonferenza della ruota non è stata presa in considerazione.] Codice 99: Non risponde Esercizi Liberati-PISA 2012 69