Comments
Description
Transcript
Diapositiva 1
Antimatter (e+, Ps, H-bar) physics Laboratory Lea Di Noto Department of Physics –University of Trento INFN Research group Roberto S. Brusa S. Mariazzi ( assegnista cof. INFN) L. Di Noto (PhD) L. Penasa (tecnico l) M. Bettonte (tecnico nl) e+ - Ps Giancarlo Nebbia (INFN) detectors G. Ferrari (CNR) laser AEgIS (antimatter experiment :gravity interferometry spectroscopy) Goals: apple • Measurement of g on anti-hydrogen • Anti-hydrogen spectroscopy Methods: g earth – Produce an Hbar beam – Moirè deflectometer antimatter disappearance Motivations: • verify the Weak equivalence principle (WEP) • Verify the CPT anti-apple g? earth activities of Trento group AD SIDE Positron source e+ beam Ps spectroscopy Ps cooling & converter 1 3 2 Positron accumulator Transfer line 5 T - 4K trap p 1 T - 100 mK Anti-hydrogen production Moirè /31 4 Deflectometer AEgIS experiment in short 2 ns bunch 108 positronis (1 mm in diameter) Positron-cooled positronium converter Lasers for Ps excitation in Rydberg states Antiprotons 100 mK dx gT 2 a a Anti hydrogen beam Stark acceleration Moirè deflectometer 1. Pulsed positron beam 2. Positronium cooling & converter Ps temperature [K] Positron beam Ps Ps 8,0x10 3 6,0x10 3 4,0x10 3 2,0x10 3 a) 0,0 b) 100 10 Ps 0 5 10 15 20 25 30 Side a [nm] Ps 2 2 2 n m T E 3k B 3k B m a Ps Vacuum Positronium converter Mariazzi S, Salemi A and Brusa R S 2008 Phys. Rev. B 78 085428 2 BEAM Trento TOF Apparatus Prompt peak 16 ns 2 channeltrons target position 5 NaI scintillators zo Ps cooling – first result of Ps cooling Mariazzi S, Salemi A and Brusa R S 2008 Phys. Rev. B 78 085428 Mariazzi , Bettotti, Brusa, 2010 Phys. Rev. Lett. 104 243401 log(dN/dE) [arbitrary units] 7 KeV, T = 300 K 7 KeV, T = 200 K 7 KeV, T = 150 K T=305±10K T=1515±15K T=195±10K T=1425±25K T=145±10K T=1260±15K 0.0 0.1 0.2 0.3 o-Ps kinetic energy [eV] Permanence time of Ps in nano-channels before escaping into vacuum Ps energy spectra z0 tf tp <tm> = <tp> + <tf> tp = 18 ns with the TOF apparatus at the intense positron source NEPOMUC at the FRMII reactor Tunable nanochannels will allow to study: Cooling and thermalization at temperature < 150 K Cooling and thermalization in presence of decorated surfaces Relations between diffusion and tortuosity 3. Ps spectroscopy 3 AD SIDE Ps spectroscopy Positron source Positron accumulator Transfer line 5 T - 4K trap p 1 T - 100 mK Anti-hydrogen production /31 12 Moirè Deflectometer sample Detector ports Magnetic field terminator Buncher Valve Our simulation to transport positron bunch from accumulator to the target with duration of 5 ns and a spot of 3 mm diameter ! 3 Tilted CF16 Flange 45° Three tilted flange Planned experiments with Ps chamber FIRST GOAL: • Study of production efficiency of Ps in Rydberg state OTHER GOAL: • Rydberg state in presence of magnetic field • Motional stark effect • Ps laser cooling • Jump between different levels (microwave) METHOD: • Ps production and detection by PbF2 scintillator • Excitation up to n=3 • Excitation from n=3 to n>15 continuum high n ~0.75 eV ~1650 nm n=3 6.05 eV 205 nm n=1 Summary Our work is about: • Running AEgIS positron bunched beam • Ps production in AEgIS • Foundamental studies on Ps cooling (TOF at FRMII-Munich) • Development of a new apparatus for Ps spectroscopy measurements Preventivo 2013 3 k€ • Missioni estere 22 k€ + 8 k€ (sub iudice) •Materiale di consumo 4 k€ per materiale da vuoto •Impianti attrezzature 0 •Altre immobilizzazioni 22 k€ • Missioni interne -8 k€ per 5 switch -12 k€ per gruppo pompaggio (Turbo, scroll, ionica) -2 k€ per valvola