Comments
Description
Transcript
Papini Grazia
New metal complexes supported by scorpionate and macrocyclic ligands: chemistry and biological studies Dr.ssa Grazia Papini School of Advanced Studies Doctorate course in Chemical Sciences Cycle XX Scientific-Sector CHIM/03 Tutor Prof. Giancarlo Gioia Lobbia Well-known Scorpionate Ligands Bis(pyrazolyl)borates Tris(pyrazolyl)borates Tetrakis(pyrazolyl)borates “Nitrogen heterocycles other than pyrazole can be used, such as imidazole, triazole, benzotriazole, thioimidazole, ecc.” H R5 H R5 N R4 H N N R4 R5 B B N R4 N N R4 R4 N N N R5 Tris(imidazolyl)borates N H N R4 N R4 N Tetrakis(imidazolyl)borates N N N H N N B N N N N N N N R5 R5 μ4-N4 Bis(imidazolyl)borates N B N R4 μ2-N,N’ R5 N N μ3-N,N’,N” R4 N R5 R5 B H N N N N N H N N N B N N N N H S S H B H N N N N N N B R Poly(triazolyl)borates N N 2-S,S’ H N N R 3-S,S’,B-H Bis(3-R-2-thioxo-imidazolyl)borates Poly(benzotriazolyl)borates “Other modifications include changing the substituents on the heterocyclic ring.” H H CF3 B N N N N Na O N O O N O S. Alidori, M. Pellei, C. Pettinari, C. Santini, B. W. Skelton, A. H. White, Inorg. Chem. Commun., (2004). G. Bandoli, A. Dolmella, G. Gioia Lobbia, G. Papini, M. Pellei, C. Santini Inorg. Chim. Acta (2006) H B N N O2N N N N K+ N [H3B(pzCF3)]H. V. R. Dias, S. Alidori, G. Gioia Lobbia, G. Papini, M. Pellei, C. Santini Inorg. Chem. (2007) Scorpionate ligands with EWG substituents NO2 H H N N N N K+ NO2 H [H2B(pzNO2)2]- B F3C H B O2N [H2B(tzNO2)2]M. Pellei, F. Benetollo, G.Gioia Lobbia, S. Alidori, and C. Santini, Inorg. Chem., (2005) H H [H2B(pzCOOEt,Me)2]- H H B N N N N K+ CF3 [H2B(pzCF3)2]- M. Pellei, S. Alidori, G. Papini, G. Gioia Lobbia, J. D. Gorden, H. V. Rasika Dias, C. Santini, Dalton Trans. (2007) “In addition, tripodal ligands can have central atoms other than boron, such as carbon, phosphorus, or silicon….” R R R5 C N N R4 R5 N R3 R3 N N R R5 N N N R' R4 Me Si R N N R3 O P R' N N N R' R' N N N N R' R R R N R' RC(pzx)3 RSi(pzx)3 (pzx)3PO “…..and bearing a coordinating moiety (R') such as acetate, dithioacetate, sulfonate, ethoxide, ” O C O H N N C N N bdmpza S C S H N N C N N bdmpzta O O S OLi H C N N N N bdmpzs Rhenium complexes Versatile chemistry: several oxidation states accessible (from -I to VII); different coordination numbers (from 4 to 8); various donor set available The similarity between technetium and rhenium chemistry, determined a widespread use of the latter as a technetium surrogate to perform macroscopic chemistry of potential radiopharmaceuticals. In this way, a ‘‘cold’’material (the natural isotopic mixture of 185Re and 187Re) can be advantageously manipulated instead of the radioactive nuclide 99gTc (t1/2 = 2.12 · 105 y, Eβ = 292 keV). Rhenium has two β- emitters isotopes 186Re (β-max = 1.07 MeV; t1/2 = 90 h) and 188Re (βmax = 2.10 MeV; t1/2 = 17 h) which are of great interest to nuclear medicine due to their physical and nuclear properties finalized to a potential application in the radiopharmaceutical The “metal - fragment” strategy Linker M Labile groups Stable building -block Bioactive molecule Re(V) complexes - O O Cl Cl Re Cl N Cl N Re O Cl XY Cl N X Re N O biomolecule Y O O Metal fragment HN NH O OH S O C OLi H N N N N CO2Na N N C N N O O S OLi H C N N N N Metal Fragments N O N N MeO Re O MeO N Cl N O C OLi H [ReOCl4][NBu4] ROH(Et3N) CO N O N N Cl Re O OR [ReOCl4][NBu4] [ReOCl4][NBu4] MeOH (Et3N) N CO N O N N Cl N N C N N Cl Re Cl O N N O N N OH CH3CN (Et3N) O O S OLi H C N N N N [ReOCl4][NBu4] ROH (Et3N) N N Cl SO2 N O N Re OR O M. Porchia, G. Papini, C. Santini, G. Gioia Lobbia, M. Pellei, F. Tisato, G. Bandoli, A. Dolmella, Inorg. Chem. 44 (2005) 4045 Mixed coordination sphere complexes N N H ) nO 2 CH ( OH 3N Cl LiO N [ReOCl4][NBu4] N CH2Cl2 (Et3N) E N N O E= CO,SO2 N (CH2)n N Cl N E O N Et3N Re N OMe O H (C O )n H2 H N Et 3 M. Porchia, G. Papini, C. Santini, G. Gioia Lobbia, M. Pellei, F. Tisato, G. Bandoli, A. Dolmella, Inorg. Chem. 44 (2005) 4045 O OH(CH2)nOH O n= 2, 3 O OEt N E O Re HO(CH2)nOH Re N O Et N N N E O N N Cl N E O Re N Cl O Structure of the complex [Re(O)(bdmpza)(OCH2CH2O)] Structure of the complex [Re(O)(bdmpza)(OCH2CH2CH2O)] CO N O N N N Re Cl OEt O HO OC ( Et N 3 CH 2 )C OO H N CO N O N N N Re Cl Et3N N HOOC(CH2)COOH O O CO N O N N N Cl Re H C( OO O ) CH 2 OH CO [ReOCl4][NBu4] N N CO2Li CH2Cl2 (Et3N) Re OMe N Et 3 CO N O N HOOC(CH2)COOH O N N O O Cl O Structure of the complex [Re(O)(bdmpza)(mal)] Marina Porchia,Grazia Papini, Carlo Santini, Giancarlo Gioia Lobbia, Maura Pellei, Francesco Tisato, Giuliano Bandoli, Alessandro Dolmella Inorganica Chimica Acta 359 (2006) 2501–2508. Potential Nitridorhenium complexes H H B : N : N N R : R N R N Cl : NN R Re R Cl Cl H H B N : N N N R R H B N N : : N : R N N Cl N : N R H N N N : N B N N N N R Nitridorhenium precursors N Re H2O2 H2O Re2O7 [NBu4]OH [NBu4][ReO4] HCl g Cl NaN3 Re Cl Cl Cl N Re H2O2 H2O Re2O7 HCl PPh3 EtOH ReCl3PPh3 PPh3, [PhNHNH2]HCl Ph3P Cl Re Cl PPh3 Pre-carbene ligands H N KBH4 + X X 135°C H B N N 2 N H K+ X N N 2 BzBr H X H B N X N Br - N N Bz Bz H 2 H B N X KBH4 + 3 N H 170°C B X N N N N X + K X 3 BzBr N XN X N N 2Br XN N - Bz Bz N N Bz G. Papini, C. Santini, G. Gioia Lobbia, M. Pellei, G. Bandoli, A. Dolmella J. Organomet. Chem. (2008) submitted R3 R 1 R2 + O R1 O H NH4Ac + R3 NH2 MeOH/H2O H O R2 N N Liu J., Chen J., Zhao J., Zhao Y., Li L., Zhang H., Synthesis 17 (2003) 2661–2666. Mes H H + O O 1) CH3COOH, 75°C H 2) Mes-NH2, NH4Ac N H O N t-Bu H H + O O t 1) MeOH/H2O, 70°C N Bu-NH2 2) HCOH, NH3Ac N Mes N N N N + (CH3)2S.HBBr2 CH2Cl2 2Br - B 24h N N H N N Mes Mes t-Bu N N N N + (CH3)2S.HBBr2 CH2Cl2 2Br - B 24h N N H N t-Bu N t-Bu X H H B N N THF, n-BuLi X Br X N : N Bz Bz N Li + - 78°C N N B X - H : H N Bz Bz [NBu4][ReNCl4] H H 2 B B N N 2BrN N R THF, n-BuLi N R Li : N : - 78°C R N R N N R N N : N R R = Bz, t-Bu, Mes + MIXTURE OF UNCHARACTERIZABLE PRODUCTS Silver(I) carbene complexes H R B N N N N R N Ag2O 2Br- B N N R N N N R Ag Ag Ag Br CH2Cl2, 24h H R N N R N R N N N R R N N B R = Bz, t-Bu, Mes H Bz Bz H N B N N H N N Bz Ag2O Bz N N H H B B CH2Cl2 N Ag N N Br N N H H N N N Ag N N N Bz Bz G. Papini, C. Santini, G. Gioia Lobbia, M. Pellei, G. Bandoli, A. Dolmella J. Organomet. Chem. (2008) submitted Carbene transfer reactions H H B B N N N R R N N R R R N N N R Au(SMe2)Cl Ag Ag Ag N N N N Br Au Au Au Br CH2Cl2, 2h R N R N N N R R N N R N N N N N R = Bz, t-Bu, Mes B B H H Bz Bz N N Ag H H Au(SMe2)Cl H CH2Cl2, 2h H Ag N N N Bz Bz B B H H N N N N N H B N Au N N B N N N N H Bz Bz N N R N N N Au N N N Bz Bz G. Papini, C. Santini, G. Gioia Lobbia, M. Pellei, G. Bandoli, A. Dolmella J. Organomet. Chem. (2008) submitted Rhenium derivatives R Bz Bz N N N Ag N N NBu4ReNCl4 H H CH2Cl2 N N Ag H N N Cl H N R N N R R N Ag R N N N N N N NBu4ReNCl4 R Ag Ag N Br N H B Cl CH2Cl2 N Re R N N N B R N H N R N N R B H N N R H B N Bz N N Re B H R N N H N N N Bz Re B H N Cl N N N N N H B B H N N R R N N N R N Copper and Ruthenium derivatives Bz Bz N N N N N Cl N H N H H Ag N N Bz H B B N N N N N H Bz Bz N N Cu N Ru B H Bz N N N Cu H H N N Bz H H N N B B N Bz N N Ag N N N Bz Bz H B N N N R R N Ag R N R Bz N N N R Ag Ag N N R N N N Br H B B H N N R H B N R Ru N Bz N Cu N N R Cu Cu R N N N N N B N Bz Br Cl R N N N H N R Copper derivatives It is an essential trace metal for living organisms Copper complexes’ activity is extremely wide Copper has a well-documented coordination chemistry Several radioactive copper isotopes are available nowadays for biomedical purposes both for radioimaging and targeted radiotherapy isotope half-life imaging (emission, energy, abundance) Cu-60 20 min PET (b+, 873 keV, 93%) Radiolabelling small molecules Cu-61 3.3 h PET (b+, 527 keV, 62%) Radiolabelling small molecules Cu-62 9.7 min PET (b+, 1315 keV, 98%) Radiolabelling small molecules Cu-64 12.7 h PET (b+, 278 keV, 19%) Radiolabelling small molecules, peptides and antibodies Cu-66 5.4 min Cu-67 62.0 h SPECT (g, 185 keV, 48%) therapy (emission, energy, range in tissue) application (b-, 190 keV; 0.95 mm) Radiolabelling small molecules for therapy (b-, 190 keV; 0.95 mm) Radiolabelling small molecules, peptides and antibodies Fichna et al, Bioconjugate Chem., 14 (2003) 3-17 Copper(I) derivatives C. Marzano, M. Pellei, D. Colavito, S. Alidori, G. Gioia Lobbia, V. Gandin, F. Tisato, and C. Santini, J. Med. Chem., 49 (2006) 7317 H N N N O2N N C=O N O Cu H N N O2N HO N C=O N O Cu HO HO HO P P HOHO OH PF6 OHOH OH H OH N N NO2 P Cu HO OH P P HO OH P(CH2OH)3 H N N H N C=O N O Cu P HO HO N N N P OH N C=O N O Cu OH HO OH HO HO OH N N C=S N S OH OH HO P HO P NCCH3 Cu NO2 OH HO P CH3CN N OH HO P OH HO HO P OH Cells line of ovarian carcinoma (2008) and cis-platino resistent carcinoma cells (C13) OH P OH OH “CuP4” tipe species [Cu(CH3CN)4][PF6] + 4 thp [Cu(thp)4][PF6] [Cu(CH3CN)4][PF6] + 2 bhpe [Cu(bhpe)2][PF6] HO OH HO OH P HO P OH Cu HO P OH OH P HO P OH P OH Cu HO P HO HO HO HO OH P OH OH [Cu(bhpe)2][PF6] [Cu(thp)4][PF6] 31P-NMR = - 5.35 (q), -145.14 (septet) [Cu(thp)4]+ m/z = 560 (6) [Cu(thp)3]+ m/z = 436 (65) [Cu(thp)2]+ m/z =312 (100) 31P-NMR = + 9.67 (dbr), - 144.05 (septet) [Cu(bhpe)2]+ m/z = 492 (100) C. Marzano, V. Gandin, M. Pellei, D. Colavito, G. Papini, G. Gioia Lobbia, M. Porchia, F. Tisato and C. Santini, J. Med. Chem. 51 (2008) 798-808. bhpe O P O O Br O O P O 180°C O O P O + + Br O P O O O O P O + Br LiAlH4 HO H2P PH2 HCOH, HCl EtOH HO HO OH P P OH OH NaHCO3 HO OH P HO P OH C. Marzano, V. Gandin, M. Pellei, D. Colavito, G. Papini, G. Gioia Lobbia, M. Porchia, F. Tisato and C. Santini, J. Med. Chem. 1 (2008) 798-808. Citotoxic activities IC50 (µM) ± S.D. Compound HL60 A549 MCF-7 Daudi HepG2 A375 CaCo2 HCT-15 HeLa [Cu(thp)4][PF6] 0.60±0.02 9.11±2.71 11.08±0.52 6.94±0.18 1.26±0.10 4.58±2.41 1.08±0.12 2.00±0.03 8.21±1.50 [Cu(bhpe)2][PF6] 47.40±2.92 57.60±2.19 49.71±2.03 65.5±1.22 78.23±1.11 68.21±1.23 52.50±0.81 57.36±1.31 62.41±1.33 thp 68.63±2.44 72.91±2.44 64.23±4.29 >100 98.71±3.63 88.70±3.88 >100 >100 >100 bhpe 83.72±3.23 >100 >100 >100 71.71±1.64 73.21±1.22 84.11±2.22 91.71±4.01 >100 KPF6 >100 >100 >100 >100 >100 >100 >100 >100 >100 15.91±1.51 29.21±1.92 19.04±1.51 23.97±2.51 21.50±1.41 20.33±1.33 35.42±1.40 25.34±1.31 10.50±1.51 Cisplatin IC50 values represent the drug concentrations that reduced the mean absorbance at 570 nm to 50% of those in the untreated control wells. A549 = lung cancer CaCo2, HCT-15 = colon cancer Hela = cervix cancer MCF-7 = breast cancer HL60 = leukemia Daudi = lymphoma HepG2 = epatoma A375 = melanoma Human ovarian adenocarcinoma cells Compound 2008 IC50 [µM] C13 IC50 [µM] R.F. [Cu(thp)4][PF6] 1.48±0.21 2.88±1.07 1.9 Cisplatin 12.69±1.72 89.18±4.50 7.02 Human cervix squamous carcinoma cells Compound A431 IC50 [µM] A431/Pt IC50 [µM] R.F. [Cu(thp)4][PF6] 14.37±1.41 13.26±0.80 0.92 Cisplatin 22.06±1.62 57.76±1.81 2.61 Human colon adenocarcinoma cells Compound LoVo IC50 [µM] LoVo-MDR IC50 [µM] R.F. [Cu(thp)4][PF6] 1.54±0.03 2.9±0.1 1.88 Doxorubicin 1.46±2.30 44.89±0.90 30.74 Cytotoxic activity of [Cu(thp)4][PF6] onto three additional cell line pairs, two of which (2008/C13* ovarian cancer cells and A431/A431-Pt cervix carcinoma cells) selected for their resistance to cisplatin and one (LoVo/LoVoMDR) for its resistance to doxorubicin. Cross-resistance profiles were evaluated by means of the resistance factor (RF), which is defined as the ratio between IC50 values calculated for the resistant cells and those arising from the sensitive ones. Comparison of IC50 values detected by MTT, NR and TB test after incubation of 2008 cells with [Cu(thp)4][PF6] for different exposure times TB test reveals damage to cell membrane MTT test mainly reflects damage to mitochondria The NR assay indicates damage to lysosomes and Golgi apparatus Lysosomes/Golgi apparatus are more sensitive to complex treatment. On the contrary, the scarce permeability to vital dye indicates that plasma membrane function is still maintained until the late phase of cell death. Lysosomal damage represents the early cellular event associated with copper(I) complex cytototoxicity. Cell cycle phases G1 = GAP 1 S = Synthesis (DNA replication) G2 = GAP 2 M = mitosis (nuclear and cytoplasmic division) I = Interphase 3h 3h 12 h 12 h 24 h 24 h 48 h 48 h ----------2008 untreated cells 24h 48h ----------2008 cells treated with IC50 of [Cu(thp)4][PF6] Ctr Complex 3 p-Value Ctr Complex 3 p-Value Apoptosis % 4.24±0.71 2.43±0.66 <0.001 1.21±0.73 15.39±0.96 <0.001 G1 % 70.92±1.82 60.9±1.35 <0.001 65.57±1.21 41.03±1.39 <0.001 G2/M% 20.29±1.11 33.5±1.28 <0.001 32.62±1.46 37.03±1.12 <0.001 Percentage of cells in different cell cycle phases as function of time exposure of [Cu(thp)4][PF6], vs control untreated cells Forward scattering (index of cell size) vs side scattering (index of cell granularity) as a function of time in 2008 cells Mitochondrial energization of treated tumor cells as the retention of a mitochondrial selective cationic fluorescent probe, tetramethyl rhodamine methyl ester (TMRM). Flow cytometric profiles of 2008 cells untreated (panel A) and treated with 3.125 (panel B) or 6.25 (panel C) µM of copper(I) complex for 24 h and stained with TMRM (10 nM). Copper(I) complex induced a massive increase of the TMRM fluorescence reflecting a dramatic alteration of mitochondrial membrane potential that might be correlated with the induction of a G2/M phase cell cycle arrest. ----------2008 untreated cells ----------2008 cells treated with IC50 of [Cu(thp)4][PF6] The coordination of mono-phosphine ligands to copper(I) gives rise to a metallodrug able to inhibit the growth of tumor cells via cell G2/M cell cycle arrest and paraptosis accompanied with the loss of mitochondrial transmembrane potential. Potential Cu(I) radiopharmaceuticals N N N TPA 64Cu(II)Cl Sodium acetate buffer N P N N P 64 Cu 2 Sodium acetate buffer P P N N N N N N (2) THP In vitro cell experiments 10.0 HO OH HO P 64 Cu 2 OH P HO HO HO % Cell Associated Radioactivity OH OH P P OH OH HO (1) Sodium acetate buffer Ligand 8.0 6.0 4.0 4 2.0 1 3 0.0 0 CO2 CO2 20 40 60 80 100 120 Time (min) N N N 64 Cu HO HO N N P OH P OH HO (3) N N OH N 64 Cu HO HO N N P OH P OH HO (4) OH Cell uptake behavior of complexes 1-4 into EMT-6 mammary carcinoma cells. Error bars not seen are within symbols. Biodistribution Studies OH The uptake and retention of activity was high in many non-target tissues lung and liver P HO 35.0 HO P 64 HO 40.0 Poor blood clearance suggestes breakdown of the complex and binding of 64Cu to serum proteins in vivo. Cu P OH 1 hour 4 hour OH P 24 hour OH OH HO 30.0 %ID/g The heart uptake was high at all time points and there was no clearance from the myocardium over 24 h post-injection potentially due to the monocationic nature of the complex HO 45.0 OH HO 25.0 20.0 15.0 Tumor uptake of complex 1 was highest at 1 h and decreased slowly over 24 h. In the same EMT-6 tumor model, uptake of 64CuATSM and 64Cu-PTSM (both of which are clinically tested agents) into the tumor at 40 min post-injection showed lower uptake than that of 1 10.0 5.0 0.0 blood lung liver(all) spleen kidney muscle heart brain bone tumor Organ Tumor uptake of complex 1 is significantly higher than that for [64Cu((EtOCH2CH2)2PCH2CH2P(CH2CH2EtO)2)]+ Biodistribution was carried out on 16-18 g female BALB/c mice implanted with EMT-6 cells subcutaneously into the left flank. Tumors were allowed to grow for 14 days (approx 0.3 – 0.7 cm3), at which time the animals received 0.20 MBq (~5 μCi) of complex 1 in 100 μL of saline via lateral tail vein injection. Mice were examined at 3 time points (n = 4 per group at 1, 4 and 24 hours). S. Alidori, G. Gioia Lobbia, G. Papini, M. Pellei, M. Porchia, F. Refosco, F. Tisato, J.S. Lewis, C. Santini Journal of Biological Inorganic Chemistry, 13 (2008) 307-315. 1h 2h Small animal 24 h PET Imaging axial Scale Off-Scale High coronal Low Selected axial and coronal images obtained using coregistration techniques demonstrating the uptake of 1 at 1, 2 and 24 h post injection in a mouse with an EMT-6 tumor (arrow) implanted on the flank.The EMT-6 tumors can be easily visualized at all time points 5 Standard uptake values (SUVs) of 1 in selected organs in EMT-6 tumor bearing mice over 24 h (n = 4). Tumor Muscle Liver 4 Kidney Heart SUV 3 The uptake in the EMT-6 tumor at 1 h which remained static over 24 h 2 1 0 0 5 10 15 Time (h) 20 25 New N-, P- donor ligands O H3C O O O P O N N H3C O P O O O O P CH3 O O P P O O O O N N O N N P O CH3 O O O O P O H3C P P O H3C O Cyclen H2N H3C O O O P O O O P CH3 H3C Br O O P O P Br O O O O P P O N N N N O N H CH3 O O Cyclam NH2 O O P O O O CH3 N H CH3 CH3 H3C O O P O P H3C O O O O CH3 H3C O O CH3 O P H3C O O H2P P O N N PH2 CH3 LiAlH4 N O O P P H3C O N N N N CH3 H3C N O O H2P CH3 PH2 O 1. n-BuLi 1. HCHO, HCl, EtOH 2. NaHCO3 HO 2. RX OH HO P OH P HO N N N N R R R P P N N N N R P HO OH P R P OH R P R R New macrociclic ligands G. Papini, S. Alidori, J. S. Lewis, D. E. Reichert M. Pellei,, G. Gioia Lobbia, G. B. Biddlecombe, C. J. Anderson, C. Santini J. Med. Chem. (2008) submitted HOOC COOH NH HN + SH HS Br Br 1) NaHCO3 HOOC H N+ H H N+ H COOH (CH2)2 2) HCl, pH = 2 S S 12-membered NEC-SE HOOC COOH NH HOOC HN + SH HS Br Br H N+ H H 1) NaHCO3 N+ H COOH (CH2)3 2) HCl, pH = 2 S S 13-membered NEC-SP HOOC COOH NH HOOC HN + SH HS Br Br H N+ H H 1) MeOH/H2O/NaOH N+ H COOH (CH2)4 2) HCl, pH = 2 S S 14-membered NEC-SB HOOC NH2 SH HCHO H 2O HOOC H N S 1) Na/NH3 2) NH4Cl, pH = 2 HOOC NH HN SH HS P. Blondeau, C. Berse, D. Gravel, Can. J. Chem. 45 (1967) 49. COOH Copper(II) complexes HOOC H N+ H H N+ H COOH H2O S NH Cu(CH3COO)2 O H N+ S N+ H NH COOH Cu(CH3COO)2 O HOOC H S NH H N+ H COOH S 14-membered NEC-SB S NH Cu O O S Cu(NEC-SP) 13-membered NEC-SP H N+ O S H2O S O Cu(NEC-SE) H H Cu O S S 12-membered NEC-SE HOOC O NH Cu(CH3COO)2 H2O O O S NH Cu O O S Cu(NEC-SB) G. Papini, S. Alidori, J. S. Lewis, D. E. Reichert, M. Pellei, G. Gioia Lobbia, G. B. Biddlecombe, C. J. Anderson, C. Santini J. Med. Chem. (2008) submitted 64Cu HOOC H N+ H S NH H N+ H 64 COOH Cu(II)Cl2 64 Macrociclic ligands Cu O S Sodium acetate buffer S NH 64 O O O S Cu-Complexes Biodistribution data 12 The retention of activity in tissues is similar to that observed with 64Cu-cyclam and 64Cu-monooxo-tetrazamacrocyclic complexes, but, on comparison with 64Cu-TETA and 64Cu-DOTA, the uptake and retention of and are orders-of- 10 magnitude higher. 18 Blood 16 Liver Kidney 14 %ID/organ complexes 8 The poor clearance suggests that the complexes are rapidly degraded in blood and tissues and the 64Cu is sequestered by proteins, and remaining trapped in these tissues hindering clearance. 6 4 2 0 7 8 9 Cu-64-Cyclam Complex Cu-64-TETA Cu-64-DOTA Cu-CB-TE2A Perspectives Cl Cl HOOC NH HN COOH NH HN HOOC X S SH HS COOH S X HOOC NH HN S ROH, HCl COOH SO3O S S COOH O 1) NaOH, pH = 5.5 2) sulfo-NHS, EDC O HO H N O O NH HN S HO O O S 1) pH = 7.5 2) BM-NH2 . HCl COOR S H O O N NH HN NH HN S S SO3- HOOC ROOC H H H HN NH H HO O OH HO NH HN S H HN NH H HO OH O OH H O H H O H BFCA H O S H M OH OH H CuAc H2 O HO H HO OH H O H H HO N N Cu S S O OH H OH Conclusions The monooxo Re(V) core is conveniently stabilized by tripodal scorpionate ligands comprising carboxylate or sulfonate tails, giving a series of intermediate Re(O)(NNO)Cl(X) (X = Cl, OR). To these entities various bidentate ligands (BID) can be attached to produce "3 + 2" mixed ligand compounds. Hydrophilic ‘cold’ Cu(I)-complexes have shown significant antiproliferative activity in vitro on a series of tumor cell lines, also resistance to cisplatin, showing a different pathway of action from that of cisplatin. Hydrophylic ‘hot’ 64Cu(I) monophosphine complexes were evaluated as a basis for a new class of copper radiopharmaceuticals. [64Cu(thp)4]+ = building-block for new radiopharmaceuticals, perhaps the first time such a method has been used in the production of Cu-radiopharmaceuticals. Novel macrocyclic ligands, based on the L,L-ethylenedicysteine skeleton, have been prepared in view of the attractive opportunity to use them as bifunctional chelators for copper nuclides. This is the first report of 64Cu labeled to this form (N2S2) macrocyclics. Although the in vivo biodistribution of complexes suggests dissociation of the 64Cu from the chelates, these new ligands platform offers the potential as a basis for further development to improve the in vivo stability. Partners and Acknowledgements Prof. Giancarlo Gioia Lobbia Prof. Carlo Santini Dr.ssa Maura Pellei Dr. Simone Alidori Prof. Giuliano Bandoli Prof. Alessandro Dolmella Dr.ssa Cristina Marzano Dip. di Scienze Farmaceutiche Università di Padova Prof. Jason S. Lewis Carolyn J. Anderson Dr. Franco Benetollo ICIS-CNR, Padova Dr. Francesco Tisato Dr.ssa Marina Porchia Dr. Fiorenzo Refosco, Dr.ssa Cristina Bolzati ICIS-CNR, Padova Prof. Rasika Dias Department of Chemistry and Biochemistry The University of Texas at Arlington (USA)