...

Bulk Magnetization of graphene

by user

on
Category: Documents
21

views

Report

Comments

Transcript

Bulk Magnetization of graphene
BULK MAGNETIZATION OF GRAPHENE
Tight binding approximation: the mobile
electrons are always located in the
proximity of an atom, and then are
conveniently described by the pz atomic
orbital of the atoms it touches.
𝑋 π‘Ÿ : normalized 2𝑝𝑧 wavefunction for
an isolated atom.
1 conduction electron for each C atom in
the 2𝑝𝑧 state.
Unit cell (WXYZ) contains 2 atoms
(𝐴 and 𝐡).
π‘Ž1 = π‘Ž2 = π‘Ž = 2.46 Å
(foundamental lattice displacement).
The base functions are periodical functions
with the same periodicity as the (2D) lattice.
k is a wave vector. It defines a reciprocal
lattice and acts as a kind of quantum number.
A. Barbon, Corso di Magnetochimica. A.A. 2013-14. Graphene
πœ“π‘˜ π‘Ÿ = πœ‘1 π‘Ÿ + πœ†πœ‘2 π‘Ÿ
πœ‘1 π‘Ÿ =
πœ‘2 π‘Ÿ =
𝐴
𝐡
𝑒 2πœ‹π‘–π’Œβˆ™π’“π‘¨ 𝑋 𝒓 βˆ’ 𝒓𝑨
𝑒 2πœ‹π‘–π’Œβˆ™π’“π‘© 𝑋 𝒓 βˆ’ 𝒓𝑩
Extended wave function
THE BAND THEORY OF GRAPHENE
Variational principle to obtain the best
value of 𝐸, by substituting the wavefunction
in the Schroedinger equation:
πœ“π‘˜ π‘Ÿ = πœ‘1 π‘Ÿ + πœ†πœ‘2 π‘Ÿ
𝐻 πœ‘1 + πœ†πœ‘2 = 𝐸 πœ‘1 + πœ†πœ‘2
By pre-multiplication by
πœ‘1 βˆ— or πœ‘2 βˆ— and integration
we have:
𝐻11 + πœ†π»12 = 𝐸𝑆
𝐻21 + πœ†π»22 = πœ†πΈπ‘†
𝐻𝑖𝑗 =
𝑆=
πœ‘π‘– βˆ— π‘Ÿ π»πœ‘π‘— π‘Ÿ π‘‘π‘Ÿ
πœ‘π‘– βˆ— π‘Ÿ πœ‘π‘– π‘Ÿ π‘‘π‘Ÿ = 𝑁
Number of
unit cells
𝐻11
𝐻21
𝐻12
1
1
βˆ™
= 𝐸𝑆 βˆ™ 𝐼2 βˆ™
𝐻22
πœ†
πœ†
𝐸
=
1
𝐻 /𝑁 + 𝐻22 /𝑁
2 11
We obtain:
𝐸 = 𝐻11 β€² ± 𝐻12 β€²
A. Barbon, Corso di Magnetochimica. A.A. 2013-14. Graphene
𝐻𝑖𝑗 β€² = 𝐻𝑖𝑗 /N
𝐸: interaction between an 𝐴 or 𝐡 atom with
itself
𝛾0 β€² : interaction between first neighbors of the
same type (𝐴 or 𝐡)
𝛾0 : interaction between first neighbors of
opposite type (𝐴 and 𝐡)
𝐸 = 𝐻11 β€² ± 𝐻12 β€²
𝐻11 β€²
=𝐸
βˆ’ 2𝛾0 β€² cos 2πœ‹π‘˜π‘¦ π‘Ž
Energy levels as function of ky (kx=0)
E
𝐸 βˆ’ 𝐸 β‰ˆ ±π›Ύ0 π‘ π‘žπ‘Ÿπ‘‘ 1 + 4 cos2 πœ‹π‘˜π‘¦ π‘Ž
kx=0
Zero
band-gap
ky
A. Barbon, Corso di Magnetochimica. A.A. 2013-14. Graphene
Calculation of the
density of states:
It is possible to show that the number of
electronic energy states per atom:
N° of free electrons plus positive holes per
atom:
∞
𝑁 𝐸
1
πœ–
=
𝐸 βˆ’ 𝐸𝑐 =
π‘π‘Ž
πœ‹ 3𝛾0 2
πœ‹ 3𝛾0 2
2
0
𝑁 𝐸
πœ‹ π‘˜π΅ 𝑇
𝑓 𝐸 𝑑𝐸 =
π‘π‘Ž
6 3 𝛾0
π‘π‘Ž : number of atoms in the lattice
N(E)
2
𝑓 𝐸 : Fermi distribution
At room temperature (π‘˜π΅ 𝑇 = 0.025 eV)
the effective number of free electrons
(𝑛𝑒𝑓𝑓 ), per atom, is 𝑛𝑒𝑓𝑓 = 2.3 βˆ™ 10βˆ’4
4
3.5
E
f(E)
3
f (E) ο€½
ο€½
x 10
2.5
1
exp[( E ο€­ Ec) / kT ]  1
2
1.5
1
0.5
Ec
0
E
A. Barbon, Corso di Magnetochimica. A.A. 2013-14. Graphene
0
50
100
150
Temperature [K]
200
250
300
Magnetic susceptivity:
πœ’0 = 𝑛𝑒𝑓𝑓 πœ‡π΅ 2 /π‘˜π΅ 𝑇 ∝ 𝑇
G. Wagoner, Phys. Rev., 118, 647 (1960).
A. Barbon, Corso di Magnetochimica. A.A. 2013-14. Graphene
Fly UP