Comments
Description
Transcript
Document
27 Settembre 2013 XCIX Congresso SIF 2013 – Trieste G.M. Urciuoli, M. Battaglieri L’esperimento JLAB12 The Jefferson Laboratory and the Italian collaboration Physics (excerpt) • Nucleon Structure (Form Factor and Quark Distribution) • Parity Violation Experiments • Hypernuclei • Nuclear Structure Technological Developments • HD Polarized Target • Photon Tagger • RICH/Clas12 • GEM/SiD Trackers IFAE 2012 / Ferrara E. Cisbani / Experimental Physics at JLab 1 Thomas Jefferson National Laboratory • Newport News / Virginia / USA (3 ore da Washington DC) • DOE funding + Local Universities and Organizations • Director: H. E. Montgomery (ex-associate director for research al Fermilab) • 2000 International Users more than • Fundamental Research by electron accelerator on 3+1 experimental Halls • Applied research by FEL and other facilities • Web site: www.jlab.org 2 CEBAF accelerator • Linear Recirculating eAccelerator with superconductive cavities • Polarized beam • High current (200 mA) • Max. energy 6 GeV • 100% duty factor • Beam released simultaneously on three experimental Halls: A, B and C Arc Arc Injector A B C 3 Current Experimental Halls Hall A Hall B/CLAS Hall C Two High Momentum Resolution + one large angular acceptance spectrometers Dedicated neutron and gamma detectors Large acceptance High multiplicity reconstruction Six coils Toroidal field Two asymmetric spectrometers High momentum range and high resolution Dedicated detectors High beam currents (>100 mA), lumi 1037 cm-2 s-1 Tagged real photons beam High beam currents (>100 mA), lumi 1037 cm-2 s-1 3He NH3/ND3 Polarized long. target NH3/ND3 Polarized long. target, high flexibility unpol. from H to Pb Large and flexible installations 4p coverage Moderately large and flexible installations T/L Polarized target, high flexibility unpol. from H to Pb 4 CEBAF after 2013 add Hall D (and beam line) 6 GeV CEBAF (< 2013) Max Current: 200 mA Max Energy: 0.8 - 5.7 GeV Long. Polarization: 75-85% Upgrade magnets and power supplies CHL-2 12 GeV CEBAF (>2013) Max Current: 90 mA Max Energy Hall A,B,C: 10.9 GeV Max Energy Hall D: 12 GeV Long. Polarization: 75-85% 5 Experimental Halls after 2014 Hall A Hall B/CLAS12 + 1 large angular and momentum, high lumi spectrometer with hadron ID + Solid detector + Möller detector New beam line New ~2p toroid detector with extended hadron ID + lumi 1038 cm-2 s-1 + forward tagger for quasi-real photons + targets with large thickness + long/trans polarized H/D target hallaweb.jlab.org www.jlab.org/Hall-B Hall C + “super high” momentum spectrometer + dedicated equipment Hall D/GLUEX Excellent hermetic coverage, Solenoid field High multiplicity reconstruction 108 linearly polarized <12 GeV real photons/s www.jlab.org/Hall-C www.jlab.org/Hall-D www.gluex.org 6 JLab physics • Origin of quark and gluon confinement (B & D) – Gluonic excitations - existence and properties of exotic mesons (and baryons) – Heavy baryon and meson spectroscopy • Structure of the Hadrons (A,B and C) – Parton Distributions Functions (and Fragmentation Functions) – New view of nucleon structure via the Generalized Parton Distributions (GPDs) accessed in Exclusive Reactions – Form Factors - improve knowledge of charge and current in the nucleons; constraints on the GPDs – Quark propagation and hadron formation • Dynamics of the nucleons in the nuclei (A, B and C) – The Quark Structure of Nuclei (resolving the EMC effect) – The Short-Range Behavior of the N-N Interaction and its QCD Basis – Cold nuclear matter • Electroweak Interaction (A and C) – High Precision Tests of the Standard Model at low energies via Parity-Violating Electron Scattering Experiments – Measure nuclear properties by weak interaction 7 Esperimento INFN formalmente attivo dal 2009 per 7 anni, nasce dalla sinergia delle ex sigle AIACE + LEDA per sfruttare al meglio le opportunità sperimentali offerte dall’aggiornamento a 12 GeV Intensa attività sperimentale al JLab/6 GeV (prevalentemente in sala A e B) Forte coinvolgimento negli sviluppi legati al raddoppio di energia del fascio e aggiornamento degli apparati nelle sale sperimentali Sezioni INFN partecipanti (BA, CA, CT, GE, FE, ISS, LNF, PD, RM, RM2, TO): Ricercatori + Tecnologi: ~ 60 (41.2 FTE) 8 TMD’s latest results at JLab n - Collins small, largely compatible to 0; Sivers negative (?) for p+, zero for p- First ‘direct’ measurement on neutron Adapted from A. Puckett, JLab 2011 Collins Moment = h1 Collins FF Clean probe of relativistic effects Sivers Asymmetry = f1T TMD Unpol. FF Link to quark Orbital Angular Momentum Experimental limits: Modest statistics, integrated on the relevant kinematical variables (x,z,pT), no access to large x, valence region, no clean interpretation of the data. 9 TMDs @ JLab 12 GeV F D Hall B Hall A SBS/SOLID CLAS12 HALL C HMS+SHMS E12-09-017: p/k C12-11-102 p0 E12-06-112: p E12-09-008: k E12-07-107: p E12-09-009: k E12-11-107: p E12-09-018: p/k E12-10-006: p C12-11-111: p/k C12-11-108: p H2, NH3, D2, ND3 HD 3He NH3 H2, D2 Adapted from P. Rossi, JLab 2012 A Multi-Hall TMDs program - Large variety of targets - Different species of detected hadrons -High luminosity experiments - Extended phase space 1 0 Proton Form Factors e + p → e’ + p’ d 2 2 GEp GMp d Rosenbluth Separation: assume single photon approximation Prior to JLab, expectations were that Gep/GMp was fairly constant with Q2 e→ + p → e’ + p →’ m GEp GMp m Pt ( Ebeam Ee ) tan e Pl 2M p 2 Polarization transfer from the incident electron to the scattered proton At JLab, new class of experiments show GE/GMp decreasing linearly with Q2 New focus on nucleon structure and description of elastis scattering (two photon exchange); possible role of quark OAM 1 1 Electromagnetic Nucleon Form Factors @12GeV E-12-07-109: Polarization transfer E-12-09-019: Cross section ratio E-12-09-016: Double polarization Extended measurements of p/n form factors at high Q2 Test different models (including different contributions from the quark OAM) Investigate the transition region (perturbative / non perturbative) Constraint the H and E GPDs 1 2 Esperimenti di Violazione della Parità • Misura accurata della asimmetria nei processi elastici (e DIS) di elettroni polarizzati longitudinalmente su nucleone/nucleo non polarizzato 2 e + Z0 e • Accesso alle costanti di accoppiamento deboli elettroni-quark (u/d) delle correnti neutre, ovvero alla corrente debole del protone, ovvero all’angolo di mixing debole • Pone limiti su esistenza di nuova fisica (PVDIS, QWeak, Möller) • Ha permesso la misura del contributo dei quark s ai fattori di forma del nucleone (HAPPEX, G0) • Permette la misura di importanti grandezze nucleari soppressi nei processi elettromagnetici PREX 1 3 Lead (208Pb) Radius Experiment: PREX E = 850 MeV, =6° electrons on lead A neutron skin established at ~93 % CL Pins down the symmetry energy (1 parameter) Neutron Radius = RN = 5.78 + 0.15 - 0.17 fm Neutron Skin = RN - RP = 0.33 + 0.16 - 0.18 fm PREX-II Approved by PAC First direct measurement of the neutron skin (Aug 2011) 1 4 15 Future equipment for PaVi experiments at Jlab/Hall A SOLID (PV e- - q scattering + SIDIS) - PV e-quark - High precision TMD Parity Violation Physics to test the SM at low energy: require high luminosity and precise control of the systematics Hypernuclei at JLab Study -N Interaction potential Experimental requirements: - Excellent Energy Resolution - Detection at very forward angles (6°→septum magnets) - Excellent PId for kaon selection →RICH - High luminosity Experiment E94-107 Hypernuclear spectroscopy 9Be (e,e’k+) 9 Li reaction Λ Published Reactions Investigated: 9Be→9Li (3 spin doublets, information on Δ) Λ 12C→12B (evidence of excited core states → Λ sN contribution) 16O→16N (unmatched peak may indicate Λ large sΛ term) H →Λ,Σ0 (elementary process) Analisi dell’esperimento sulla produzione di ipernuclei a Jlab completamente in mano alla collaborazione italiana: - M. Iodice, F. Cusanno et al., Phys. Rev. Lett. 99, 052501 (2007) (ipernucleo 12ΛB) - F. Cusanno, G.M. Urciuoli et al., Phys Rev. Lett. 103 202501 (2009) (ipernucleo 16ΛN) - G.M. Urciuoli, F. Cusanno, S. Marrone et al. Sottomesso a PHYS REV C 16 RM1, ISS Thanks to energy resolution improvements a clear three peak structure appears in the excitation energy spectrum. Experiment E06-007 208Pb(e,e’p)207Tl and 209Bi(e,e’p)207Pb cross sections at true quasielastic kinematics (xB=1, q=1 GeV/c, ω=0.433 GeV/c ) and at both sides of q Never been done before for A>16 nucleus ★ ★ ★ RM1, ISS Determine the spectroscopic factors dependence with Q2 Long range correlations: not needed! Relativistic effect in nuclei: needed! Search for dark force: HPS in Hall-B 18 HPS Projected results -----------1 week 1.1 GeV -----------1 week 2.2 GeV Phase 1 expected 2014/15 Bump hunting Bump hunting + vertexing 3 months 2.2 GeV 3 months 6.6 GeV Phase 2 2015 or later 1 9 JLab12 12 GeV era / Equipment • HD Target, • Forward Tagger, • RICH, • High Lumi Tracker HD-ice: polarized frozen spin HD target Polarized target of high dilution factor, made of solid Deuterium-Hydride: Longitudinal and Transverse Polarizations: up to 75% H and 40% D Relaxation time: > 1 year Target cell Polarization procedure » 3 months Data taking: » months Wide acceptance INFN contribution: • Dilution Refrigerator • Contribution to the construction of the new InBeam Dilution Refrigerator Cryostat • Raman analysis of ortho-hydrogen and paradeuterium contents in HD gas • Magnetic Vari-Temp Cryostat for HD condensation and NMR polarization measurements Target Transfer Run with polarized deuterons from HDice & circularly polarized photons started on Dec. 2011: D polarization 27% Run with polarized deuterons from HDice & linearly polarized photons started on April 2012: D polarization 30% Test of HD-ice & electron beam performed in February: on-going analysis In-beam cryostat Comparison of signal over background ratio: HD versus conventional polarized target 2 1 The Forward Tagger for CLAS12 Forward Tagger CLAS12 e- * New system to detect electrons at small angle and perform quasi-real photo-production experiments ep Calorimeter Calorimeter electron energy/momentum Photon energy (ν=E-E') Polarization ε-1 ≈1 + ν2/2EE’ PbWO4 crystals with APD/SiPM readout Tracker HTCC Moller cup Scintillation Hodoscope veto for photons Scintillator tiles with WLS readout,… Tracker electron angles Polarization scattering plane MicroMegas detectors 22 Scintillation Hodoscope Moller Shield GEMC implementation 2 2 Adapted from M. Battaglieri, Genova 2012 RICH Conceptual Design Proximity Focusing RICH + Mirrors Aerogel + Planar mirrors Elliptical mirrors Photodetectors Goal: reduce the photon detection area of MA-PMTs H8500 to ~ 1m2/sector Elliptical and planar mirrors to focus the Cherenkov light of particles emitted at angles > 12° 8 R8900 -Test with hadron beam at CERN with a prelininary RICH prototype (summer 2011) 10 H8500 number of Np.e obtained for direct ring in consistent with simulations - Test with electron beam at LNF (july 2012) - test of full prototype with p/K beam at CERN (august 2012) 2 3 SBS Spectrometer in Hall A High luminosity ~1039/s/cm2 Moderate acceptance Forward angles Reconfigurable detectors High photons up to 250 MHz/cm2 and electrons 160 kHz/cm2 background Uva JLab INFN Rutgers U. College WM U. of Glasgow Norfolk State U. Carnegie Mellon U. U. of New Hampshire SiD 40x150 cm2 GEM Tracker 70 mm spatial resolution 2 4 Spare E C x DC R3 R2 R1 GeV/ c 1 p/K TOF p/p TOF K/p RICH HTCC 2 3 4 5 LTCC LTCC TOF 6 7 8 9 10 HTCC HTCC full pion / kaon / proton separation in 2–8 GeV/c range p/K separation of 4-5 @ 8 GeV/c for a rejection factor ~1000 Solenoid PCAL Torus Aerogel mandatory to separate hadrons in the 2-8 GeV/c momentum range collection of visible Cherenkov light use of MA-PMTs INSTITUTIONS ARGONNE NL INFN Bari, Ferrara, Genova, Frascati, Roma/ISS E. Cisbani / La Sperimentazione al JLab TOF SIF 2011 / L'Aquila RICH detector for CLAS12 GLASGOW U. JLAB Option under investigation: proximity focusing RICH + mirrors (innovative geometry) U. CONN UTFSM (Chile) 2 6 p/K p/p K/p e/p 2 3 TOF TOF TOF HTCC 4 5 6 LTCC RICH LTCC LTCC RICH 7 8 10 HTCC HTCC HTCC LTCC RICH LTCC EC/PCAL 4-5 p/K separation @ 8 GeV/c Aerogel mandatory to separate hadrons in the 2-8 GeV/c momentum range collection of visible Cherenkov light use of PMTs 9 E. Cisbani / Experimental Physics at JLab GeV/c 1 IFAE 2012 / Ferrara CLAS12 PID Challenging project, crucial to minimize Detector area Option under investigation: proximity focusing RICH + mirrors Adapted from P. Rossi, JLab 2012 2 7 SIF 2011 / L'Aquila E. Cisbani / La Sperimentazione al JLab New RICH geometry Adapted from L. Pappalardo Roma 2011 Aerogel Flat Mirror + Aerogel Active Photon Detector 2 8 RICH preliminary prototype 8 R8900 MA-PMTs Aerogel Electronics Maroc2 front end electronics developed for nuclear medicine • preamplifier, adjustable from 1/8 to 4 • ADC, about 80fC per channel 10 H8500 SIF 2011 / L'Aquila Hit distributions aerogel n=1.05 2cm 3cm aerogel n=1.03 Ebeam (GeV) Aerogel <d> (cm) <R(p)> cm t (cm) n 10 1 1.05 35.1 11.2 10 2 1.05 34.6 11.1 10 3 1.05 34.1 10.9 10 3 1.03 48.8 12.0 4 1 1.03 49.8 12.2 N.B. 1 and 2 cm means 2 or 3 blocks of 1 cm 3cm integrated distributions of hits above threshold E. Cisbani / La Sperimentazione al JLab 1cm 3 0 Photo-production is the ideal tool: • linearly polarized photon beam (NEW!) • large acceptance detector (CLAS12) Forward Tagger E’ 0.5-4.5 GeV n 7-10.5 GeV q 2.5-4.55 deg Q2 0.007 – 0.3 GeV2 W 3.6-4.5 GeV Photon Flux 5 x 107 /s @ Le=1035 E. Cisbani / La Sperimentazione al JLab The study of the light-quark meson spectrum and the search for exotic quark-gluon configurations is crucial to reach a deep understanding of QCD: • identify relevant degrees of freedom • understand the role of gluons and the origin of confinement Quasi-real photoproduction with CLAS12 (Low Q2 electron scattering) Forward Tagger CLAS12 e- γ* eAdapted from R. De Vita, Roma/2011 p Tracker Electron angle Hodoscope Photon veto Calorimeter SIF 2011 / L'Aquila Meson Spectroscopy in CLAS12 Electron Momentum/Energy 3 1 High Background Rate (up to): (low energy and e) 1 MHz/cm2 Drift NO MPGD Silicon MHz/mm2 MHz/mm2 High Resolution (down to): Achievable 70 mm 50 mm 30 mm Large Area: from 40×150 to 80×300 cm2 Doable Very Expensive … and modular: reuse in different geometrical configurations YES GEM E. Cisbani / La Sperimentazione al JLab System Requirements Tracking Technology SIF 2011 / L'Aquila Choice of the technology mMs Flexibility in readout geometry and lower spark rate 3 2 GEM foil: 50 mm Kapton + few mm copper on both sides with 70 mm holes, 140 mm pitch SIF 2011 / L'Aquila GEM working principle Ionization E. Cisbani / La Sperimentazione al JLab Multiplication Multiplication Multiplication Readout Strong electrostatic field in the GEM holes Recent technology: F. Sauli, Nucl. Instrum. Methods A386(1997)531 Readout independent from ionization and multiplication stages 3 3 GEp(5) SBS Front Tracker Geometry SIF 2011 / L'Aquila SBS Tracker GEM Chambers configuration E. Cisbani / La Sperimentazione al JLab x6 Modules are composed to form larger chambers with different sizes Electronics along the borders and behind the frame (at 90°) – cyan and blue in drawing Carbon fiber support frame around the chamber (cyan in drawing); dedicated to each chamber configuration X(4+4) Back Trackers Geometry 3 4 SIF 2011 / L'Aquila MonteCarlo + Digitazation + Tracking High + e background hits MHz/cm2 Bogdan Wojtsekhowski + Ole Hansen + Vahe Mamyan et al. (Signal is red) E. Cisbani / La Sperimentazione al JLab 6 GEM chambers with x/y readout Use multisamples (signal shape) for background filtering 3 5 SIF 2011 / L'Aquila Assembling the first 40x50 cm2 module Stretching E. Cisbani / La Sperimentazione al JLab Stretcher design from LNF / Bencivenni et al. Use stretching and spacers to keep foil flat Foil Tension: T = 2 kg/cm Spacer Sector: S = 170 cm2 Expected maximum pressure on foil P 10 N/m2 Maximum foil deformation: u 0.0074 * P * S / T = 6.4 mm Gluing the next frame with spacers 3 6 E. Cisbani / La Sperimentazione al JLab SIF 2011 / L'Aquila Beam test @ DESY / Full Module Size 40x50 cm2 3 7 GEM FEC MPD DAQ SIF 2011 / L'Aquila Electronics Readout (GEM and SiD) Up to 10m twisted, shielded copper cable (HDMI) 75 mm Passive backplane (optional) Main features: • Use analog readout APV25 chips (analog and time information) • 2 “active” components: Front-End card and VME64x custom module • Copper cables between front-end and VME • Optional backplane (user designed) acting as signal bus, electrical shielding, GND distributor and mechanical support E. Cisbani / La Sperimentazione al JLab 49.5 mm 2D Readout 8 mm 3 8 Chamber doublet Dipole Track E. Cisbani / La Sperimentazione al JLab SD (x/y) SIF 2011 / L'Aquila + Small Silicon Detector Angular Range 3 9 21 Set 2009 / CSN III JLab12 - E. Cisbani 39 6.5mm 5mm 10mm 8.5mm 8.5mm A 5mm B Disegno custom per JLAB12 da un wafer di 6” (152mm) D A B C 103500 10mm D C 4 0 Fan Out PCB E. Cisbani / La Sperimentazione al JLab 23 cm 41 SIF 2011 / L'Aquila fori di fissaggio 30 cm 4 1 Si Detector X X Form Factors X X Parity Violating Electron Scattering X TMDs, nucleon spin structure Meson Study HD Target RICH X X Forward Tagger X SIF 2011 / L'Aquila GEM Tracker Equipment Physics E. Cisbani / La Sperimentazione al JLab Equipment / Physics Matrix @ 12 GeV Intensa attività di sviluppo tecnologico per un esteso programma di fisica 4 2 The “ultimate” description of the nucleon 4 3 3D view of the nucleon Transverse Momentum Dependent (TMD) parton distribution and fragmentation functions • Describe correlations between the transverse momentum of quarks/gluons and spin • 3D picture of nucleon in momentum space Information on: nucleon spin origin, quark orbital angular momentum, relativistic effects in QCD, quark/gluon Q2 evolution, QCD gauge invariances ... Quark • Describe correlations between the transverse coordinates of quarks and spin • 3D picture of nucleon in mixed momentum and transverse space Adapted from P. Rossi, JLab 2012 Nucleon Generalized Parton Distribution functions (GPD) 4 4 Some TMDs projections e3He →e’p+/-X e p →e’K+/-X longitudinally polarized target E12-09-009 6 GeV data SBS: e3He →e’K+/- X(transverse target) E12-11-007 Adapted from P. Rossi. JLab 2012 E12-09-018 4 5 Luminosity (s·cm2)-1 Tracking Area (cm2) GMn - GEn up to 7·1037 GEp(5) SIDIS Resolution Angular (mrad) Vertex (mm) Momentum (%) 40x150 and 50x200 <1 <2 0.5% up to 8·1038 40x120, 50x200 and 80x300 <0.7 ~1.5 ~1 0.5% up to 2·1037 40x120, 40x150 and 50x200 Large Area ~ 0.5 ~1 <1% High Rates SIF 2011 / L'Aquila Experiments E. Cisbani / La Sperimentazione al JLab Different (e,e’h) experimental configurations Down to ~ 70 mm spatial resolution Maximum reusability: same trackers in different setups 4 6 Confinement Mechanism (hadronization and spectroscopy) 4 7 Hadronization of quarks How hadrons form in scattering processes ? Transverse momentum distributions in hadronization may be flavor dependent Employ nuclei as analyzers of hadronization processes, to probe: - The hadronization formation length (0-10 fm) - The time scale on which a qq pair becomes dressed with its own gluonic field Study the SIDIS reaction on nuclei; observables: H. Matevosyan et al., Phys. Rev. D85 (2012) 014021 - The hadronic multiplicity ratio - The transverse momentum broadening Adapted from P. Rossi, JLab 2012 4 8 Beyond the quark model: hybrids and exotics Quarks are confined inside colorless hadrons they combine to 'neutralize' color force q q q q q mesons baryons Other quark-gluon configuration can give colorless objects q q q q molecules q q q q q q pentaquarks glueball mesons q hybrid mesons QCD does not prohibit such states but not yet unambiguously observed 4 9 Adapted from M. Battaglieri, Genova 2012 QCD Lattice calculations Lattice-QCD predictions for the lowest exotics states: 0+- 1.9 GeV 1-+ 1.6 GeV Standard mesons Exotics Hybrid mesons and glueballs mass range 1.4 – 3.0 GeV ρ J.Dudek et al Phys.Rev.D82 (2010) 034508 This mass range is accessible in photoproduction experiments with a beam energy in the range 5 GeV < E <12 GeV Perfectly matched to JLab12 energy! Adapted from M. Battaglieri, Genova 2012 5 0 Meson spectroscopy with photons at JLab Search for mesons with 'exotic' quantum numbers (not compatible with quark-model) S=S1+S2 J= L+S L+S Not-allowed: P = (-1) L+1 C= (-1) JPC = 0-- , 0+- , 1-+ , 2+- ... Unambiguous experimental signature for the presence of gluonic degrees of freedom in the spectrum of mesonic states Normal meson: flux tube in ground state m=0 CP=(-1) S+1 Hybrid meson: flux tube in excited state m=1 CP=(-1) S Flux tube JPC 1-+ , 1+- Combine excited glue quantum number with those of the quarks 5 1 Adapted from M. Battaglieri, Genova 2012 Meson spectroscopy with photons at JLab-12 GeV • Determination of JPC of meson states requires PWA • Decay and production of exclusive reactions • Good acceptance, energy resolution, particle identification Hall-D - GlueX Detector • Good hermeticity • Uniform acceptance • Limited resolution • Limited pID • Good resolution • Good pID • Reasonable hermeticity • Un-uniform acceptance Adapted from M. Battaglieri, Genova 2012 Hall-B - CLAS12 Detector Forward Tagger 5 2