...

Diapositiva 1

by user

on
Category: Documents
16

views

Report

Comments

Transcript

Diapositiva 1
Università degli studi di Modena e Reggio Emilia
Facoltà di Bioscienze e Biotecnologie
GREEN CHEMISTRY
Concetto di Bioraffineria
Dr. Luca Forti
Laboratorio di Biocatalisi
Dipartimento di Chimica
7. Use of renewable feedstocks
A raw material or feedstock should be renewable
rather than depleting whenever
technically and economically practicable
Present situation: organic industrial production from
Petroleum refinery
Fuels
Solvent
Bulk chemicals
Plastics
Petroleum
feedstock
Fibres
Fine chemicals
Oils
Organic feedstocks for the
chemical industry
Fossil resources
Oil
Natural gas
Carbon
Biomass
•Syngas
•Methanol
•Hydrogen
•Ethylene
•Propylene
•Butadiene
•Benzene
•Toluene
•Xilenes
Emerging feedstocks
•Anthracene
for the chemical industry
•Nafthalene
•Natural polymers (cellulose, rubber)
•Fine chemicals
The challenge
Organic industrial production
from renewable resources (biomass)
Chemical from renewable resources
Advantages
New structural characteristics (stereochemical and
enantiomerical) to be exploited in synthesis
Structural complexity of building block: reduction of
reaction side products, reduction of waste material
Oxygenated building blocks: avoid the oxygenation
process, which usually involve stoichiometric toxic
reagents
Chemical from renewable resources
Advantages
Extend the lifetime of available crude oil supplies
Mitigate the build up of greenhouse CO2 in the atmosphere
Feedstock supplies are domestic
Feedstock is flexible, non-toxic, sustainable
Products usually biodegradable
CO2
Oil
refinery
Crude oil
Natural gas
Coal
Consumer
Bio
refinery
> 106 years
Biomass
Carbohydrate
Chemical from renewable resources
Disadvantages
Current economic circumstances (comparison with
petrochemicals industry)
“Seasonal” supply
Feedstock used as source of food: questioned
Require space to grow
Wide range of materials: detrimental if new processes
are needed for each feedstock
Bio-refinery
Fuels
Solvent
Bulk chemicals
Plastics
Grain
Fibres
Fine chemicals
Oils
Biomassa: materiale vegetale o animale di origine recente (nongeologica) che puo’
essere usato per produrre diversi composti chimici e carburanti
U.S. President 1999; U.S. Congress 2000:
“The term biomass means any organic matter that is available on a renewable or recurring
basis (excluding oldgrowth timber), including dedicated energy crops and trees,
agricultural food and feed crop residues, aquatic plants, wood and wood residues, animal
wastes, and other waste materials.”
La maggior parte dei materiali biologici grezzi e’ prodotta in agricultura,
silvicoltura e sistemi microbici.
•La biomassa ha una composizione complessa, simile al petrolio.
•E’ quindi opportuna una separazione primaria nei principali gruppi di sostanze
che la compongono.
•I trattamenti successivi di queste sostanze portano alla formazione di una
“tavolozza” completa di prodotti.
•Un importante differenza col petrolio e’ che il petrolio deve essere estratto,
mentre la biomassa esiste gia’ come prodotto, principalmente in seguito a
trasformazioni agricole.
•La biomassa puo’ quindi essere modificata all’interno del processo con cui si
origina in modo tale da adattarsi ai successivi processi di trasformazione per
ottenere un prodotto target.
La bioraffineria combina le tecnologie necessarie per trasformare materiali biologici
grezzi in intermedi o in prodotti finiti di interesse industriale.
La biomassa vegetale e’ costituita principalmente da carboidrati, lignina, proteine e lipidi,
oltre a varie sostanze presenti in quantita’ minori come vitamine, coloranti, aromi e
fragranze.
“bioraffineria”: un sistema simile alla raffineria del petrolio per produrre prodotti chimici,
carburanti ed energia utilizzando biomasse.
Materie prime
materiale biologico grezzo
•Granaglie
•Biomassa ligno-cellulosica
(es. Graminacee, canne, arbusti,
cespugli, residui di raccolti)
•Biomasse forestali (legname, sterpaglie,
scarti della lavorazione del legno)
•Rifiuti solidi urbani (carta/cartone,
fogliame…)
•Bioprocessi (fermentazioni,
Processi di
trasformazione
Prodotti
Sostanze ed energia
bioconversioni)
•Processi chimici
•Processi termo-chimici
•Processi termici
•Processi fisici
•Carburanti (etanolo, biodiesel)
•Prodotti chimici (intermedi,
solventi, acidi grassi)
•Materiali (polimeri,
vernici, lubrificanti)
inchiostri,
Schema generale di bioraffineria
• whole-crop biorefinery:
uses raw materials such as cereals or maize.
• green biorefinery:
uses naturally wet biomass, such as green grass, lucerne, clover
• lignocellulose feedstock (LCF) biorefinery:
uses naturally dry raw materials such as cellulose-containing
biomass and wastes.
LCF-Biorefinery, Phase III
Hexoses
Hydrolysis
(Chemical)
Pentoses
Lignin
Dehydrogenation
Hydrolysis
Hydrogenation
Crystallisation
Hydroxymethylfurfural
Levulinic acid
Polyols
Glucose
Dehydration
Hydrogenation
Crystallisation
Furfural
Polyols (Xylitol)
Xylose
Hydrogenation
Hydrolysis
Oxidation
Phenol derivatives, hydrocarbons
Phenol derivatives, catechols
Vanillin
Levulinic acid
OH
H2SO4
O
OH
Cellulose
>200oC
CHO
HO
OH
HO
O
200oC
5-(hydroxymethyl)-furfural
OH
O
O
Cat / H2
+
furfural
+
HCO2H
Levulinic acid
H
O
OHC
CO2H
1. HBr / MeOH
2. NaN(CHO)2
3. HCl
O
OH
CO2H
NH2.HCl
DALA
5-aminolevulinic acid
OH
HO
HO2C
Diphenolic acid
USI UNITA’
C5/C6
Meterie prime rinnovabili
(fonti di carboidrati e lignina
H OH
lignina
H
Glucosio da
cellulosa e amido
O
HO
O
HO
COOH
H
HOOC
Ac. 3-chetoadipico
OH
OH
H
O
HOOC
NH2
COOH
Ac. 2-chetoglutarico
HOOC
COOH
Ac. glutammico
OH
HOOC
COOH
Ac. glutarico
Nuovi poliesteri
Nylon
HOOC
COOH
Ac. 3-chetoadipico
OH
HO
OH
1,2,5-pentantriolo
Polimeri
Nylon 4
whole-crop biorefinery
Industrial uses of starch
Fiber, hemicellulose, bran
Germ oil
Gluten
Steepwater
Cereals/tubers
Starch
Paper & corrugating
Modified starches
•Hydrolysed
•Oxidised
•Esters
•Ethers
•Crossbondend
•Dextrins
Thickeners
Binders
Cobuilders
Thermoplastics
Complexing agents
Flocculating agents
Coatings
Maltodextrins
Latex copolymers
Hydrolysates
Fermentation
feedstocks
Derivatives
Polyols
Surfactants
Pharma & cosmetic aids
Green biorefinery
Hexoses
biomass
fermentation
Hydrolysis
Pentoses
Ethylene
Ethanol
Ethylene glycol
Acetaldehyde
Acetic acid
Acetone
Butadiene
Acrylic acid
Glycerol
Propane
Propylene
butanol
Butanediol
Propanediols
Lactic acid
Succinic acid
Butyric acid
Ethanol fermentation
ECONOMIA DELL’ETANOLO (C2)
CH3CH2OH
CH2=CH2
Etil benzene
Etil bromuro
Etil cloruro
Etilen cloridrina
Etilendiammina
Etilen dibromuro
Etilen dicloruro
Etilen glicole
Etilenimmina
Etilen ossido
Dietil chetone
Dietilen glicole
Vinil acetato
Polimeri
CH3CHO
Acido acetico
Anidride acetica
Prodotti aldolici
Butil acetato
Butil alcol
Butirraldeide
Cloralio
Etilenimmina
Piridine
CH3COOH
Acetammide
Acetanilide
Acetil cloruro
Anidride acetica
Dimetil acetammide
Acetati di cellulosa
Esteri
Commodity chemicals from ethanol
Some organic commodity chemicals from fermentation ethanol in Brazil
Product
Production capacity
Product
(109 kg/year)
Production capacity
(109 kg/year)
Ethylene dichloride
1.011
Acrylonitrile
0.078
LD polyethylene
0.663
Ethyl acetate
0.060
Ethyl benzene
0.497
Ethylene glycol
0.030
Vinyl chloride
0.461
Acetic anhydride
0.026
HD polyethylene
0.397
Monochloroacetic acid
0.024
Acetic acid
0.182
Diethanolamine
0.012
Ethylene oxide
0.163
Triethanolamine
0.012
Diethylene glycol
0.147
Chloromethane
0.007
Monoethylene glycol
0.147
Pentaerithritol
0.007
Triethylene glycol
0.147
Chloral
0.004
Acetaldehyde
0.146
Acetylsalicylic acid
0.003
Polyvinylacetate
0.143
Acetophenone
0.002
Ethylene
0.132
Ethyl ether
0.002
Monoethanolamine
0.122
Ethyl chloride
0.001
Vinyl acetate
0.080
Lactic acid
• Lactic acid is produced by fermentation from
sucrose or fructose
Products:
• Ethyl lactate:
• L-lactic acid:
Biodegradable solvents
chiral building block
acrylic acid
biodegradable polymers
emulsifiers
Polylactic acid
O
•
•
•
•
Polylactic acid (PLA) is not a new
polymer, it has been known since 1932.
Producing low molecular weight PLA is
a simple process, however, making high
molecular weight PLA is a more
complicated affair.
Cargill-Dow has developed a novel
process
involving
selective
depolymerisation of low molecular
weight PLA to a cyclic intermediate
(lactide), which is purified by
distillation.
Catalytic ring opening of the lactide
results in continuous controlled weight
PLA preparation.
H2O
O
CH3
O
HO
H
OH
CH3
Lactic acid
O
O
O
H3C
n
*
H
O
Lactide
*
CH3
poly(3,6-dimethyl-1,4-dioxan-2,5-dione)
Lactic acid
Polymerisation
Low MW PLA
Depolymerisation
Lactide
Separation by
continuous
distillation
Catalytic polymerisation
High MW PLA
J. Lunt, Polymer Degradation and Stability, 59, (1998), 145-152
http://www.cargilldow.com/home.asp
Properties and uses of Polylactic
acid (PLA)
•
The PLA materials have mechanical
properties that lie somewhere in
between that of polystyrene and PET.
•
Packaging
– Films
– Packaging foam
– Containers (biodegradable)
– Coatings for papers and boards
Fibres
– Clothing
– Carpet tiles (Interface Inc.)
– Nappies
Bottles
– Biodegradable bottles
•
•
http://www.cargilldow.com
Vinacce
Trattamento
enzimatico
Separazione
solido sospeso
Recupero
estratto grezzo
fenoli
Formulazione di
cibi fortificati
Acqua riciclata
Solido sospeso
Refluo
defenolato
Concentrazione
a membrana
Purificazione e isolamento
dei fenoli
Trasformazioni chimiche ed
enzimatiche
Chimica Fine
concentrato
Biotrasformazione
Biomasse proteiche
Formulazione di
mangimi animali
Methanol economy
O
Polymers
Oligomers
O 2 / Ag
E tO H
Syngas
Biomass + H
Plastics
2O
N2
NH 3
H 2O / R h/S e/T iO 2
Fisher-Tropsch
CO + H2
CO2
Urea
Esters
Ethers
-H 2O
C H 2C H 2
aldehydes
acids
alcohols
Surfactants
C O / Ir/R u
HC H O
MeO H
Gasoline
C H 3C O 2H
HZSM-5
Alkanes
Pt / alumina
CO, H 2
HCl
Aromatics
Alcohols
MeC l
C O 2H
Polymers
Paints
Adhesives
Chemical conversion
One step chemical modification
One step chemical modifications of components
separated by physical methods
Examples
•
•
•
•
Cellulose and starch derivatives
Glucose and fructose
Glycerol
Fatty acids
Two or more steps chemical
modification
Examples
• Ethylene from ethanol
• Sorbitol and mannitol by hydrogenation
of glucose and fructose
• Vitamin C in several steps from glucose
• Fatty alcohols and amines from
triglycerides
• Alkyl polyglucoside from glucose and
fatty alcohol
Industrial uses of sucrose
Sugar cane/sugar beet
Beet pulp
Bagasse
Molasses
sucrose
Fermentation feedstocks
Polycondensate (starter)
Sucrose derivative
•Esters
•Ethers
•Acetals
Glucose + fructose
Building units (pharma)
Surfactants
Furan resins
Industrial use of fatty acid
Seed crushing
and separation
Surfactants in alternative to
alkylbenzene sulphonates
oil
Lubricants in alternative to
mineral oils
High temperature
hydrolysis
Glycerol
Solvents in alternative to
chlorinated solvents
Distillation
Crude acid mix
Crystallization
Solvent extraction
Supercritical extraction
Fractional distillation
Fatty acids
Biodiesel
•
•
Short chain alcohol usually employed methanol most common (NaOH soluble in
MeOH)
Catalyst used to improve yield (system
loading 1 % w/w):
– Basic catalyst most commonly used (e.g.
sodium hydroxide) - lower ratio of
glyceride to alcohol required (6:1).
Supported guanidines have also been
used successfully
– Acidic catalyst can be used as well but
higher ratio of glyceride to alcohol
required (30:1) - however, system is
water tolerant; wet substrate can be
used
– Enzyme catalysts have also been used require lower reaction temperatures.
H2C COOR'
HC COOR''
Catalyst
+
3 ROH
Alcohol and
catalyst
alcohol
acid
Alcohol
steam
condensate
esters
glycerine
H2C OH
R COOR'
R COOR''
R COOR'''
C COOR'''
H2
Glyceride
Oil
Esters
+
HC OH
C OH
H2
Glycerol
Microbial conversion
Dear God:
I pray on bended knee’s,
That all my syntheses,
Will never be inferior,
To those conducted by bacteria
Organic Chemists Prayer (unknown origin)
• Fermentations
• Biotransformation reactions
Biocatalysis and genetic engineering of
microbial
metabolism provide a new approach for the generation
of building block for chemical synthesis and for the
production of consumer goods
Fermentations
Carbohydrates
Plant-oils
Methanol
Some classical fermentation products…
R-COOH
R-OH
acids
alcohols
Vit. B12
NH2-CR-COOH
vitamins
aminoacids
… and some not so common products
H3C
COOH
Natural carbon sources are used
for production of biomass and for
de novo synthesis of products
*
Hexanoic acid
O
H
O
n
Bioplastics
OH
OH
Catechol
O
Biotransformation reactions
Carbohydrates
Plant-oils
Methanol
Biotransformation processes can
be used for production of numerous
fine and specialty chemicals
O
HO
OH
Precursor
molecules
OH
HO
N
OH
N
Natural carbon sources are used for
the production of the biocatalyst and
for the subsequent transformation of
the reaction precursor into the
desired product
NH2
O
COOH
Cl
COOH
Polyhydroxyalkanoates (PHA’s)
H3C
*
Plastic product
Sugar solution
Crop
Sunlight
H
O
O
n
O
PHA
Fermentation
Biodegradation to CO2 and H2O
Produzione di bio-idrogeno
Basata
sulla
Modifica
metabolismo di alghe
(rinnovabile e privo di inquinamento)
Sunlight
H2
luce solare + alghe + acqua
H2
Idrogeno + celle a combustibile o generatore a turbina = elettricità
del
Draths-Frost biotechnological synthesis
O
Ni-Al2O3
Co-O2
370-800 psi
120-140 psi
benzene
cyclohexane
OH
+
HNO3
cyclohexanone cyclohexanol
CO2H
HO2C
adipic acid
OH
OH
O
OH
OH
OH
D-glucose
CO2H
E. coli
E. coli
CO2H
Pt, H2
50 psi
HO2C
O
OH
OH
3-dehydroshikimate
cis,cis-muconic acid
Typical feed solution:
In 1 litre of water
6 g Na2HPO4
10 g bacto tryptone
3 g KH2PO4 1 mg thiamine
5 g bacto yeast
1 g NH4Cl
10.5 g NaCl 10 g glucose (62 mmol)
0.12 g MgSO4
Yield = 20.4 mmol
% Yield = 33 %
Growing biomass
•
•
•
•
•
Land usage: CAP (Common Agricultural Policy)
Fertilisers
Pesticides/Herbicides
Transportation/Infrastructure
Reduced CO2???
THE FUTURE CHEMICAL INDUSTRY
Present
Past
Future
?
Fly UP