Comments
Description
Transcript
17O(p,g)18F - Cyclotron Institute
Underground Measurement of the 17O+p Reactions Carpathian SSP12 David Scott On behalf of the LUNA collaboration • Astrophysical Motivation • The 17O(p,γ)18F Reaction: - Current Status - Present Investigation • Future direction: The 17O(p,α)14N Reaction Astrophysical Motivation • Site: Classical Novae (Cygni 1992) • • Significant source of 17O, 15N and 13C Reactions: 17O(p,γ)18F and 17O(p,α)14N 14N (p,α) 17O (p,γ) 18F (β+ν) I II CNO Cycle III 18O • • Annihilation 511 keV gamma-rays following β+ decay of 18F (t1/2=110 mins) Potential constraints on current novae models The 17O(p,γ)18F Reaction in Novae • Classical novae T=0.1-0.4 GK => EGamow = 100 – 260 keV • Resonant Contribution: 17O(p,γ)18F resonance at Ep = 193 keV Ex(keV) Ep= 193keV Gamow Peak 5789 17O+p 1080 937 18F • Also Non-resonant Contribution Previous Investigations (S-factor) LUNA • • • • • 1st investigation of the 17O(p,γ)18F reaction [Rolfs et al. Nuc. Phys. A217 29-70 (1973)] S-factor calculated , 1st meas. of 193 keV resonance [Fox et al. Phys. Rev. C 71, 055801 (2005)] Activation measurement [Chafa et al. Phys. Rev. C 75, 033810 (2007)] Ecm = 257 – 470 keV measurement [Newton et al. Phys. Rev. C 81, 045801 (2010)] Inverse kinematics at DRAGON [Hager et al. Phys. Rev. C 85, 035803 (2012)] Previous Investigations (Resonance) Ex(keV) Ep= 193keV 5789 17O+p 1080 937 18F ωγ193= (1.2±0.2)×10-6 eV [Fox et al. Phys. Rev. C 71, 055801 (2005)] ωγ193= (2.2±0.4)×10-6 eV [Chafa et al. Phys. Rev. C 75, 033810 (2007)] Clear discrepancy between measurements Aims of Our Investigation To Measure: • The total S-factor for the 17O(p,γ)18F reaction in the energy range important for Classical Novae. • The strength of the Ep=193 keV resonance. Measurements made using both prompt-gamma and activation techniques. The LUNA Accelerator at Gran Sasso ~1400 m Experimental setup • • 400 kV electrostatic accelerator Up to 400 keV protons with a maximum current ~400 μA • • 70% Enriched 17O targets on tantalum backings (prepared via anodization process) ~5cm of lead shielding surrounding detector Oxygen Enriched Targets Strong 18O resonance used to monitor target degradation Ex(keV) Ep = 151 keV 8137 Fresh Target 23C 10C 18O+p Eγ=4.2 MeV 3908 38C 19F also studied with SIMS and RBS measurements. On and Off Resonance Spectra Off-Resonance On-Resonance On-Resonance Off-Resonance New Transitions Observed Ex(keV) 5789 Ep= 193 keV Black = Previously Observed Blue = First Observation 17O+p 3839 3791 3358 3134 2523 2101 1080 1041 937 18F Coincidence Summing 2 3 Intensity 1 1 3 Including summing effects No summing effects 2 Energy • • Summing-in for 3 ∝ B1B2ε1ε2 summing-out for 1 ∝ B1B2ε1εT2 Simple decay cascade => summing effects generally small Results • Total reaction cross section measured between Ecm ≈ 200 – 370 keV measured leading to a five-fold reduction in reaction rate uncertainty. • Resonance Strength of Ep=193 keV resonance measured within an uncertainty of 8%. (~factor 2 higher accuracy). Results from activation and prompt-gamma measurements in good agreement. Analysis complete. Paper in preparation for publication. The 17O(p,α)14N Reaction 14N (p,γ) (p,α) 17O 18F (β+ν) I II III 18O 17O(p,α)14N reaction in competition with 17O(p,γ)18F The 17O(p,α)14N Reaction Previous Investigations: Ep = 193 keV resonance strength: Three independent measurements in fairly good agreement (1.6±0.2) x10-3 eV [Chafa et al PRC 75 (2007) 035810-1 – 15] (1.7±0.15 x10-3 eV [Moazen et al PRC 75 (2007) 065801-1 – 7] (1.66±0.17) x10-3 eV [Newton et al PRC 75 (2007) 055808-1 – 4] Ep = 70 keV resonance strength: Berheide et al ZPhys A 343 (1992) 483-487 Blackmon PRL 74 (1995) 2642-2645 Sergi et al PRC 82 (2010) 032801(R) Experimental Setup Target Beam Outer Al Dome Inner Cu Dome 8 Silicon Detectors, approximately 0.6π coverage (~15% efficiency) Approximately 2 counts/hour expected for 70 keV resonance. (assuming 100 μA beam current and 95% 17O enriched targets) First Spectra Acquired 18O Resonance Scan ~2.8 18O(p,α)15N MeV α Detector Calibration The Luna Collaboration A. Formicola, M. Junker Laboratori Nazionali del Gran Sasso, INFN, ASSERGI M. Anders, D. Bemmerer, Z. Elekes Forschungszentrum Dresden-Rossendorf, Germany C. Salvo INFN Genova & INFN Napoli, italy Di Leva INFN, Napoli, Italy C. Broggini, A. Caciolli, R. Depalo, R.Menegazzo, C. Rossi Alvarez INFN, Padova, Italy C. Gustavino INFN, Roma La Sapienza, Italy Zs. Fülöp, Gy. Gyurky, T. Szucs, E. Somorja Institute of Nuclear Research (ATOMKI), Debrecen, Hungary O. Straniero Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli Italy C. Rolfs, F. Strieder, H. P. Trautvetter Ruhr-Universität Bochum, Bochum, Germany F. Terrasi Seconda Università di Napoli, Caserta, and INFN, Napoli, Italy M. Aliotta, T. Davinson, D. A. Scott The University of Edinburgh, UK P. Corvisiero, P. Prati Università di Genova and INFN, Genova, Italy A. Guglielmetti, M. Campeggio, D. Trezzi, C. Bruno Università di Milano and INFN, Milano, Italy G. Imbriani, V. Roca Università di Napoli ''Federico II'', and INFN, Napoli, Italy G. Gervino Università di Torino and INFN, Torino, Italy