universita` degli studi di padova - Dipartimento di Scienze Chimiche
by user
Comments
Transcript
universita` degli studi di padova - Dipartimento di Scienze Chimiche
UNIVERSITA’ DEGLI STUDI DI PADOVA Laurea specialistica in Scienza e Ingegneria dei Materiali Curriculum Scienza dei Materiali Chimica Fisica dei Materiali Avanzati Part 6.a – Size effects and applications of metal and semiconductor nanoparticles Corso CFMA. LS-SIMat 1 UNIVERSITA’ DEGLI STUDI DI PADOVA Technological Interest in Metal Nanocrystals Novel optical effects Nanoelectronics Biolabelling Single electron devices (capacitors, memory storage) Polarizers Shape control SERS - molecular detection Catalysis Plasmonics and Optical Chips Corso CFMA. LS-SIMat 2 UNIVERSITA’ DEGLI STUDI DI PADOVA HRTEM Ag Nanoparticles “Monodisperse” 6nm diameter, crystalline silver nanoparticles in water produced by radiolytic reduction. Solution is bright yellow! Inset: Shows metal atoms with lattice spacing of 2.36Å - same as bulk. Corso CFMA. LS-SIMat 3 UNIVERSITA’ DEGLI STUDI DI PADOVA Plasmons Corso CFMA. LS-SIMat 4 UNIVERSITA’ DEGLI STUDI DI PADOVA Metal nanostructures & surface plasmons Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal’s surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics. WL Barnes, A Dereux and TW Ebbesen, Nature 424, 824 (2003) Corso CFMA. LS-SIMat 5 UNIVERSITA’ DEGLI STUDI DI PADOVA Plasma Equations d 2x me 2 eE . Damping term to model loss can be used. dt For time harmonic response, E, x ~ e i t eE 2 me x eE x . 2 me ( ) 1 ω 2p 2 Ne 2 , ω 0 me 2 p . Adding the ionic contributi on to dielectric response, 2 p2 Ne 2 ( ) ()1 2 , p 0 ()me Corso CFMA. LS-SIMat 6 UNIVERSITA’ DEGLI STUDI DI PADOVA Dielectric Constant Plasma Dielectric Function Normalized Epsilon 1 Reflection 0 Propagation -1 -2 0 0.5 1 1.5 2 Normalized Frequency Corso CFMA. LS-SIMat 7 UNIVERSITA’ DEGLI STUDI DI PADOVA Volume EM Waves in Metals 2E 2 c 2 E 0 . E ~ eiz 2 ( ) 2 p 2 2 2 ()1 2 2 p2 c c c 2 2 At p , is purely imaginary, hence E decays exponentia lly. A “bandgap” exists for propagation due to the negative dielectric constant Corso CFMA. LS-SIMat 8 UNIVERSITA’ DEGLI STUDI DI PADOVA Dispersion of EM in Plasma 2 2p c 1 Negative Dielectric Constant E & H out of phase, imaginary Corso CFMA. LS-SIMat 9 UNIVERSITA’ DEGLI STUDI DI PADOVA Surface Plasmon Coherent excitation of plasma near the surface of a metal – coupled to surface EM wave These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of the conductor (i.e., guided waves) SPs help us to concentrate and channel light using subwavelength structures. x propagation z Metal Corso CFMA. LS-SIMat 10 UNIVERSITA’ DEGLI STUDI DI PADOVA Dispersion Curves Propagation curve in 1 (dielectric medium) does not cross the surface plasmon dispersion curve c c 1 1 2 c 1 2 Corso CFMA. LS-SIMat 11 UNIVERSITA’ DEGLI STUDI DI PADOVA SPR excitation techniques Corso CFMA. LS-SIMat 12 UNIVERSITA’ DEGLI STUDI DI PADOVA SPP at planar metal surfaces Plasmon-polariton excitation produces absorbance peak at specific frequency Shift in the absorbance spectrum indicates presence of analyte molecules (change in dielectric refractive index) Corso CFMA. LS-SIMat 13 UNIVERSITA’ DEGLI STUDI DI PADOVA SPR Applications Chemical 1. Sensing 2. Reaction kinetics 3. Concentration measurement Biological 1. Real time sensing 4. Mass Spectrometry 5. Equilibrium properties 2. Detection of binding reactions … and many more 3. Proteomics 4. Plasma membrane studies 5. Drug delivery techniques … Corso CFMA. LS-SIMat and many more 14 UNIVERSITA’ DEGLI STUDI DI PADOVA SPR-based commercial products SPR biosensor Spreeta from Nomadics-Texas Instruments Applications Corso CFMA. LS-SIMat Beverages Medical diagnostics Food safety Security Water quality Research 15 UNIVERSITA’ DEGLI STUDI DI PADOVA Localized Plasmon Resonance @ NPs Coherent excitation of conduction electrons driven by the E radiation field. Theoretically modeled by Mie Theory Corso CFMA. LS-SIMat 16 UNIVERSITA’ DEGLI STUDI DI PADOVA Optical Properties Mie Theory(1908) 9V0 m3 2 2 abs 2 2 c 2 1 m 2 1 i 2 Drude free electron model 1 2p 2 i Empirically a r 0 r Surface Plasmon Resonance is invariant with respect to the size on the nanoparticle. The FWHM scales with the radius of the particles. Assumes spherical particle Particle diameter << l/10 Corso CFMA. LS-SIMat J.H. Hodak, et al. ; J. Phys Chem. B, 104(43), 9954, 2000. 17 UNIVERSITA’ DEGLI STUDI DI PADOVA Different Plasmon Modes Bulk Plasmons: 0 Surface Plasmons on Flat Surface: m Surface Plasmons on a Small Sphere: 2 m Surface Plasmons on a Small Ellipsoid: L m Intrinsically sensitive to surface perturbations. “Small” means < 30nm. L depends on aspect ratio. Corso CFMA. LS-SIMat 18 UNIVERSITA’ DEGLI STUDI DI PADOVA Dielectric confinement and local field amplification The value of the local field near the metal nanocrystal is El 3 E 2 m A huge amplification of the local field occurs near the SP resonance at the pole Re 2 m 0 Corso CFMA. LS-SIMat 19 UNIVERSITA’ DEGLI STUDI DI PADOVA Surface Enhanced Raman Scattering Normal Raman Scattering I NRS S N I L Rfree Surface Enhanced Raman Scattering (SERS) R I SERS S N I L A L A S ads 2 Corso CFMA. LS-SIMat 2 20 UNIVERSITA’ DEGLI STUDI DI PADOVA Overview of Novel Effects in Metal Nanocrystals Surface plasmon changes due to electron density. Surface plasmon changes due to shells or adsorbates e.g. biomolecules. Surface plasmon changes with particle size. Surface plasmon changes with particle shape. Single Electron Effects: Coulomb Blockade. Corso CFMA. LS-SIMat 21 UNIVERSITA’ DEGLI STUDI DI PADOVA Surface Plasmon Spectroscopy 0.04 2 0 1.5 Absorbance (b) (c) (a) Absorption spectrum of 6nm dia. Silver particles (0.1mM) (b) Predicted difference spectrum following injection of 5µM electrons (c) Experimental difference spectrum using pulse radiolysis (N2O, 2-propanol) -0.04 1 (a) 0.5 -0.08 0 -0.12 300 350 400 450 Blue shift occurs due to Increased electron concentration. 500 Wavelength [nm] Corso CFMA. LS-SIMat 22 UNIVERSITA’ DEGLI STUDI DI PADOVA Shape Effects: Metal Nanorods 3.0 0.12 3.5 2.5 2.0 1.5 0.00 200 -2 0.04 ) (nm C ext 0.08 300 400 500 600 700 (Left) Nanorods absorb two colours. The colour depends on the length of the rod. For silver, almost all colours of the rainbow are predicted to be possible. Wavelength / nm 700 Gans predicted this effect in 1911. Peak Position (nm) b = 10 nm 600 Longitudinal First proper gold rods made in 1994 to test this. a 500 b 400 1 Transverse 2 3 Aspect Ratio 4 Corso CFMA. LS-SIMat 23 UNIVERSITA’ DEGLI STUDI DI PADOVA Shape Control - Polarizers, Liquid Crystals, Nanomechanics Aims: Use shape control to create new materials with unusual optical properties Color of Gold Nanorods depends on aspect ratio and orientation! Corso CFMA. LS-SIMat 24 UNIVERSITA’ DEGLI STUDI DI PADOVA Primitive Alignment of Ag Rods Stretch a polymer film with silver rods (10nm x 40nm) and hold it under a polarizer Focus a laser onto the silver rods and they melt back into yellow nanospheres Corso CFMA. LS-SIMat 25 UNIVERSITA’ DEGLI STUDI DI PADOVA Nanoshells for expanding SPR’s Optical resonances of gold-silica core nanoshells as a function of their core/shell ratio. More sensitive than simple nanoparticles. (gain ~r2/r1) Resonance frequency is a strong function of geometry More resonant frequencies possible Corso CFMA. LS-SIMat 26 UNIVERSITA’ DEGLI STUDI DI PADOVA Nanoshells in bio-applications Properties: Optical activity in bio-compatible wavelengths. Strong tunable absorption in NIR region (700-1300 nm) (maximum light penetration through tissue in NIR) Easy conjugation with specific proteins Chemical / Photochemical stability Biocompatible, non-toxic to tissue (gold) Corso CFMA. LS-SIMat 27 UNIVERSITA’ DEGLI STUDI DI PADOVA NIR photothermal tumor therapy Corso CFMA. LS-SIMat 28 UNIVERSITA’ DEGLI STUDI DI PADOVA Single Electron Devices from NCs The capacitance of a small particle is C = Q/V = e/4πeoa in vacuum. To add an electron to the particle costs an energy, U = Q2/2C. If U >>kT, then the usual I-V curve will show jumps. If these jumps can be distinguished then the presence of single electrons can be confirmed, and a storage or logic device created. Low temps are usually needed. An STM can be used to study the flow of electrons through a single Gold nanoparticle. Corso CFMA. LS-SIMat 29 UNIVERSITA’ DEGLI STUDI DI PADOVA Single Electron Devices from NCs Corso CFMA. LS-SIMat 30 UNIVERSITA’ DEGLI STUDI DI PADOVA Metal-ceramic nanocomposite materials For inductive components in high-frequency electronic devices Chemical synthesis of Ni-Fe/SiO2, Co/SiO2, Fe-Co/SiO2, Fe/nickelferrite, Ni-Zn-ferrite/SiO2, Fe-Ni/ polymer, and Co/polymer composite magnetic materials Exchange coupling between nanoparticles large magnetic permeability Cancellation of magnetic anisotropy Small parasite currents Corso CFMA. LS-SIMat Inframat Corporation, Farmington, CT 31 UNIVERSITA’ DEGLI STUDI DI PADOVA Motivation for Studying Semiconductor Nanoparticles Nanocrystals are of tremendous interest because they (i) Have size dependent optical, electronic, catalytic and magnetic properties. (ii) Quantum size effects provide direct insight into the validity of current models of bonding and structure. (iii) Numerous applications require miniaturisation. (iv) QSE may provide the fundamental limits to Moore’s law. (v) Such materials are fun to play with! Corso CFMA. LS-SIMat 32 UNIVERSITA’ DEGLI STUDI DI PADOVA Growing CdSe Quantum Dots 2 1 rapidly inject precursor solution into hot (350o C) trioctylphosphine oxide o C- reached. Qui ckTime™ and a Photo - JPEG decompr essor are needed to see thi s pi cture. 1 dimethyl cadmium + trioctylphosphine selenide + trioctylphosphine Absorbance spectra for a batch of CdSe quantum dots 0. 8 increas ing time 0. 6 Abs QuickTi me™ and a Photo - JPEG decompressor are needed to see thi s pi ctur e. heat the reaction mixture at 260 300 o C until desired particle size is 0. 4 heat 0. 2 0 30 0 35 0 40 0 45 0 50 0 55 0 Wavelen gth (n m) 60 0 65 0 70 0 Similar preps for: InAs, InP, CdS, ZnS, ZnSe, CdTe, PbS, PbSe, ZnO, alloys and core-shells of these materials. Corso CFMA. LS-SIMat 33 UNIVERSITA’ DEGLI STUDI DI PADOVA Typical Absorption and Fluorescence Kinetic Profiles 100 Emission Intensity (norm.) 2 Absorbance 1.5 1 180" 0.5 0 400 5" 500 600 5" 180" 80 60 40 20 700 Wavelength (nm ) 0 400 450 500 550 600 650 700 Wavelength (nm ) CdSe nucleation in octadecene at 275oC; Growth at 250oC; oleic acid/dodecylamine capping agents (L): Absorption (R): Luminescence vs time Corso CFMA. LS-SIMat 34 Radius vs Time 44 2.4 42 2.2 40 2 38 1.8 FWHM (nm) Mean Crystallite Radius (nm) UNIVERSITA’ DEGLI STUDI DI PADOVA 36 1.6 34 32 1.4 1.2 0 50mM monomer in Octadecene at 275oC 30 50 100 150 200 250 300 Time (s) Particle growth is slow, distribution narrows Corso CFMA. LS-SIMat 35 UNIVERSITA’ DEGLI STUDI DI PADOVA Tweaking… If you make the nucleation go fast enough… If you can stop the nanocrystals growing… If you can stop them sticking together… If you can make them all the same size… If you can make them as single crystals with no defects… Corso CFMA. LS-SIMat 36 UNIVERSITA’ DEGLI STUDI DI PADOVA Quantum Size Effect produces “Artificial Atoms” CdSe Nanocrystals ranging from 1nm to 6nm in diameter - to distinguish so many colours, the size distributions must be very narrow. The growth kinetics must be carefully controlled. Corso CFMA. LS-SIMat 37 UNIVERSITA’ DEGLI STUDI DI PADOVA 600 9 8 7 6 300 5 4 3 2 0 1 400 450 500 550 600 650 700 Wavelength (nm) Corso CFMA. LS-SIMat CdSe Diameter (nm) Emission Intensity (a.u.) Size Control is Critical! 38 UNIVERSITA’ DEGLI STUDI DI PADOVA Wannier excitons in bulk semiconducors Bound electron-hole pairs that split off the conduction band due to mutual attractive (Coulomb) interaction Binding energy and degree of localization depend on electrostatic screening e4 2 K 2 Eexciton EG 2 2 2 2 n 2M n 2 2 aB rn e2 Bohr radius with 1 1 m 1 m e h and M me mh Corso CFMA. LS-SIMat 39 UNIVERSITA’ DEGLI STUDI DI PADOVA Exciton transitions in cuprous oxide Corso CFMA. LS-SIMat 40 UNIVERSITA’ DEGLI STUDI DI PADOVA Weak Confinement a > aB We will not discuss this region. For NCs small, but larger than the exciton radius, the first evidence of QSE is a slight blue shift of the exciton due to its feeling trapped. The exciton energy increases until it reaches the band edge..at this point, “normal” excitons no longer exist in the particle.. The shift is not as dramatic as in the strong regime… Example: CdSe Nanocrystals HRTEM CdSe Nanocrystal (Courtesy M Bawendi, MIT) Corso CFMA. LS-SIMat 41 UNIVERSITA’ DEGLI STUDI DI PADOVA Strong Confinement Regime (a < aB) Smaller than exciton radius in bulk crystal. Treat e,h as separate entities. Spherical box. 2 2 ml E Eg 2me a 2 e ml 2 2 ml E Eg 2mh a 2 h ml Coulomb attraction is less than confinement energy. Varies as 1/a. Brus showed that lowest optical transition obeys: 2 2 2 2 1.786 E1s 1s Eg 2 2 2mh a 2me a 4 0 a since 10 Corso CFMA. LS-SIMat 42 UNIVERSITA’ DEGLI STUDI DI PADOVA Summary of QSE Unoccupied energy levels 4.0 CuCl 3.5 Energy (eV) heat Filled energy levels ZnSe 3.0 2.5 CdS 2.0 CdSe 1.5 GaAs 1.0 R < 2 nm R < 3 nm R > 5 nm (bulk) 1 10 NanoCrystal Radius (nm) 1 .8e E ( R ) E ( ) 2m * R R 2 g 2 g Corso CFMA. LS-SIMat 2 2 43 100 UNIVERSITA’ DEGLI STUDI DI PADOVA Quantum Size Effects produces “Artificial Atoms” 7 nm 1.5 nm Nanocrystal Diameter Corso CFMA. LS-SIMat 44 UNIVERSITA’ DEGLI STUDI DI PADOVA Applications - NCs Tunable LEDs Tunable lasers Smart Glasses Biolabelling Corso CFMA. LS-SIMat 45 UNIVERSITA’ DEGLI STUDI DI PADOVA Biolabelling Advantages of QDs as biolabels More photostable under laser irradiation. Dyes bleach very quickly. Narrower spectra so more colours in any spectral region. Simple excitation spectra, so readily multiplexed with simple optics. Dyes require multiple lasers in microscopes or cytometers. Common chemistry for all labels. Note that gold NCs have long been used as biolabels! Today, interest in all types of NCs as labels: magnetic,metallic, fluorescent, mixtures thereof. Corso CFMA. LS-SIMat 46 UNIVERSITA’ DEGLI STUDI DI PADOVA Challenges and Conclusions Challenges for Nanocrystal Engineers Shape Control, Core-Shell Synthesis and Passivation. Monodispersity and Scale-Up. Luminescence and Quantum Yield from UV to NIR. QSE theory: matching with computational models. Challenges for NanoTechnologists Ordering of NCs on different lengthscales. Integration with Top-Down NT processes. Creating Functional nanoscale materials and devices. Corso CFMA. LS-SIMat 47 UNIVERSITA’ DEGLI STUDI DI PADOVA Single Nanocrystal Spectroscopy Temperature (K) FWHM 300 K (15 – 18) nm (50 – 60) meV (0.06 – 0.3) nm (0.2 – 1) meV 0.04 nm 120 eV 20 K 10 K (low exct. Int 185W/cm2) Corso CFMA. LS-SIMat Confocal microscope 48