Comments
Description
Transcript
Presentation - Active Galactic Nuclei 8
Modelling the cosmological co-evolution of supermassive black holes and galaxies Federico Marulli Collaborators: Lauro Moscardini (Università di Bologna) Enzo Branchini (Università Roma Tre) Silvia Bonoli, Volker Springel, Simon D. M. White (Max-Planck-Institut fuer Astrophysik, Garching) Dipartimento di Astronomia Università di Bologna Contents Aim of the study: Modelling the co-evolution of supermassive black holes and galaxies in the ΛCDM cosmology Understanding the role of the AGN feedback in the evolution of galaxies and clusters Working strategy: Hybrid models: dark halos (N-body) + galaxies + BHs Observational data: BH scale relation and fundamental plane BH mass function AGN luminosity function AGN clustering function Federico Marulli Torino: May 2008 Hybrid models: DM + galaxies + BH Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Millennium Simulation GADGET-2 code (Springel 2005), at the Computing Centre of the Max-Planck Society in Garching, Germany Dynamical evolution of 21603 ≃ 1e10 DM particles with mass 8.6x1e8 Msun/h in a periodic box of 500 Mpc/h on a side, in a LCDM “concordance” cosmological framework (2-degree Field Galaxy Redshift Survey (2dFGRS) (Colless et al. 2001) and first-year WMAP data (Spergel et al. 2003), as shown by Sanchez et al. (2006)) Mass resolution: DM halo of 0.1L⋆ galaxies with ~ 100 particles Spatial resolution: co-moving scale of 5 kpc/h Hierarchical merging trees extracted from this simulation DM haloes and subhalos identified with, respectively, a friends-of-friends (FOF) group-finder and an extended version of the SUBFIND algorithm (Springel et al. 2001) http://www.mpa-garching.mpg.de/millennium Federico Marulli Torino: May 2008 Hybrid models: DM + galaxies + BH Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Croton, Springel, White, De Lucia, Frenk, Gao, Jenkins, Kauffmann, Navarro, Yoshida 2006 De Lucia–Blaizot 2007 Gas cooling (White-Frenk 1991, Springel et al. 2001): Photon-ionization heating (Kravtzov et al. 2004): Star formation (Kauffmann 1996): Gas reated by supernovae: tcool m p kT 3 2 g ( r ) (T , Z ) g (r ) mhot 4Rvir r 2 cool 4g ( rcool ) r 2 cool rcool m f halo b f bcos mic ( z , M vir ) (1 0.26 M F ( z ) / M vir ) 3 * 0.03 m mcold mcrit t dyn,disc mreheated 3.5m* burst Energy released by supernovae: m eburst burst sat mcentral Disk instability (Mo et al. 1998): Vc 1/ 2 1 Gmdisk / rdisk Fraction of gas turned into stars after a merger (Cox 2004): 2 ESN 0.5 halom*VSN Federico Marulli Torino: May 2008 Hybrid models: DM + galaxies + BH Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M M BH ,Q quasar mode: ' f BH f BH ' mcold f BH 280 km / s 1 V vir msat mcentral 2 f Edd (t ) : Lbol (t ) / LEdd (t ) dt t Edd d ln M BH (t ) , tef (t ) tef (t ) 1 f Edd (t ) radio mode: Vvir M f M BH , R k AGN 8 BH hot 1 10 M 0 . 1 200 km / s L ' cool cool BH 2 m m 0.5Vvir Croton et al. 2006, De Lucia-Blaizot 2007 3 Federico Marulli Torino: May 2008 BH scale relations at z=0 Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Black dots : observations Black dashed lines : best fit to the observational datasets Red dots : model output Blue solid lines : fit to the model prediction * K- and B-band bulge magnitude :Marconi et al. (2004) * sigma: Ferrarese & Ford (2005) * Mbulge: Haring & Rix (2004) * Vc: Baes et al. (2003) * Mbh: Ferrarese (2002) equations 4 (cyan), 6 (green) and 7 (magenta) and Baes et al. (2003) (red) Federico Marulli Torino: May 2008 BH fundamental plane Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Black dashed lines: Hopkins et al. (2007) Red dots: model outputs Blue solid lines: best-fits to the model outputs The galaxy stellar mass is given in units of 1e11 Msun, the bulge velocity dispersion is in units of 200 km/s Federico Marulli Torino: May 2008 BH mass function Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Federico Marulli Torino: May 2008 AGN luminosity function Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Optical: Kennefick et al. 1995; Schmidt et al. 1995; Koehler et al. 1997; Grazian et al. 2000; Fan et al. 2001; Wolff et al. 12003; Hunt et al. Edd 2004; Cristiani et al. 2004; Croom et al. 2005; Richards et al. 2005, 2006; Siana et al. 2006; Fontanot et al. 2007; Shankar & Mathur 2007; f Edd , 0 z3 Bongiorno f ( et z ) al. 2007 1.4 f [( 1 z ) / 4 ] z3 Edd , 0 Infra-red: Brown et al. 2006; Matute et al. f Edd , 0 0.3 et al. 2006 2006; Babbedge Edd Soft X-ray: Miyaji et al. 2000, 2001; Silverman et al. 2005b; Hasinger et al. 2005 L (t ) dt | | t bol9 Hard et al. 2003; 10 Ueda et dX-ray: ln LBarger Lal. bol 2003; Barger et al. 2003; Nandra et al. 2005; f BH Sazonov & Revnivtsev 2004; Silverman et al. 2005a; La Franca et al. 2005; Shinozaki et al. M 2006; 0.01Beckmann log BHet al. 12006 z z 1.5, M 106 M 103 M Emission lines: Hao et al. 2005 M BH ,Q 0.01 mcold BH z6 Federico Marulli Torino: May 2008 AGN clustering function Marulli, Branchini, Gilli, Moscardini, Bonoli in preparation CDFs AGN clustering: Gilli et al. 2005 Federico Marulli Torino: May 2008 Summary Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M BH scaling relations BH fundamental plane AGN luminosity function BH mass function AGN clustering Federico Marulli Torino: May 2008 Summary Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M Galaxy luminosity function at z=0 Galaxy evolution - downsizig Cooling flows in clusters “Radio mode” BH feedback - Not triggered by mergers - Low z - High mass DM halos BH scaling relations BH mass functions AGN evolution – downsizing AGN clustering Federico Marulli Torino: May 2008 Conclusions • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the ΛCDM model • At redshifts z>1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts • At redshifts z<1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio'' activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time The end! …thanks! Federico Marulli Torino: May 2008