...

ppt

by user

on
Category: Documents
37

views

Report

Comments

Description

Transcript

ppt
Huffman coding
Optimal codes - I

A code is optimal if it has the shortest
codeword length L
m
L   pi li
i 1

This can be seen as an optimization problem
m
min  li pi
i 1
m
subject to  D li  1
i 1
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
2
Optimal codes - II

Let’s make two simplifying assumptions



no integer constraint on the codelengths
Kraft inequality holds with equality
Lagrange-multiplier problem
 m li 
J   pi li     D  1
i 1
 i 1

m
pj
J
l j
l j
 0  p j   D log D  0  D 
l j
 log D
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
3
Optimal codes - III

Substitute D
inequality
l j

pj
 log D
into the Kraft
m
pi
1
 li

1




p

D

i

log
D
log
D
i 1
that is li*   log D pi
the entropy, when we use
base D for logarithms
Note that
m
m
L   p l   pi log D pi  H D ( X ) !!
*
i 1
*
i i
i 1
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
4
Optimal codes - IV


In practice the codeword lengths must be
integer value, so obtained results is a lower
bound
Theorem
The expected length of any istantaneous D-ary code
for a r.v. X satisfies
L  H D ( x)
this fundamental result derives frow the work of Shannon
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
5
Optimal codes - V

What about the upper bound?

Theorem
Given a source alphabet (i.e. a r.v.) of entropy H ( X )it
is possible to find an instantaneous binary code which
length satisfies
H ( X )  L  H ( X ) 1

A similar theorem could be stated if we use the wrong
probabilities qi  instead of the true ones  pi  ; the only
difference is a term which accounts for the relative entropy
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
6
The redundance

It is defined as the average codeword
legths minus the entropy


Redundancy  L    pi log pi 
 i


Note that
0  redundancy  1
(why?)
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
7
Compression ratio

It is the ratio between the average number
of bit/symbol in the original message and the
same quantity for the coded message, i.e.
 average original symbol length 
C
 average compressed symbol length 
 L( X )!!
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
8
Uniquely decodable codes


The set of the instantaneous codes are
a small subset of the uniquely
decodable codes.
It is possible to obtain a lower average
code length L using a uniquely
decodable code that is not
instantaneous?

NO
So we use instantaneous codes that are easier to
decode
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
9
Summary



Average codeword length L
L  H ( X ) for uniquely decodable codes
(and for instantaneous codes)
In practice for each r.v. X with entropy
H ( X )a code with average
we can build
codeword length that satisfies
H ( X )  L  H ( X ) 1
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
10
Shannon-Fano coding

The main advantage of the Shannon-Fano
technique is its semplicity





Source symbols are listed in order of nonincreasing
probability.
The list is divided in such a way to form two groups
of as nearly equal probabilities as possible
Each symbol in the first group receives a 0 as first
digit of its codeword, while the others receive a 1
Each of these group is then divided according to the
same criterion and additional code digits are
appended
The process is continued until each group contains
only one message
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
11
example
a 12
b 14
c 18
d 1 16
e 1 32
f 1 32
0
10
11 0
111 0
1111 0
11111
H=1.9375 bits
L=1.9375 bits
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
12
Shannon-Fano coding - exercise
Symb. Prob.
*
?
12%
5%
!
13%
&
$
2%
29%
€
13%
§
°
10%
6%
@
10%

Encode, using Shannon-Fano
algorithm
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
13
Is Shannon-Fano coding optimal?
a 0.35
00
0
b 0.17
01
100
c 0.17
10
101
d 0.16
110
110
L=2.31 bits
e 0.15
111
111
L1=2.3 bits
H=2.2328 bits
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
14
Huffman coding - I



There is another algorithm which
performances are slightly better than
Shanno-Fano, the famous Huffman coding
It works constructing bottom-up a tree, that
has symbols in the leafs
The two leafs with the smallest probabilities
becomes sibling under a parent node with
probabilities equal to the two children’s
probabilities
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
15
Huffman coding - II



At this time the operation is repeated,
considering also the new parent node and
ignoring its children
The process continue until there is only
parent node with probability 1, that is the
root of the tree
Then the two branches for every non-leaf
node are labeled 0 and 1 (typically, 0 on the
left branch, but the order is not important)
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
16
Huffman coding - example
Symbol
a
b
c
d
e
f
g
Prob.
0.05
0.05
0.1
0.2
0.3
0.2
0.1
1.0
0
0
0.2
0
0
a
0.05
0.1
0.4
1
1
1
0
1
b
0.05
0.6
1
0
c
0.1
d
0.2
e
0.3
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
f
0.2
0.3
1
g
0.1
17
Huffman coding - example
Symbol
a
b
c
d
e
f
g
Prob. Codeword
0.05
0000
0.05
0001
0.1
001
0.2
01
0.3
10
0.2
110
0.1
111
Exercise: evaluate H(X) and L(X)
H(X)=2.5464 bits
L(X)=2.6 bits !!
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
18
Huffman coding - exercise
Symbol
a
b
c
d
e
f
g
Prob. Codeword
0.05
0000
0.05
0001
0.1
001
0.2
01
0.3
10
0.2
110
0.1
111

Code the sequence
aeebcddegfced
and calculate the compression
ratio
Sol: 0000 10 10 0001 001 01 01
10 111 110 001 10 01
Aver. orig. symb. length = 3 bits
Aver. compr. symb. length = 34/13
C=.....
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
19
Huffman coding - exercise
Symbol
a
b
c
d
e
f
g
Prob. Codeword
0.05
0000
0.05
0001
0.1
001
0.2
01
0.3
10
0.2
110
0.1
111

Decode the sequence
0111001001000001111110
Sol: dfdcadgf
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
20
Huffman coding - exercise
Symb. Prob.
a
0.10
b
c
0.03
0.14
0
0.4
1
0.22
2
$
0.04
0.07

Encode with Huffman the sequence
01$cc0a02ba10
and evaluate entropy, average
codeword length and compression
ratio
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
21
Huffman coding - exercise
Symb. Prob.
0
1
0.16
0.02
2
0.15
3
4
0.29
0.17
5
0.04
%
0.17

Decode (if possible) the
Huffman coded bit streaming
01001011010011110101...
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
22
Huffman coding - notes


In the huffman coding, if, at any time, there
is more than one way to choose a smallest
pair of probabilities, any such pair may be
chosen
Sometimes, the list of probabilities is inizialized to be
non-increasing and reordered after each node
creation. This details doesn’t affect the correctness of
the algorithm, but it provides a more efficient
implementation
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
23
Huffman coding - notes



There are cases in which the Huffman coding
does not uniquely determine codeword
lengths, due to the arbitrary choice among
equal minimum probabilities.
For example for a source with probabilities
0.4, 0.2, 0.2, 0.1, 0.1 it is possible to obtain
codeword lengths of 1, 2, 3, 4, 4 and of 2, 2, 2, 3, 3
It would be better to have a code which codelength has
the minimum variance, as this solution will need the
minimum buffer space in the transmitter and in the
receiver
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
24
Huffman coding - notes


Schwarz defines a variant of the
Huffman algorithm that allows to build
the code with minimum lmax .
There are several other variants, we
will explain the most important in a
while.
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
25
Optimality of Huffman coding - I



It is possible to prove that, in case of
character coding (one symbol, one
codeword), Huffman coding is optimal
In another terms Huffman code has
minimum redundancy
An upper bound for redundancy has been found
redundancy  p1  1  log2 e  log2  log2 e 
p1  0.086
where p1 is the probability of the most likely simbol
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
26
Optimality of Huffman coding - II


Why Huffman code “suffers” when there is
one symbol with very high probability?
Remember the notion of uncertainty...
p( x)  1   log( p( x))  0
The main problem is given by the integer
constraint on codelengths!!

This consideration opens the way to a more powerful
coding... we will see it later
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
27
Huffman coding - implementation


Huffman coding can be generated in
O(n) time, where n is the number of
source symbols, provided that
probabilities have been presorted
(however this sort costs O(nlogn)...)
Nevertheless, encoding is very fast
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
28
Huffman coding - implementation


However, spatial and temporal complexity of
the decoding phase are far more important,
because, on average, decoding will happen
more frequently.
Consider a Huffman tree with n symbols

n leafs and n-1 internal nodes
has the pointer to a symbol and
the info that it is a leaf

2n  2(n  1)
has two pointers
4n words (32 bits)
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
29
Huffman coding - implementation



1 million symbols
16 MB of memory!
Moreover traversing a tree from root to leaf
involves follow a lot of pointers, with little
locality of reference. This causes several
page faults or cache misses.
To solve this problem a variant of Huffman
coding has been proposed: canonical
Huffman coding
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
30
canonical Huffman coding - I
Symb. Prob. Code 1 Code 2 Code 3
a
b
c
d
e
f
0.11
0.12
0.13
0.14
0.24
0.26
000
001
100
101
01
11
111
110
011
010
10
00
1.0
000
001
010
011
10
11
0 (1)
0.53
0.47
0 (1)
0 (1)
1 (0)
1 (0)
0.23
(1) 0
?
1 (0)
a
0.11
0.27
1(0) 0(1) 1 (0)
b
0.12
c
0.13
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
d
0.14
e
0.24
f
0.26
31
canonical Huffman coding - II
Symb. Code 3
a
b
c
d
e
f
000
001
010
011
10
11



This code cannot be obtained
through a Huffman tree!
We do call it an Huffman code
because it is instantaneous and the
codeword lengths are the same than
a valid Huffman code
numerical sequence property


codewords with the same length are
ordered lexicographically
when the codewords are sorted in lexical
order they are also in order from the
longest to the shortest codeword
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
32
canonical Huffman coding - III


The main advantage is that it is not necessary
to store a tree, in order to decoding
We need


a list of the symbols ordered according to the lexical
order of the codewords
an array with the first codeword of each distinct
length
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
33
canonical Huffman coding - IV
Encoding. Suppose there are n disctinct symbols, that for symbol
i we have calculated huffman codelength li and i li  maxlength
numl[k]
= number of
codewords with length k
firstcode[k] =
integer for first code of
length k
nextcode[k] =
integer for the next
codeword of length k to
be assigned
symbol[-,-] used for
decoding
codeword[i] the
rightmost li bits of this
integer are the code for
symbol i
for k  1 to maxlength { numl[k ]  0; }
for i  1 to n { numl[li ]  numl[li ]  1; }
firstcode[maxlength]  0;
for k  maxlength  1 downto 1 {
firstcode[k ]  ( firstcode[k  1]  numl[k  1]) / 2  ; }
for k  1 to maxlength { nextcode[k ]=firstcode[k ]; }
for i  1 to n {
codeword [i ]  nextcode[li ];
symbol li , nextcode[li ] - firstcode[li ]  i;
nextcode[li ]  nextcode[li ]  1; }
34
canonical Huffman - example
Symb. length code
i
li word
1
a
2
0
b
5
1
c
5
1
d
3
2
e
2
2
f
5
3
g
5
3
h
2
bits

1. Evaluate array numl
for k  maxlength  1 downto 1 {
numl : [0 3 1 0 4]
01

001
10
 numl[ k  1]) / 2 ; }
2. Evaluate array firstcode
firstcode : [2 1 1 2 0]
00000
00001
firstcode[k ]  ( firstcode[k  1] 

3. Construct array codeword and symbol
for k  1 to maxlength {
nextcode[k ]=firstcode[k ]; }
symbol
0 1
2
3
-
-
-
-
1
00010 for i  1 to n {
00011 codeword [i]  nextcode[li ];
a
e
h
-
2
d
-
-
-
3
11
-
-
-
-
4
b
c
f
g
5
symbol li , nextcode[li ]- firstcode[li ]  i;
nextcode[li ]  nextcode[li ]  1; }
35
canonical Huffman coding - V
Decoding. We have the arrays firstcode and symbols
nextinputbit()
v  nextinputbit ();
firstcode[k] = integer for first
while v  firstcode[k ] {
function that
returns next input bit
code of length k
symbol[k,n]
returns the
symbol number n with
codelength k
k  1;
v  2* v  nextinputbit ();
k  k  1; }
Return symbol  k , v  firstcode[k ] ;
Gabriele Monfardini - Corso di Basi di Dati Multimediali a.a. 2005-2006
36
canonical Huffman - example
00 1 1 1 1 0 0 0 0 000 1 00 1
v  nextinputbit ();
k  1;
while v  firstcode[k ] {
v  2* v  nextinputbit ();
k  k  1; }
Return symbol  k , v  firstcode[k ] ;
symbol
0 1
2
3
-
-
-
-
1
a
e
h
-
2
d
-
-
-
3
-
-
-
-
4
b
c
f
g
5
symbol[3,0]
symbol[2,2]
symbol[2,1]
symbol[5,0]
symbol[2,0]
symbol[3,0]
=
=
=
=
=
=
d
h
e
b
a
d
Decoded: dhebad
firstcode : [2 1 1 2 0]
37
Fly UP