Comments
Description
Transcript
Diapositiva 1
MOBILIZZAZIONI E ATTIVITÀ MOTORIA NEL PAZIENTE CON INFARTO MIOCARDICO ACUTO E CON INSUFFICIENZA CARDIACA REFRATTARIA Premesse fisiopatologiche Alessandra Chinaglia UTIC Ospedale Maria Vittoria, ASLTO2 Riposo a letto: è un trattamento benefico ? • Fino agli anni ‘50 trattamento di scelta per infarto miocardico ed altre patologie J A M A 1944 The evil sequelae of complete bed rest. • 39 trials sul riposo a letto • 15 patologia differenti (5777 pazienti) • Cardiologiche: IMA e post cateterismo In nessun trial miglioramento clinico con il riposo a letto (o nessun miglioramento clinico o peggioramento) Allen,Lancet 1999; 354: 1 2 2 9 – 3 3 ATROFIA MUSCOLARE DA INATTIVITA’ • • • • • • Proteolisi Ridotta sintesi proteica da inibizione dei fattori di iniziazione Perdita di massa muscolare Riduzione dello spessore delle fibre Riduzione della capacità muscolare Passaggio da fibre muscolari lente (resistenti alla fatica) a fibre muscolari veloci • Variazione del metabolismo (da acidi grassi a glucosio) L’attività muscolare svolge un ruolo antiinfiammatorio Immobilità Aumento delle citochine circolanti Stato pro infiammatorio Perdita di tessuto muscolare IMPATTO FUNZIONALE DEL RIPOSO A LETTO PER 10 GIORNI IN ADULTI SANI ANZIANI • • • • 11 uomini e donne età 67 +/- 5 anni riposo a letto per 10 giorni dieta normocalorica Forza di estensione del ginocchio Potenza nel salire le scale Capacità massimale aerobica -13.2% p =.004 -14 % p =.01 -12% p =.04 Kortebein P J Gerontol A Biol Sci Med Sci 2008; 63:1076-81 Capacità muscolare Perdita di forza del quadricipite dell’1% - 1.5% per ogni giorno di riposo a letto (individui sani) Negli anziani ulteriore peggioramento Donne: 36.3% Età media: 69.9+13.2 anni Mediana (range 25-75°): 72 (61-80) anni Età > 75 anni: 38.9% dei pazienti 3 Densità ossea • L’osso viene continuamente rimodellato in base al carico meccanico (forza di gravità e sollecitazioni meccaniche muscolari) • Il riposo a letto comporta riduzione nella densità ossea della colonna lombare, testa del femore, e calcagno. • dopo la ripresa della mobilizzazione il recupero della densità ossea è lento • rischio di fratture (particolarmente nelle donne anziane) Effetti del riposo a letto prolungato sulle strutture osteomuscolari del tronco • • • • • Dolore lombare Allungamento della colonna Atrofia della muscolatura spinale Aumento dell’altezza dei dischi intervertebrali Alterata composizione dei dischi intervertebrali Le alterazioni della morfologia dei dischi intervertebrali persistono per 5 mesi dopo riposo a letto per 21 giorni. Hides, Eur Spine J (2011) 20:808–818 Ulcere da decubito • Il processo che porta alle ulcere inizia dopo poche ore di immobilità • Riguarda le zone sottoposte a pressione in corrispondenza di prominenze ossee • Facilitato da barelle troppo strette per permettere i movimenti, età avanzata, sedazione, incoscienza, immobilità prolungata Effetti dell’allettamento sul polmone • Ridotta espansione polmonare • Ridotta capacità respiratoria • Atelettasie • Polmoniti Effetti dell’allettamento sul sistema cardiovascolare • Riduzione della compliance delle vene delle gambe • Perdita di fluidi che determinano ipotensione ortostatica, tachicardia, riduzione della gittata cardiaca, della portata cardiaca e delle resistenze vascolari • Disfunzione microvascolare Disfunzione microvascolare da inattività Hamburg, Arterioscler Thromb Vasc Biol. 2007;27:2650-2656 Malnutrizione • 40% dei pazienti ospedalizzati sono già denutriti al momento del ricovero • I pazienti ricoverati in terapia intensiva ricevono meno del 60% del loro fabbisogno calorico • Spesso la denutrizione è prevalentemente proteica • La perdita di proteine viene controbilanciata utilizzando prevalentemente proteine muscolari Allettamento richiede terapia antitrombotica ! Prevenzione embolia Sanguinamento invasive conservative Beneficio Rischio Surviving the intensive care: residual physical, cognitive, and emotional dysfunction. • I pazienti ricoverati per malattie acute e critiche possono soffrire di problemi fisici, psicologici e cognitivi • Depressione secondaria alla sensazione di dipendenza anche nelle più elementari attività, allo stress per la gravità della malattia, alla consapevolezza della vulnerabilità → Mobilizzazione precoce, riabilitazione e fisioterapia Jones, Thorac Surg Clin 2012 Nov;22(4):509-16 Mr E, a 56-year-old man with severe chronic obstructive pulmonary disease and acute renal failure, ambulating on day 4 after admission to the medical intensive care unit while receiving mechanical ventilation via an oral endotracheal tube. Needham, JAMA. 2008;300(14):1685-1690 CONTROINDICAZIONI: • frequenza cardiaca > 110/min a riposo • pressione arteriosa media < 60 • stato di shock • necessità di FiO2 > 60% • aritmie ventricolari subentranti La mobilizzazione precoce in pazienti critici con insufficienza respiratoria non è solo fattibile e sicura ma previene le complicazioni neuromuscolari American Journal of Critical Care, 2009;18:212-221 Move to Improve: The Feasibility of Using an Early Mobility Protocol to Increase Ambulation in the Intensive and Intermediate Care Settings. • 16 letti Adult Medical/Surgical ICU /26 letti Adult Intermediate Care Unit (IMCU) • team multidisciplinare • algoritmo per indirizzare la valutazione della potenziale mobilità • Daily Ambulation Status Reports rivalutato ogni mattina per determinare il livello di mobilizzazione. • Nei 3 mesi precedenti la mobilizzazione entro 72 ore è avvenuta nel 6.2% dei pazienti ICU e 15.5% dei pazienti IMCU • Nei 6 mesi dopo nel 20.2% dei pazienti ICU e 71.8% dei pazienti IMCU. Drolet A,Phys Ther. 2012 Sep 13 E’ sufficiente fare esercizi al letto ? • Non controbilanciano gli effetti avversi del riposo a letto, in particolare l’accumulo di liquidi nel torace rispetto agli arti inferiori per l’assenza di gravità • Nei piani di assistenza sulla mobilizzazione è quindi raccomandata la posizione ortostatica Early mobilisation for patients following acute myocardiac infarction: a systematic review and meta-analysis of experimental studies • • Mortalità per tutte le cause o reinfarto a un anno dall’IMA. 14 studi (13 pubblicati prima del 1983). MOBILIZZAZIONE PRECOCE (1541) CONTROLLO (1518) MORTE 149 (9,3%) 179 (11.6% ) RR=0.85, 95% CI 0.68, 1.05 REINFARTO 82 (5,2%) 80 (5.3%) RR=1.02, 95% CI 0.75, 1.39 Cortes, Int J Nurs Stud. 2009 Nov;46(11):1496-504 • • • • i pazienti con disfunzione ventricolare sinistra devono inizialmente restare a letto per escludere scompenso precoce ed aritmie. nei casi non complicati il paziente può sedersi fuori dal letto in I giornata, utilizzare la comoda, lavarsi e nutrirsi da solo. si può iniziare precocemente a camminare (in particolare nei pazienti trattati per via radiale) i pazienti con complicazioni devono essere mantenuti a letto e la loro attività fisica deve riprendere in funzione dei sintomi e dell’entità del danno miocardico. Mobilizzazione post IMA: controindicazioni: scompenso cardiaco instabile e incontrollabile dolore toracico persistente PA instabile, shock tachicardia inappropriata aritmie persistenti e severe E I PAZIENTI CON SCOMPENSO ? Eur J Heart Fail. 2010 January; 12(1): 58–65 Esercizio fisico nel paziente con scompenso cardiaco Cardiol Res Pract. 2011; 2011: 837238. Attività muscolare: riflesso dal muscolo al sistema cardiovascolare e respiratorio Riflesso esagerato nei pazienti con scompenso cardiaco Riflesso causa attivazione del sistema simpatico Attivazione esagerata del sistema simpatico: riduce la dilatazione arteriolare portando a una ridotta perfusione del muscolo. Riposo a letto PRO • Aritmie • Scompenso refrattario • ischemia CONTRO • decondizionamento • riduzione della mobilità • depressione dell’umore • Atrofia muscolare • Ulcere da decubito • Atelettasie polmonari • Demineralizzazione ossea • invecchiamento La riduzione della VO 2max dopo 40 anni di vita (da 20 a 60) era comparabile a quella dopo 3 settimane di riposo a letto all’età di 20 anni ! Journal of Gerontology: 2009. Vol. 64A, No. 2, 293–299 Mobilizzazione precoce vuole dire iniziare la mobilizzazione quando il paziente: • • • • • • è completamente autonomo non necessita di supplemento di O2 non necessita di terapia infusionale è emodinamicamente stabile è in grado di collaborare necessita di livelli di O2 accettabili X What Are the Barriers to Mobilizing Intensive Care Patients? • Audit prospettico di 4 settimane • Pazienti mobilizzati in 176 (54%) di 327 giorni paziente. • Eventi avversi: 2 /176 mobilizzazioni (1.1%) MANCANZA DI RISORSE Cause di non mobilizzazione: • Device con accesso vascolare femorale • Procedure (INFERMIERI; FISIOTERAPISTI) • Agitazione o stato di coscienza alterato • Instabilità emodinamica Cardiopulmonary Physical Therapy Journal Vol 23 March 2012 Crescita culturale riguardo ai potenziali benefici della mobilizzazione precoce e impegno da parte delle figure professionali coinvolte. Mortalità cardiovascolare ospedalizzazione per scompenso Keteyian, J Am Coll Cardiol 2012;60:1899–905) • Mitochondrial oxidative capacity is • impaired due to decreased oxidative enzyme activity, mitochondrial volume density and • biogenesis, as well as increased reliance upon glucose rather than fatty acid oxidation. There • is a shift from fatigue-resistant type I fibers that primarily rely on mitochondrial oxidative • phosphorylation to generate ATP to type II fibers that have a higher glycogen content and • derive most of their energy from glycolysis. Additionally, skeletal muscle in heart failure • patients has decreased capillary density6, which correlates with maximal VO2 and total • exercise time7. Fiber atrophy and decreased muscle mass also occur, and have been • demonstrated to account for much of the variability in peak VO2. • Endotheliumderived • nitric oxide-mediated vasodilation is decreased in the peripheral, coronary, and • pulmonary circulations of patients with HF.14–16 The inability of the peripheral vasculature • to respond physiologically to variations in cardiac output, peripheral blood flow and • positional changes results in increased peripheral vascular resistance and imbalance in blood • pressure regulation in patients with advanced heart failure. • • • • • • • • • • Exercise training was shown to induce increased mitochondrial volume density as well as a shift from type II back to type I fibers.26 Insulin resistance, which is commonly seen even in nondiabetic patients with heart failure, has also been associated with reduced exercise capacity.28. One proposed explanation for the prevalence of insulin resistance has been functional resistance to adiponectin, an insulinsensitizing adipocytokine. Van Berendoncks et al. studied heart failure patients who underwent 4 months of combined endurance and resistance exercise training and found, at baseline, a negative correlation between levels of adiponectin mRNA in skeletal muscle and VO2 peak and muscle strength, as well as a positive correlation between measures of exercise capacity and mRNA expression of the skeletal muscle receptor for adiponectin, There has long been evidence that measures of cardiac function such as ejection fraction and cardiac output only poorly correlate with a patient’s capacity to exercise, suggesting the involvement of factors other than those impacting the central circulation. Furthermore, many studies of the effects of exercise in patients with heart failure have failed to demonstrate improvements in cardiac output, stroke volume, or ejection fraction, despite showing gains in exercise capacity and peak oxygen uptake (VO2),4 which has been validated as an excellent isolated predictor of • outcome in this population5. The lack of a close correlation between central hemodynamicsand exercise tolerance has led to investigations into alterations in the periphery, such as • abnormalities in vascular endothelial function, hyperactivation of the sympathetic nervous • system, and changes in structure and oxidative capacity of skeletal muscle, which are often • seen in patients with heart failure • in skeletal muscle, hyperventilation is another consequence of the exaggerated EPR during exercise, both of which accentu- ates the symptoms of exercise intolerance. It is important to understand how the exaggerated EPR contributes to the exer- cise intolerance in CHF patients. Furthermore, the exaggerated sympatho-excitation that occurs during exercise also increases the risk of experiencing myocardial ischemia, myocardial infarction, cardiac arrest, and/or stroke during or immediately after exercise in these patients. As exercise intolerance and exaggerated sympathoexcitation are important clinical features in these patients, therapeutic inter- ventions are largely aimed at improving these symptoms. A particular interest has recently been directed toward the exagger- ated EPR in CHF (Piepoli et al., 1996, 1999; Khan and Sinoway, 2000; Piepoli, 2006;Wang et al., 2010b, 2012). Once thought to be contraindicated in patients with CHF, long-term regular exercise training (ExT for at least 8 weeks) as a non-pharmacological treat- ment for CHF is now commonly employed in these patients, and has been shown to increase the quality of life as well as survival (Belardinelli et al., 1999; Piepoli et al., 2004; Smart and Marwick, 2004; Jankowska et al., 2007; Wisloff et al., 2007; Flynn et al., 2009; O’Connor et al., 2009). The beneficial effects of ExT include improved autonomic balance, reduced neurohumoral activation, increase in exercise capacity and ameliorated myopathy in CHF patients and animals (Pliquett et al., 2003; Roveda et al., 2003; Rondon et al., 2006; Jankowska et al., 2007; Mueller, 2007b; Negrao and Middlekauff, 2008). Adequate discussion of the ben- eficial effects of ExT in CHF is a large endeavor and beyond the ESERCIZIO FISICO E SCOMPENSO CARDIACO (CHF) Funzione Autonoma Funzione metabolica Funzione muscolare Funzione endoteliale Aumentata tollerabilità all’esercizio fisico e ridotta ventilazione sottosforzo Benessere generale Qualità della vita G.I.C.R.- IACPR Coronary blood flow Hambrecht R. et al. NEJM 2000;342:454 Exercise Training in compensated stable CHF pts • improves peripheral vascular, muscular and metabolic function • improves respiratory and autonomic function • these effects lead to a significant improvement in exercise tolerance and quality of life • no significant deterioration in central hemodynamics • attenuation of unfavorable LV remodeling Il training fisico: effetti fisiologici INCREMENTA: • Il flusso muscolare e l’estrazione di O2 • Il rilascio dell’ NO • La capacità aerobica • La soglia ischemica • La capacità lavorativa • Il colesterolo HDL RIDUCE: • Il VO2 miocardico • La FC e la PA a riposo e durante sforzo • La produzione muscolare di acido lattico • La trigliceridemia • L’aggregabilità piastrinica • La produzione di catecolamine Dipartimento di Scienze Cardiologiche Caserta • • • • • • • • • • • • • • • • • • Result Filters Display Settings: Abstract Send to: Am J Med. 2004 May 15;116(10):682-92. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N. Source Department of Epidemiology and Public Health, University of Birmingham, Birmingham, United Kingdom. [email protected] Abstract PURPOSE: To review the effectiveness of exercise-based cardiac rehabilitation in patients with coronary heart disease. METHODS: A systematic review and meta-analysis of randomized controlled trials was undertaken. Databases such as MEDLINE, EMBASE, and the Cochrane Library were searched up to March 2003. Trials with 6 or more months of follow-up were included if they assessed the effects of exercise training alone or in combination with psychological or educational interventions. RESULTS: We included 48 trials with a total of 8940 patients. Compared with usual care, cardiac rehabilitation was associated with reduced all-cause mortality (odds ratio [OR] = 0.80; 95% confidence interval [CI]: 0.68 to 0.93) and cardiac mortality (OR = 0.74; 95% CI: 0.61 to 0.96); greater reductions in total cholesterol level (weighted mean difference, -0.37 mmol/L [-14.3 mg/dL]; 95% CI: -0.63 to -0.11 mmol/L [-24.3 to -4.2 mg/dL]), triglyceride level (weighted mean difference, -0.23 mmol/L [-20.4 mg/dL]; 95% CI: -0.39 to -0.07 mmol/L [-34.5 to -6.2 mg/dL]), and systolic blood pressure (weighted mean difference, -3.2 mm Hg; 95% CI: -5.4 to -0.9 mm Hg); and lower rates of selfreported smoking (OR = 0.64; 95% CI: 0.50 to 0.83). There were no significant differences in the rates of nonfatal myocardial infarction and revascularization, and changes in high- and low-density lipoprotein cholesterol levels and diastolic pressure. Health-related quality of life improved to similar levels with cardiac rehabilitation and usual care. The effect of cardiac rehabilitation on total mortality was independent of coronary heart disease diagnosis, type of cardiac rehabilitation, dose of exercise intervention, length of follow-up, trial quality, and trial publication date. CONCLUSION: This review confirms the benefits of exercise-based cardiac rehabilitation within the context of today's cardiovascular service provisi • • • • • • • • • • • • • • • • Crit Care Med. 2008 Aug;36(8):2238-43. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E. Source Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, NC, USA. [email protected] Abstract OBJECTIVE: Immobilization and subsequent weakness are consequences of critical illness. Despite the theoretical advantages of physical therapy to address this problem, it has not been shown that physical therapy initiated in the intensive care unit offers benefit. DESIGN AND SETTING: Prospective cohort study in a university medical intensive care unit that assessed whether a mobility protocol increased the proportion of intensive care unit patients receiving physical therapy vs. usual care. PATIENTS: Medical intensive care unit patients with acute respiratory failure requiring mechanical ventilation on admission: Protocol, n = 165; Usual Care, n = 165. INTERVENTIONS: An intensive care unit Mobility Team (critical care nurse, nursing assistant, physical therapist) initiated the protocol within 48 hrs of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: The primary outcome was the proportion of patients receiving physical therapy in patients surviving to hospital discharge. Baseline characteristics were similar between groups. Outcome data are reflective of survivors. More Protocol patients received at least one physical therapy session than did Usual Care (80% vs. 47%, p < or = .001). Protocol patients were out of bed earlier (5 vs. 11 days, p < or = .001), had therapy initiated more frequently in the intensive care unit (91% vs. 13%, p < or = .001), and had similar low complication rates compared with Usual Care. For Protocol patients, intensive care unit length of stay was 5.5 vs. 6.9 days for Usual Care (p = .025); hospital length of stay for Protocol patients was 11.2 vs. 14.5 days for Usual Care (p = .006) (intensive care unit/hospital length of stay adjusted for body mass index, Acute Physiology and Chronic Health Evaluation II, vasopressor). There were no untoward events during an intensive care unit Mobility session and no cost difference (survivors + nonsurvivors) between the • • • • • • • Chest. 2011 Dec;140(6):1612-7. Implementing early mobilization interventions in mechanically ventilated patients in the ICU. Schweickert WD, Kress JP. Source Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA. Abstract As ICU survival continues to improve, clinicians are faced with short- and long-term consequences of critical illness. Deconditioning and weakness have become common problems in survivors of critical illness requiring mechanical ventilation. Recent literature, mostly from a medical population of patients in the ICU, has challenged the patient care model of prolonged bed rest. Instead, the feasibility, safety, and benefits of early mobilization of mechanically ventilated ICU patients have been reported in recent publications. The benefits of early mobilization include reductions in length of stay in the ICU and hospital as well as improvements in strength and functional status. Such benefits can be accomplished with a remarkably acceptable patient safety profile. The importance of interactions between mind and body are highlighted by these studies, with improvements in patient awareness and reductions in ICU delirium being noted. Future research to address the benefits of early mobilization in other patient populations is needed. In addition, the potential for early mobilization to impact long-term outcomes in ICU survivors requires further study. • • • • • • • • • • • • • • • • • • • • Crit Care Med. 2007 Jan;35(1):139-45. Early activity is feasible and safe in respiratory failure patients. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, Veale K, Rodriquez L, Hopkins RO. Source Department of Medicine, Pulmonary and Critical Care Division, LDS Hospital, Salt Lake City, UT, USA. Abstract OBJECTIVE: To determine whether early activity is feasible and safe in respiratory failure patients. DESIGN: Prospective cohort study. SETTING: From June 1, 2003, through December 31, 2003, we assessed safety and feasibility of early activity in all consecutive respiratory failure patients who required mechanical ventilation for >4 days admitted to our respiratory intensive care unit (RICU). A majority of patients were treated in another intensive care unit (ICU) before RICU admission. We excluded patients who required mechanical ventilation for < or =4 days. PATIENTS: Eight-bed RICU at LDS Hospital. INTERVENTIONS: We assessed patients for early activity as part of routine respiratory ICU care. We prospectively recorded activity events and adverse events. We defined three activity events as sit on bed, sit in chair, and ambulate. We defined six activity-related adverse events as fall to knees, tube removal, systolic blood pressure >200 mm Hg, systolic blood pressure <90 mm Hg, oxygen desaturation <80%, and extubation. MEASUREMENTS AND MAIN RESULTS: During the study period, we conducted a total of 1,449 activity events in 103 patients. The activity events included 233 (16%) sit on bed, 454 (31%) sit in chair, and 762 (53%) ambulate. In patients with an endotracheal tube in place, there were a total of 593 activity events, of which 249 (42%) were ambulation. There were <1% activityrelated adverse events, including fall to the knees without injury, feeding tube removal, systolic blood pressure >200 mm Hg, systolic blood pressure <90 mm Hg, and desaturation <80%. No patient was extubated during activity. CONCLUSIONS: We conclude that early activity is feasible and safe in respiratory failure patients. A majority of survivors (69%) were able to ambulate >100 feet at RICU discharge. Early activity is a candidate therapy to prevent or treat the neuromuscular complications of critical illness. • • • • • • • • • • • • • • • • Crit Care Resusc. 2009 Dec;11(4):290-300. Should we mobilise critically ill patients? A review. O'Connor ED, Walsham J. Source St Columcille's Hospital, Loughlinstown, County Dublin, Ireland. [email protected] Abstract BACKGROUND: Neuromuscular weakness, a frequent complication of prolonged bed rest and critical illness, is associated with morbidity and mortality. Mobilisation physiotherapy has widespread application in patients hospitalised with noncritical illness. OBJECTIVES: We reviewed the literature to evaluate the worldwide availability of mobilisation therapy in intensive care units and the role of mobilisation therapy in patients requiring medical or surgical high dependency or intensive care. METHODS: We searched PubMed (1980 to August 2009) using the MeSH terms "physiotherapy" and "intensive care". Additional keyword search terms, "mobilisation", "mobilization", and "fast-track", were used. In addition, we examined reference lists in recent studies and reviews. RESULTS: Routine mobilisation physiotherapy is least likely to be available in ICUs in the United States. Early mobilisation is appropriate for patients with pulmonary thromboembolic disease, community-acquired pneumonia and in elderly hospitalised patients. Although fast-track cardiac and noncardiac surgery with early ambulation is safe and reduces hospital length of stay, it does not alter postoperative mortality. Up to 25% of patients can be safely mobilised within 72 hours of ICU admission. This therapy may reduce hospital and ICU length of stay, shorten duration of mechanical ventilation, and improve muscle strength and functional independence scores. Pooled data show a nonsignificant mortality benefit in favour of early mobilisation (odds ratio, 0.77; 95% CI, 0.49-1.21). CONCLUSIONS: The data in support of mobilisation therapy for perioperative and critically ill patients, while of a low level of evidence, are substantial. This justifies a paradigm shift in attitudes towards physiotherapy and the prevention of critical illness weakness. AMERICAN JOURNAL OF CRITICAL CARE, May 2009, Volume 18, No. 3 • • • • • • • • • • • • heavy sedation, especially when they are mechanically ventilated [75]. Continuous sedative infusions are widely used [76] and associated with increased duration of mechanical ventilation [77]. Heavy sedation prevents patients from participating in mobility activities. Daily interruption of sedation infusions can result in decreased duration of mechanical ventilation (4.9 days versus 7.9 days; P = 0.004) and ICU length of stay (6.4 days versus 9.9 days; P = 0.02) [78]. Use of lighter sedation also is potentially associated with decreased long-term psychologic disturbances such as post-traumatic stress [79]. Combined early mobility and decreased sedation may have synergistic benefits. • Patients undergoing uncomplicated successful reperfusion therapy should be kept in the coronary care unit for a • minimum of 24 h, after which they may be moved to a step-down monitored bed for another 24–48 h. Bench-to-bedside review: Mobilizing patients in the intensive care unit – from pathophysiology to clinical trials • • • • • • • • • • • • • • • Pathophysiologically important mechanisms for weakness include immobility, as well as local and systemic inflammation, which act synergistically to promote significant muscle loss in the critically ill patient. prolonged bed rest associated with critical illness leads to decreased muscle protein synthesis, increased urinary nitrogen excretion (indicating muscle catabolism), and decreased muscle mass, especially in the lower extremities [14]. These changes lead to deleterious effects on muscle weakness, with 1% to 1.5% of quadriceps muscle strength lost for each day of bed rest in healthy individuals [15,16]. Both preclinical and clinical studies suggest a more profound effect of immobilization in the elderly, with a greater loss of lean body mass [14,17]. Additionally, the interaction of bed rest and critical illness appears to result in more significant muscle loss than bed rest alone [18-21]. • Bed rest, and its associated mechanisms, may play an important role in the pathogenesis of neuromuscular weakness in critically ill patients. A new approach for managing mechanically ventilated patients includes reducing deep sedation and increasing rehabilitation therapy and mobilization soon after admission to the intensive care unit. • • • • • • • • ICU patients with sepsis, multiorgan failure, or prolonged mechanical ventilation, neuromuscular dysfunction was identified in 655 of 1421 patients (46%) and was associated with prolonged duration of mechanical ventilation and length of ICU and hospital stay. One Costo energetico di alcune attività in MET (1 MET = 3.5 ml O2/kg/min) Posizione supina 1.1 Lavarsi viso e mani 2.5 Mangiare 1.4 Scrivere, leggere 1.8 Seduto in poltrona 1.2 Uso della comoda 2.0 Ortostatismo 1.2 Giannuzzi, Ignone. Riabilitazione nelle malattie cardiovascolari. UTET 1999