Comments
Transcript
Presentation of background leading to the
André Rubbia, ETH Zürich January, 2004 The ICARUS project The ICARUS collaboration (25 institutes, ≈150 physicists) M. Aguilar-Benitez, S. Amoruso, Yu. Andreew, P. Aprili, F. Arneodo, B. Babussinov, B. Badelek, A. Badertscher, M. Baldo-Ceolin, G. Battistoni, B. Bekman, P. Benetti, E. Bernardini, A. Borio di Tigliole, M. Bischofberger, R. Brunetti, R. Bruzzese, A. Bueno, C. Burgos, E. Calligarich, D. Cavalli, F. Cavanna, F. Carbonara, P. Cennini, S. Centro, M. Cerrada, A. Cesana, R. Chandrasekharan, C. Chen, D. B. Chen, Y. Chen, R. Cid, D. Cline, P. Crivelli, A.G. Cocco, A. Dabrowska, Z. Dai, M. Daniel, M. Daszkiewicz, C. De Vecchi, A. Di Cicco, R. Dolfini, A. Ereditato, M. Felcini, A. Ferrari, F. Ferri, G. Fiorillo, M.C. Fouz, S. Galli, D. Garcia, Y. Ge, D. Gibin, A. Gigli Berzolari, I. Gil-Botella, S.N. Gninenko, N. Goloubev, A. Guglielmi, K. Graczyk, L. Grandi, K. He, J. Holeczek, X. Huang, C. Juszczak, D. Kielczewska, M. Kirsanov, J. Kisiel, L. Knecht, T. Kozlowski, H. Kuna-Ciskal, N. Krasnikov, P. Ladron de Guevara, M. Laffranchi, J. Lagoda, Z. Li, B. Lisowski, F. Lu, J. Ma, N. Makrouchina, G. Mangano, G. Mannocchi, M. Markiewicz, A. Martinez de la Osa, V. Matveev, C. Matthey, F. Mauri, D. Mazza, A. Melgarejo, G. Meng, A. Meregaglia, M. Messina, C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, M. Nicoletto, G. Nurzia, C. Osuna, S. Otwinowski, Q. Ouyang, O. Palamara, D. Pascoli, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchlopek, T. Rancati, A. Rappoldi, G.L. Raselli, J. Rico, L. Romero, E. Rondio, M. Rossella, A. Rubbia, C. Rubbia, P. Sala, N. Santorelli, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk, N. Spinelli, J. Stepaniak, M. Stodulski, M. Szarska, M. Szeptycka, M. Szeleper, M. Terrani, R. Velotta, S. Ventura, C. Vignoli, H. Wang, X. Wang, C. Willmott, M. Wojcik, J. Woo, G. Xu, Z. Xu, X. Yang, A. Zalewska, J. Zalipska, C. Zhang, Q. Zhang, S. Zhen, W. Zipper. ITALY: L'Aquila, LNF, LNGS, Milano, Napoli, Padova, Pavia, Pisa, CNR Torino, Torino Univ., Politec. Milano. SWITZERLAND: ETH/Zürich. CHINA: Academia Sinica Beijing. POLAND: Univ. of Silesia Katowice, Univ. of Mining and Metallurgy Krakow, Inst. of Nucl. Phys. Krakow, Jagellonian Univ. Krakow, Univ. of Technology Krakow, A.Soltan Inst. for Nucl. Studies Warszawa, Warsaw Univ., Wroclaw Univ. USA: UCLA Los Angeles. SPAIN: Univ. of Granada, CIEMAT RUSSIA: INR (Moscow) André Rubbia - January 2004 3 The ICARUS project Based on the liquid Argon time projection chamber technology (originally developed at CERN and supported by the Italian Institute for Nuclear Research (INFN) over many years of R&D) Now a mature technology to detect with unprecedented quality the trajectories of elementary particles Biggest achievement: Construction of a fully instrumented 600 ton liquid argon experiment and operation on surface Plan: To install and operate a 3000 tons of liquid argon experiment underground at the LNGS (National Laboratory of Gran Sasso) near Rome, Italy André Rubbia - January 2004 4 Cosmic ray interactions with ICARUS 600 ton Shower 176 cm 25 cm 434 cm 85 cm 265 cm 142 cm Muon decay Run 960, Event 4 Collection Left André Rubbia - January 2004 Hadronic interaction Run 308, Event 160 Collection Left 5 A 100 kton liquid argon underground observatory for neutrino physics and test of matter stability Astrophysical neutrinos Atmosphe ric Solar En ≈ 10 MeV Supernov a Artificial neutrinos Superbeams Select focusing n sign ( ) b-beams Z Decay Ring SPS PS e nen Select ring sign e nen A A b Select ion Z 1 ( ) ne Matter stability 34 6x10 100 kton = nucleons Do they live “forever” ? Concept: 100 kton liquid Argon detector Electronic crates f≈70 m h =20 m Insulation Open detector Drift Gas Argon Liquid Argon Summary parameters liquid Argon 100 kton Dewar f≈70 m, height ≈ 20 m, passive perlite insulated, heat input ≈5W/m2 Argon storage Boiling argon, low pressure (<100 mbar overpressure) Argon total volume 73118 m3 (height = 19 m), ratio area/volume≈15% Argon total mass 102365 tons Hydrostatic pressure at bottom ≈3 atm Inner detector dimensions Disc f ≈70 m located in gas phase above liquid phase Electron drift in liquid 20 m maximum drift, HV=2 MV for E=1KV/cm, vd≈2 mm/µs, max drift time ≈10 ms Charge readout view 2 independent perpendicular views, 3mm pitch, in gas phase (electron extraction) with charge amplification (typ. x100) Charge readout channels ≈100000 Readout electronics 100 “ICARUS-like” racks on top of dewar (1000 channels per crate) Scintillation light readout Yes (also for triggering), 1000 immersed 8“ PMT with WLS (TPB) Visible light readout Yes (Cerenkov light), 27000 immersed 8“ PMTs or 20% coverage, single photon counting capability Detector schematic layout Charge readout plane GAr E ≈ 3 kV/cm E-field Extraction grid Electronic racks LAr E≈ 1 kV/cm UV & visible light readout PMT + race track Cathode (–2MV) André Rubbia - January 2004 (Not to scale) 13 The “dedicated” cryogenic complex Electricity Air Hot GAr W Underground complex GAr LAr Joule-Thompson expansion valve Q Heat exchanger External complex Argon purification LN2, … Concept: Cryogenic parameters Liquid Argon 1st filling time 2 years (assumed) Liquid Argon 1st filling rate 1,2 liters/second or 150 tons/day Liquid Argon refilling rate ≈0.3 liters/second or 23000 liters/day Purity of liquid Argon Required level of purity < 0,1 ppb of O2-equivalent Purification method Continuous recirculation through commercially available “Oxysorb” cartridges Gas & Liquid phase purification Wished liquid recirculation time ≈3 months Wished gas recirculation time ≈7 days Number of purification units 30 (15+15) Wish-list for this study Feasibility: storage tank •Underground storage of large quantity of liquid Argon at cryogenic temperature •Vacuum technology (external impurity tightness) •“Clean” internal materials (e.g. SS, surface treated) •Radiopurity of materials employed Undergound construction strategy •Tunnel access •E.g. Fréjus •Mine access •E.g. Polish site •Problem of space logistics •Safety Operation •LAr level constant (refilling) •LAr purity (continuous recirculation) •Emptying? •Safety Feasibility: Instrumentation •Internal mechanics (our instrumentation) •Internal-external UHV cold-hot interface Feasibility: Financing & time •Cost (order of magnitude) •Construction timescale Outlook •Presentation of polish site •W. Pytel •Presentation of Fréjus site •L. Mosca •Discussion on how to proceed