Data and metadata for the central part of the Mediterranean Basin
by user
Comments
Transcript
Data and metadata for the central part of the Mediterranean Basin
DATA AND METADATA FOR THE CENTRAL PART OF THE MEDITERRANEAN BASIN: LESSONS FROM THE CLIMAGRI PROJECT Maurizio Maugeri Istituto di Fisica Generale Applicata – via Celoria 16 – Milano Istituto di Scienze dell'Atmosfera e del Clima – via Gobetti 101 - Bologna [email protected] Tarragona – November 28th, 2007 Italy has a very important role in the development of meteorological observations Invention of some of the most important meteorological instruments (thermometer, barometer). Establishment of the first network of observations (rete del Cimento, set up by Galileo’s scholars). The strong Italian presence in the development of meteorological observations is also testified by six stations that have been in operation since the eighteenth century (Bologna, Milan, Rome, Padua, Palermo and Turin) and other 15 stations where observations started in the first half of the nineteenth century (Aosta, Florence, Genoa, Ivrea, Locorotondo, Mantua, Naples, Parma, Pavia, Perugia, Trento, Trieste, Udine, Urbino and Venice). As a consequence, a heritage of data of enormous value has been accumulated in Italy over the last three centuries This heritage has been known for a long time and many attempts have been made to collect data into a meteorological archive….. Cantù V. and Narducci P. (1967) Lunghe serie di osservazioni meteorologiche. Rivista di Meteorologia Aeronautica, Anno XXVII, n. 2, 71-79. Eredia F. (1908) Le precipitazioni atmosferiche in Italia dal 1880 al 1905. In: Annali dell'Ufficio Centrale di Meteorologia. Serie II, Vol. XXVII, anno 1905, Rome. Eredia F. (1919) Osservazioni pluviometriche raccolate a tutto l'anno 1915 dal R. Ufficio Centrale di Meteorologia e Geodinamica. Ministero dei Lavori Pubblici, Rome. Eredia F. (1925) Osservazioni pluviometriche raccolate nel quinquennio 1916-1920 dal R. Ufficio Centrale di Meteorologia e Geodinamica. Ministero dei Lavori Pubblici, Rome. Mennella C. 1967. Il Clima d'Italia. Napoli: Fratelli Conti Editori, 724 pp. Millosevich (1882) Sulla distribuzione della pioggia in Italia. In: Annali dell'Ufficio Centrale di Meteorologia. Serie II, Vol. III, anno 1881, Rome. Millosevich (1885) Appendice alla memoria sulla pioggia in Italia. In: Annali dell'Ufficio Centrale di Meteorologia. Serie II, Vol. V, anno 1883, Rome. Narducci, P., 1991: Bibliografia Climatologica Italiana, Consiglio Nazionale dei Geometri, Roma. … however, in spite of the huge heritage of data and even if most records were subjected to some sort of analysis, until a few years ago only a small fraction of Italian data was available in computer readable form Precipitazioni Stazione Reggio Calabria Palermo Perugia Torino Padova Alessandria Arezzo Belluno Rovigo L’Aquila Reggio Emilia Napoli Cagliari Mantova Sassari Siracusa Roma Pesaro Bologna Ferrara Parma Piacenza Pavia Cuneo Messina Livorno Temperature Lunghezza serie Dati mancanti (%) Lunghezza serie Dati mancanti (%) 1878-1972 1874-1973 1874-1973 1866-1969 1877-1968 1875-1970 1879-1972 1879-1986 1879-1976 1879-1973 1879-1970 1865-1969 1879-1971 1880-1973 1876-1971 1874-1973 1862-1999 1876-1992 1879-1988 1879-1974 1878-1994 1875-1999 1883-1991 1879-1993 1881-1974 1876-1994 19.8 0.7 21.2 10.2 5.0 16.8 17.7 7.7 12.4 8.5 10.8 2.7 4.0 11.5 12.1 12.5 6.2 11.6 10.3 17.9 6.3 6.0 23.8 12.5 12.2 10.3 1878-1972 1876-1973 1876-1973 1870-1969 1877-1968 1878-1970 1879-1972 1879-1966 1879-1966 1879-1973 1879-1970 1870-1969 1879-1971 1880-1973 1876-1971 1878-1973 1870-1999 1876-1992 1879-1988 1879-1974 1878-1994 1878-1999 1870-1979 1879-1993 1881-1974 1870-1994 19.2 0.1 1.3 17.9 4.7 14.7 19.0 6.9 13.0 15.2 23.8 9.3 2.5 11.4 8.8 11.4 0.4 7.8 14.8 16.6 2.5 9.4 26.1 12.4 10.7 11.8 Archivio delle serie secolari UCEA - Anzaldi C., Mirri L. and Trevisan V., 1980: Archivio Storico delle osservazioni meteorologiche, Pubblicazione CNR AQ/5/27, Roma. Within this context, a number of projects where set up in Italy in the last 5 to 10 years to recovery as much as possible secular meteorological records The activities can be clustered in two general classes Projects concerning single stations High temporal resolution, complete metadata documentation, etc… Projects concerning national/regional networks Lower temporal resolution, less metadata, etc… Projects concerning single stations are particularly important for the records beginnig in the 18th century Milan: a 10-year project developed Padova: as for Milan but activities by Osservatorio Astronomico di performed by Istituto di Scienze Milano-Brera and Milan University dell'Atmosfera e del Clima – section allowed to recovery metadata and of Padova daily T, P, R records Palermo: recovery started later on; Torino: as for Milan and Padova The activities are performed by Os. but activities performed by Società Astronomico. Available: metadata Meteorologica Italiana and daily R and T records. Bologna: as for Milan, Padova and Roma: as for Milan, Padova and Torino for the data after 1813. Still Torino for the data after 1862. Only in progress for the 18th century data monthly data for the 18th century …there is a lot of still unexploited information… Cloudiness, sunshine, vapour pressure, wind, etc… Projects concerning national/regional networks Second part of the 1990s: the CNR project “Reconstruction of the past climate in the Mediterranean area” allowed the UCEA secular series data set to be updated, completed, and revised. In spite of significant improvements, the new data set had the fundamental limitation of very poor metadata availability. Moreover, the number of stations was still too low. So homogenisation could not be performed. Around 2000 a new research programme was established. It was initially developed within a national project (CLIMAGRI), then an extension of the activities was performed within some other projects. Thanks to the availability of resources from more projects and to additional results from other projects, the initial goal of homogenising the existing records was extended and the construction of a completely new and larger set of data and metadata was also planned. The new dataset of Italian secular records Meteorological variables • Air Temperature (minimum, mean, maximum) • Precipitation • Air Pressure • Cloud Cover • Other data Temporal resolution Daily/Monthly The new Italian dataset: air temperature STATION CODE LON (º) LAT (º) z (m) ALESSANDRIA AOSTA L'AQUILA AREZZO BELLUNO BOLOGNA BOLZANO BRÁ BRIXEN CAGLIARI CASTROVILLARI CATANIA CHIAVARI COSENZA CATANZARO CUNEO DOMODOSSOLA FERRARA FIRENZE FOGGIA FOSSANO GENOVA IMPERIA LIVORNO LOCARNO LUGANO MANTOVA MESSINA MILANO MONTE MARIA NAPOLI NIZZA PADOVA PALERMO PARMA PAVIA PERUGIA PESARO PIACENZA POTENZA POLA REGGIO CALABRIA REGGIO EMILIA RIVA TORBOLE ROVERETO ROMA ROVIGO ROSSANO SASSARI SAN BERNARDO SIRACUSA TARANTO TORINO MONCALIERI TORINO TORTONA TRENTO TRIESTE TROPEA UDINE VALLOMBROSA VALSINNI VENEZIA ALE AOS AQU ARE BEL BOL BOZ BRA BRI CAG CAR CAT CHA COS CTA CUN DOM FER FIR FOG FOS GEN IMP LIV LOC LUG MAN MES MIL MMA NAP NIZ PAD PAL PAR PAV PER PES PIA POT PUL RCA REM RIV ROE ROM ROV RSS SAS SBE SIR TAR TOM TOR TOT TRE TRI TRO UDI VAL VAS VEN 8.63 7.30 13.40 12.00 12.25 11.25 11.33 7.87 11.65 9.15 16.20 15.11 9.30 16.25 16.58 7.50 8.27 11.50 11.30 15.52 8.38 9.00 8.02 10.25 8.79 8.97 10.75 15.50 9.00 10.49 14.25 7.20 11.75 13.35 10.25 9.25 12.50 13.00 9.75 15.82 13.87 15.65 10.75 10.83 11.05 12.47 11.75 16.62 8.60 7.18 15.28 17.30 7.70 7.75 8.87 11.12 13.75 15.88 13.20 11.00 16.42 12.25 44.92 45.73 42.35 43.45 46.12 44.48 46.50 44.70 46.72 39.20 39.80 37.50 40.30 39.28 38.90 44.40 46.10 44.82 43.80 41.45 44.57 44.40 43.87 43.55 46.17 46.00 45.15 38.20 45.47 46.74 40.88 43.65 45.40 38.10 44.80 45.17 43.10 43.87 45.02 40.63 44.86 38.10 44.70 45.88 45.87 41.90 45.05 39.55 40.72 45.87 37.05 40.45 45.00 45.05 44.88 46.07 45.65 38.67 46.00 43.72 40.15 45.43 98 544 753 274 404 60 272 290 569 55 353 75 5 250 343 536 300 15 51 80 351 21 54 3 379 276 51 54 64 1323 149 4 14 71 57 75 520 11 50 826 30 15 62 70 206 56 9 300 224 2472 23 22 238 275 199 199 11 51 51 955 250 21 Min/Max (daily) 1854-1985 1879-2003 1879-2003 1879-2003 1814-2003 1879-2003 1925-2002 1901-2003 1925-2002 1924-2002 1879-2003 1879-2003 1889-2003 1901-2003 1833-2003 1870-2001 1828-2003 1881-2003 1763-2003 1870-2003 1774-2003 1876-2003 1878-2003 1870-2002 1876-2003 1871-2003 1878-2003 1924-2002 1878-2002 1879-2003 1862-2003 1879-2003 1925-1997 1876-2003 1878-2003 1901-2003 1753-2003 1924-2002 1872-2003 1924-2002 1900-2002 Min/Max (monthly) 1854-1985 1891-2003 1869-2003 1876-2003 1875-2003 1814-2003 1879-2003 1925-2002 1901-2003 1925-2002 1924-2002 1879-2003 1865-2003 1878-2003 1901-2003 1833-2003 1875-2003 1865-2001 1935-1997 1901-1997 1828-2003 1881-2003 1763-2003 1865-2003 1774-2003 1876-2003 1872-2003 1865-2002 1865-2003 1871-2003 1871-2003 1924-2002 1878-2002 1866-2003 1862-2003 1879-2003 1925-1997 1874-2003 1878-2003 1901-2003 1865-2003 1753-2003 1883-2003 1924-2002 1803-2003 1872-2003 1924-2002 1900-2002 Mean (monthly) 1854-1985 1840-2003 1869-2003 1876-2003 1875-2003 1814-2003 1850-2003 1862-1970 1865-2003 1879-2003 1925-2002 1901-2003 1883-2002 1925-2002 1924-2002 1879-2003 1872-1997 1865-2003 1878-2003 1901-2003 1874-1973 1833-2003 1875-2003 1865-2001 1864-1997 1864-1997 1828-2003 1881-2003 1763-2003 1857-2003 1865-2003 1806-2003 1774-2003 1876-2003 1872-2003 1861-2002 1865-2003 1871-2003 1871-2003 1924-2002 1864-2003 1878-2002 1866-2003 1869-2003 1862-2003 1862-2003 1879-2003 1925-1997 1874-2003 1818-1998 1878-2003 1901-2003 1864-2003 1753-2003 1892-1965 1816-2003 1841-2003 1924-2002 1803-2003 1872-2003 1924-2002 1900-2002 The new Italian dataset: air temperature The new Italian dataset: precipitation STATION CODE LON (º) LAT (º) z (m) ALESSANDRIA ANDRIA AOSTA L'AQUILA AREZZO ASTI BARLETTA BALMÈ BARDONECCHIA BELLUNO BENEVENTO BOLOGNA BORGOMANERO BOLZANO BRÁ BRIXEN BRINDISI CASTELLANETA CAGLIARI CANOSA CASALE MONFERRATO CATANIA CAVOUR CENTALLO CERIGNOLA CHIVASSO COSENZA CRISPIANO CROTONE CATANZARO CUNEO DOMODOSSOLA FENESTRELLE FERRARA FIRENZE FOGGIA FOSSANO GALATINA GALLIPOLI GENOVA GINOSA GINOSA SCALO IMPERIA IVREA LATIANO LECCE LESINA LIVORNO LIZZANO LOCARNO LOMBRIASCO LOCOROTONDO LUGANO MANFREDONIA MAGLIE MANTOVA ALE AND AOS AQU ARE AST BAE BAL BAR BEL BEN BOL BOR BOZ BRA BRI BRN CAE CAG CAO CAS CAT CAV CEN CER CHI COS CRI CRO CTA CUN DOM FEN FER FIR FOG FOS GAL GAP GEN GIN GIS IMP IVR LAT LEC LES LIV LIZ LOC LOM LOR LUG MAF MAG MAN 8.63 16.28 7.30 13.40 12.00 8.20 16.27 7.22 6.70 12.25 14.80 11.25 8.45 11.33 7.87 11.65 17.93 16.93 9.15 15.90 8.50 15.11 7.37 7.60 15.88 7.85 16.25 17.23 17.12 16.58 7.50 8.27 7.06 11.50 11.30 15.52 8.38 18.15 17.98 9.00 16.75 16.75 8.02 7.91 17.72 18.17 15.35 10.25 17.45 8.79 7.65 17.33 8.97 15.92 18.30 10.75 44.92 41.23 45.73 42.35 43.45 44.90 41.33 45.32 45.08 46.12 41.12 44.48 45.70 46.50 44.70 46.72 40.65 40.63 39.20 41.13 45.13 37.50 44.73 44.50 41.27 45.17 39.28 40.60 39.08 38.90 44.40 46.10 45.04 44.82 43.80 41.45 44.57 40.17 40.05 44.40 40.58 40.58 43.87 45.46 40.55 40.35 41.87 43.55 40.38 46.17 44.84 40.75 46.00 41.62 40.12 45.15 98 151 544 753 274 158 20 1432 1340 404 177 60 317 272 290 569 28 245 55 154 113 75 290 417 124 221 250 265 6 343 536 300 1200 15 51 80 351 73 31 21 257 5 54 267 98 78 5 3 67 379 239 420 276 2 77 51 Precipitation (daily) 1857-1986 1879-2003 1879-2003 1879-2003 1813-2003 1921-2003 1862-2003 1921-2003 1879-2003 1921-2003 1916-2002 1916-2002 1916-2002 1879-2003 1872-1998 1879-2003 1860-2003 1901-2003 1833-2003 1876-2002 1901-2002 1901-2002 1840-2003 Precipitation (monthly) 1857-1986 1921-1996 1841-2003 1874-2003 1876-2003 1881-1993 1921-1996 1913-2003 1913-2002 1875-2003 1870-1996 1813-2003 1881-1996 1856-2003 1862-2003 1878-2003 1877-2000 1877-1996 1853-2003 1922-1996 1870-2003 1892-2003 1879-1993 1883-1988 1922-1996 1892-1988 1873-2002 1916-1996 1916-2002 1868-2002 1877-2003 1872-1998 1912-1997 1865-2003 1860-2003 1873-2003 1875-1997 1923-1996 1877-1996 1833-2003 1887-1996 1928-1996 1876-2003 1837-2002 1925-1996 1875-2000 1928-1998 1857-2002 1916-1996 1886-2002 1913-1999 1829-1996 1861-2002 1921-1996 1908-1996 1840-2003 STATION CODE LON (º) LAT (º) z (m) MASSAFRA MATERA MESSINA METAPONTO MILANO MINERVINO LECCESE MONTE MARIA MONCALVO MONDOVI NAPOLI NARDÒ NIZZA NOVI LIGURE NOVOLI NOVARA OTRANTO OVADA PADOVA PALERMO PARMA PAVIA PERUGIA PESARO PIACENZA POTENZA PRESICCE POLA REGGIO CALABRIA REGGIO EMILIA RIVA TORBOLE ROVERETO ROMA ROVIGO SASSARI SAN BERNARDO SILANDRO SIRACUSA SAN MARCO SAN PIETRO STROPPO TARANTO TAVIANO TORINO MONCALIERI TORINO TORTONA TRENTO TRIESTE TROPEA UDINE URBINO VALLOMBROSA VARALLO VENEZIA VICO GARGANICO VIESTE MAS MAT MES MET MIL MIN MMA MOC MOD NAP NAR NIZ NOL NOO NOV OTR OVA PAD PAL PAR PAV PER PES PIA POT PRE PUL RCA REM RIV ROE ROM ROV SAS SBE SIL SIR SMA SPI STR TAR TAV TOM TOR TOT TRE TRI TRO UDI URB VAL VAR VEN VIC VIE 17.12 16.62 15.50 16.82 9.00 18.42 10.49 8.25 7.82 14.25 18.02 7.20 8.78 18.05 8.62 18.50 8.65 11.75 13.35 10.25 9.25 12.50 13.00 9.75 15.82 18.27 13.87 15.65 10.75 10.83 11.05 12.47 11.75 8.60 7.18 10.77 15.28 15.62 18.13 7.12 17.30 18.08 7.70 7.75 8.87 11.12 13.75 15.88 13.20 12.62 11.00 8.25 12.25 15.95 16.17 40.58 40.68 38.20 40.37 45.47 40.08 46.74 45.05 44.04 40.88 40.18 43.65 44.78 40.38 45.45 40.13 44.62 45.40 38.10 44.80 45.17 43.10 43.87 45.02 40.63 39.90 44.86 38.10 44.70 45.88 45.87 41.90 45.05 40.72 45.87 46.63 37.05 41.72 40.30 44.50 40.45 39.98 45.00 45.05 44.88 46.07 45.65 38.67 46.00 43.72 43.72 45.82 45.43 41.90 41.88 116 401 54 3 64 98 1323 297 44 149 43 4 186 37 181 52 187 14 71 57 75 520 11 50 826 114 30 15 62 70 206 56 9 224 2472 706 23 560 160 1087 22 61 238 275 199 199 11 51 51 451 955 454 21 450 25 Precipitation (daily) 1916-2002 1881-2003 1918-2000 1858-2003 1923-2003 1866-2003 1877-2002 1797-2003 1878-2003 1873-2002 1874-2003 1871-2003 1875-2003 1916-2002 1878-2002 1879-2003 1921-2003 1921-2003 1862-2003 1879-2003 1876-2003 1921-1999 1874-2003 1901-2003 1802-2003 1921-2003 1916-2002 1916-2000 1872-2003 1900-2003 - Precipitation (monthly) 1881-1997 1916-2002 1866-2003 1918-2000 1764-2003 1926-1996 1858-2003 1889-1988 1866-1995 1821-2003 1923-1996 1865-2002 1880-1979 1924-1996 1875-1996 1879-1996 1913-1996 1750-2002 1797-2003 1833-2003 1812-2002 1811-2003 1866-2003 1872-2003 1879-2002 1877-1996 1864-2002 1877-2002 1867-2003 1869-2003 1864-2003 1782-2003 1878-2003 1876-2003 1864-1997 1921-1999 1869-2003 1921-1998 1923-1996 1913-1996 1877-2003 1885-1996 1864-2003 1802-2003 1873-1998 1864-2003 1841-2003 1916-2002 1803-2003 1850-2000 1872-2003 1871-1995 1836-2003 1922-1998 1921-1998 The new Italian dataset: precipitation The new Italian dataset: other variables … the activities are still in progress (e.g. EU project ALP-IMP). They concern air pressure, cloud cover, humidity and snow… AIR PRESSURE (secular records) TRE LUG TRE GRE TRI MIL TOR TOM CLOUD COVER (secular records) MIL PAD VEN MAN PIA TOR MAN PIA FER PAR BOL GEN FIR BOL PES PES LIV LIV TER TER PEC ROM ROM MOV FOG FOG BAI NAP SAS NAP SAS LEC CAR CAG LEC CAR CAG TRO PAL TRO MES RCA TRA CAT HUMIDITY (i.e. dry / wet temperatures) daily data 2 records PAL MES RCA CAT SNOW (HS: snow at ground; HN: fresh snow) daily / monthly data About 15 records of northern Italy 1951-2004 PERIOD: All variables available in digital format Italian Air Force data-set. SECULAR RECORDS DOM ODOSSOLA TORINO LUGANO M ILANO PADOVA VENEZIA TRENTO TRIESTE PARM A PIACENZA M ANTOVA BOLOGNA GENOVA PESARO FIRENZE LIVORNO TERAM O - ANCONA ROM A CAGLIARI - CARLOFORTE SASSARI BARI LECCE FOGGIA NAPOLI M ONTEVERGINE TROPEA M ESSINA - REGGIO CALABRIA PALERM O - TRAPANI CATANIA 1725 1750 1775 1800 1825 year 1850 1875 1900 1925 1950 The new Italian dataset: metadata Metadata collection was performed with two main objectives: i) to understand the evolution of the Italian meteorological network ii) to reconstruct the “history” of all the stations of the data-set. The research on the history of the single stations was performed both by analysing a large amount of grey literature and by means of the UCEA archive. All information was summarized in a card for each data series. Each card is divided into three parts. In the first part all the information obtained from the literature is reported. In the second part there are abstracts from the epistolary correspondence between the stations and the Central Office. In the third part the sources of the data used to construct the record are summarized. For full details; see CLIMAGRI project WEB site (www.climagri.it) The new Italian dataset: quality and homogeneity issues The problem: the real climate signal, that we try to reconstruct studying long (secular) records of meteorological data, is generally hidden behind nonclimatic noise caused by station relocation, changes in instruments, changes in observing times, observers, and observing regulations, algorithms for the calculation of means and so on. climatic time series should not be used for climate research without a clear knowledge about the state of the data in terms of quality and homogeneity. Quality Classification of the institutions (Observatory, high school, etc…) Data sources (hand-written original observations; year books; pre existing data sets, etc…) Time resolution (yearly, monthly, daily, etc…) Comparison with other records Homogeneity Climate variations Measuring problems “Signals” in the records of meteorological data Measuring problems Relocations Instrumental errors (changes of the instruments and/or recalibrations) Observation methods Screenings Changes in the environment around the station The problem is not easy to manage Meteorological series can be tested for homogeneity and homogenised both by direct and indirect methodologies. The first approach is based on objective information that can be extracted from the station history or from some other sources, the latter uses statistical methods, generally based on comparison with other series. Both direct and indirect methodologies have severe limits Direct methodologies are not easy to use as: 1) it is generally very difficult to recover complete information on the history of the observations (metadata); 2) even if available, metadata hardly give quantitative estimates of the inhomogeneities in the measures. Also indirect methodologies have important deficits: 1) they require some hypothesis about the data (e.g. homogeneous signals over the same region); 2) inhomogeneities and errors are present in all meteorological series, and so it is often difficult to decide where to apply corrections and, when the results are not clear there is a high risk of applying subjective corrections. How to overcome the intrinsic limit of indirect homogenisation methods is, at present, still an open question. The possibilities range from homogenising all suspect periods, to correcting the series only if the results of the statistical methods are very clear and also supported by metadata. So, at present, an universal approach to manage the problem is lacking. Our approach: 1) Collecting as much metadata as possible; 2) Performing a first homogenisation by means of direct methologies; 3) Performing final homogenisation by means of indirect methologies Basic problem: what is to correct? a) All the periods given by statistical methods b) Only the periods for which there is evidence in metadata The problem is open Our methodology: Wide use of statistical methods Critical analysis on the light of metadata The CLIMAGRI project Important open question: trends critically depend on the methods used to homogenise the data North Italy long-term temperature evolution (filtered curves) in the 18761996 period according to Brunetti et al. (2000) and Boehm et al. (2001). 1.0 Po Valley (Boehm et al., 2001) NITA (Brunetti et al., 1999) 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 1984 1972 1960 1948 1936 1924 1912 1900 1888 1876 -1.0 Adapted from: Brunetti, M., Buffoni, L., Maugeri, M., Nanni, T., 2000: Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor. Appl. Climatol., 66, 49-60 and Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., Schöner W., 2001: Regional Temperature Variability in the European Alps 1760-1998 from homogenised instrumental time series. Int. J. Climatol., 21, 1779-1801. Important open question: trends critically depend on the methods used to homogenise the data Long-term evolution of summer temperatures in the 1775-2003 period according to Auer et al. (2007) and Brunetti et al. (2006). 3.0 2.0 1.0 0.0 -1.0 -2.0 Differences between ALPIMP (South) and NITA temperature anomalies - Summer 1999 1991 1983 1975 1967 1959 1951 1943 1935 1927 1919 1911 1903 1895 1887 1879 1871 1863 1855 1847 1839 1831 1823 1815 1807 1799 1791 1783 1775 -3.0