Comments
Description
Transcript
Che cos`é la supersimmetria?
SISSA SCHOOL in Science Communication Trieste 24 Maggio 1996: Le Simmetrie Che cos’é la supersimmetria? E’ l’operazione che scambia i BOSONI con i FERMIONI Una scoperta degli anni ‘70: Breve Storia della Supersimmetria La nascita della supersimmetria può essere fatta risalire agli anni 1970-1971 quando, indipendentemente, André Neveu (Francese) e John Schwarz (Americano) da una parte, e Pierre Ramond (Franco-Americano) dall’altra, introducono un modello di supercorda fermionico basato su algebre che contengono sia commutatori che anticommutatori L’algebra vera e propria di supersimmetria in quattro dimensioni spazio temporali viene scoperta nel 1971 dai russi Gol’fand e Likhtman, ma rimane abbastanza sconosciuta in occidente dove viene riscoperta da Bruno Zumino (Italo-Americano) e Julius Wess (Tedesco) che ne trovano anche (e questa é la cosa più importante) la prima realizzazione in un modello di teoria dei campi Una realizzazione, ma non lineare, dell’algebra di supersimmetria viene trovata, negli stessi anni, anche dai russi Volkhov e Akhulov. Le teorie di campo supersimmetriche quantistiche vengono sviluppate negli anni 19741975, nei quali la nozione tecnica (molto utile, ma non indispensabile) di superspazio viene introdotta da Abdus Salam e Joh Strathdee Nel 1976 é la volta della gravità Nel 1976 Daniel Freedman (Americano), Sergio Ferrara (Italiano) e Peter van Nieuwenhuizen (Olandese) riescono a rendere supersimmetrica la teoria della gravità (la Relatività Generale di Einstein) introducendo un nuovo campo di spin 3/2 che corrisponde ad un’ipotetica nuova particella denominata gravitino. E’ nata la teoria della Supergravità Per questa scoperta teorica Freedman, Ferrara e van Nieuwenhuizen saranno insigniti della medaglia Dirac 1994 La teoria introdotta da Freedman, Ferrara e van Nieuwenhuizen é riderivata in una formulazione leggermente differente anche da Stanley Deser e Bruno Zumino qualche settimana dopo il lavoro dei primi tre autori. Negli anni 1976-1980 la teoria della Supergravità è sviluppata con assiduità da ricercatori, italiani, olandesi, belgi, francesi, inglesi tedeschi ed anche americani Dal 1980 al 1984............. in questo periodo si scopre che la dimensione spazio-temporale massima in cui si può formulare la SUPERGRAVITA’ é D=11 Vi é un’intensa ricerca sulla supergravità in D=11 che oggi é nuovamante di grande attualità sotto il nuovo nome datole dal fisico americano Edward Witten di M-theory ovvero teoria del mistero (alternativamente delle membrane) Nel biennio 1982-1984 si coltiva la speranza di ottenere l’unifcazione di tutte le interazioni usando la Supergravità D=11 . Si riutilizzano, in un contesto supersimmetrico, idee sviluppate 60 anni prima da Kaluza e Klein circa l’origine del campo elettromagnetico dalle simmetrie dello spazio-tempo nelle dimensioni eccedenti le quattro visibili. Questo programma di ricerca conduce ad una ricca messe di risultati molto interessanti, ma vi sono serie difficoltà a trovare modelli realistici. Vi sono tre problemi in particolare: 1) La costante cosmologica troppo grande, 2) le rappresentazioni sbagliate per i fermioni, 3) la non chiralità delle interazioni di gauge Ottobre 1984 In questa data John Schwarz (americano) e Michel Green (inglese), in seguito insigniti per questo di molti premi ed anche della medaglia Dirac, dimostrano che la teoria supersimmetrica della corda in 10 dimensioni spazio temporali è consistente quantisticamente perché si cancellano le anomalie. E’ nata TOE, the theory of everything, cioé la supercorda. E’ supersimmetrica e vive in dieci dimensioni. La teoria delle corde era nata molti anni prima (nel 1968) con un lavoro di Gabriele Veneziano (seguito da lavori dello stesso Veneziano con Fubini e poi da molti altri). Si era sviluppata come teoria degli adroni e non delle interazioni gravitazionali. Era stata reinterpretata successivamente in questo senso da Scherck , Schwarz ed altri. La corda supersimmetrica nello spazio tempo era stata ottenuta nel 1977 da F. Gliozzi (italiano), Joel Scherk (francese) e David Olive (inglese). Dal 1984 al 1994 La teoria delle supercorde é stata sviluppata in tutte le direzioni con enormi ricadute su tutti gli aspetti sia matematici che fisici della teoria. Però il sogno di una predizione della struttura specifica della realtà fisica così come la osserviamo alle energie attualmente accessibili é rimasto per il momento sogno. Per quale motivo? Perché la TOE possiede apparentemente una quantità grandissima di vuoti cioé di stati di minima energia e per predire qualcosa bisogna scegliere un vuoto. Nel contempo, però, la supersimmetria ha costituito una categoria mentale ormai ineludibile in tutti gli sviluppi di teoria dei campi applicata sia alla fisica delle particelle elementari che a sistemi di materia condensata o nucleari. Dal 1994 nuovi eccitanti sviluppi sono in corso in teoria delle corde e teorie supersimmetriche: si é cominciato a capire come trattare la corda non perturbativamente e come i tanti vuoti sono forse tutti collegati tra di loro, quali regioni diverse dello stesso supervuoto! Un giornalista deve, giustamente... Ma che vuol dire ? interessarsi dell’aspetto storico, sociale ed umano della Scienza perciò ho delineato brevemente la storia dell’argomento. Tuttavia, se ci si limita a questo, il rischio é di ridurre tutto ad un elenco di parole d’ordine il cui significato sfugge sia al divulgatore che al suo lettore. Più che raccontare i risultati ottenuti dagli scienziati sarebbe forse utile cercare di comunicare al pubblico la natura dei problemi da essi affrontati. gauge ......... Spin, Campo, fermione, bosone. Fermioni e bosoni si differenziano per il tipo di spin Lo spin é il momento angolare intrinseco delle particelle elementari Valore dello spin =numero intero BOSONE Valore dello spin = numero semi intero FERMIONE Quale struttura concettuale presiede a questa strana distinzione? Alla base c’e’ il concetto di.... Gruppo delle rotazioni Rappresentazioni lineari del medesimo Le particelle elementari si classificano in base a molte proprietà di simmetria. Ogni simmetria é un gruppo. Il gruppo delle rotazioni ha due speci diverse di rappresentazioni, intere e semintere. A questa distinzione geometrica corrisponde una distinzione di ruolo dinamico Una distinzione di ruolo dinamico I Fermioni sono i costituenti della materia: Leptoni s=1/2 elettrone mu tau neutrini I Bosoni sono i mediatori delle forze che “incollano” la materia Quarks s=1/2 up Interazioni gluoni: s=1 down forti m=0 Interazioni fotone: s=1 elettrodeboli m=0 strange charm bottom top Gravità gravitone : s=2 m=0 W,Z: s=1, m>0 La distinzione più importante tra bosoni e fermioni é.................. La statistica. I BOSONI ubbidiscono la statistica di BOSE EINSTEIN I FERMIONI ubbidiscono la statistica di FERMI-DIRAC Come conseguenza di quest’ultima per i fermioni vige IL PRINCIPIO di ESCLUSIONE di PAULI E’ sopratutto a causa di quest’ultimo che la materia é dura e come la conosciamo Il sistema periodico degli elementi é una conseguenza del Principio di Esclusione. Due elettroni non possono stare nello stesso STATO dinamico, perché sono fermioni. Perciò si dispongono via via nelle caselle disponibili e........... Non ho ancora spiegato lo spin, ma la statistica.................. • é un concetto più facile da illustrare. •Consideriamo un insieme di N particelle (qualunque cosa ciò significhi). •In meccanica classica descriviamo lo stato del sistema dicendo, di ciascuna particella, in quale stato di moto ella si trova. •la particella Pino si trova costì ed ha la velocità tale, la particella Giovanni si trova colà ed ha la velocità tal altra e così via. •nel mondo quantico tale dovizia di particolari è priva di senso, poichè le particelle sono indistinguibili. •Lo stato del sistema si descrive enumerando prima gli stati disponibili e dicendo poi quante particelle si trovano in ciascuno di essi •Di qui nasce il concetto di NUMERO di OCCUPAZIONE Precisamente LA STATISTICA vuol dire: La funzione d’onda deve essere, per i fermioni completamente antisimmetrica, per i bosoni completamente simmetrica Spiegazione: In Meccanica quantistica la funzione d’onda ....,n), é un numero complesso il cui modulo da la probabilità che le n-particelle siano negli stati ....,n rispettivamente. La statistica richiede che sotto un qualunque scambio: i j i j La funzione d’onda si comporti come segue 1,, i , j ,, n B.E. + F.D. - Uno scambio 1 , j , i ,, n La scelta di questo segno distingue le due statistiche. Per quella di Bose Einstein (simmetrica), la funzione può essere diversa da zero anche con due o più argomenti uguali. Per quella di Fermi Dirac invece essa si annulla ogni volta che ha due argomenti uguali. Quindi la probabilità che due fermioni siano nello stesso stato é zero! All’ albergo Fermioni chi arriva tardi deve alloggiare ai piani superiori, più costosi, energeticamente.....! Mi dispiace, signor elettrone, ma abbiamo solo camere singole. La prima libera é al quarto piano All’ albergo Bosoni c’é sempre posto. E la camerata (lo stato fondamentale) é aperta a tutti i poveretti Non c’è problema, signore. Abbiamo sempre posto. Se vuole spendere poco, abbiamo la camerata SPIN STATISTICA Un teorema molto profondo della Teoria dei Campi quantistica deduce: da causalità, principio di relatività e poco più un legame tra spin e statistica CAMPI con spin intero ubbididiscono alla statistica di Bose Einstein CAMPI con spin semintero ubbidiscono alla statistica di Fermi Dirac NO ! giovanotto Teoria dei campi quantistici é un corso del quart’anno ed io non ho ancora dato l’esame. Posso iniziare la tesi, lo stesso data la mia età? Un esempio spettacolare di conseguenza del Principio di Pauli é dato dalle stelle Nane Bianche Una stella comincia la sua vita come una grande massa fredda di gas, parte di una nebula come la grande Nebula in Orione (foto di sinistra). Sotto effetto della gravità si contrae e si scalda fino a che si innescano le reazioni termonucleari e l’idrogeno viene fuso in elio. In questo stato (detto di sequenza principale) una stella media, come il nostro sole, brilla e dura circa 10 miliardi di anni. (foto al centro). Quando tutto il combustibile é bruciato stelle come il sole finiscono la loro esistenza come nane bianche: stelle densissime, caldissime che emettono pochissima luce, molto bianca. Stelle più grandi finiscono invece esplodendo come supernovae. Una é mostrata nella Grande Nube di Magellano (foto a sinistra) Se si fa un diagramma della popolazione stellare con la temperatura in ascissa e la luminosità (o massa) in ordinata si ottiene la figura seguente. Le nane bianche sono anormalmente piccole e caldissime, perché? La risposta é il Principio di Esclusione Bruciato tutto il suo combustibile la stella è un ammasso di elio spento e nulla più può contrastare la gravità che forza la stella a contrarsi. Contraendosi la stella diventa così densa che ad un certo punto gli elettroni di tutti gli atomi di elio sono così vicini l’uno all’altro da formare un unico gas. La stella aveva la massa del sole e quindi gli elettroni sono in numero enorme. La stella non ha più energia da regalare agli elettroni ed essi vorrebbero stare tutti allo stato energetico più basso possibile. Ma l’albergo dei fermioni ha solo camere singole. Così gli elettroni riempono tutti gli stati energetici a partire dal più basso a salire fino ad accomodarsi tutti senza lasciare buchi. La gravità vorrebbe comprimere ancora, ma più di così non si può, data la regola delle camere singole. La stella si comporta come un gas allo zero assoluto, ma la sua temperatura é milioni di gradi, perché? Perchè essendo tanti gli elettroni, per sistemarli tutti ce n’e’ un numero apprezzabile in stati energetici molto elevati. Osservazioni sulla comunicazione delle idee scientifiche nei media...... Ho controllato come il concetto di SIMMETRIA é spiegato in un paio Enciclopedie commerciali su CD-ROM: su ENCARTA 96 alla voce symmetry si legge: In physics, a system is said to exhibit symmetry if it remains unchanged in the course of operations such as mirror reversal, reversal in the direction of time, and spacetime translation. Many physical systems obey such symmetries, to which the conservation laws of physics are also related. This relationship has come to be of particular importance in the study of elementary particles. Sull’enciclopedia vi è la voce gruppo, molto ben spiegata, ma la definizione di simmetria é: Symmetry, orderly, mutually corresponding arrangement of various parts of a body, producing a proportionate, balanced form. Non si dice 1) SIMMETRIA=GRUPPO 2) Non si menziona il GRUPPO delle ROTAZIONI, la simmetria più famigliare, intuitivamente nota a tutti. Sempre su ENCARTA 96............ Alla voce SPIN su ENCARTA 96 si legge: Spin, intrinsic angular momentum of a subatomic particle. In particle and atomic physics, there are two types of angular momentum: spin and orbital angular momentum. Spin is a fundamental property of all elementary particles, and is present even if the particle is not moving; orbital angular momentum results from the motion of a particle. Nuovamente la parola gruppo e la parola rotazioni non sono menzionate. ENCARTA 96 ha una voce Standard Model: .....In the standard model, the basic fermions come in three families, with each family made up of certain quarks and leptons.........Grand unification theories attempt to unify the strong and electroweak interactions by assuming they are equivalent at sufficiently high energies. The ultimate goal in physics is to formulate a Theory of Everything that would unify all interactions-electroweak, strong, and gravitational. Nuovamente le PAROLE SIMMETRIA, GRUPPO, RAPPRESENTAZIONE, non sono menzionate. Sempre su ENCARTA 96: Vi é persino una voce TOE ed una descrizione delle superstringhe: ma............ Currently, the best candidate for a TOE is the theory of superstrings. In this theory, everything in the universe - all particles and perhaps space-time itself-consists of fantastically small strings under immense tension, vibrating and spinning in a ten-dimensional superspace. The ten dimensions are mathematically necessary to avoid tachyons (faster-than-light particles) and ghosts (particles produced with negative probability). Six of these ten dimensions are thought to be compactified, or curled up into tiny circles, and thus rendered unobservable. Different elementary particles correspond to different quantized modes of oscillation of the strings.................... Nessun accenno alla Supersimmetria (la ragion d’essere delle superstringhe) ma un riferimento al Superspazio ( un qualche grande spazio che fa notizia!). Ma il superspazio é nozione tecnica legata alla supersimmetria.... Che cosa si deduce da questo esempio? Vi é spesso un equivoco di fondo su quale sia il contenuto principale delle teorie scientifiche da divulgare. Il divulgatore ritiene che il messaggio da comunicare sia una descrizione degli ingredienti specifici di un modello (l’elenco ad esempio delle particelle elementari) la cui definizione egli ritiene sia sufficientemente implicita nel loro nome (e’ il caso sia delle particelle che della definizione di simmetria...!) Il messaggio che si dovrebbe divulgare è invece l’insieme di idee su cui la teoria si fonda. Invece delle scelte specifiche dell’ultimissimo modello si dovrebbero spiegare le categorie mentali nel cui linguaggio é formulata la teoria. Esse sono sempre di natura matematica, ma appunto per questo............ Il linguaggio della matematica é.....universale e.... e le idee in esso espresse dovrebbero essere comunicabili............. Descrivere il modello standard senza parlare di gruppi di gauge e rappresentazioni, ma elencando le particelle elementari è come: Descrivere il Gioco del Bridge elencando le possibili aperture in qualche sistema di licitazione ma omettendo di dire che esso é un gioco di carte Quali sono le carte con cui si gioca alla FISICA delle PARTICELLE ed all’UNIFICAZIONE? Particella Simmetria Tipo di particella Spin Supersimmetria Campo quantistico Gruppo e sua Algebra Rappresentazione del gruppo e dell’algebra Rappresentazione del gruppo delle rotazioni Superalgebra GRUPPO delle ROTAZIONI Rotazione Un gruppo é un insieme i cui elementi sono operazioni di trasformazione che possono essere eseguite in sequenza Il prodotto di due elementi del gruppo é...... La sequenza delle due trasformazioni: R1 A R2 In genere il prodotto non é commutativo A R3=R2R1 Il GIOCO delle permutazioni: I semi delle carte da gioco sono 4: li possiamo disporre in 24 modi.... Ordiniamoli nell’ordine di rango Un qualsiasi altro dei 24 modi diversi di disporli si ottiene da quello iniziale con un’operazione di permutazione Il prodotto di due permutazioni è la sequenza delle due operazioni L’insieme delle permutazioni di 4 oggetti forma un GRUPPO con 24 elementi Perché GRUPPO? perché é vero che: 1) Esiste l’elemento identità , cioé tra i 24 elementi c’e’ la permutazione E che lascia le cose come stanno. 2) Per ognuna P delle 24 permutazioni esiste tra le 24 l’elemento inverso , cioé una compagna P -1 che se applicata dopo P rimette le cose a posto, come stavano prima di far agire P . Si ha cioe’ P -1 P = E 3) Il prodotto di due qualunque di 24 elementi é uno fra gli stessi 24 elementi. 4) La differenza tra questo gruppo e quello delle rotazioni é che quest’ultimo ha un numero infinito e continuo di elementi IL GIOCO delle Rappresentazioni: Torniamo alle permutazioni dei 4 semi delle carte ed inventiamo il seguente gioco. Disponiamo in un modo qualunque i quattro semi in uno schema a quattro caselle della seguente forma: ad esempio oppure: oppure,..... altri 24 modi ! Così avremmo creato 24 oggetti, ma ora stabiliamo delle regole identificano alcuni tra di essi. LE REGOLE di identificazione del gioco: 1) Regola del gioco: La seguente somma é nulla - + - = 0 2) Regola: Qualunque scambio sulla verticale, cambia il segno = - = Provare per credere.... Con le regole stabilite restano soltanto tre schemi indipendenti. A= , B= , C= Qualunque altro dei 24 schemi si riduce a uno di questi tre od ad una somma algebrica di questi tre usando le due regole precedenti. Ora possiamo vedere che succede ad A,B,C se agiamo su di loro con una qualunque permutazione. Ad esempio...... = = A-B+C = Se chiamiamo P12 la permutazione che..... che scambia i primi due oggetti, cioe’, partendo dall’ordinamento per rango, le picche con le cuori abbiamo trovato che: P12 A=A-B+C P12 B=-B P12 C=-C ed analogamente si trova che La stessa cosa si può fare per ogni altra delle 24 permutazioni P . L’immagine sotto P di A,B,C è una qualche somma algebrica degli stessi tre oggetti Chi ha capito questo gioco.... Ha capito che cos’e’ una rappresentazione lineare di dimensione d. (=3 nel nostro caso) di un gruppo con N elementi Si costruisce un insieme D i cui elementi sono combinazioni lineari di d colori base. (A,B,C, nel nostro caso). Cioé : elemento di D = a A + b B + c C (dove a,b,c sono numeri) L’immagine sotto ogni trasformazione P del Gruppo di ogni elemento di x dell’ insieme D é un altro elemento dell’nsieme di maniera però che P(x+ y)= P(x)+ P(y) Ogni gruppo ha varie rappresentazioni diverse Il gruppo delle permutazioni di quattro elementi ha due rappresentazioni di dimensione uno, due di dimensione tre (ne abbiamo costruita una !) ed una di dimensione due I gruppi infiniti e continui come il gruppo delle rotazioni hanno infinite rappresentazioni di dimensione che man mano cresce. Il momento angolare é il codice che identifica le varie rappresentazioni del gruppo delle rotazioni Invarianti e rappresentazioni La superficie che é invariante per tutte le rotazioni é la sfera. i punti della sfera sono identificati da due angoli Le armoniche sferiche: un altro gioco delle rappresentazioni Possiamo considerare le funzioni complesse sulla sfera f(p) Ad ogni punto della sfera p associamo un numero complesso z=x+iy=f(p) . Questo vuol dire che z(p) é funzione dei due angoli. Se interpretiamo il modulo |z(p)| come la lunghezza di un segmento sulla retta che congiunge l’origine con il punto p della sfera, gli estremi di tali segmenti formano una superficie che visualizza in parte la funzione Solo in parte, perché c’e’ anche la fase di z=x+iy=f(p), ma per visualizzarla occorrebbero più dimensioni CI SONO certe funzioni sulla sfera...... Distribuzione del modulo delle Armoniche sferiche di momento angolare L=1 Terza componente m=0 Qualsivoglia funzione sulla sfera........ si può scrivere come una somma di certe funzioni: Ylm(p) dove l=0,1,2,........,infinito e per ogni valore di l : m= -l,-l+1,...,0,1,...l-1,l la cosa importante é che ruotando la sfera ogni funzione Ylm(p) diventa una somma delle altre 2l+1 funzioni con lo stesso l ,ma m diverso: RAPPRESENTAZIONE l è il momento angolare intero Armonica l =2, m=0 Le altre sono, per l=2, et cetera.. L=2 ; m=1 L=2, m=2 Finalmente la supersimmetria... Come abbiamo detto la supersimmetria scambia bosoni e fermioni. Che significa? Vuol dire che esiste un operatore Q (la carica di supersimmetria) che applicato ad uno stato contenente sia bosoni che fermioni distrugge un bosone e crea un fermione. Q Fermione Bosone Q C’é anche la carica coniugata Inoltre esiste un operatore Q+ (la carica di supersimmetria coniugata) che applicato ad uno stato contenente sia bosoni che fermioni fa l’opposto, cioé distrugge un fermione e crea un fermione. Q+ Bosone Fermione + Q Su di un generico stato si ha..... Q Q stato 0 ; Q Q stato 0 mentre Q Q stato Q Q stato = Estato stato Dove Estato é l’energia dello stato e, per costruzione l’immagine di uno stato sotto Q o Q stato stato Q stato stato Q+ é un altro stato/: e la somma di due stati é uno stato Lo spazio degli stati.......... Anche in meccanica classica esiste uno spazio degli stati di un sistema fisico. Approssimativamente un punto in questo spazio é assegnato specificando le posizioni e le velocità di tutte le particelle che compongono il sistema. In meccanica quantistica , uno stato é descritto da una funzione (o delle posizioni, o delle velocità) il valore del cui modulo é la probabilità, che, se si misurano le posizioni (o velocità) delle particelle, si trovino esattamente quei valori. Tale funzione é la funzione d’onda (simmetrica per i bosoni ed antisimmetrica per i fermioni) di cui abbiamo già parlato. Lo spazio degli stati é uno spazio i cui punti sono le possibili funzioni d’onda Il punto essenziale é che lo spazio degli stati é uno spazio vettoriale. Cioé: Se e sono due possibili funzioni d’onda ed a1 , a1 due numeri, allora anche a1 a2 é una possibile funzione d’onda Meraviglia di Filosofo........... Quello enunciato é il principio di sovrapposizione della Meccanica quantistica ed é la ragione per cui possiamo parlare dell’operatore di supersimmetria Q come di un operatore lineare sullo spazio degli stati Nel libro MIND BRAIN and the QUANTUM il filosofo inglese Michael Lockwood descrive così la propria meraviglia di fronte a questo concetto: We should pause to reflect just how extraordinary this is. My having my jacket on is a possible state. My having my jacket off is a possible state. According to the superposition principle, then two-and-three quarters time jacket on plus six times jacket off is also a possible state. Actually it gets worse. What I have so far neglected to point out is that state space is a complex vector space......So six times jacket on plus eight times the square root of minus one times jacket off is also a possible state. LA SUPERSIMMETRIA esiste già classicamente, ma il concetto di fermione a livello classico é ancora più astruso del concetto quantistico di spazio degli stati e senza fermioni non c’e’ supersimmetria.........DUNQUE!!!!!!!!!!!!!!!!!!!!!!! Così come......................... (2+3/4) + Jacket on 6 Jacket off è un possibile stato del sistema fisico Nello stesso modo.......... Se abbiamo un sistema di bosoni e fermioni Uno stato del sistema può essere descritto da stato a1 n1b n1f a2 nb2 n 2f ak nbk n kf dove ai sono numeri complessi e nbi n if i nb i nf = =è uno stato puro : E dove ni ed ni sono b f i numeri di occupazione, bosonico e fermionico, rispettivamente. I loro valori possibili sono: i nb =0,1,2,3, ......., mentre i n f =0,1 Perché l’albergo dei fermioni ha solo !!!! camere singole Che fa dunque la supersimmetria? Q ...... ...... Q ...... = Distrugge un bosone e crea un fermione, ma se la stanza fermionica é già occupata, dà zero = 0 L’anticarica fa l’opposto: + Q ...... = + Q ...... = = ...... 0 Distrugge un fermione e crea un bosone, ma se la stanza fermionica é già vuota, dà zero Supponiamo ora che ........... ogni bosone porti un quanto di energia B B ed ogni fermione porti un quanto di energia F Allora, l’energia totale di uno stato sarà F E= B nB+ F n F Nel caso in cui i due quanti fermionico e bosonico siano uguali avviene che............ Il sistema é supersimmetrico perché se uno stato anche lo stato Q E, allora stato ha energia stato ha la stessa energia. Togliere un bosone e rimpiazzarlo con un fermione non cambia il valore dell’energia totale. Questa verità può essere detta in un modo più matematico, scrivendo una superalgebra! Possiamo facilmente inventare un operatore che misura l’energia, come segue L’hamiltoniana ha un modo cruento di misurare l’energia: L’operatore H, misura l’energia così. Uno alla volta uccide tutti i bosoni, prende il loro quanto di energia e poi, prima di uccidere il prossimo ricrea il bosone appena ucciso. Indi fa la stessa cosa con i fermioni. L’unica differenza é che in ogni camera fermionica trova o nessuno od un solo fermione. H Un altro quanto di energia nel sacco! ............... A questo punto vediamo che Tutto quello che abbiamo discusso fin ora può riassumersi in relazioni algebriche tra gli operatori 2 Q (Q ) 0 2 QQ Q Q H QH HQ 0 Q H HQ 0 E’ questa nella sua forma più semplice la superalgebra di supersimmetria. L’idea fondamentale é che nei sistemi supersimmetrici bosoni e fermioni hanno la stessa energia (o massa). La distinzione di ruolo dinamico tra materia e campi di forza scompare. Riappare quando la supersimmetria é spontaneamente rotta L’ oscillatore armonico ed i quanti di energia Per capire che cosa sono i quanti di cui abbiamo parlato prendiamo un sistema composto da due oscillatori armonici, uno bosonico ed uno fermionico Classicamente un oscillatore armonico è una particella soggetta ad una forza che cresce linearmente con la distanza V(x) = - k x2 F é l’energia potenziale -x 0 x Classicamente l’oscillatore.... Oscilla avanti ed indietro attorno alla posizione di equilibrio (x=0) E2 Se ha energia E raggiunge una certa elongazione massima X che è maggiore tanto maggiore é l’energia E1 -X2 -X1 0 X1 X2 Quantisticamente, invece....... Si può solo definire l’ampiezza di probabilità che l’oscillatore si trovi qui piuttosto che colà In uno stato di energia E definita tale probabilità non cambia nel tempo. Però i possibili livelli di E sono quantizzati: E =n+1/2) ; n=0,1,2,3,........ Quanto Per l’energia più bassa, la distribuzione di probabilità é la curva rossa qui a fianco Per livelli più alti di E si ha..... Come si vede, crescendo E, la probabilita’ si estende sempre più esternamente E=(3+1/2) ma resta costante nel tempo E=(4+1/2) La probabilità invece varia.... nel tempo per stati che non hanno energia fissa, ma sono somme di stati con energie diverse. Ad esempio se prendiamo la somma degli stati corrispondenti ai primi otto livelli abbiamo ......... un film Per un oscillatore armonico fermionico............... Non esiste nessuna descrizione in termini di funzione d’onda nello spazio che si possa visualizzare. L’oscillatore ha solo due stati diciamo SU, GIU’ Ciò che conta é la superalgebra Di essa abbiamo rappresentazioni sui campi, corrispondenti alle varie particelle fondamentali, ma............... Questo ormai ci porterebbe......... In terre aspre, e selvagge, ma assai belle (per chi le apprezza!) Pertanto Mister Fermion ringrazia per l’attenzione. bye bye