Comments
Description
Transcript
Diapositiva 1
Università degli studi di Modena e Reggio Emilia Facoltà di Bioscienze e Biotecnologie GREEN CHEMISTRY Concetto di Bioraffineria Dr. Luca Forti Laboratorio di Biocatalisi Dipartimento di Chimica 7. Use of renewable feedstocks A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable Present situation: organic industrial production from Petroleum refinery Fuels Solvent Bulk chemicals Plastics Petroleum feedstock Fibres Fine chemicals Oils Organic feedstocks for the chemical industry Fossil resources Oil Natural gas Carbon Biomass •Syngas •Methanol •Hydrogen •Ethylene •Propylene •Butadiene •Benzene •Toluene •Xilenes Emerging feedstocks •Anthracene for the chemical industry •Nafthalene •Natural polymers (cellulose, rubber) •Fine chemicals The challenge Organic industrial production from renewable resources (biomass) Chemical from renewable resources Advantages New structural characteristics (stereochemical and enantiomerical) to be exploited in synthesis Structural complexity of building block: reduction of reaction side products, reduction of waste material Oxygenated building blocks: avoid the oxygenation process, which usually involve stoichiometric toxic reagents Chemical from renewable resources Advantages Extend the lifetime of available crude oil supplies Mitigate the build up of greenhouse CO2 in the atmosphere Feedstock supplies are domestic Feedstock is flexible, non-toxic, sustainable Products usually biodegradable CO2 Oil refinery Crude oil Natural gas Coal Consumer Bio refinery > 106 years Biomass Carbohydrate Chemical from renewable resources Disadvantages Current economic circumstances (comparison with petrochemicals industry) “Seasonal” supply Feedstock used as source of food: questioned Require space to grow Wide range of materials: detrimental if new processes are needed for each feedstock Bio-refinery Fuels Solvent Bulk chemicals Plastics Grain Fibres Fine chemicals Oils Biomassa: materiale vegetale o animale di origine recente (nongeologica) che puo’ essere usato per produrre diversi composti chimici e carburanti U.S. President 1999; U.S. Congress 2000: “The term biomass means any organic matter that is available on a renewable or recurring basis (excluding oldgrowth timber), including dedicated energy crops and trees, agricultural food and feed crop residues, aquatic plants, wood and wood residues, animal wastes, and other waste materials.” La maggior parte dei materiali biologici grezzi e’ prodotta in agricultura, silvicoltura e sistemi microbici. •La biomassa ha una composizione complessa, simile al petrolio. •E’ quindi opportuna una separazione primaria nei principali gruppi di sostanze che la compongono. •I trattamenti successivi di queste sostanze portano alla formazione di una “tavolozza” completa di prodotti. •Un importante differenza col petrolio e’ che il petrolio deve essere estratto, mentre la biomassa esiste gia’ come prodotto, principalmente in seguito a trasformazioni agricole. •La biomassa puo’ quindi essere modificata all’interno del processo con cui si origina in modo tale da adattarsi ai successivi processi di trasformazione per ottenere un prodotto target. La bioraffineria combina le tecnologie necessarie per trasformare materiali biologici grezzi in intermedi o in prodotti finiti di interesse industriale. La biomassa vegetale e’ costituita principalmente da carboidrati, lignina, proteine e lipidi, oltre a varie sostanze presenti in quantita’ minori come vitamine, coloranti, aromi e fragranze. “bioraffineria”: un sistema simile alla raffineria del petrolio per produrre prodotti chimici, carburanti ed energia utilizzando biomasse. Materie prime materiale biologico grezzo •Granaglie •Biomassa ligno-cellulosica (es. Graminacee, canne, arbusti, cespugli, residui di raccolti) •Biomasse forestali (legname, sterpaglie, scarti della lavorazione del legno) •Rifiuti solidi urbani (carta/cartone, fogliame…) •Bioprocessi (fermentazioni, Processi di trasformazione Prodotti Sostanze ed energia bioconversioni) •Processi chimici •Processi termo-chimici •Processi termici •Processi fisici •Carburanti (etanolo, biodiesel) •Prodotti chimici (intermedi, solventi, acidi grassi) •Materiali (polimeri, vernici, lubrificanti) inchiostri, Schema generale di bioraffineria • whole-crop biorefinery: uses raw materials such as cereals or maize. • green biorefinery: uses naturally wet biomass, such as green grass, lucerne, clover • lignocellulose feedstock (LCF) biorefinery: uses naturally dry raw materials such as cellulose-containing biomass and wastes. LCF-Biorefinery, Phase III Hexoses Hydrolysis (Chemical) Pentoses Lignin Dehydrogenation Hydrolysis Hydrogenation Crystallisation Hydroxymethylfurfural Levulinic acid Polyols Glucose Dehydration Hydrogenation Crystallisation Furfural Polyols (Xylitol) Xylose Hydrogenation Hydrolysis Oxidation Phenol derivatives, hydrocarbons Phenol derivatives, catechols Vanillin Levulinic acid OH H2SO4 O OH Cellulose >200oC CHO HO OH HO O 200oC 5-(hydroxymethyl)-furfural OH O O Cat / H2 + furfural + HCO2H Levulinic acid H O OHC CO2H 1. HBr / MeOH 2. NaN(CHO)2 3. HCl O OH CO2H NH2.HCl DALA 5-aminolevulinic acid OH HO HO2C Diphenolic acid USI UNITA’ C5/C6 Meterie prime rinnovabili (fonti di carboidrati e lignina H OH lignina H Glucosio da cellulosa e amido O HO O HO COOH H HOOC Ac. 3-chetoadipico OH OH H O HOOC NH2 COOH Ac. 2-chetoglutarico HOOC COOH Ac. glutammico OH HOOC COOH Ac. glutarico Nuovi poliesteri Nylon HOOC COOH Ac. 3-chetoadipico OH HO OH 1,2,5-pentantriolo Polimeri Nylon 4 whole-crop biorefinery Industrial uses of starch Fiber, hemicellulose, bran Germ oil Gluten Steepwater Cereals/tubers Starch Paper & corrugating Modified starches •Hydrolysed •Oxidised •Esters •Ethers •Crossbondend •Dextrins Thickeners Binders Cobuilders Thermoplastics Complexing agents Flocculating agents Coatings Maltodextrins Latex copolymers Hydrolysates Fermentation feedstocks Derivatives Polyols Surfactants Pharma & cosmetic aids Green biorefinery Hexoses biomass fermentation Hydrolysis Pentoses Ethylene Ethanol Ethylene glycol Acetaldehyde Acetic acid Acetone Butadiene Acrylic acid Glycerol Propane Propylene butanol Butanediol Propanediols Lactic acid Succinic acid Butyric acid Ethanol fermentation ECONOMIA DELL’ETANOLO (C2) CH3CH2OH CH2=CH2 Etil benzene Etil bromuro Etil cloruro Etilen cloridrina Etilendiammina Etilen dibromuro Etilen dicloruro Etilen glicole Etilenimmina Etilen ossido Dietil chetone Dietilen glicole Vinil acetato Polimeri CH3CHO Acido acetico Anidride acetica Prodotti aldolici Butil acetato Butil alcol Butirraldeide Cloralio Etilenimmina Piridine CH3COOH Acetammide Acetanilide Acetil cloruro Anidride acetica Dimetil acetammide Acetati di cellulosa Esteri Commodity chemicals from ethanol Some organic commodity chemicals from fermentation ethanol in Brazil Product Production capacity Product (109 kg/year) Production capacity (109 kg/year) Ethylene dichloride 1.011 Acrylonitrile 0.078 LD polyethylene 0.663 Ethyl acetate 0.060 Ethyl benzene 0.497 Ethylene glycol 0.030 Vinyl chloride 0.461 Acetic anhydride 0.026 HD polyethylene 0.397 Monochloroacetic acid 0.024 Acetic acid 0.182 Diethanolamine 0.012 Ethylene oxide 0.163 Triethanolamine 0.012 Diethylene glycol 0.147 Chloromethane 0.007 Monoethylene glycol 0.147 Pentaerithritol 0.007 Triethylene glycol 0.147 Chloral 0.004 Acetaldehyde 0.146 Acetylsalicylic acid 0.003 Polyvinylacetate 0.143 Acetophenone 0.002 Ethylene 0.132 Ethyl ether 0.002 Monoethanolamine 0.122 Ethyl chloride 0.001 Vinyl acetate 0.080 Lactic acid • Lactic acid is produced by fermentation from sucrose or fructose Products: • Ethyl lactate: • L-lactic acid: Biodegradable solvents chiral building block acrylic acid biodegradable polymers emulsifiers Polylactic acid O • • • • Polylactic acid (PLA) is not a new polymer, it has been known since 1932. Producing low molecular weight PLA is a simple process, however, making high molecular weight PLA is a more complicated affair. Cargill-Dow has developed a novel process involving selective depolymerisation of low molecular weight PLA to a cyclic intermediate (lactide), which is purified by distillation. Catalytic ring opening of the lactide results in continuous controlled weight PLA preparation. H2O O CH3 O HO H OH CH3 Lactic acid O O O H3C n * H O Lactide * CH3 poly(3,6-dimethyl-1,4-dioxan-2,5-dione) Lactic acid Polymerisation Low MW PLA Depolymerisation Lactide Separation by continuous distillation Catalytic polymerisation High MW PLA J. Lunt, Polymer Degradation and Stability, 59, (1998), 145-152 http://www.cargilldow.com/home.asp Properties and uses of Polylactic acid (PLA) • The PLA materials have mechanical properties that lie somewhere in between that of polystyrene and PET. • Packaging – Films – Packaging foam – Containers (biodegradable) – Coatings for papers and boards Fibres – Clothing – Carpet tiles (Interface Inc.) – Nappies Bottles – Biodegradable bottles • • http://www.cargilldow.com Vinacce Trattamento enzimatico Separazione solido sospeso Recupero estratto grezzo fenoli Formulazione di cibi fortificati Acqua riciclata Solido sospeso Refluo defenolato Concentrazione a membrana Purificazione e isolamento dei fenoli Trasformazioni chimiche ed enzimatiche Chimica Fine concentrato Biotrasformazione Biomasse proteiche Formulazione di mangimi animali Methanol economy O Polymers Oligomers O 2 / Ag E tO H Syngas Biomass + H Plastics 2O N2 NH 3 H 2O / R h/S e/T iO 2 Fisher-Tropsch CO + H2 CO2 Urea Esters Ethers -H 2O C H 2C H 2 aldehydes acids alcohols Surfactants C O / Ir/R u HC H O MeO H Gasoline C H 3C O 2H HZSM-5 Alkanes Pt / alumina CO, H 2 HCl Aromatics Alcohols MeC l C O 2H Polymers Paints Adhesives Chemical conversion One step chemical modification One step chemical modifications of components separated by physical methods Examples • • • • Cellulose and starch derivatives Glucose and fructose Glycerol Fatty acids Two or more steps chemical modification Examples • Ethylene from ethanol • Sorbitol and mannitol by hydrogenation of glucose and fructose • Vitamin C in several steps from glucose • Fatty alcohols and amines from triglycerides • Alkyl polyglucoside from glucose and fatty alcohol Industrial uses of sucrose Sugar cane/sugar beet Beet pulp Bagasse Molasses sucrose Fermentation feedstocks Polycondensate (starter) Sucrose derivative •Esters •Ethers •Acetals Glucose + fructose Building units (pharma) Surfactants Furan resins Industrial use of fatty acid Seed crushing and separation Surfactants in alternative to alkylbenzene sulphonates oil Lubricants in alternative to mineral oils High temperature hydrolysis Glycerol Solvents in alternative to chlorinated solvents Distillation Crude acid mix Crystallization Solvent extraction Supercritical extraction Fractional distillation Fatty acids Biodiesel • • Short chain alcohol usually employed methanol most common (NaOH soluble in MeOH) Catalyst used to improve yield (system loading 1 % w/w): – Basic catalyst most commonly used (e.g. sodium hydroxide) - lower ratio of glyceride to alcohol required (6:1). Supported guanidines have also been used successfully – Acidic catalyst can be used as well but higher ratio of glyceride to alcohol required (30:1) - however, system is water tolerant; wet substrate can be used – Enzyme catalysts have also been used require lower reaction temperatures. H2C COOR' HC COOR'' Catalyst + 3 ROH Alcohol and catalyst alcohol acid Alcohol steam condensate esters glycerine H2C OH R COOR' R COOR'' R COOR''' C COOR''' H2 Glyceride Oil Esters + HC OH C OH H2 Glycerol Microbial conversion Dear God: I pray on bended knee’s, That all my syntheses, Will never be inferior, To those conducted by bacteria Organic Chemists Prayer (unknown origin) • Fermentations • Biotransformation reactions Biocatalysis and genetic engineering of microbial metabolism provide a new approach for the generation of building block for chemical synthesis and for the production of consumer goods Fermentations Carbohydrates Plant-oils Methanol Some classical fermentation products… R-COOH R-OH acids alcohols Vit. B12 NH2-CR-COOH vitamins aminoacids … and some not so common products H3C COOH Natural carbon sources are used for production of biomass and for de novo synthesis of products * Hexanoic acid O H O n Bioplastics OH OH Catechol O Biotransformation reactions Carbohydrates Plant-oils Methanol Biotransformation processes can be used for production of numerous fine and specialty chemicals O HO OH Precursor molecules OH HO N OH N Natural carbon sources are used for the production of the biocatalyst and for the subsequent transformation of the reaction precursor into the desired product NH2 O COOH Cl COOH Polyhydroxyalkanoates (PHA’s) H3C * Plastic product Sugar solution Crop Sunlight H O O n O PHA Fermentation Biodegradation to CO2 and H2O Produzione di bio-idrogeno Basata sulla Modifica metabolismo di alghe (rinnovabile e privo di inquinamento) Sunlight H2 luce solare + alghe + acqua H2 Idrogeno + celle a combustibile o generatore a turbina = elettricità del Draths-Frost biotechnological synthesis O Ni-Al2O3 Co-O2 370-800 psi 120-140 psi benzene cyclohexane OH + HNO3 cyclohexanone cyclohexanol CO2H HO2C adipic acid OH OH O OH OH OH D-glucose CO2H E. coli E. coli CO2H Pt, H2 50 psi HO2C O OH OH 3-dehydroshikimate cis,cis-muconic acid Typical feed solution: In 1 litre of water 6 g Na2HPO4 10 g bacto tryptone 3 g KH2PO4 1 mg thiamine 5 g bacto yeast 1 g NH4Cl 10.5 g NaCl 10 g glucose (62 mmol) 0.12 g MgSO4 Yield = 20.4 mmol % Yield = 33 % Growing biomass • • • • • Land usage: CAP (Common Agricultural Policy) Fertilisers Pesticides/Herbicides Transportation/Infrastructure Reduced CO2??? THE FUTURE CHEMICAL INDUSTRY Present Past Future ?