Comments
Transcript
PPT file - Laboratori Nazionali di Frascati
Atom Interferometers and Atomic Clocks: From Ground to Space Guglielmo M. Tino Università degli Studi di Firenze - Dipartimento di Fisica, LENS Istituto Nazionale di Fisica Nucleare - Sezione di Firenze G.M. Tino, FPS-06, LNF, 22/3/2006 Laser cooling of atoms nL v nL Lab ref. frame nL(1-v/c) Idea: T.W. Hänsch, A. Schawlow, 1975 Exp. demonstration: S. Chu et al., 1985 nL(1+v/c) Atom ref. frame Sr MOT LENS, Firenze 2 8 I / I v = - v h F (v) 4 2 c2 [1 (2 )2]2 L 0 G.M. Tino, FPS-06, LNF, 22/3/2006 Laser cooling: temperatures Atomic Temperature : kBT = Mv2rms k BT D Minimum temperature for Doppler cooling: Single photon recoil temperature: k BT r 1 hn L M c h 2 2 Examples: Na Rb Cs TD 240 mK 120 mK 120 mK Tr 2.4 mK 360 nK 200 nK G.M. Tino, FPS-06, LNF, 22/3/2006 The Nobel Prize in Physics 1997 G.M. Tino, FPS-06, LNF, 22/3/2006 The Nobel Prize in Physics 2001 G.M. Tino, FPS-06, LNF, 22/3/2006 Atom optics Atomic beam Oven lenses laser atom laser atom mirrors laser atom beam-splitters laser interferometers G.M. Tino, FPS-06, LNF, 22/3/2006 Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate Ying-Ju Wang, Dana Z. Anderson, Victor M. Bright, Eric A. Cornell, Quentin Diot, Tetsuo Kishimoto, Mara Prentiss, R. A. Saravanan, Stephen R. Segal, Saijun Wu, Phys. Rev. Lett. 94, 090405 (2005) G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic clocks G.M. Tino, FPS-06, LNF, 22/3/2006 The measurement of time OSCILLATOR Accuracy Stability COUNTER realization of the standard stability of the frequency: depends on n 0 n0 of the oscillator G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic clocks The definition of the second n.t = 1 The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the 133Cs atom (13th CGPM, 1967) G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic fountain clock NIST-F1 G.M. Tino, Firenze, 11/12/2003 G.M. Tino, FPS-06, LNF, 22/3/2006 Cold Atoms Clocks in Space • Interrogate fast (hot) atoms over long distances T = 10 ms • Use laser cooled atoms, limitation due to the presence of gravity T = 1 s • Use laser cooled atoms in microgravity T = 10 s PHARAO C. Salomon et al., C.R. Acad. Sci. 2, 1313 (2001) G.M. Tino, FPS-06, LNF, 22/3/2006 Accuracy of the atomic time ACCURACY OF THE ATOMIC TIME RELATIVE ACCURACY 1x10 -9 1x10 -10 1x10 -11 1x10 -12 1x10 -13 1x10 -14 10 -15 1x10 -16 10 -17 1950 Microwave clocks Slope: gain of 10 every 10 years Optical clocks NPL NBS LSRH Ca PTB PTB NRC NBS VNIIFTRI H MPQ PTB NIST NPL PTB NIST SYRTE Cold atoms 1960 1970 1980 1990 2000 ? 2010 YEAR from C. Salomon G.M. Tino, FPS-06, LNF, 22/3/2006 Optical clocks: Towards 10-18-10-19 • Narrow optical transitions no ~ 1 Hz, n0 ~ 1015 Hz y Noise Q Signal n 1 n0 N atom Tcycle 1 2 average Cfringe Trapped ions: Hg+, In+, Sr+, Yb+,… • Candidate atoms Cold neutral atoms: H, Ca, Sr, Yb,… (Fermions?) • Direct optical-mwave connection by optical frequency comb Th. Udem et al., Nature 416 , 14 march 2002 G.M. Tino, FPS-06, LNF, 22/3/2006 G.M. Tino, FPS-06, LNF, 22/3/2006 Ca clock example From L. Hollberg, Hyper symposium 2002 G.M. Tino, FPS-06, LNF, 22/3/2006 87Sr optical clock • Method: (H. Katori) Interrogate atoms in optical lattice without frequency shift • Long interaction time • Large atom number (108) • Lamb-Dicke regime Excellent frequency stability • Small frequency shifts: • No collisions (fermion) • No recoil effect (confinement below optical wavelength) • Small Zeeman shifts (only nuclear magnetic moments)… G.M. Tino, FPS-06, LNF, 22/3/2006 Towards a Sr clock – The experiment in Firenze Firenze 2003, Magneto-optical trapping of all Sr isotopes 0.20 86 0.18 88 Sr 87 Sr Sr • Optical clocks using visible intercombination lines 1S 0 1S 0 1S 0 Fluorescence signal (V) 0.16 0.14 - 3P1 (7.5 kHz) - 3P0 (1 mHz, 87Sr) - 3P2 (0.15 mHz) Optical trapping in Lamb-Dicke regime with negligible change of clock frequency Comparison with different ultra-stable clocks (PHARAO/ACES) PHARAO G. Ferrari, P.Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli and G.M. Tino, Phys. Rev. Lett. 91, 243002 (2003) 0.12 0.10 84 0.08 Sr 0.06 0.04 -400 -200 0 200 Laser detuning (MHz) G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic clocks • • • • • Location finding Precision navigation and navigation in outer space Variability of Earth’s rotation rate and other periodic phenomena Earth’s crustal dynamics Secure telecommunications • • • • • Very Long Baseline Interferometry (VLBI) Spectroscopy Expression of other physical quantities in terms of time Tests of constancy of fundamental constants Tests of the special and general theories of relativity G.M. Tino, FPS-06, LNF, 22/3/2006 Atom Interferometers G.M. Tino, FPS-06, LNF, 22/3/2006 Quantum interference path I amplitude AI Initial state |yi Final state path II amplitude AII |yf Interference of transition amplitudes P(|yi|yf) = |AI + AII|2 = |AI|2 + |AII|2 + 2 Re(AI AII*) G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic clocks: Interference fringes G.M. Tino, FPS-06, LNF, 22/3/2006 Time-domain Ramsey-Bordé interferences with cold Ca atoms (PTB) G.M. Tino, FPS-06, LNF, 22/3/2006 Atom Interferometry Atom interferometer Flux Phase difference 1 2 atomic flux at exit port 1 at exit port 2 G.M. Tino, FPS-06, LNF, 22/3/2006 Matter wave sensors accelerations: acc k T 2 drift a 2 a rotations: mat c ~ 1011 1017 ph v at 2 mat rot 2 A h mat m at c 10 ~ 5 10 ph h G.M. Tino, FPS-06, LNF, 22/3/2006 SYRTE cold atom gyroscope 50 cm 30 cm One pair of Raman lasers switched on 3 times Detections Launching velocity: 2.4 m.s-1 Maximum interaction time : 90 ms 3 rotation axes 2 acceleration axes Cycling frequency 2Hz Magneto-Optical Traps Expected sensitivity (106 at): • gyroscope : 4 10-8 rad.s-1.Hz-1/2 • accelerometer : 3 10-8 m.s-2.Hz-1/2 G.M. Tino, FPS-06, LNF, 22/3/2006 IQO Cold Atom Sagnac Interferometer Interferometer /2 Preparation /2 Detection 3 mm 15 cm A MOT 2 MOT 1 C. Jentsch, T. Müller, E. Rasel, and W. Ertmer, Gen. Rel. Grav, 36, 2197 (2004) & Adv. At. Mol. Physics G.M. Tino, FPS-06, LNF, 22/3/2006 MAGIA Misura Accurata di G mediante Interferometria Atomica • Measure g using free falling atoms and atom interferometry • Add known source masses • Measure change of g aM g Determine G G.M. Tino, in “2001: A Relativistic Spacetime Odyssey”, World Scientific (2003) M. Fattori, G. Lamporesi, T. Petelski, J. Stuhler, G.M. Tino, Phys. Lett. A 318, 184 (2003) http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html G.M. Tino, FPS-06, LNF, 22/3/2006 MAGIA Misura Accurata di G mediante Interferometria Atomica I II z1 1 1 z2 2 2 In collaboration with LNF, Frascati http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html G.M. Tino, FPS-06, LNF, 22/3/2006 MAGIA: Firenze atom gravity gradiometer apparatus Source masses and support Laser and optical system Phase locked lasers for Raman transitions L. Cacciapuoti et al., Rev. Scient. Instr. 76, 053111 (2005) G.M. Tino, FPS-06, LNF, 22/3/2006 MAGIA: first results G.M. Tino, FPS-06, LNF, 22/3/2006 Precision Measurement of Gravity at Micrometer Scale using Ultracold Sr Atoms mirror n = m g /2 h red MOT beams trapped atoms g probe beam optical lattice beam CCD camera • G. Ferrari et al., 2006, to be published G.M. Tino, FPS-06, LNF, 22/3/2006 Test of the gravitational 1/r2 law in the sub-mm range with atom interferometry sensors (Casimir?) 95% confidence level constraints on a Yukawa violation of the gravitational inverse-square law. The vertical axis represents the strength of a deviation relative to that of Newtonian gravity while the horizontal axis designates its characteristic range. The yellow region has been excluded (From S. J. Smullin et al., 2005) mirror a = 2Grd r trapped atoms red MOT beams g Example: rAu 19 g/cm3 d 200 mm a2x 10-9 ms-2 probe beam CCD camera optical lattice beam -d- n = m g /2 h • G.M. Tino, in “2001: A Relativistic Spacetime Odyssey”, Firenze, 2001, World Scientific (2003) • G.M. Tino, Nucl. Phys. B 113, 289 (2002) • G. Ferrari et al., 2006, to be published G.M. Tino, FPS-06, LNF, 22/3/2006 From Earth Laboratories to Space G.M. Tino, FPS-06, LNF, 22/3/2006 Atomic Clock Ensemble in Space H= 400 km V=7 km/s T= 5400 s • A cold atom clock in space • Worldwide access • Fundamental physics tests PHARAO : Cold Atom Clock in Space. CNES (France) A. Clairon, P. Laurent, P. Lemonde, M. Abgrall, S. Zhang, C. Mandache, F. Allard, M. Maximovic, F. Pereira, G. Santarelli, Y. Sortais, S. Bize, H. Marion, D. Calonico, (BNM-LPTF), N. Dimarcq (LHA), C. Salomon (ENS) SHM : Space Hydrogen Maser. ON (Switzerland) L. Jornod, D. Goujon, L.G. Bernier, P. Thomann, G. Busca MWL : Microwave link. Kayser-Threde-Timetech (Germany) W. Schaefer, S. Bedrich ACES is open to any interested scientific user W. Knabe, P. Wolf, L. Blanchet, P. Teyssandier, P. Uhrich, A. Spallici New members : 2001: UWA (Australia), A. Luiten, M. Tobar, J. Hartnett, R. Kovacich 2002: LENS (Italy), G.M. Tino, G. Ferrari, L. Cacciapuoti ESA: MSM Stephen Feltham CNES: C. Sirmain + team of 20 engineers at CST, Toulouse Support: ESA, CNES, BNM, CNRS G.M. Tino, FPS-06, LNF, 22/3/2006 ACES ON COLUMBUS EXTERNAL PLATFORM ACES M = 227 kg P = 450 W Launch date : 2009 Mission duration : 18 months G.M. Tino, FPS-06, LNF, 22/3/2006 ACES objectives L. Blanchet, C. Salomon, P. Teyssandier, and P. Wolf, A&A 370, 320 (2001) G.M. Tino, FPS-06, LNF, 22/3/2006 ESA-AO-2004 Life and Physical Sciences and Applied Research Projects G.M. Tino, FPS-06, LNF, 22/3/2006 PARCS Primary Atomic Reference Clock in Space G.M. Tino, FPS-06, LNF, 22/3/2006 HYPER Mapping Lense-Thirring effect close to the Earth Improving knowledge of fine-structure constant Differential measurement between two atom gyroscopes and a star tracker orbiting around the Earth ~h/m Testing EP with microscopic bodies Atomic gyroscope control of a satellite http://sci.esa.int/home/hyper/index.cfm G.M. Tino, FPS-06, LNF, 22/3/2006 ESA-AO-2004 AI G.M. Tino, FPS-06, LNF, 22/3/2006 Laser Cooled Atom (LCA) Sensor for Ultra-High-Accuracy Gravitational Acceleration and Rotation Measurements in response to ESA ITT No. AO-1-4477/03/NL/CH G.M. Tino, FPS-06, LNF, 22/3/2006 SpacePart ‘03 Prototype field ready sensor W.W. Hansen Experimental Physics Laboratory, Stanford, CA 94305 Sensor head Sensor optomechanics From M. Kasevich talk at SpacePart '03 Conference Washington D.C., December 10th - 12th, 2003. Laser system G.M. Tino, FPS-06, LNF, 22/3/2006 JPL http://horology.jpl.nasa.gov/quantum/atominterferometry.html G.M. Tino, FPS-06, LNF, 22/3/2006 BEC in space G.M. Tino, FPS-06, LNF, 22/3/2006 DC-DC transformer Computer control Laser pumps µ-metal shielding Battery pack From E. Rasel, 2005 G.M. Tino, FPS-06, LNF, 22/3/2006 G.M. Tino, FPS-06, LNF, 22/3/2006 Applications of new quantum sensors based on atom interferometry • Measurement of fundamental constants G • New definition of kg • Test of equivalence principle • Short-distances forces measurement • Search for electron-proton charge inequality • New detectors for gravitational waves ? geophysics • Development of transportable atom interferometers space G.M. Tino, FPS-06, LNF, 22/3/2006 Future prospects: Atomic clocks • New optical clocks with fractional stability ~ 10-17-10-19 • mm-scale positioning and long-distance clock syncronization • Very large baseline interferometry (VLBI) and geodesy • Search for variation of fundamental constants • Tests of SR and GR in Earth orbit (ACES, OPTIS) • Improved tests of GR in solar orbit: Shapiro delay, red shift, … G.M. Tino, FPS-06, LNF, 22/3/2006 Conclusions • New atomic quantum devices can be developped with unprecedented sensitivity using ultracold atoms and atom optics • Applications: Fundamental physics, Earth science, Space research, Commercial • Well developped laboratory prototypes • Work in progress for transportable/space-compatible systems G.M. Tino, FPS-06, LNF, 22/3/2006 Fine G.M. Tino, FPS-06, LNF, 22/3/2006 LINKS G.M. Tino, FPS-06, LNF, 22/3/2006 h/m and fine structure constant S. Chu et al., 2002 G.M. Tino, FPS-06, LNF, 22/3/2006 Unit of mass The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram (1st CGPM, 1889) Goal: Redefinition of kg on microscopic quantities with accuracy better than 10-8 Idea: Watt-balance compares electrical and mechanical realization of Watt UI m g v Watt balance groups working at NPL (UK), NIST (USA), METAS (Switzerland), BNM (France) I mg z U v t z G.M. Tino, FPS-06, LNF, 22/3/2006 Tests of weak equivalence principle Best tests so far: EOT-Wash group (Adelberger, Gundlach), See “http://www.npl.washington.edu/eotwash/” Long range EP tested at the level of 10-13 Prospects Space: MICROSCOPE 10-15 STEP Atoms: 10-18 S, et al. PRL. 93, 240404 (2004) ) • different isotopes, e.g. 85Rb vs 87Rb ( Fray g/g=(0.4+/-1.2)x10-7 • different atoms, e.g. Rb vs Cs -12 - 10-13 10 40 • bosons vs fermions, e.g. Rb vs K • different spins • anti-matter (?) G.M. Tino, FPS-06, LNF, 22/3/2006 Test of equivalence principle for anti-matter • Compare g H H • Steps: anti-H production (ATHENA, ATRAP) anti-H selective state population anti-H cooling anti-H trapping 5 4 5 4 3s1/2 3p 3/21/2 1 2s1/2 177 MHz 3/ 2 2p 1/2 0 24 MHz 10968 MHz 59 MHz 243 nm 121.6 nm 243 nm 1s1/2 1 1420 MHz 0 H levels partial scheme (not to scale) g measurement: - Time of flight g/g 10-3 ? - Atom interferometry • Raman transitions between 2S HFS sublevels • 2Shigh-P levels transitions g/g 10-9 ? (T. Heupel et al., Europhys. Lett. 57, 158 (2002)) G.M. Tino, FPS-06, LNF, 22/3/2006 Search for electron-proton charge inequality • Electrostatic, ferromagnetic, diamagnetic levitation Millikan (1935), Morpurgo (1966-1984), Braginsky (1970), Stover (1967), Rank (1968), LaRue (1979) • Gas flow Piccard and Kessler (1925), Hillas & Cranshaw (1960), King (1960) • Acoustic cavity Dylla and King (1973) • Atomic and molecolar beams Hughes (1957), Chamberlain & Hughes (1963), Fraser (1965), Shapiro (1957), Shull (1967) Present limit ep< 1x10-21 e (From G. Carugno and G. Ruoso) G.M. Tino, FPS-06, LNF, 22/3/2006 ep = qe+ qp; qn ; qn Neutralità materia Motivazioni: digressione storica Einstein (1929) Spiegare campi magnetici terra e sole ep + rotazione -> i -> B si aspettava ep= 3x10-19 e Limiti su qn e qn Se C e CPT conservati da qn = qe + qp + qn ricavo limiti Attualmente qn < 10-21 e Esp. con fasci di neutroni termici (1988) Bondi - Lyttleton (1959); Hoyle (1960) q < 10-15 e n -18 se ep~ 2x10 e => espansione universo Da astrofisica, Barbiellini - Cocconi (1987) Chiu - Hoffmann (1964) Indipendenza della carica dell’elettrone dalla velocità e trasformazioni di Lorentz Feinberg - Goldhaber (1959); Gell-Mann - Nambu (1960) ep ≠ 0 per spiegare leggi di conservazione (es. numero barionico) qe (v) qe (0)[1 a(v /c) 2 ] Con atomi di vario Z miglioro limite (Da G. Carugno and G. Ruoso) G.M. Tino, FPS-06, LNF, 22/3/2006 Search for electron-proton charge inequality ep< 1x10-25 e ? G.M. Tino, FPS-06, LNF, 22/3/2006 Gravitational wave detection by atom interferometry 1E-16 1E-17 h (1/Sqrt(Hz)) 1E-18 1E-19 1E-20 1E-21 1E-22 1E-23 Virgo 1E-24 1E-3 0,01 0,1 1 10 100 1000 10000 /2 (Hz) Presentation at 2004 Aspen Winter College on Gravitational Waves: See http://www.ligo.caltech.edu/LIGO_web/Aspen2004/pdf/vetrano.pdf See also: Chiao RY, Speliotopoulos AD, J. Mod. Opt. 51, 861 (2004) A. Roura, D.R. Brill, B.L. Hu, C.W. Misner, gr-qc/0409002 G.M. Tino, FPS-06, LNF, 22/3/2006 Sources - Detectors h [1/sqrt Hz] SN core collapse 1 2 3 -18 LISA LIGO – Virgo A.I. 1 Coalescence of massive BH -20 2 3 ms Pulsars (1 y) -22 Slow Pulsars (1 y) Galactic binaries NS-NS and BH-BH Coalescence LMXRBs & Perturbed “newborn”NS -24 -4 10 -2 10 0 10 2 10 4 10 f [Hz] G.M. Tino, FPS-06, LNF, 22/3/2006 Gravimeters A. Peters, K.Y. Chung and S. Chu, Nature 400, 849 (1999) Resolution: 3x10-9 g after 1 minute Absolute accuracy: g/g<3x10-9 Comparison between instruments Resolution g/g Accuracy g/g Or Repeatibility Measurement Size and Weight Spring gravimeter(1) Optical interferometry dropping gravimeter(2,3) Superconducting gravimeter(3,4) Atom interferometry gravimeter(5) 5 x 10-9 only for short periods and distances 1 x 10-8/Hz 1 x 10-8/Hz 2 x 10-8 in 1.3 s 0.5 x 10-6 only for short periods and distances 4 x 10-9 1 x 10-9 1 x 10-9 Relative Absolute Relative Absolute No field operation estimated 1 m3 250 kg 21.5 x 22 x 31 cm 9 kg 3 1.5 m 320 kg temperature and thermal drift random drift magnetic and magnetic and ? Clibration varies in electrostatic effects electrostatic effects time and with position (1) www.LaCosteRomberg.com (2) www.microgsolutions.com (3)O. Francis, T.M. Niebauer, G. Sasagawa, F. Klopping, and G. Gschwind, “Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder”, Geoph. Res. Lett.25 (1998) 1075-1078. (4) J.M. Goodkind “The superconducting gravimeter”, Rev. Scient. Instr., 70 (1999) 4131-4152. (5) A. Peters, K.Y. Chung, and S. Chu “Measurement of gravitational acceleration by dropping atoms”, 400 (1999) 849-852. Error sources G.M. Tino, FPS-06, LNF, 22/3/2006 Gravimeter application in geophysics Gravimetric measurements at Etna Pizzi DeNeri site during a 48-h-long period encompassing the beginning of the 2002-2003 eruption (Branca et al. Geoph. Res. Lett. 30 2077 (2003)) G.M. Tino, FPS-06, LNF, 22/3/2006 Gravimeter Application Geophysical research Monitoring of magma migration in active volcanic areas Detection of vertical crustal motion in seismogenic areas Post glacial rebound studies Measuring uplift in subduction areas Earthquake (strain accumulation in tectonic areas during interseismic phase) Calibrating measurement made by other techniques: height measurements, relative gravimeter Environmental monitoring Water table monitoring in deep and/or multiple acquifers Monitoring of mining effect Slope and earth fill dam stability Global sea level studies for earth warming assessment On site inspection of sites for nuclear test or else. Mineral exploration G.M. Tino, FPS-06, LNF, 22/3/2006 Gradiometer applications Airborne gravity measurement for oil and mineral exploration hazard investigation Satellite gravity meausrement : GOCE project GRACE Project Gravity gradiometry gives higher resolution in Monitoring of anomalies Data processing Joint gravimetric-seismological data inversion Gradiometer based on absolute Gravimeter combines complementary range of sensitivity for different mass/distance source Tensorometer G.M. Tino, FPS-06, LNF, 22/3/2006 ACES: Relativity tests G.M. Tino, FPS-06, LNF, 22/3/2006 Search for variation of G.M. Tino, FPS-06, LNF, 22/3/2006 Search for variation of G.M. Tino, FPS-06, LNF, 22/3/2006