...

Presentation CONER 12 mm_completa_low

by user

on
Category: Documents
11

views

Report

Comments

Transcript

Presentation CONER 12 mm_completa_low
Confindustria Emilia-Romagna
“Low cost sorbent for reducing mercury emissions”
SOREME Project
12 month meeting
Pisa, 27 January 2014
Life+ 11 ENV/IT/109-SOREME
Role of Confindustria ER in SOREME
 CONER represents companies to test the SOREME sorbent at semi-industrial and industrial
level over different industrial cycles
 CONER is responsible for implementation of the following actions:
 Implementation actions (B)
 B.4 - Demonstration of the innovative project mercury sorbent at semi-industrial
level
 B.5 - Demonstration of the innovative project mercury sorbent at industrial level
 Monitoring of the impact of the project actions (C)
 C.4 – Feedback on SOREME mercury sorbent use
 C.5 - Demonstration of environmental-technical-socio-economic viability
 CONER is also involved :
 Communication and dissemination actions (D)
 Project management and monitoring of the project progress (E)
Role of Confindustria ER in SOREME: timetable
started
In running
Description of the work
Focus on demonstration of the SOREME sorbent at semi-industrial/indusrial level (action B.4-B.5)
Main activities and results:
 Survey and selection of Industries available to host the demonstration of SOREME sorbent ( with the involvement of
local industrial associations )  side effect: dissemination and promotional events!
 Identification of scenarios for demonstration and assessment of technological and regulatory issues.
 Identification of Industrial plans where to carry out the demonstration activities at semi industrial and industrial level
(gas emission) – tradeoff between complexity of industrial plans, regulatory issues, industry internal policy &
authorizations, available budget and timing.
 Identification of a specific external assistance (Klyma srl) to design customized demonstration facility (SOREME
DEMONSTRATION FACILITY) to be integrated within the specific industrial plan;
 Identification of sub-components providers (consumables) required to assembly the Soreme Demonstration Facility on
the base of “best value for money” and timing.
 Times required to complete B.4 – aprox. 5/6 wks … despite the delay the industrial demonstration is estimated to be
faster (A draft video has been prepared and will be integrated as activities move further on)
 Start regulatory assessment on technical-economic-enviromental viability (C.5 action)
 Preliminary feedback on mercury sorbent use (C.4 action)
Description of the work
Survey and selection of enterprises in Emilia Romagna Region available to
collaborate in the semi-industrial testing of SOREME sorbent.
Different types of enterprises operating in the field of waste management have been
identified:

Large size enterprises with large waste management plants

SMEs specialized in waste and energy management

SME specialized in water treatments

SMEs specialized in services in the field of eco-innovation

Laboratories and small companies in charge of certification and
environmental assessment
Description of the work
Scenarios for SOREME Demonstration and assessment of related problems
Main scenarios
 Gas treatment from combustion plants : Crematory, Urban Waste, Medical Waste
 Water treatment from waste water plants
Some constraints and limiting factors
 Heterogeneous scenario with highly customized industrial plans (not possible to define a
general purpose strategy which works equally good for all the scenario)
 Timing, available budget, regulation and internal authorization paths.
Strategy:
 The demonstration activities has required clearly-identified specific plan (with its own
specific technological and regulatory constrains).
 Focus the demonstration activities on the more significant scenarios (gas emissions) the
one with greater economic and environmental impacts but the one with more complexity
in terms of plan engineering and regulations  from here the other scenario will be
much more easy and chip!
Description of the work
SOREME Demonstration on
GAS EMISSIONS FROM COMBUSTION PLANTS
SMEs plants have been selected to carry out the semi-industrial tests.
-
-
Economic reasons. Large plants have to stop the daily activities with significant
important financial loss (order of magnitude of hundred-thousand €/h)
Time reasons. Large enterprises require longer internal procedure to release
authorizations to build up a pilot plant
Huge flows = Huge amount of sorbent
Uncertainty related to a clear qualification of SOREME sorbent.
Potential Technological incompatibility with existing plants/machineries.
Regulatory framework. Control of national and regional authorities (ARPA) on the
activities which may lie out of the officially authorized ones (HERA: public-private
partnership)
Security constraints.
- This inconvenience may be solved one the SOREME sorbent will be qualified (
potentially included in future activities, if some budget will be left)
SOREME Ecosystems (sites and suppliers)
Cervignano del Friuli
Bergamo
sites
(out of ER region)
Dissemination activities
Dissemination activities
Brescia
Foggia
Modena
Parma
Piacenza
Rimini
Spinea
Dissemination activities
Description of the plants
INCINERATION PLANTS – Modena
Click to see
Technical information and Design Constraints
 Fisical sizing of soreme sorbent: Two different SOREME Sorbents available (in Granular
vs Pellets) with different adsorption capability
 Industrial constraints – the semi-industrial and industrial demonstrations require a
well designed process to avoid to perturb the industrial plan during current operations.
 Process constraints
 Identify suitable places to interact with the industrial plan to manage the gas
emissions and respect the current regulations (enviromental and security
regulations)
 Gas emission temperture relativenly high
 Dusts with different sizing are present that may interfere with the demonstration
activities
 The emission flows after being taken from the plan for the demonstration activity
must be reintroduced in the plants to be subjected to well-regulated filtration
procedures
Technical information – Design Constraints
Physical Characteristics of the SOREME sorbent and design of filters
Granular SOREME Sorbent
 non homogeneous, with variable dimensions (from fine
1 mm up to 10 mm in size)
 The evaluation of the sorbent has allowed to carry out a
demonstration activities using
 a fixed bed filters
 controlled emission flow speed (low regime)
 precaution to avoid dragging fine dusts in the
sorbent itself and in the industrial plants.
 Firsts Feedback on usage
 It will be recommendable to carry out an analysis of the
particle size distribution as it influences the final
necessary amount of SOREME Sorbent and the related
evaluation of its efficiency
Technical information – Design Constraints
Physical Characteristics of the SOREME sorbent and design of filters
Granular SOREME Pellets
 produced using a blend of Sorbent (70%) and
bentonite (30%) and with a variable diameter of 4-6
mm and length of 5-25 mm.
 The specific weight is about 0,5 Kg/L.
Firsts Feedback on usage
 As the sorbent efficiency depends on the available
surfaces bentonite may prevent gas emission to
properly interact with the SOREME activated sorbent
reducing its efficiency.
General suggestions to improve SOREME sorbent
 For the preliminary evaluation SOREME sorbent both Pellets and Granular can be
treated under micronized process conditions to improve its efficiency
 Some preliminary contcact has been establised with LB-Technology (MO) which can
eventually improve the actual
The Soreme Demonstration Facility
Industrial gas flow pipeline (containing hot exhausts + powders)
Industrial
Treatment Stages
to satisfy
environmental
regulations on
emissions
(A draft video has been prepared and will be integrated as activities move further on)
The Soreme Demonstration Facility
The SOREME demonstration facility comprises 4 main treatment stages
Stage 4 – Adsorption
Stage 1 – pre-condition the hot emission
hot exhausts
+ powders
Stage 2 – Filtration
Stage 3 – pressurizing
Fresh air
The Soreme Demonstration Facility
The stage is made by
1. Control valves
2. Temperature and pression sensors
3. Flexible (special) pipelines to handle with hot exhaust
4. Flexible pipelines to handle air
5. Specially-designed Heat exchanger
6. Air Pump
High temperature
exhausts\powders
Fresh air
Low temperature exhausts
powders to the second stage
Hot air
First stage – precondition the hot emission
1. Capture and control a suitable amount of hot exhausts from the main gas pipeline
2. Pre-treat the heat gas to lower the temperature by an active heat exchanger
The Soreme Demonstration Facility
Second stage – Purification
1. Capture and control the particles dusts and powders
in the exhausts
2. A second lowering stage for temperature controls
The stage is made by
1. Control valves
2. Temperature and pression sensors
3. Flexible pipelines to handle pre treated emission
4. Specially-designed multiple – filtration systems
Exhausts from the 1st
stage containing
powders
The Soreme Demonstration Facility
Third and fourth stage – Presurizing/Adsorption
1. Control the interaction of Soreme Sorbent with
pre-treated gas emission
2. Control the gas pressure after the Sorbent-Gas
interaction 3. Re-insert the “soreme”-purified gas in the
industrial pipelines
2. To protect the industrial plan from unexpected accidents
The stage is made by
1.
2.
3.
4.
5.
6.
Control valves
Temperature and pression sensors
Flexible pipelines to handle pre treated emission
Specially-designed – pressurizing systems
SOREME specially-designed filter.
Protective stage
Exposure conditions – sizing the process
The flow rate of gas to be tested has been fixed around
20÷70 Nm3/hour, with aspiration system for exhausted
gases able to be tuned within the range also my means
on a by-pass discharge directed to the mainstream.
Technical information – Design Constraints
Adsorption Stage
On the basis of the SOREME physical
characteristics, a filter based on a fixed bed
system has been specially designed, using
ascending fluxes on the gas to be detected.
Physically, the system is composed by a
cylindrical matallic bulk body and an
internal cavity able to host interchangeable
drums, varying in diameter and length,
used to host SOREME sorbent (in all its
shapes) and arranged on the same support
within the filter.
The system has been designed in this way in
order to be a compromise between the
operating conditions during the industrial
demonstrations
Reconfigurable Soreme Filter
Pellets Soreme
Granular Soreme
Definition of the dimensions of the filter
 Dosage of sorbent has been determined on the basis of the results and outcome of
tests carried out in the CNR Laboratories in Pisa.
 The reference data is of 0.25g/Nm3, which is then correlated with the average value
available in literature (estimated as 0.324g/Nm3).
 Geometric dimensions and other parameters have been fixed according to the
availability of materials and devices in the market to be used in the construction of the
device, taking into account also: cost/benefits ratio, rapid availability and rapid
realization of the device.
 Flow surface has been fixed to 0.056m2, corresponding to a ring with the diameter of
0.266m
 The height of the filtering bed has been fixed to 1 m, in relation to the amount of
sorbent to be tested in the industrial phase (i.e. 0.056m3).
Timing & Conclusions
 Times required to complete B.4 – aprox. 5/6 wks … despite the delay the industrial
demonstration is estimated to be faster
 What is missing:
 The formal authorization of the industrial plan
 Most of the components are special parts, specially designed and customized according
to soreme sorbent specifications and usage sites
 Specialized suppliers ( most SMEs) and relatively expensive components and Specialized
system integrators.
 Once each parts will be available, a “calibration” phase is forseen before moving the
SOREME demonstrator facility to the Industrial Plan
 Trials will be done at semi-industrial and industrial levels accordingly with the results,
the timing and the budget availability
 After exposure the Soreme Demostrtors filters will be sent to CNR for analysis. For that
it is necessary to define and share a PROTOCOL.
 The tecnico-economic viability requires of soreme sorbent as viable product requires
also to face with some regulatory issues related to waste management and to byproduct valorization
Thank you for your attention
… contact
Danilo Mascolo
Chief Innovation & Technology Transfer Officer
Via Barberia 13
Bologna
Confindustria Emilia-Romagna
“Low cost sorbent for reducing mercury emissions “
SOREME Project
12 month meeting
Pisa, 27 January 2014
Life+ 11 ENV/IT/109-SOREME
La normativa sull’incremento e coincenerimento
di rifiuti

Oggetto di revisione nell’ambito del DLGS di recepimento della Direttiva 2010/75/UE
relativa alle emissioni industriali

Emissioni in area, acqua, suolo
Valori limiti

Metodi campionamento, analisi e valutazione inquinanti derivanti dagli impianti


Criteri e norme tecniche sulle caratteristiche costruttive e funzionali degli impianti
Definizione di impianti di incenerimento:
• qualsiasi unità e attrezzatura tecnica, fissa o mobile, destinata al trattamento termico di
rifiuti con o senza recupero del calore prodotto dalla combustione, attraverso
l’incenerimento mediante ossidazione dei rifiuti, nonché altri processi di trattamento
termico, quali ad esempio la pirolisi, la gassificazione ed il processo al plasma, a condizione
che le sostanze risultanti dal trattamento siano successivamente incenerite. Nella nozione di
impianto di incenerimento si intendono compresi: il sito e tutte le linee di incenerimento,
nonché i luoghi di ricezione dei rifiuti in ingresso allo stabilimento, i luoghi di stoccaggio, le
installazioni di pretrattamento in loco, i sistemi di alimentazione in rifiuti, in combustibile
ausiliario e in aria di combustione, le caldaie, le installazioni di trattamento o stoccaggio in
loco dei residui e delle acque reflue, i camini, i dispositivi ed i sistemi di controllo delle
operazioni di incenerimento, di registrazione e monitoraggio delle condizioni di
incenerimento. Se per il trattamento termico dei rifiuti sono utilizzati processi diversi
dall’ossidazione, quali ad esempio la pirolisi, la gassificazione o il processo al plasma,
l’impianto di incenerimento dei rifiuti include sia il processo di trattamento termico che il
successivo processo di incenerimento.
•
•
Processo termico  ossidazione
Processo di incremento  paralisi, gassificazione, processo al plasma
 Definizione di impianto di coincenerimento
Produzione di energia o materiali attraverso la combustione di rifiuti
•
qualsiasi unità tecnica, fissa o mobile, la cui funzione principale consiste nella produzione di
energia o di materiali e che utilizza rifiuti come combustibile normale o accessorio o in cui i rifiuti
sono sottoposti a trattamento termico ai fini dello smaltimento, mediante ossidazione dei rifiuti,
nonché altri processi di trattamento termico, quali ad esempio la pirolisi, la gassificazione ed il
processo al plasma, a condizione che le sostanze risultanti dal trattamento siano successivamente
incenerite. Nella nozione di impianto di coincenerimento si intendono compresi: il sito e l'intero
impianto, compresi le linee di coincenerimento, la ricezione dei rifiuti in ingresso allo stabilimento
e lo stoccaggio, le installazioni di pretrattamento in loco, i sistemi di alimentazione dei rifiuti, del
combustibile ausiliario e dell'aria di combustione, i generatori di calore, le apparecchiature di
trattamento, movimentazione e stoccaggio in loco delle acque reflue e dei rifiuti risultanti dal
processo di coincenerimento, le apparecchiature di trattamento degli effluenti gassosi, i camini, i
dispositivi ed i sistemi di controllo delle varie operazioni e di registrazione e monitoraggio delle
condizioni di coincenerimento. Se per il trattamento termico dei rifiuti sono utilizzati processi
diversi dall’ossidazione, quali ad esempio la pirolisi, la gassificazione o il processo al plasma,
l’impianto di coincenerimento dei rifiuti include sia il processo di trattamento termico che il
successivo processo di coincenerimento. Se il coincenerimento dei rifiuti avviene in modo che la
funzione principale dell'impianto non consista nella produzione di energia o di materiali, bensì nel
trattamento termico ai fini dello smaltimento dei rifiuti, l'impianto è considerato un impianto di
incenerimento.
 Definizione di camino  struttura con una o più canne di
scarico che fungono da condotto per la fuoriuscita del gas
prodotto
 Residui di lavorazione degli impianti
•
•
•
Scorie, ceneri pesanti, solidi di reazione derivanti dal trattamento del gas
Fanghi di risulta delle acque reflue
Catalizzatori esauriti; carbone attivo esaurito
SONO TUTTI RIFIUTI, ALCUNI ANCHE PERICOLOSI
 Impianti soggetti ad autorizzazione
•
•
Alcuni sono in IPPC (Integrated Pollution Prevention Control)-All. VIII parte
II p. 1.1, 5.2 D.Lgs 152/06 VERIFICARE
Altri sono sottoposti ad autorizzazione unica in materia di rifiuti 8Art. 208
D.Lgs 152/06)
CONTENUTI DELLA DOMANDA
 La domanda per autorizzazione deve contenere:
• Garanzie che l’impianto è costruito e gestito secondo le BAT ( Best
Availables Tecniques)
• Che il calore generato e recuperato per produzione di vapore o energia
CONTENUTI DELL’AUTORIZZAZIONE
 Elenco di tutti i rifiuti che si possono trattare nell’impianto e relative quantità
 Potenza termica dell’impianto
 Procedure e frequenze di comparamento per controllo delle emissioni nonché
punti di comparamento e localizzazione
 Modalità e termini dei controlli programmati effettuati dall’Autorità competente
 Se si tratta di incenerimento/coincenerimento di rifiuti pericolosi: flussi di massa
dei rifiuti pericolosi, loro valori calorifici, nonché info sulle loro caratteristiche
inquinanti (presenza di floro, cloro, metalli pesanti)
MODALITA’ GESTIONALI DEGLI IMPIANTI
 Utilizzo delle BAT per attrezzature di stoccaggio, pretrattamento,
movimentazione; occorre ottenere il più alto livello di incenerimento
 L’Autorità Competenete può sempre imporre prescrizioni particolari sitospecifiche
 E’ vietato il coincenerimento di oli contenuti PCB (policlorodifenili)/PCT
 Scarico o acque reflue
Se in IPPC  l’ente allo scarico deve contenere le caratteristiche quantitative e
qualitative dello scarico. Inoltre deve indicare i valori limite di scarico. Infine deve
contenre prescrizioni tecniche circa autocontrolli e punti di campionamento.
TUTTO IL REGIME AMMINISTRATIVO E AUTORIZZATORIO E’ SOGGETTO AL
DLGS 195/2005 SULLA TRASPARENZA E PUBBLICITA’ DEGLI ATTI
TUTTI GLI IMPIANTI ESISTENTI SI DEVONO ADEGUARE ENTRO IL 10
NOVEMBRE 2016
SANZIONI  ARRESTO FINO A 2 ANNI PER ESERCIZIO SENZA
AUTORIZZAZIONE
Thank you for your attention
… contact
Gianluca Rusconi
Legal and Lobby Officer
Via Barberia 13
Bologna
Technical information
Exposure conditions
Literature data reports a superficial velocity ranging between 0.1-0.5 m/sec for the abatement
of Hg in combustion fumes and contact times ranging between the wide interval of 0.1-60 sec.
The set up of superficial velocity interval will be subject to further investigation, nevertheless it
can be expected to be higher in case of test using powder sorbent and lower in case of test
using pellets, having the latter minor exposed surface.
In case of powder carbon, the limit in the velocity is given by the constraints represented by the
bed fluidification due to the presence of small particles, with the risk of obstruction of
detecting devices.
The same criteria have been driving the definition of hydraulic retention times, which resulted
to be relatively short for the powder sorbent and longer for the pellets.
The flow rate of gas to be tested has been fixed around 20÷70 Nm3/hour, with aspiration
system for exhausted gases able to be tuned within the range also my means on a by-pass
discharge directed to the mainstream.
Fly UP