Presentazione di PowerPoint - Università degli Studi dell`Insubria
by user
Comments
Transcript
Presentazione di PowerPoint - Università degli Studi dell`Insubria
The Swift GammaRay Burst Explorer Paolo D’Avanzo INAF-Osservatorio Astronomico Di Brera (MISTICI team) Universita` degli studi dell’Insubria Multiwavelength Italian Swift Team with International Co-Investigators 1 The Swift Mission • Successfully launched on the 20th of November 2004 • 267 days in orbit • All instruments operating to spec • BAT First Light: 3 December 2004 • XRT First Light: 11 December 2004 • First BAT Burst: 17 December 2004 • First XRT Afterglow: 23 December 2004 • UVOT First Light: 12 January 2005 • First UVOT Afterglow 15 March 2005 • Calibration phase ended on Apr 5 2 OUTLINE • • • • • • GRB: theory and open matters Swift & REM: instruments, performances & science GRB: results Observationals procedures: BA & DS Secondary science: X-Ray Binaries Conclusions & Future 3 GRB Characteristics (BATSE+SAX) • Short (10 ms < t < 1000 s) and intense (E ~ 10^54 erg) pulse of gamma rays occurring at random positions in the sky • Isotropic distribution (BATSE) • Afterglow era (SAX) • Cosmological distances (SAX) 4 The standard model: fireball Hypernova Merging Neutron Stars Young (few Old (few billion yrs) Merging Outside galaxies Neutron Stars UV/opt/IR/radio million yrs) Inside or near Hypernova galaxies gamma-ray gamma-ray X-ray UV/optical IR mm radio central engine photosphere internal (shocks) external shocks (reverse) (forward) Emission mechanism: synchrotron emission from power-law distribution electrons in highly relativistic outflows Rees & Meszaros 1994; Paczynski & Xu 1994 5 Progenitors: long GRBs Light curves GRB 021211 Spectra (Massimo Della Valle, Daniele Malesani, Stefano Benetti, Vincenzo Testa, Mario Hamuy, L. Angelo Antonelli, Young (few Guido Chincarini, Gabriele Cocozza, million yrs) Stefano Covino, Paolo D'Avanzo & 7near coautori Inside or Hypernova A&A 406, L33-L37 (2003)) galaxies SN Hypernova - Connection GRB 980425 (Galama et al., 1998) First GRB – SN association GRB 031203 (Daniele Malesani, Gianpiero Tagliaferri Guido Chincarini, Stefano Covino, Massimo Della Valle, Dino Fugazza, Paolo Mazzali, Filippo M. Zerbi, Paolo D'Avanzo & 17 coautori ApJ 609, L5-L8 (2004)) 6 8 hour data gap 4 orders of magnitude The data gap Beppo-SAX takes at least 6-8 hours to perform an afterglow follow-up observation with its narrow field instruments. During this time, afterglow fades orders of magnitude. Swift was designed to fill in the gap making very early observations of the afterglows, beginning approximately a minute after the burst. 7 Swift Mission • • • Burst Alert Telescope (BAT) – 15-150 keV – FOV: 2 steradiants – Centroid accuracy: 1’ - 4’ X-Ray Telescope (XRT) – 0.2-10.0 keV – FOV: 23.6’ x 23.6’ – centroid accuracy:5” (UVOT) UV/Optical Telescope – 30 cm telescope – 6 filters (170 nm – 600 nm) – FOV: 17’ x 17’ – 24th mag sensitivity (1000 sec) – Centroid accuracy 0.5” UVOT BAT BAT XRT UVOT XRT Spacecraft Spacecraft 8 A fast moving telescope … • Alt-az 60 cm f/8 RC silver-coated • 2 Nasmyth foci (one idle) • 60 deg 5 sec – to any , in 60 sec • 10x10 am2 FoV … with a high throughput NIR Camera… • 10x10 am2 FoV • 1.2 as pixel scale (diff.limited) • 0.9-2.3 microns (Z’,J,H,Ks) • 512x512 HgCdTe chip @77 Kelvin • Wobbling plate for dithering 9 Observing Scenario 1. Burst Alert Telescope triggers on GRB, calculates position on sky to < 4 arcmin 2. Spacecraft autonomously slews to GRB position in 20-70 s 3. X-ray Telescope determines position to < 5 arcseconds 4. UV/Optical Telescope images field, transmits finding chart to ground BAT Burst Image XRT Image UVOT/REM Image BAT Error Circle T<10 sec < 4' T<100 sec < 5'' T<300 sec T< 60 sec 10 BAT Bursts • 66 GRBs detected/imaged since Dec. 17 (33.5 weeks as of 08/30/05) 041217 050315 050410 050502B 050603 050715 050730 050815 041219A,B,C 050318 050412 050505 050607 050716 050803 050819 041220 050319 050416A,B 050507 050701 050716 050805 050820A,B 041223 050326 050418 050509A,B 050712 050721 050807 050822 041224 050401 050421 050525 050713A,B 050724 050813 050824 041226 050406 050422 050528 050714B 050814 050830 050726 041228 050117 Average rate is ~90/year 050124 GRB Fluence Date 20 05 7/ 1/ 20 05 6/ 1/ 20 05 5/ 1/ 20 05 4/ 1/ 20 0 /1 / 12 050306 4 050223 20 05 0.1 3/ 1/ 050219A,B 1 20 05 050215B 10 2/ 1/ 050215A 100 20 05 050202 1000 1/ 1/ 050128 GRB Fluence (10^-7) 050126 11 Short GRB XRF XRF XRF XRF XRF XRF Short GRB XRF Short GRB 12 RESULTS 13 Progenitors: short GRBs (I) GRB 050509B: first detection of the X-ray afterglow of a short GRB (N. Gehrels et al., 2005 Nature) GRB 050709: first detection of the optical afterglow of a short GRB (S. Covino, D. Malesani, G.L. Israel, P. D’Avanzo & 29 coauthors, 2005 A&AL, submitted) GRB 050724: again a detection of the optical afterglow of a short GRB (S.D. Barthelmy, G. Chincarini, D.N Burrows, N. Geherels, S. Covino, A. Moretti, P. Romano, P.T. O’Brien, C.L. Sarazin, C. Kouvelotou, M. Goad, S. Vaughan, G. Tagliaferri, B. Zhang, A. Antonelli, S. Campana, P. D’Avanzo & 12 coauthors, 2005 Nature, submitted) Host Galaxies 14 Progenitors: short GRBs (II) Merging Neutron Stars Old (few billion GRB 050509B & GRB 050724 yrs) Host Galaxies Merging Outside galaxies Host Galaxies Neutron • early type elliptical of Stars vs. • red color spectrum long GRB • no emission lines XRT position Low star formation rate Population of very old stars GRB 050709 Host Galaxy • late type irregular • blue color spectrum • Hα emission line BUT... off-core (3 kpc) position of the OT, consistent with a system of age 10^9 y 15 The fartest GRB ever observed z = 6.3! ESO press release 12 Sep 2005 16 Observational procedures (I) REM 17 Observational procedures (II) • Burst Advocate • Rem Duty Scientist 18 Science with Swift & REM GRB! GRBs observed rate now is about 2 burst per week but also latitude/longitude constraints have to be taken into account. This is leaving free Swift & REM observing time that is largely used for: Any program requesting fast multi-frequency observations 1. 2. 3. 4. Multifrequency monitoring of AGNs X-Ray Binaries Flare Stars Others... 19 X-Ray Binaries SXRT sporadic outbursts • long quiescent periods • 20 Doppler tomography image reconstruction • monitoring at different orbital phases • bidimensional maps • spectral lines … and corresponding velocity coordinates familiar spatial coordinates… 21 Centaurus X-4 – quiescent optical emmission Hα HeI 5875 HeI 6678 • circular ring-like structure in emission • emission from the companion • visible “hot spot” Irradiation hypothesis: DISC • Hα emission from external region • HeI emission from internal region COMPANION STAR • Hα emission from low velocity regions • HeI emission from high velocity regions 22 Origin of the quiescent emission (I) The companion fills its Roche Lobe and could be subject to irradiation from the NS 23 fase 0 fase 0.25 fase 0.5 fase 0.75 Origin of the quiescent emission (II) EW = 4.4 ± 0.5 Å log FHα = log EW(Hα) + 0.113(B-V)2 – 1.188(B-V) +7.487 (Soderblom et al., 1993) FHα = 7 x 106 erg cm-2 s-1 LX = 4 x 1032 erg s-1 (Campana et al., 2004) FX = LX/(4πa2) = 5 x 108 erg cm-2 s-1 a = 3.6 solar radius 1% of the incident X-Ray flux should be reprocessed to Hα photons LHα = f1f2LX = 5 x 10-3 LX = 0.5% LX f1= solid angle f2= 0. 3 (Osterbrock 1987) D'Avanzo et al. 2005, A&A, accepted 24 ms X-Ray Pulsars Campana, D'Avanzo et al., 2004, ApJ Source name X period (Hz/ms) Orbital period (h) Optical counterpart in quiescence SAX J1808.4-3658 401 Hz /2.49 ms 2.01 hrs I=21 XTE J1751-305 435 Hz /2.30 ms 0.70 hrs R>23.1, I>21.6 XTE J0929-314 185 Hz /5.41 ms 0.73 hrs n XTE J1807-294 191 Hz /5.24 ms 0.67 hrs n XTE J1814-338 314 Hz /3.18 ms 4.30 hrs R > 23 IGR J00291-5934 599 Hz /1.67 ms 2.46 hrs I > 21 HETE J1900.12455 377 Hz/2.65 ms 1.39 hrs n TNG approved proposal (P.I.: P. D’Avanzo) ESO – VLT proposal (in prep.) 25 Conclusions (I) • Exciting Swift results on: – GRB progenitors – Host Galaxy morfology – High z GRB • New light on quiescent optical emission of SXRTs • Opportunity to investigate the link between ms X-Ray Pulsars and ms Radio Pulsars 26 Conclusions (II) • Our results on GRB led to: – – – – 42 GCN circulars 3 published papers 3 submitted papers 2 papers in preparation • Our results on SXRT led to: – 1 paper published – 1 approved TNG proposal – 3 ESO proposals in preparation 27