Comments
Description
Transcript
Attrito nelle funi
ITIS OMAR Dipartimento di Meccanica Attrito nelle funi Problema n. 1 Determine the force P required to (a) raise and (b) lover the 40-kg cylinder at a slow steady speed. The coefficient of friction f between the cord and its supporting surface is 0.30 L'ampiezza α dell'arco di contatto vale: α = π rad (a) La forza P necessaria per far salire senza accelerazione il corpo vincolato dalla fune vale: P = exp (α f ) = 2.566 mg P = mg ⋅ exp (α f ) = 1007 N (b) La forza P necessaria per far scendere senza accelerazione il corpo vincolato dalla fune vale: mg = exp (α f ) P mg P= = 152.9 N exp (α f ) 1 ITIS OMAR Dipartimento di Meccanica Problema n. 2 A force P=mg/6 is required to lower the cylinder at a constant slow speed with the cord making 5/4 turns around the fixed shaft. Calculate the coefficient of friction f between the cord and the shaft. mg 5 = exp π ⋅ f mg 2 6 5 6 = exp π ⋅ f 2 5 log ( 6 ) = π ⋅ f 2 2log ( 6 ) f = = 0.228 5π 2 ITIS OMAR Dipartimento di Meccanica Problema n. 3 A dockworker adjust a spring line (rope) which keeps a ship from drifting alongside a wharf. If he exerts a pull F of 200 N on the rope, which has 5/4 turns around the mooring bit, what force T can be support? The coefficient of friction f between the rope and the cast.steel mooring bit is 0.30 T 5 = exp π ⋅ F 2 f 5 T = F ⋅ exp π ⋅ f 2 5 T = 200 ⋅ exp π ⋅ 0.3 2 T = 2110 N Problema n. 4 If the dockworker of Prob.3 is to support a tension T of 18 kN in the rope leading to the ship, how many turns around the mooring bit are necessary if he exerts a pull F of 240 N on the free end? The coefficient of friction f between the rope and the bit is 0.30 T = exp (α f ) F T α f = log F T log F = 75 = 250 rad α= f 0.3 250 n= = 39.7 giri 2π Per assicurare l'ortogonalità tra T ed F il numero minimo di giri di avvolgimento sarà pari a 40,25 3 ITIS OMAR Dipartimento di Meccanica 4 Problema n. 5 In western movies, cowboys are frequently observed hitching their horses by casually winding a few turns of the reins around a horizontal pole and letting the end hang free as shown. If the freely hanging length of rein has a mass m of 0.060 kg and the number of turns is as shown, what tension T does the horse have to produce in the direction shown in order to gain freedom? The coefficient of friction f between the reins and wooden pole is 0.70 L'angolo di avvolgimento α della fune sul palo vale: π π 13 α = 2π − + 2 π + = π 6 2 3 La forza T necessaria alla liberazione del cavallo vale: T 13 = exp π ⋅ mg 3 f 13 T = mg ⋅ exp π ⋅ f 3 = 0.5886 ⋅ 13759.68 = 8099 N ITIS OMAR Dipartimento di Meccanica 5 Problema n. 6 For a certain coefficient of friction f and a certain angle α , the force P required to raise m is 4 kN and that (F) required to lower m at a constant slow speed is 1.6 kN. Calculate the mass m. P π mg = exp 2 + α mg π = exp + α 2 F mg 1 f ⇒ = P π exp + α 2 f m2 g 2 =1 F⋅P F⋅P m= = 257.88 kg g f ITIS OMAR Dipartimento di Meccanica Problema n. 7 A 50-kg package is attached to a rope which passes over an irregularly shaped boulder with uniform surface texture. If a downward force P = 70 N is required to lower the package at a constant rate, (a) determine the coefficient of friction f between the rope and the boulder. (b) What force F would be required to raise the package at a constant rate? (a) Poiché il peso del pacco e il tiro della fune hanno direzione comune, indipendentemente dall'irregolarità del masso, l'angolo di avvolgimento α vale π . mg = exp (π f ) P mg π f = log P mg log P = 1.947 ≅ 0.62 f = π π (b) F = exp ( π f ) mg F = mg ⋅ exp (π f ) = 490.5 ⋅ 7.013 ≅ 3440 N 6 ITIS OMAR Dipartimento di Meccanica 7 Problema n. 8 The 80-kg tree surgeon lowers himself with the rope over a horizontal limb of the tree. If the coefficient of friction f between the rope and the limb is 0.60, compute the force F which the man must exert on the rope to let himself down slowly. L'angolo di avvolgimento α vale π mg = exp (α f ) F mg = exp ( π f ) F mg 784.8 F= = = 119.2 N exp ( π f ) 6.586