2 Stratification for risk prediction and RD improved - Mito
by user
Comments
Transcript
2 Stratification for risk prediction and RD improved - Mito
Department of Experimental Oncology and Molecular Medicine Unit of Molecular Therapies XXV Riunione MITO Napoli 25 Giugno 2014 MITO2 miRNA microarray profile identifies a strong predictor of disease relapse in ovarian cancer 2 MITO2 miRNA profiling Aim: development of a prognostic model to predict disease early relapse Overall design - training set: 179 cases from MITO2 trial; OC179 - validation set1: 263 cases from INT-CRO series; OC263 - validation set2: 452 cases from TCGA data; OC452 Overall 894 EOC cases were analyzed: “the largest miRNA EOC data set so far available” Three different platforms used for profiling; Re-annotation of all detected miRNAs on miRBase21 385 unique miRNA shared among all studies 2 Patients’ clinical-pathological characteristics OC179 MITO2 N°(179) % Age, years mean, median range Histology Serous Undifferentiated Endometroid Mucinous Clear Cells Others + Mixed NA Stage (FIGO) I II III IV NA Grade border line 1, well differentiated 2, moderately differentiated 3, poorly differentiated Undifferentiated GX NA Amount of residual disease NED <1 cm, mRD >1 cm, GRD not operated NA Treatment carboplatin + paclitaxel carboplatin carboplatin + caelyx other NA Median follow up (months) OC263 N°(263) % 58, 59 28-78 TCGA N°(452) % 55, 56 25-85 58, 58 26-87 124 10 24 0 6 13 2 69 6 13 0 3 7 1 190 23 26 1 7 15 1 72 9 10 0 3 6 0 452 na na na na na na 100 17 15 123 24 9 8 69 13 16 9 212 26 6 3 81 10 11 27 350 63 1 2 6 77 14 1 0 5 27 126 10 0 11 0 3 15 70 6 0 6 3 7 51 177 23 0 2 1 3 19 67 9 0 1 1 5 55 382 0 8 1 1 1 12 84 0 2 73 42 53 11 0 41 23 30 6 0 76 85 101 0 1 29 32 39 0 0 102 208 100 0 42 23 46 22 0 9 78 na 101 na na 44 177 47 1 32 6 67 18 0 12 3 56 73 (IQR 60-88) 44 (IQR 24-71) 56 (IQR 25-86) 2 Patients’ clinical-pathological characteristics OC263 OC452 0.8 PFSPFS 0.4 40 60 80 0 100 20 time (months) events median 124 22.8 0.95CI 18-29 n events 263 195 80 100 120 0 median 16 0.95CI 13-21 40 60 80 0.95CI 15-18 1.0 median 17 0.8 0.2 0.0 100 Time (months) time (months) n 179 150 0.6 Surv Surv 0.0 20 100 n events 452 327 0.6 0.2 0.4 Surv Surv 0.4 0.2 0.0 0 50 time (months) Time (months) 0.8 1.0 0.8 0.6 Surv OS 60 1.0 n 179 40 time (months) Time (months) Time (months) 0.4 20 0.0 0.0 0.2 0.2 0.4 0.2 0.0 0 0.4 0.6 0.6 PFS PFS 0.6 PFS PFS 0.8 0.8 1.0 1.0 1.0 OC179 events median 0.95 CI 77 nyr 63-NA 0 50 100 150 time (months) Time (months) n events 263 105 median 60 0 50 100 time (months) 150 Time (months) 0.95CI 46-77 n events 452 223 median 49 0.95CI 45-52 2 miRNA-based classifier End point: disease recurrance Application of an algorithm that on the basis of time-to-progression and relative expression of the 385 miRNAs, classified MITO2 patients as high or low risk to relapse. After a 10-fold cross validation a model was developed containing 35 unique miRNAs whose expression, although with different relevance, significantly contributed to define the risk of relapse of MITO2 cohort. miRNAs (19) whose expression associated to poor prognosis miRNAs (16) whose expression associated to good prognosis Unique id hsa-miR-193a-5p hsa-miR-508-3p hsa-miR-509-5p hsa-miR-514a-3p hsa-miR-506-3p hsa-miR-507 hsa-miR-509-3p hsa-miR-592 hsa-miR-29c-5p hsa-miR-513b-5p hsa-miR-513a-5p hsa-miR-200c-3p hsa-miR-141-3p hsa-miR-200b-3p hsa-miR-423-5p hsa-miR-486-5p hsa-miR-200a-3p hsa-miR-23a-5p hsa-miR-330-3p hsa-miR-30b-3p hsa-miR-484 hsa-miR-769-5p hsa-miR-135b-5p hsa-miR-100-3p hsa-miR-99b-5p hsa-miR-143-5p hsa-miR-429 hsa-miR-151a-3p hsa-miR-574-5p hsa-miR-452-5p hsa-miR-29a-5p hsa-miR-195-3p hsa-miR-890 hsa-miR-30d-5p hsa-miR-193b-5p p-value % CV Support Hazard Ratio 0,0000177 100 1,977 0,0000311 100 0,747 0,0000474 100 0,684 0,0000478 100 0,811 0,0000507 100 0,635 0,0000572 100 0,588 0,0000713 100 0,783 0,0001548 100 0,255 0,0007134 100 1,595 0,0007233 100 0,817 0,0007357 100 0,766 0,0015449 100 0,793 0,0016807 100 0,819 0,0026893 100 0,786 0,002895 90 1,765 0,0029908 90 1,345 0,0031706 100 0,808 0,0052072 80 1,641 0,0060584 80 1,856 0,0064133 100 1,983 0,0078602 80 1,6 0,008215 70 1,762 0,008942 80 0,851 0,0089818 90 1,958 0,0093801 70 1,35 0,0095842 80 1,674 0,0122341 60 0,835 0,013404 60 1,363 0,0161045 50 1,283 0,0174535 60 1,276 0,0179111 50 1,765 0,0186502 40 1,629 0,0231142 40 0,085 0,0233194 40 1,253 0,0240755 60 1,506 2 OC179 – MITO2 patients’ stratification according to Residual disease 1.0 the molecular classifier 0.4 0.2 PFS PFS 0.6 0.8 OD SOD Log-rank P<1.001 0.0 Log-rank P<1.001 0 20 40 60 80 100 time (months) Time (months) n° high risk 89 low risk 90 events median 0.95Cl HR 72 18 15-22 1.85 52 38 24-nyr OD SOD n° events median 0.95Cl 115 71 34 24-54 64 53 15 12-18 HR 2.1 2 Stratification for risk prediction and RD improved prognosis of a patients’ subgroup 0.8 1.0 Stratification for risk prediction and RD improved prognosis of a patients’ subgroup and identified a subset of patients with favorable clinical prognostic marker and high risk of relapse 0.4 0.2 miRLr-SOD 26 miRHr-OD 51 miRHr-SOD 38 0.0 TTRPFS 0.6 n° events median 0.95Cl miRLr-OD 64 33 53 34-nyr 0 20 40 60 80 19 38 34 100 time (months) Time (months) High risk-OD includes 9 stage I-II patients defined NED at primary surgery 15 21 15 11-nyr 15-34 10-21 2 Molecular classifier validation on independent datasets OC452 TCGA OC263 – INT-CRO P=0.0045 P=1.33E-14 n events median 0.95CI HR high risk low risk miR=L 122 73 34 26-45 3.16 Sample size 141 122 miR=HPFS (months) 141 12 122 12 3410-13 Median n high events 0.95CI risk median low risk HR 1.39 miR=L size 169 283 115 19 17-27 Sample 169 miR=H PFS (months) 283 15.2 212 15 14-18 Median 18.7 HR= 0.356 HR= 0.72 95% CI = 0. 267 to 0.476 95% CI = 0. 58 to 0.899 Stratification for risk prediction and RD improved prognosis of a patients’ subgroup and identified a subset of patients with favorable clinical prognostic marker but high risk of relapse 1.0 2 59 62 46 27 13 10 42 18.5 11-15 7-12 34-62 10-26 High risk-OD includes 8 stage I-II patients, 7 defined NED at primary surgery 0.6 TTR 71 69 90 32 0.4 PFS n° events median 0.95Cl miRLr-OD 90 46 42 34-62 0.2 OC263 0.8 miRH_ OD miRH_ SOD miRL_ OD miRL_ SOD 0.0 miRLr-SOD 32 miRHr-OD 71 miRHr-SOD 69 0 20 40 60 time (months) 80 100 27 59 62 18 13 10 10-26 11-15 7-12 120 1.0 Time (months) 0.6 TTR n events median 188 134 15 66 61 15 122 75 21 34 31 14 0.95CI 13-18 12-18 18-27 12-19 High risk-OD includes 14 stage I-II patients, 11 defined NED at primary surgery 0.4 PFS 0.2 n° events median 0.95Cl miRLr-OD 122 75 21 18-27 miRLr-SOD 34 31 14 12-19 miRHr-OD 188 134 15 13-18 miRHr-SOD 66 61 10 12-18 0.0 OC452 0.8 miRH_OD miRH_SOD miRL_OD miRL_SOD 0 20 40 60 80 100 2 1.0 No interaction with treatment arm miR_treat 0.2 0.4 miR-Low risk miR-high risk 0.0 PFS PFS 0.6 0.8 L_PC L_PT H_PT H_PC 0 20 40 60 80 time (months) Time (months) 100 2 The miRNA molecular classifier is an independent prognostic marker Univariate analysis OC179 (n=168, events=116) OC263 (n=262, events=194 TCGA (n=409, events=300) Multivariable analysis HR (95%CI) 4.7 2.4-9.3 2.1 1.5-3 miRNA predictor High vs Low risk Stage 1.85 1.29-2.6 III-IV vs I-II 2.16 1.25-3.73 <0.001 2.16 0.009 Surgical debulking SOD vs OD 2.23 1.67-2.9 <0.001 1.53 0.006 3.16 2.3-4.3 <0.001 3.09 <0.001 1.68 1.01-2.78 0.04 1.79 1.04-3.08 0.03 1.37 1.07-1.75 0.012 1.27 0.99-1.63 0.059 1.39 1.1-1.74 0.004 1.41 1.11-1.79 0.005 Stage III-IV vs I-II Surgical debulking SOD vs OD miRNA predictor High vs Low risk Stage III-IV vs I-II Surgical debulking SOD vs OD miRNA predictor High vs Low risk P* <0.001 <0.001 <0.001 HR (95%CI) P* 3.7 1.8-7.5 1.46 1.01-2.1 0.043 1.48 1.03-2.1 0.036 <0.001 Covariates: Stage: III-IV vs. I-II Residual disease: >1cm vs. <1cm 35 miRNA model: above threshold cut-off vs. below threshold cut-off The miRNA molecular classifier is an independent prognostic marker also in HGSOC subgroup 2 MITO2 miRNA profiling: conclusions Punti di forza: prima meta-analisi di miRNAs su EOC EOC dataset al momento più numeroso (n=894; OC179 da MITO2; OC263 da INT-CRO; OC452 da TCGA) meta-analisi su diverse piattaforme analisi di sottotipi miRNA integrabili con espressione genica (RNAseq) per sviluppo di modelli predittivi di risposta OC263 –INT-CRO OC179 MITO2 OC452 –TGCA P=3.98E-14 P=0.000742 Cl1 Cl2 Cl3 Cl4 P=0.00228 Emendamento per RNAseq su MITO2 ed emendamento su MITO7 per validazione custom panel miRNA/Genes 2 MITO2 miRNA profiling: conclusions Punti critici: annotazioni diverse tra piattaforme con conseguente riduzione dei miRNA comuni alle piattaforme continuo aggiornamento miRBASE necessità di recuperare nuove casistiche indipendenti di validazione: MITO7, MITO16?? Ringraziamenti: Sandro Pignata, Danela Califano, Simona Losito, Gennaro Chiappetta, Massimo Di Maio, Franco Perrone................. Loris De Cecco, Marina Bagnoli, Silvana Canevari, Francesco Raspagliesi, Ketta Lorusso, Maria Luisa Carcangiu Giuseppe Toffoli, Erika Cecchin tutto il gruppo MITO 2 MITO2 miRNA profiling: future plans miRNA expression patterns on OC179 identified 4 robust and stable patients’ subtypes with different prognosis Consensus matrix OC179 MITO2 P=0.000742 Cl1 Cl2 Cl3 Cl4 miRNA subtype classifier maintained prognostic relevance in OC263 and TCGA case materials OC263 –INT-CRO OC452 –TGCA Strenght: possible integration with gene expression profile to predict response to therapy P=3.98E-14 P=0.00228