...

V low-k approach

by user

on
Category: Documents
17

views

Report

Comments

Transcript

V low-k approach
Structure of heavy neutron-rich nuclei
Angela Gargano
Napoli
Realistic shell-model calculations: where do we stand?
Realistic effective interaction:
• Renormalization of the bare NN potential - the Vlow-k approach;
• Many body theory to construct Veff – folding expansion
Realistic shell model and 132Sn neighbors:
Results for nuclei beyond the N=82 shell closure
Realistic shell model and nuclei with several valence nucleons:
Results for the N=82 isotonic chain
Summary
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Shell-model calculations
1. Model space
2. Single-particle energies
3. Two-body matrix elements
4. Construction and diagonalization of the energy matrices
Modern codes:
•Oxbash
- widely distributed and used
•Oslo
- m-scheme; dimension ~106
•Antoine
- m-scheme; dimension ~109
•Nathan
- coupled scheme; ~106
•Redstick
- for 2-and 3- body ME
A. Brown …
T. England
E. Caurier…
P. Navratil, W.E. Ormand
Shell-model TB effective interaction:
•TBME based on “simple potentials”
•TBME treated as parameters Cohen-Kurath 1965 - p shell nuclei
A. Brown et al. 2006 - sd shell nuclei
•Realistic TBME derived from the bare potential among nucleons
Kuo-Brown 1966
•Semi-realistic TBME realistic with some adjustements
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Realistic shell-model calculations
Veff from the bare potential
H  T  VNN  VNNN  
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
The role of the NNN potential haa been evidenced
by investigation on light nuclei
NCSM Navratil 2007
Tjon line
Nogga 2004
Inclusion of three–body forces in the “shell model” approach
not yet attempted
• effective interaction derived from the NN potential without any
adjustement (to assess the quality and reliability of realistic effective
interactions and the possible need for improvement)
• effective interaction with some modified ME
(for instance monopole changes; Caurier et al. 2005)
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Realistic shell-model calculations
Veff from the bare potential
H  T  VNN  VNNN  
Nuclear many-body Schroedinger equation
Hi (1, , A)  (T  VNN ) Ei i (1, , A)
Model-space Schroedinger equation
Model space defined by the operator
d
P   i i
1
the complement being
Q  1 P 


1 d 1
i
i
PH eff Pi  Ec  P( H 0Veff ) Pi  Ei Pi
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Realistic shell-model calculations
Basic ingredients :
Nucleon-nucleon potential
Many-body theory to derive the effective
interaction
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Modern (phase-shift equivalent)
NN potentials
Nijmegen I - (PD = 5.66%) - 41 parameters - 2/Ndata = 1.03
Nijmegen II - (PD = 5.64%) - 47 parameters - 2/Ndata = 1.03
Argonne V18 - (PD = 5.76%) - 40 parameters - 2/Ndata = 1.09
CD Bonn -
(PD = 4.85%) - 43 parameters - 2/Ndata = 1.02
based upon the OBE model
π ρ ω σ1σ2
(1999 NN Database: 5990 pp and np scattering data)
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Chiral potentials
NN potential derived from chiral effective field theory
S. Weinberg (1990) “Nuclear forces from chiral lagrangians”
D. R. Entem and R. Machleidt (2001- 2003): Idaho potential, N3LO potential
E. Epelbaum, W. Glöckle, and U.-G. Meissner, 2005: N3LO potential
N3LO potential (Entem & Machleidt):
• Effective chiral πN Lagrangian
• One and two-pion exchange contributions. TPE contributions
up to fourth order of chiral perturbation theory
• Short-range force parametrized in terms of 24 contact terms
• Total number of parameters: 29
• PD = 4.51% - χ2/Ndata = 1.10 (np database below 290 MeV);
χ2/Ndata = 1.50 (pp database below 290 MeV)
Important advantage of the chiral perturbation theory:
it generates NNN forces (starting from 3rd order)
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Matrix elements of VNN
in the 1S0 channel
NN potentials are not completely constrained
by low-energy NN data
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Renormalization of the NN potential
Difficulty in the derivation of Veff from any modern NN potential:
existence of a strong repulsive core which prevents its direct use
in nuclear structure calculations
Traditional approach to this problem: Brueckner G-matrix method
Infinite sum of ladder diagrams
G( ) V NN VNN Q
1
Q G( )
  Q TQ
G
~~~ =
VNN
VNN
+
+ ...
VNN
New approach: construction of a low-momentum NN potential Vlow-k
S. Bogner,T.T.S. Kuo,L. Coraggio,A. Covello,N. Itaco, Phys. Rev C 65, 051301(R) (2002).
S. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003).
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Vlow-k approach
Vlow-k: Low-momentum potential confined within
a momentum-space cutoff
kΛ
● Derived from the original VNN by integrating out the highmomentum components of the original VNN potential
● Vlow-k preserves the physics of the original NN interaction
up to the cutoff momentum Λ:
the deuteron binding energy
scattering phase-shifts
●
Iterative method
S. K. Bogner, T.T.S. Kuo, L. Coraggio, Nucl. Phys. A684, 432c (2001).
S.K. Bogner, T.T.S. Kuo, L. Coraggio, A. Covello, N. Itaco, Phys. Rev. C 65, 051301(R) (2002).
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Vlow-k is free from high momentum modes
•Vlow-k is mooth potential suitable to be used directly as input for derive
the effective interactionin
• Vlow-k gives an approximately unique representation of the NN potential
Matrix elements of Vlow-k with Λ=2.1 fm-1
in the 1S0 channel
k
2 
E Lab M
 0.012 E Lab
2
2 
1.5
 ( fm1 )
ELab ( MeV ) 187
A. Gargano
Napoli
1.8
2.0
2.05
2.2
2.5
269
332
350
401 518
  2.1 fm -1
Eurisol User Group Wokshop – Firenze 2008
G matrix vs Vlow-k
G matrix
Vlow -- k
● Energy dependent
● NO energy dependent
● Model space dependent
● NO model space dependent
● No direct connection to the
original VNN potential
● It is a real effective potential in the k-space it reproduces all
the two body problem data
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Realistic effective interaction: “folded-diagram expansion”
H  T  V  (T  U )  (V  U )  H 0'  H1
d
Model space :
P   i i

with Q  1  P 

1 d 1
1
auxliary 1b potential
i
i
● Calculation of the Qˆ  box : collection of irreducible and valenced linked
diagrams at any order in V
2-body 2nd order diagrams:
V
V2p
V1p1h
●
V2p2h
Sum of the folded-diagram series :
(by Kuo-Krengiglowa or Lee-Suzuki iterative technique)
A. Gargano
Napoli

V
eff
 Qˆ   Fi (Qˆ )
i 1
Eurisol User Group Wokshop – Firenze 2008
Results
132Sn
neighbors beyond N=82
N=82 isotonic chain
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
126
133Sn
i13/2
f5/2
p1/2
h9/2
p3/2
f7/2
harmonic-oscillator basis
  7.88 MeV
.
.
.
82
h11/2
s1/2
d3/2
d5/2
g7/2
 space
.
.
.
50
 space
133Sb
132Sn
VNN : CD-Bonn
Vlow-k with Λ= 2.2 fm-1
Veff : ● 2nd order calculation and Lee-Suzuki method
● intermediate states composed of all possible hole states and
particle states restricted to 5 shells above the Fermi surface (which guarantees
the stability of results when increasing the number of intermediate states)
Coulomb force for protons added to Vlow-k
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Z=52
134Te
135Te
136Te
137Te
Z=51
133Sb
134Sb
135Sb
136Sb
Z=50
132Sn
133Sn
134Sn
N=82
N=83
N=84
N=85
138Te
139Te
N=86
N=87
N/Z=1.67
N/Z=1.68
Across the N=82 shell gap
Anomalous behavior of the first 2+ state in even Sn isotopes
"
in even Te isotopes
Anomalous behavior of the B(E2; 0+2+) value in even Sn isotopes
"
in even Te isotopes
Anomalous behavior of the first 5/2+ in Sb isotopes
Anomalously low position of the 1- state in
A. Gargano
Napoli
134Sb
Eurisol User Group Wokshop – Firenze 2008
2+ in Te isotopes
2+ in Sn isotopes
odd Sb isotopes
Downshift of the d5/2 proton
level relative to the g7/2 one?
Onset of a modification in the
shell structure?
7/2+
5/2+
N
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
134Te
Expt
Cd-Bonn
σ(keV)=115
A. Gargano
Napoli
NijmII
σ(keV)=143
Argonne V18
σ(keV)=128
Eurisol User Group Wokshop – Firenze 2008
134Sn
86% (f7/2)2
81% (f7/2)2
Expt
Calc
= 70 keV
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
134Sb
• Calc.
▲ Expt.
d5/2f7/2
g7/2f7/2
= 42 keV
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
134Sb
• Calc.
▲ Expt.
g7/2f7/2
Large space
g7/2f7/2
Small space:
intermediate states composed
of particle and hole states
restricted to two major shells
above and below the FS
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Diagonal matrix elements of
interaction for the
g7/f7/2 configuration
Large space
J
V1p1h
V2p2h
Small space
V2p
Veff
Vlow-k
A. Gargano
Napoli
J
Eurisol User Group Wokshop – Firenze 2008
Yrast states with Jπ from 0- to 7dominated by the g7/2(f7/2 )3
136Sb
• Calc.
▲ Expt.
G.S. Simpson et al. 2007 , ILL Grenoble
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
The “g7/2f7/2 multiplet” in 136Sb
compared to that in 134Sb
134Sb
136Sb
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
135Sb
anomalously low position
0.282
Expt
Calc
= 72 keV
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
135Sb:
wave functions
J=0+

7
2
75% g7/2 (f7/2)2 +...

5
2
45% d5/2 (f7/2)2 + 23% g7/2 (f7/2)2 + ...
J=0+
J=2+
 J=0+ and J=2+ ME in the (f7/2)2 configuration differ only by 300 keV
 J= 1- ME:
(g7/2 f7/2)  -600 keV
(d5/2 f7/2)  -500 keV
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
136Te
Expt
A. Gargano
Napoli
Calc
Eurisol User Group Wokshop – Firenze 2008
Comparison of the experimental and theoretical
B(E2) [e2fm4] and B(M1) [μ2N]
E2 eeff() = 0.70e
eeff() = 1.55e
M1 effective operator: 2nd order core
& no meson-exchange corrections
new measurements yield values which are
higher: ● 50%
HRIBF-ORL
● 20%
ISOLDE-CERN
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
N=82 isotones
134Te
Zval=2 test of
136Xe
138Ba
140Cs
142Nd
144Sm
154Hf
Veff
146Gd
148Dy
150Er
152Yb
Zval from 4 to 22
Role of three-body forces both genuine and effective
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
J=2+
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
J=4+
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
J=6+
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Ground-state binding energy
per valence proton
Zval
The Expt and Theor behaviors of the g.s. binding energy per valence
proton diverge  contribution of many-body effective forces
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Summary
The Vlow-k approach to the renormalization of the bare NN potential is a
valuable tool for nuclear structure calculations. This potential may be
used directly in shell-model calculations without the need of first
calculating the Brueckner G-matrix.
Effective interactions derived from modern NN potentials are able to
describe with quantitative accuracy the spectroscopic properties of exotic
nuclei near closed shells. This gives confidence in their predictive power
in these regions.
At present no real evidence of shell modifications near
importance to gain more experimental information.
132Sn.
It is of key
Theoretical open problems: ▪ single-particle energies from the theory;
▪ role of genuine and effective three-body
forces for heavy nuclei.
A. Gargano
Napoli
Eurisol User Group Wokshop – Firenze 2008
Fly UP