Comments
Description
Transcript
Q 2 - Indico
Diffrazione ad HERA Marcella Capua – INFN e Universita’ della Calabria • Diffrazione inclusiva ad HERA → DiffPDF • Produzione di mesoni vettori • DVCS IFAE 2004 Torino 13–15 aprile 2004 Diffractive γ*p interactions at HERA Q2 Standard Deep Inelastic Scattering in a frame in which the proton is very fast (Breit frame): x = fraction of proton’s momentum carried by struck quark Q2/W2 W W = photon-proton centre of mass energy Diffraction: exchange of color singlet producing a rapidity GAP in the particle flow Q2 *(q) W fraction of the p momentum carried by the IP: X xIP IP x IP q ( p p' ) Q 2 M X2 2 q p Q W 2 fraction of the IP momentum carried by the struck quark: t IFAE04 Torino aprile 2004 Q2 Q2 x 2 2q ( p p' ) Q M X2 x IP Marcella Capua INFN e Universita' della Calabria 2 Inclusive diffraction γ*p Xp DIS probes the partonic structure of the proton Q2 Structure function: d 2 4 2 y2 2 1 y F2 ( x , Q ) 2 4 2 dxdQ xQ 2[1 R( x , Q )] W diffractive structure function (assumes FLD 0 ): Q2 D( 4) 2 F *(q) W Q 4 d 4 D epe ' Xp ' ( , Q , x IP , t ) 4 2 (1 y y 2 / 2) d dQ 2dx IP dt 2 diffractive γ*p cross section: X xIP d D* p IP dM X t d 4 epD e ' Xp ' (1 (1 y ) ) dQ 2dM X dWdt 2 F2D(4) fIP (xIP,t) F2IP(,Q2) Naively, if IP were particle: Flux of Pomerons IFAE04 Torino aprile 2004 Q 2W “Pomeron structure function” Marcella Capua INFN e Universita' della Calabria 3 Large Rapidiy Gap method X system and e’ measured System Y not measured, some theoretical and experimental uncertanties Integrate over t<1GeV2 and MY<1.6 GeV High acceptance Diffractive peak xL p'z 1 x IP pz p tag method Measurement of t Free of p-diss background Higher MX range Lower acceptance MX method High acceptance t measurement not possible systematics from p-diss NB: if scattered proton not detected, background from proton dissociative events IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 4 H1 Diffractive Structure Function vs Diffraction x x Proton IFAE04 Torino aprile 2004 Weak dependence – not a “normal” hadron ! Marcella Capua INFN e Universita' della Calabria x 5 Diffractive Structure Function vs Q2 Proton Diffraction Q2 Positive scaling violations IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria Q2 6 (Diffractive) hard scattering factorisation Diffractive DIS, like inclusive DIS, is factorisable into a hard part and a soft part [QCD Hard Scattering factorization:Trentadue, Veneziano; Berera, Soper; Collins…]: ( * p Xp) f q p ( x IP , t , x , Q 2 ) ˆ q ( x , Q 2 ) * At fixed xIP and t diffractive parton distribution functions evolve according to DGLAP hard partonic cross section fi/pD(x,Q2,xIP,t): probability to find, with probe of resolution Q2, in a proton, parton i with momentum fraction x, under the condition that proton remains intact, emerging with small energy loss and momentum transfer given by xIP, t A new type of PDFs, with same dignity as standard PDFs. Applies when vacuum quantum numbers are exchanged. IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 7 Regge phenomenology - “resolved IP model” ( * p Xp) f IP p ( x IP , t ) pq p ( , Q 2 ) ˆ p ( , Q 2 ) * Regge motivated pomeron flux f IP / p ( x IP , t ) e Bt 2 ( t ) 1 x IP Shape of diffractive pdfs independent of xIP and t There is no evidence of the or Q2 dependence when xIP changes → Regge factorization IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 8 NLO DGLAP QCD fits to the H1 data -Regge factorization -Singlet Σ and gluon g with Q20=3GeV2 -NLO DGLAP evolution -Fit medium Q2 (6 < Q2 < 120 GeV2) -Experimental and theor incertainties Diff PDF’s: Extended to large z Gluon dominate Σ well constrained Gluon momentum fraction 75 ±15 % at Q2 = 10 GeV2 and remains large up to high Q2 IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 9 Test of QCD factorization NLO Comparisons with Diff DIS Jets Use diff PDFs to predict the rate of diffractive dijet production: jet jet Good agreement with prediction with NLO fit at medium Q2 • Normalisation and shape of data described ok • Same conclusion for charm production Hard scattering factorisation works in diffractive DIS at HERA IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 10 ? (= F2D) Test factorisation in pp events FDJJ Diff PDFs crucial e.g. to estimate rates of diffractive processes at LHC/Fermilab (eg diffractive Higgs) Violation of factorisation understood in terms of (soft) rescattering corrections of the spectator partons (Kaidalov, Khoze, Martin, Ryskin): (x =xIP) NB several other important approaches: F2D Predictions based on rescattering assuming HERA diffractive PDFs CDF data IFAE04 Torino aprile 2004 o) Bjorken (1993) o) Gotsman, Levin, Maor (1993) o) Goulianos (1995) o) Buchmueller, Gehrmann, Hebecker (1997) o) Cox, Forshaw, Loennblad (1999) o) Enberg, Ingelman, Timneanu (2000) o) Erhan, Schlein (2000) o) Bialas, Peschanski (2002) o) ... Marcella Capua INFN e Universita' della Calabria 11 NLO DGLAP QCD fits to the ZEUS data •MX>2 GeV, xIP<0.01, Q2>2 GeV2 •NLO DGLAP fit •Regge factorisation assumption possible for this small data set •initial scale Qo2=2 GeV2 QCD fit describes data ( 2 / ndf 37.9 / 36) fractional gluon momentum is (82 8( stat ) 9( sys ))% Similar to H1! IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 12 The colour dipole picture Virtual photon fluctuates to qq, qqg states (colour dipoles) q q * 1 Q 2 M q2q * q q g E ~ W 2 ~ 1 x •Lifetime of dipoles very long it is the dipole that interacts with the proton •Transverse size 1/ (Q2+ Mqq2) •This is why can do diffraction in ep collisions ! Transverse size of incoming hadron beam can be reduced at will. Can be so small that strong interaction with proton becomes perturbative (colour transparency) ! Two models: IFAE04 Torino aprile 2004 Saturation Model (Golec-Biernat and M. Wusthoff) BEKW model (Bartels, Ellis, Kowalski and Wüsthoff) Marcella Capua INFN e Universita' della Calabria 13 Saturation vs data (LPS) (Bartels, Golec-Biernat, Kowalski) Inclusive diffraction: Inclusive DIS: Data well described by BGK saturation model IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria Q2 14 BEKW vs data (LPS) (Bartels, Ellis, Kowalski and Wüsthoff) Transition to a constant cross section as Q2 0 (similar to total cross section) Main features of the data described by BEKW parametrization (xIP<0.01) FqTq ~ (1 ) medium β FqTqg ~ (1 ) small β qqg fluctuations dominant at low Q2 IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 15 Vector Meson production Large variety of processes to study dynamics versus scales: MV2, Q2, t V V (JPC=1--): r, f, J/y,U,... W IP p p p p 2-gluon exchange: LO realisation of vacuum quantum numbers in QCD Gluon density in the proton Cross section proportional to probability of finding 2 gluons in the proton: growth with decreasing x (increasing W) at large Q2+ MV2 reflecting large gluon density at low x [ x g(x, 2 )]2 ! x 2 W2 2 (Q 2 M 2V ) [Ryskin (1993), Nikolaev et al (1994), Brodsky et al (1994),...] IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 16 VM: sensitivity to gluons in proton with d 4(P(0) -1) (p Vp), Q2=0 W0.2 MV W0.8 •At small MV (MV2 1 GeV2): Incoming dipole behaves like a normal-size hadron. Flat vs W reflects flat gluon distribution for Q2 0 •At large MV :Fast growth of with W reflects growth of gluon distribution with decreasing x xg(x) Fit: ~ Wd W1.7 (not the most recent) W 1/ x IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria x 17 VM: sensitivity to models (p Vp), Q2=0 High precision data Large MV supplies a scale for hard processes apply QCD models Now able to dicriminates theory models MV LLA W 1/ x IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 18 Deeply Virtual Compton Scattering * p p • Similar to elastic VM production, but instead of VM in final state • No VM wavefunction involved • Again rapid increase of cross section with W – a reflection of the large gluon density at low x IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 19 DVCS vs GPDs GPD-based calculations, NLO QCD(!) - Freund & with 2 sets of GPDFs Colour dipole models Donnachie &, Favart & Both theoretical approaches consistent with measurements • Sensitivity to GPDs (so far) in DVCS (large Q2) and U production • A field in its infancy. Holds the promise of mapping parton-parton correlations and transverse distribution of partons in the proton • Important to find how to extract GPDs from data IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 20 Conclusioni • E’ possibile discutere la diffrazione in termini di pQCD • Sappiamo determinare le PDF diffrattive confermando la fattorizzazione in diffrazione ad HERA. • L’oggetto scambiato e’ essenzialmente gluonico (alta’ densita’ gluonica nel protone 75 ±15 % ) • L’ipotesi del rescattering offre la possibilita’ di interpretare anche i dati del Tevatron e quindi di parlare di universalita’ delle PDF. • Il color dipole model e’ una finestra nella regione di transizione dal perturbativo al non perturbativo. • Processi di VM offrono la possibilita’ di misurare le densita’ gluoniche e la precisione dei nostri dati e’ in grado di discriminare tra modelli teorici di pQCD. • Sensibilita’ alle GPDs e quindi alle correlazioni tra partoni. IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria 21 Hard diffraction sensitive to parton-parton correlations in the proton In general, x1 x2: * x1 p [x g(x)] 2 x2 p [H(x 1, x 2 )]2 Generalised PDFs: sensitive to parton-parton correlations in the proton Hard diffraction sensitive to proton structure and calculable in QCD GPD Hard diffraction sensitive to parton correlations and transverse distribution of partons in proton via GPDs Ingredient for estimating diffractive cross sections at LHC IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria GPD 22 Diffractive γ*p interactions at HERA No activity in the forward direction Proton almost intact after the collision - large kinematic range and cross section: ~ 10 % of DIS is diffractive - 4 acceptance: important for * diss system - point-like probe - wide Q2 range: to access the transition region from soft to hard processes IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria Three different selections method 23 Color dipole models qq (Golec-Biernat and M. Wusthoff) • pQCD: sqq r2 1/Q2 (colour transparency) Saturation pQCD e.g. Saturation Model npQCD • As Q2 0, sqq violation of unitarity • Growth by sqq saturating at sqq s(rp) r e.g. BEKW model (Bartels, Ellis, Kowalski and Wüsthoff) FTqq ~β(1- β), weak Q2 dep. FTqqg ~(1- β)γ , ln (1+Q2/Q20), Q20=1GeV2 energy dep. for both : FLqq only at high β from fits to the data IFAE04 Torino aprile 2004 Marcella Capua INFN e Universita' della Calabria x IP ndiff ( Q 2 ) 24