...

Diapositiva 1

by user

on
Category: Documents
18

views

Report

Comments

Transcript

Diapositiva 1
Conceptions of secondary students
on phenomenology of superconduction
Marisa Michelini, Lorenzo Santi, Alberto Stefanel
Research Unit in Physics Education, DCFA, University of Udine - via delle Scienze 206, 33100 Udine, Italy
[email protected], [email protected], [email protected]
Introduction
Teaching and learning Modern Physics is a challenge for Physics Education research (PE 2000; AJP
2002, Meijer 2005; Johanson, Milstead 2008; Steinberg, Oberem 2000). Nowadays superconductivity
can be brought in the educational laboratory both for qualitative exploration, both measurements with
sensors interfaced to the computer.
In the context of a research project to renew physics curricula introducing modern physics, an
educational path for high school was developed to introduce superconductivity, integrating it in the
courses of electromagnetism. The educational path implement an IBL approach using a set of handson/minds-on apparatuses designed with simple materials and High Technology (Kedzierska et al.
2010; Michelini, Viola 2011), YBCO samples, USB probe to explore R vs T (Gervasio, Michelini 2010).
The rational of the path on Meissner
effect for HSS Students
Type of
school
Site
grade
N class
Phy years
h per week
age
N Students
s.y.
h
driver
5) The SC tends to react to an
external magnetic field creating a
counter field to maintain B=0
inside (Meissner effect).
Context
4) The interaction between SC
and a magnet do not depend on
the pole put close to the surface
of the magnet, the equilibrium
position is always the same..
N
1) YBCO disc at T=Te: no magnetic
properties
2) YBCO at T=TNL: evident levitation
of a magnet
magnetic properties?
3) Systematic exploration of the
interaction of the SC with different
magnets
and
different
objects
(ferromagnets in primis), with different
configurations
 It always shows repulsive effects
close to a magnet: an YBCO at TTNL
is diamagnetic.
School experimentations
1
Curricolar
Sci. Lyceum
Pordenone
4
2
4
3
17-18
34
05/06
15
teacher
Curricolar
Sci. Lyceum
Udine
2
2
2
3
15-16
33
05/06
10
teacher
Curricolar
Tech. Lyceum
Udine
5
1
3
3
17-18
25
05/06
14
Prospective teacher
Curricolar
Tech. Lyceum Scicli (Ragusa)
5
1
3
3
17-18
8
05/06
20
teacher
Curricolar
Class. Lyceum
5
1
2
2
17-18
5
05/06
20
teacher
Curricolar
Sci. Lyceum
5
1
3
3
17-18
11
05/06
29
teacher
Curricolar
Curricolar
Sci. Lyceum
Sci. Lyceum
5
1-2
2
1
3
3
3
3
17-18
17-18
36
27
05/06
05/06
11
12
teacher
teacher
Curricolar
Sci. Lyceum
5
2
3
3
17-18
63
5/06
8
teacher
Curricolar
Profession Sc.
1-2
2
2
3
15-16
25
05/06
21
teacher
Curricolar
Tech. Lyceum
5
1
3
3
18-19
21
06/07
9
teacher
Curricolar
Profession Ist.
1-2
2
2
3
14-16
25
6/07
21
teacher
14
Curricolar
Curricolar
Sci. Lyceum
Profession Ist.
Vibo Valencia
(Ragusa)
Comiso
(Ragusa)
Bolzano
Modena
Tricarico
(Matera)
Gemona
(Udine)
Udine
Gemona
(Udine)
Bolzano
Bolzano
5
5
2
1
2
2
3
3
15-16
18-19
38
7
6/07
06/07
11
5
teacher
teacher
15
Curricolar
Tech. Lyceum
Palermo
5
3
3
3
17-18
53
06/07
21
teacher
16
Sci. Lyceum
Udine
5
6
3
3
07/08
4
Res
Different
Udine
4-5
40
2-3-5
3
42
08/09
6
Res
18
Project Guidance
Sci. Lyceum
Pordenone
5
1
5
3
18-19
17-1819
18-19
42
17
Project "Maturità" 2008
Summer School FM
2009
13
08/09
6
Res
19
Sci. Lyceum
Tolmezzo
5
1
3
3
18-19
20
08/09
8
teacher
20
Curricular - Lab IDIFO
Young 2010 LACOMAS
Sci. Lyceum
Udine
5
20
3
3
18-19
90
09/10
2
Researcher
21
Curricular - Lab IDIFO
Geom. Inst.
Milano
3
1
3
3
16-17
20
08/09
9
CP-IDIFO teacher
22
Curricular - Lab IDIFO
Profession Ist.
Modena
2
1
3
3
15-16
20
0809
9
CP-IDIFO teacher
23
Curricular - Lab IDIFO
Sci. Lyceum
Bolzano
5
1
3
3
18-19
20
08/09
9
teacher
24
Curricular - Lab IDIFO
Tech. Lyceum
Treviso
5
1
3
3
18-19
20
08/09
9
CP-IDIFO teacher
25
Curricular - Lab IDIFO
Sci. Lyceum
Bolzano
5
1
3
3
18-19
15
08/09
4
CP-IDIFO teacher
26
Curricular - Lab IDIFO
Sci. Lyceum
Milano
5
1
3
3
18-19
15
08/09
6
CP-IDIFO teacher
27
Curricular - Lab IDIFO
Different
Udine
4-5
20
2-3
3
17-1819
80
10/11
4
Res
28
Curricular - Lab IDIFO
Different
Cosenza
5
7
3-5
3
18-19
50
10/11
4
Res
29
Sci. Lyceum
Crotone
5
3
3
3
18-19
20
10/11
6
Res
Different
Udine
4-5
9
2-3-5
3
40
10/11
6
Res
31
Curricular - Lab IDIFO
Summer School FM
2011
Summer School
Pigelleto
Different
Udine
4-5
40
2-3-5
3
46
10/11
6
Res
32
Curricular - Lab IDIFO
Sci. Lyceum
Udine
5
1
3
3
18-19
16
11/12
12
Res/teach
33
Curricular - Lab IDIFO
Sci. Lyceum
Udine
5
1
3
3
18-19
27
12/13
9
Res/teach
34
Curricular - Lab IDIFO
Sci. Lyceum
Udine
5
1
3
3
18-19
23
12/13
35
Curricular - Lab IDIFO
Sci. Lyceum
Udine
5
1
3
3
18-19
16
12/13
9
Res/teach
36
Curricular - Lab IDIFO
5
1
3
3
18-19
23
12/13
12
Res/teach
37
Curricular - Lab IDIFO
5
2
3
3
18-19
40
12/13
8
Res/teach
38
Curricular - PhD Exp
Sci. Lyceum
Salerno
5
2
3
3
18-19
20
12/13
6
Res/teach
39
Curricular - PhD Exp
Sci. Lyceum
Salerno
5
2
3
3
18-19
20
12/13
6
Res/teach
40
Curricular - PhD Exp
Summer School MP
2013
Summer School MP
2014
Sci. Lyceum
Salerno
5
2
3
3
18-19
20
12/13
6
Res/teach
Different
Udine
4-5
36
2-3-5
3
17-19
36
2013
6
Res
Different
Udine
4-5
36
2-3-5
3
17-19
30
2014
6
Res
2
3
4
5
6
7
8
9
10
11
12
13
30
6) The magnet would be stopped
just falling over a conductor with
R=0   B=0 Meissner effect
7) Experimental measurement R
vs T at phase transition
41
42
Sci. Lyceum
Sci. Lyceum
Tolmezzo
(Udine)
Monfalcone
(GO)
17-1819
17-1819
Res/teach
Research experimentation summary:
14 sites (all around in Italy)
1199 students of 220 classes (last two grade of the
Italian High School)
Explorative activities (informal learning)
4 contexts, with 715 students)
From the test: High School Experimentation
in Udine-Salerno-Tolmezzo 122 students
(13 grade – 18 aged)
10) From the model of conduction to the model of
superconduction: analysis of the energy of the electrons
inside of a crystal lattice and Cooper pairs formation
11) persistent currents and
pinning effect and the
correlated phenomenology
(i.e. magnetic suspension,
the MAGLEV train model).
Tutorials
Discussion
The students use concepts as field lines, magnetization
vector, EM induction, as tools to construct a link between
magnetic and electric properties of a SC, describing the
phenomenology of the Meissner effect, according to the
suggestion of many authors (Essen, Fiolhas 2012).
In the phenomenological description of the SC the aim is
the recognition of the role of the EM induction.
How this state is produced or the phase transition occurs, it
is described as results of creation of the Cooper pairs.
From research experimentations carried out in different
contexts emerges that the majority of students recognize
the change in the magnetic properties of the SC under Tc,
the B=0 condition, the different nature of the magnetic
suspension and the levitation of a magnet on a YBCO.
From the tutorial (N=240): according to the
observations carried out, which aspects characterize
the Meissner effect? A) Existence of Tc and/or
repulsion/levitation (21%)
B) diamagnetism of YBCO (B=0); B
line do not cross the magnet; YBCO
screens the magnetic properties) in
more than half of cases also Tc (38%)
Pre/post test
C) R=0, and exist Tc (15%)
D) B=0 and R=0 (13%)
NA: not answer (12%)
REFERENCES



• AJP, (2002) Special Issues of Am. J. Phys. 70 (3)
• PE (2000) Special Issues of Phys Educ.35 (6)
F. Ostermann, F., M. A. Moreira, Updating the physics curriculum in high schools, Revista de Enseñanza de las 
Ciencias, 3 (2), (2004). pg. 190-201
E. Kedzierska, F. Esquembre, L. Konicek, W. Peeters, A. Stefanel, V. S. Farstad, MOSEM 2 project: Integration of

data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity, Il Nuovo
Cimento, 33 C, 3, DOI: 10.1393/ncc/i2010-10616-y, NIFCAS 33(3), (2010), pg. 64-74
T. Greczylo, F. Bouquet, G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit – the set of advanced activities from the

MOSEM project, in Multimedia in Physics Teaching and Learning, Michelini M, Lambourne R, Mathelisch L eds, SIF,
Bologna and in Il Nuovo Cimento, 33 C, 3 (DOI 10.1393/ncc/i2010-10621-2) NIFCAS 33(3) 1-238, pp.221-229E.
Kedzierska et al., Il Nuovo Cimento, 33 (3) (2010), pg. 65-74.
Johansson K E, Milstead D (2008) Phys. Educ. 43, 173-179
Steinberg R. N., Oberem G. E. (2000) JCMST 19 (2) 115-136
H. González-Jorge, G. Domarco (2004). Superconducting cylinders aid in an understanding of current induction,
Phys. Educ. 39, 234
A. Stefanel, M. Michelini, L. Santi “High school students analyzing the phenomenology of SC and constructing
model of the Meissner effect” Proc. of te WCPE2012, (Pegem, Istanbul, 2014) , pp.1253-1266.
• Essén H., Fiolhais N. (2012) A.J.P., 80 (2), 164-169
• F. Erickson “Qualitative research methods for Science Education”.in IHSE. Part 2, ed. by B.J. Fraser, K.G. Tobin,
(Kluvier, Dordrecht, 1998), pp. 1155-1174.
• H. Niedderer, “Qualitative and quantitative methods of investigating alternative frameworks of students”. Paper
presented to the AAPT-AAAS meeting (1989).
M. Michelini, L. Santi, A. Stefanel (2014) Basic concept of superconductivity: a path for high school, in Frontiers of
Fundamental Physics and Physics Education Research, Burra G. S., Michelini M, Santi L, eds, Book of sel.
papers presented in the International Symposium FFP12, Springer, Cham, Heidelberg, NY, Dordrecht, London,
[978-3-319-00296-5] pp. 453-460.
•
•
•
•
N. J. Nersessian. Synthese 80 (1), 163-183, (1989).
Marton, F. (1988). In Qualitative res. in educ. ed by B. Sherman & Webb (London: Faler) p 141-161.
J. Park, J. Kim,, M. Kim, M. Lee. Int. J. Sci. Educ., 23 12, 1219-1236 (2001).
D. N. Perkins, T. A. Grotzer. Models and moves in Proceedings of AERA Conf., New Orleans, LA (2000).
Fly UP