Comments
Description
Transcript
News about epitaxial silicon sensor
Attivita’ sul microvertice a Torino Daniela Calvo Commissione scientifica 3, Genova 21 settembre 2009 Micro-Vertex-Detector requirements secondary vertex Beam pipe p p 0.1 mm • Good spatial resolution in r-phi – Momentum measurement of pions from D* decays • Good spatial resolution specially in z – Vertexing, D-tagging • Good time resolution – rms 6 ns (at 50 MHz clock) with 2·107 ann/s • Triggerless readout • Energy loss measurement – dE/dx for PID Low material budget – low momentum of particles (from some hundreds of MeV/c) (<1% X0 for each layer) • Radiation hardness (~4·1013 n 1MeV eq /cm2 ) (half year data taking, 15 GeV/c antip-p) – Different radiation load Primary vertex MVD layout By G. Giraudo By G. Giraudo 30 cm 40 cm Custom Pixel Detector: Micro Vertex Detector 4 barrels Inner layers: hybrid pixels Outer layers: double sided strips and 6 forward disks 4 disks: hybrid pixels 2 disks: pixel and strips mixed 100 mm x 100 mm pixel sizes; ~ 1000 FE readout chip (114x110 pixels); continuous data transmission without trigger maximum event rate per cm2: ~ 12.3 MHz for pbar-Au at 15 GeV/c max. chip data rate : ~ 0.8 Gb/s (40 bit/pixel) energy loss measurement: time over threshold; dynamic range: 100 fC Overview Status of the activities for the pixel detector in Torino Assembly layout Electronics and cables Mechanics and cooling D. Calvo Standard hybrid technology THIN PIXEL SENSORS (< 150 mm) realized with EPITAXIAL SILICON material (suggested by Boscardin-FBK) (At LHC: thickness of 200 mm; at RD50 diodes with epitaxial material ) The thinning starts from this side, reducing the substrate to tens of mm. silicon Cz substrate epitaxial silicon layer Several processes for defining geometry and for obtaining pixel sensors are made on this side r = 0.01÷ 0.02 W·cm d = some hundreds of mm r = 3 ÷ 4 KW·cm d = 25 ÷150 mm Bump bonding readout chip Carbon foam support to improve power dissipation Carbon fiber mechanical support ASIC developed by the 130 nm CMOS technology with triggerless readout. Up to now the readout is in 250 nm CMOS technology (see LHC experiment with trigger ) Cooling system Assembly layout Assembly scheme 2-chip module Power cable Data cable Controller chip 0805 bias filter capacitor 0603 supply filter capacitors Sensor ToPiX readout chips Multilayer bus structure By R. wheadon Layout of forward disks By R. wheadon Possibility of daisy-chaining controllers to save on cables (where data rates allow) Controller chips serve two or three ToPiX readout chips For outer layer of barrel would need to daisy-chain two 6-chip modules (power and controller chips) to keep cables out of active region Keeping cables out of active region means that some modules may require two designs according to which end the cables have to be connected Electronics and cables Upgrade of ToPix Technology LM -> DM (the HEP mainstream) • LM: 6 (thin) + 2 (thick) metal layers • DM: 3 (thin) + 2 (thick) + 3 (RF) metal layer – RF layer shows lower resistivity and helps power routing – RF layer gives more precise capacitance – shared bus among adjacent columns 25 mm 100 mm Upgrade of ToPix Clock from 50 MHz to 160 MHz – time stamp bin: ~6ns – new columns and receivers to be redesigned – new simulations SEU protection: DICE cells -> triple redundance? – twice size increase in the digital part of the chip -> rescaling of the analog part Upgrade of the analog part of ToPix - I Adaptation for the clock @ 160MHz In order to keep the same clock_cylces to injected_charge ratio as ToPix2 (clock@50MHz), the discharging current value has to be proportionally increased from 5 nA to 16 nA. Simulation result of analog output signal with the 2 different clock values Qin Clock frequency ToT Clock cycles Clk_cy /Qin 30 fC 50 MHz 6.094 ns 304 10.1 30 fC 160 MHz 2.000 ns 320 10.7 Upgrade of the analog part of ToPix - II Compact leakage compensation stage Layout compatible with the DM process ToT (ms) Baseline variation of 0.6mV when the leakage current increases from 10nA to 100nA. (~2mV) ToT variation due to the leakage current Simulation: Qin = 80fC dToT/dIleak=-1.53ns/nA Leakage current (nA) Results from radiation damage test of epi-diodes: the radiation damage constant Diode volume current 3 @ full depletion bias voltage [ A / cm ] Equivalent fluence values on the diodes : 5.13x1013, 1.54x1014, 5.13x1014n(1MeVeq)/cm2 corresponding to 1, 3 and 10 years of PANDA lifetime Pre-irradiation 1 year 3 years 10 years 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 Epi-50 Epi-75 Epi-100 The radiation damage constant is a = DJ/F = 7.6(0.3)x10-17 A/cm for all diodes. Lekage current < 50 nA/pixel (100 mmx100mm size, 100 mm thick) R&D – electronics and connections Development in progress with prototypes Readout chip Detector Study of the architecture in progress ( test of high frequency cable) Module controller to counting room/daq cable Optical transceiver PCB -BUS Development in progress in other collaboration First prototypes Preliminary bus scheme By R. Wheadon Cable prototype – testing board layout 1 m differential cable Al Al Kapton (SU8) pads connectors Cable prototype –preliminary simulation By Paolo De Remigis Updates from pixel cooling Responsible: S. Coli INFN - Torino Results from test New prototype done 12 resistors on 4 rows, 2 rows x side “disk body” by POCO-HTC foam 2 tubes embedded (øe2mm, øi1.84mm) COOLING TEST RESULTS –IR IMAGES TEMPERATURE PROFILE Results from simulations POCO-HTC K (75, 245, 245) W/mK FEM RESULTS 1 W/cm2 INPUT DATA 0.3 ℓ/min water 18.5 oC Cooling system for disks Disk split in two halves along the mid-plane Material for heat dissipation: foam POCO-HTC Embedded cooling capillary between the two halves All elements grued with thermal glue Problem: large glueing area -> test have to be performed Results with different material for cooling POCO FOAM Density: 0.55 g/cm3 POCO HTC Density: 09 g/cm3 Pyrolytic Graphite Density: 2.2 g/cm3 Max. Reached Temperature Poco Foam: 23°C POCO HTC: 21.7°C PG: 23.3 °C Total power: 90 W Coolant Temperature: 20°C Cooling pipe scheme 1 tube Ø6 2tubes Ø8 4 manifolds 41 1 manifold 21 6 tubes Ø6 6xØ4 1 manifold 61 2xØ4 6xØ4 2 manifolds 41 1 manifold 61 2xØ4 1 manifold 21 6xØ4 6xØ4 By B. Giraudo 1 tube Ø6 2tubes Ø8 1 manifold 61 1 manifold 61 Updates from MVD Mechanics Responsible: G. Giraudo INFN - Torino MVD layout >250 mm Ø 20.4 mm Fittings for cooling pipes Ancillary parts as special fittings and curves can be common parts made from Ryton R-7-220 by injection mould 7 mm diameter 16 mm length 3 bar maximum pressure Mechanics details ~1,3 mm Primary target Responsible: F. Iazzi Politecnico and INFN - Torino Primary target Al The target will be built through the following steps: Step 1 The target production starts from a disk shaped basis of Cu, (sizes:14mm diameter and 0.5 mm thickness), on which a carbon layer 20 mm thick will be deposited Remarks: •the density of the layer is not the graphite density, but close to that: it will be measured (we will use the back-scattering technique) •the thickness of the layer can be chosen without major constraints in the range 10-40 mm and will be measured by optical techniques with good precision (better than 5%), after the deposition Step 2 After the deposition the carbon layer will be masked along the wires and the rest of the carbon will be wet-etched and taken away. The result will be a Cu disk having 3 wires of about 14 mm x 20 x 20 mm2 glued on. The distances between the 3 wires could be 3.5 mm in order to avoid the beam spot overlapping on 2 wires Step 3 (see fig. 2, where the ring is in violet, wires in black/white) The Cu disk will be wet etched and taken away unless a ring (external diameter 14 mm, internal 12 mm), which will be previously masked. The result will be a ring with 3 C wires like a guitar. Step 4 The Cu ring with wires will be inserted inside a Al local frame, whose aim will be to manage the plugging of the target into the beam pipe 14 13 15 C side view frontal view Cu .5 6 13 14 2.5 3.5 3.5 2.5 1 5 2 1 4 Next step and conclusions Richieste capitolo Missioni Interne Richieste capitolo Missioni Estere MISSIONI ESTERE: •Partecipazione ai 4 meetings di collaborazione con cariche ufficiali: 4 pp al Coordination Board: (Calvo, Filippi, Marcello, Iazzi) e 1 pp al Technical Board (Calvo) (i meeting generali sono programmati a 5 gg). 5gg+viaggio x 4 meetings x 5pp: 25 keuro •Partecipazione ai meetings del microvertice e della meccanica dell’esperimento con presenza del coordinatore meccanica mvd (G. Giraudo) e responsabile cooling ( S. Coli) e partecipanti al FEE tag (D. Calvo e A. Rivetti). 3gg +viaggio x 7 meeting x 3 pp: 13 keuro •settimana di lavoro a Julich per microelettronico con sviluppo logica di controllo in collaborazione. 5gg+viaggio x 1 p: 1.5 Keuro •lavoro di integrazione della meccanica e del cooling dei pixel e delle strips intorno alla beam pipe e targhetta, con il routing (1 sett. a Julich, 1 sett.a Bonn, 1 sett.al GSI). 5gg+viaggio x 2 pp x 3 incontri: 5 Keuro •contatti scientifici del responsabile locale mvd con il responsabile mvd a Bonn, per scrittura TDR. 4 gg+viaggio x5 contatti x 1p: 3 Keuro •2 Physics meetings ( Iazzi e’ partecipante). 2gg+viaggio x 2 contatti x 1 p:1.5 keuromeetings di aggiornamento software di una settimana per 2 persone presso GSI. 5 •gg+viaggio x 1 corso x 2 pp: 3 keuro •dottorando al GSI per lavoro sulle simulazioni, circa 10 giorni: 1.5 keuro •contatto con Fraunofher Institute per bump bonding dei sensori. 2gg+viaggio x 1p: 1.5 keuro •contatti scientifici con gruppi europei (fisica e tecnologia). 3 gg+viaggio x 3 contatti x 2 pp: 3 keuro •1 settimana di progettazione meccanica della regione ipernucleare- beam pipe a Julich. 5 gg+viaggio x1 pp: 1 Keuro •Meeting per sviluppo targhetta e beam pipe per la parte ipenucleare. 2gg+viaggio x 2 contatti x 1 p:1.5 keuro •partecipazione a due congressi internazionali per presentare i risultati del mvd: 5 gg+viaggio x 1p x 2 congressi: 3.5 keuro •test TID con X al CERN per ToPix3 ( sj alla disp. sorgente e chip). 7gg+viaggio x 1 misura x 2 pp: 2 keuro •test con protoni (circa 23 GeV) per studiare i sensori epi (sj all’ass.fascio) con spessore fino a 100 micron. 7gg+viaggio x 1 misura x 4pp, compresa installazione: 4 keuro •test a Bonn (elsa) di radiation lenght di carbon foam ( sj. ass fascio): 5gg+viaggio x 1 misura x 2 pp: 2.5 keuro Totale M.E.: 62.5 kEuro + 8.5 kEuro sj Richieste capitolo CONSUMO sj sj Richieste capitolo INVENTARIO f.t.e. nel 2010 a Torino Calvo Daniela: 80% Busso Luigi: 30% De Mori Francesca: 20% Filippi Alessandra: 30% Marcello Simonetta:70% Kugathasan Thanushan: 100% Szymanska Katarzyna: 100% Iazzi Felice: 100% De Remigis Paolo (elettronica): 60% Mazza Giovanni (microelettronica):30% Rivetti Angelo (microelettronica):20% Wheadon Richard (sensori/elettronica):20% Coli Silvia (meccanica/tecnologia):70% Giraudo Giuseppe (meccanica/tecnologia):70% = 8fte E personale tecnico INFN-Torino Laboratorio di Elettronica e Laboratorio tecnologico/Officina meccanica