Comments
Transcript
Dispositivi e sistemi per la radiografia digitale
Radiografia digitale Radiografia digitale Sistema ideale: Acquisizione istantanea di una immagine in forma digitale con il minimo numero di raggi X Figure 1. Chart illustrates a digital radiography system. After image exposure, the imaging data are digitally processed and stored in a digital archive. A centralized image management system is used for further distribution of the images to viewing stations, information systems, and electronic patient records. Computed Radiology (Storage Phosphorous Radiology) a systematic overview of ctors. CCD chargepanel detector, TFT Figure 3. D rawing illustrates a CR system based on storage-phosphor image plates. Image generation is separated into two steps. First, the image plate ( IP) is exposed to x-ray energy, part of which is stored within the detective layer of the plate. Second, the image plate is scanned with a laser beam, so that the stored energy Computed Radiology (Storage Phosphorous Radiology) Radiografia analogica vs digitale Radiografia digitale le 1 ameters for Digital X-Ray Imaging Systems. (Data From Rowlands and Yorkston) Specifiche collecting pixels depending on the depth of absorption. r an a-Se photoconductor of thickness 200–1000 m and 3) The dark current should be negligibly small. T means the contacts to the photoconductor should Necessità di larga area • Soluzioni – accoppiamento ottico “fosfori+lenti+Fotomoltiplicatore/CCD” – matrici attive in selenio/silicio amorfo Necessità di larga area • Soluzioni – accoppiamento ottico “fosfori+lenti+Fotomoltiplicatore/CCD” – matrici attive in selenio/silicio amorfo Conversione diretta Conversione indiretta Matrice di sensori attivi a conversione diretta Fotoconduttori Requisiti per fotoconduttori Alto coefficiente di assorbimento: d<<L Alta sensibilità No ricombinazione No trappole: mtE>> L Bassa corrente dark: no iniezione dagli elettrodi, no generazione termica No degradazione Facilità di deposizione Profondità di penetrazione Table 2 summarizes the absorption dep didate X-ray photoconductor materials a 20 keV (mammographic X-ray) and 60 n » 3 requires th The minimization of n dosage such that the most of the radiation is ab thickness or . This means that and, hence, the particular imaging app -n cations of the K andnL»edges 3- 4of the X-r material. The K edge of a-Se is 12.7 keV ularly useful for mammographic applicati keV. For mammorgraphy, diology with mean photon energy of 60 k For comparison, the corresponding thick detector are about 60 and 540 m, resp as is increased, there is an increased p freed charges will be trapped as they drift tances to reach the electrodes, i.e., the s come schubweg-limited, as discussed in S d»E dµZ Fig. 8. Attenuation depth ( m) versus photon energy (keV) for various materials. Attenuation coeffients calculated by the authors using elemental mass attenuation coefficients and V. X-RAY SENSITIVITY The total collectable charge gene Energia di ionizzazione W± = 2.8× Eg + E phonon E phonon = 0.5eV Fig. 9. EHP creation energy versus energy bandgap materials. for various Fig. 10. v energies as measu obtained from ra Sm, 48.8 fluoresc from Am-241), 5 m. 74.1-keV fluor m [14]. Sensibilità Q S= AX Materiali per fotoconduttori Matrice di sensori in selenio amorfo Sensore in selenio amorfo Polarizzazione negativa tic diagram representing the equivalent circuit of the photoconductive pixel detector. Source Drain n a-Si:H i a-Si:H Gate insulator Substrato Gate Polarizzazione positiva Polarizzazione positiva Matrice di sensori in silicio amorfo Matrice di sensori in silicio amorfo Matrici di sensori in a-Si:H: Scintillatori • Sono scintillatori inorganici: NaI, CsI, Bi4Ge3O12 (noto come BGO), PbWO4, BaF2... • Il meccanismo di scintillazione negli scintillatori inorganici è caratteristico della struttura a bande elettroniche che si trovano nei cristalli. Spesso si hanno 2 costanti di tempo: 1.ricombinazione rapida dai centri di attivazione (ns-μs) 2.ricombinazione ritardata (trappole) (~100 ms) Matrice di sensori in silicio amorfo Scintillatori X-ray Reflector • Segnale dipende da: – coefficiente di conversione – efficienza quantica – self-absorption S SCATTERING SELF ABSORPTION Matrice di sensori in silicio amorfo CsI:Tl • • • • • Spessori 550µm Buon assorbimento dei raggi X (65000 ph/MeV) Struttura colonnare: guide d’onde 1,0 MTF=50% @ 1 lp/mm Emissione luce nel verde 0,8 0,6 a-Si:H CsI:Tl 0,4 0,2 0,0 400 500 600 700 800 wavelength / nm Matrice di sensori in silicio amorfo ITO/Metal n a-Si:H i a-Si:H p a-Si:H Metal/ITO Substrato Matrice di sensori in silicio amorfo Matrice di sensori in silicio amorfo Row Driver Switch PD Vbias Source Drain n a-Si:H i a-Si:H Gate insulator Substrato Gate Matrice di sensori in silicio amorfo Tecnologia planare • Limited Fill-factor limitato (<75%) TOP VIEW CROSS SECTION Tecnologia Multi-livello • Fill-factor >90% TOP VIEW CROSS SECTION 66 ble 2 Characteristics of me flat-panel detector sysms currently available Differenti prodotti Canon CXDI-11 Scintillator 200-µm thick (terbium-doped gadolinium dioxide sulphide) Photodiode (semiconductor -type photoelectric converter made from hydrogenated amorphous silicon a-Si:H) TFT (made from hydrogenated amorphous silicon) Each pixel consists of an a-SI TFT and a metal insulator semiconductorphotoelectric converter . Indirect conversion of X-rays 2688´2688 pixels 43´43 cm 160-µm pixel size 4096 grey-scale image (14-bit resolution) Trixell (Philips, Siemens, Thomson) Structured scintillator 550-µm thickness (thallium doped cesium-iodide, CsI:Tl) Photodiode (amorphous silicon) Switching diode Indirect conversion of X-rays 3000´3000 pixels 43´43 cm 143-µm pixel size 4096 grey-scale image (14-bit resolution) General Electric Medical Systems (Milwaukee, W is.) Scintillator (cesium-iodide) Photodiode (amorphous silicon)+TFT Indirect conversion of X-rays 2048´2048 pixels 41´41 cm 200-µm pixel size DirectRay (Hologic, Kodak, Rochester , N.Y.) Amorphous selenium 500-µm (photoelectric layer) Capacitor+amorphous silicon TFT Direct conversion of X-rays 2560´3072 pixels 35´43 cm 139-µm pixel size 2567 Prestazioni FPD Table 3 Phantom studies with flat-panel detectors (FPD). ROC receiver operating characteristics; AUC area under curve of the ROC experiment; SPR storage phosphor radiography system; SFS screen-film systems Reference Type of study Detector type Results [16] Simulated bone erosions in a hand phantom (holes of different sizes drilled in polymethyl acrylate panels which were superimposed on a hand phantom, i.e. low-contrast detection task). ROC study with four observers, 7200 observations CDRAD contrast detail phantom (four alternative forced choice experiments).T est signals: holes of different diameters and depths up to 2.0 mm (i.e. high and low contrast with different diameters) CDRAD 2.0 phantom. Comparison of FPD (at 400, 600 and 800 equivalent speed), SPR (AC-3 with ST-V plates, at approximately equivalent 200 speed) and a Kodak 160 speed SFS. Digital images evaluated at a Sectra Workstation with different monitors. Four observers, each reading three images for each setting. Comparison of image quality figure. Determination of skin entrance doses Comparison of images obtained with FPD and a 400-speed SFS (Insight VHC, Kodak). Anthropomorphic chest phantom with simulated lung structure and superimposed nodular, micronodular, linear and reticular patterns. 480 observation fields for each modality. Four observers. ROC analysis Detection of foreign bodies (glass with and without lead, bone fragments, aluminium, iron, copper, gravel, graphite) of dif ferent sizes superimposed to fresh porcine meat. Comparison of FPD (no spatial frequency processing) at different simulated speed classes to a 400-speed SFS (Lanex Regular/T-MAT Plus DG film, Kodak). 400 observation fields per modality . Four observers. One ROC curve for all foreign bodies, no separate evaluation Detection of cortical bone defects and fractures. 232 tubular deer -bones with mechanically induced fractures on 1 10 of them and cortical bone defects on 1 12 of them. Comparative images obtained with identical exposure with the FPD and 400-speed SFS (Lanex Regular/T-MAT Plus DG film, Kodak) and reduced exposure for the FPD. Four observers Prototype of the Trixell/Siemens detector Compared with a FSS (Lanex regular screen and T-MAT Plus DG film; Kodak), better diagnostic performance of the FPD with same dose ( p<0.05). No significant difference for FPD images obtained with reduced dose (30% and 50% dose reduction) GE Revolution XQ/I Compared to both Insight regular and Insight HC the FPD shows better detection of test signals. T est signals with low contrast are more frequently detected with the FPD even when the dose is reduced by 20% FPD has equal image quality at less than half the dose when compared with SPR, and at approximately at one-fifth the dose when compared with SFS [17] [18] [19] [20] [21] Trixell/Philips Reduced size (15´15 cm) prototype of Trixell/Siemens detector For dose equivalent images, FPD performs better than SFR for linear structures and micronodular opacities, whereas no significant dif ference is detected for nodules and reticular patterns. No significant difference between full-dose SFS images and half-dose FPD images was found Reduced size (15´15 cm) prototype of Trixell/Siemens detector At a simulated speed of 400, the FPD system performs significantly better than the SFS. At a simulated speed of 800 and 1200, no significant difference between FPD and the 400-speed SFS was detected. At a simulated speed of 1600, the FPD system was significantly inferior to the 400-speed SFS Reduced size (15´15 cm) prototype of Trixell/Siemens detector No significant difference could be found for the detection of cortical defects and fractures, even with dose reduced images obtained with the FPD detector (at one-half, two-thirds and one-fifth of the dose). Very high AUC; thus small dif ferences may not have been detected Prestazioni FPD Sistemi statici Large size (43cm x 43cm / 17" x 17") for high projection flexibility even with large patients Resolution up to 3.5 lp/mm, 143 μm pixel size Sistemi dinamici • Amplificatore di brillanza – Pesante – Sensibile ai campi magnetici – Schermo curvo Sistemi dinamici • Flat detector – Leggero – Assenza di distorsione – Miglior contrasto – Miglior uso della dose