Comments
Description
Transcript
CO 2
Caffè Scientifico Sezione di Oceanografia ALGAL BIOMASS AND RENEWABLE ENERGY: CO2 EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE Federica Cerino gruppo MaB – Biologia Marina 27 maggio 2014 Energy-Environment 80% OF GLOBAL ENERGY DEMAND IS PRODUCED FROM FOSSIL FUEL [CO2] = from 326 ppm (1970) to 395 ppm (2013) Kyoto Protocol (1997) Doha Conference Horizon 2020: -20% CO2 +20% energy efficiency +20% renewable energy Biomass Organic material, animal or vegetal • Heat • Electricity • • • • • Biogas Bioethanol Biohydrogen Pure vegetal oil Biodiesel Biodiesel Mixture of fatty acyd alkyl esters, obtained from vegetable oils and animal fats TRANSESTERIFICATION triglycerides alcohol glycerol fatty acid alkyl esters ADVANTAGES: - closed carbon cycle - highly biodegradable - renewable - minimal toxicity - it can be used in existing diesel engines with little or no modification Biodiesel 1st generation (edible) • • • • • • corn sugar cane sunflower rapeseed soybeans palm oil 2nd generation (nonedible) • • • • • • • • • jatropha mahua jojoba oil tobacco seed salmon oil sea mango waste cooking oil restaurant grease animal fats 3th generation • microalgae Microalgae Microalgae are prokaryotic and eukaryotic photosynthetic organisms They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions They reproduce themselves using photosynthesis to convert sun energy into chemical energy They are responsible for about half of the global net primary production They have a high efficiency in the CO2 fixation It is estimated that more than 50,000 species exist, but only around 30,000 have been studied and analysed (Richmond, 2004) Microalgae Easy to cultivate Tolerate sub-optimal conditions High growth rates and productivity Require much less land area High oil content High oil yield Microalgae Plant source Seed oil content (% oil by WT in biomass) Oil yield (L oil/ha year) Land use (m2 year/kg biodiesel) Biodiesel productivity (kg biodiesel/ha year) Corn/Maize (Zea mays L.) 44 172 66 152 Hemp (Cannabis sativa L.) 33 363 31 321 Soybean (Glycine max L.) 18 636 18 562 Jatropha (Jatropha curcas L.) 28 741 15 656 Camelina (Camelina sativa L.) 42 915 12 809 Canola/Rapeseed (Brassica napus L.) 41 974 12 862 Sunflower (Helianthus annuus L.) 40 1070 11 946 Castor (Ricinus communis) 48 1307 9 1156 Palm oil (Elaeis guineensis) 36 5366 2 4747 Microalgae (low oil content) 30 58,700 0.2 51,927 Microalgae (medium oil content) 50 97,800 0.1 86,515 Microalgae (high oil content) 70 136,900 0.1 121,104 Mata et al., 2010 Microalgae - Biodiesel growth medium/nutrient concentration light temperature pH air/CO2 Mata et al., 2010 Microalgae - Biodiesel CRESCITA fatty acids (%) 40 30 20 10 0 control medium/2 medium/4 LIPID CONTENT mineral N/4 fatty acid composition (%) 100 BIOMASS 80 60 40 20 0 control medium/2 medium/4 saturated monounsaturated N/4 mineral polyunsaturated Aim To analyze the answers of two microalgae to different CO2 concentrations CELL GROWTH LIPID CONTENT Chlorella vulgaris Pleurochrysis cf. pseudoroscoffensis Material & Methods air gas mixer illumination pH controller CO2 • 2 cylindrical photobioreactors, in plexiglass • 20 L max volume • photoperiod controller • pH controller • gas-mixer Material & Methods Chlorella (green algae) Chlorophyceae • • Generally unicellular and colonial, but also pluricellular Abundant in freshwater environments Chlorella vulgaris • • Highly resistant Easily cultivable with a high growth rate Used for: • CO2 sequestration • Wastewater depuration • Nutritional supplement • Applications in human health Material & Methods air gas mixer illumination Chlorella (green algae) CO2 cellular growth • cell abundances • growth rate • duplication time • maximum concentration lipid content • total lipid content • fatty acid composition pH controller control CO2 1% T=20 ± 1°C L:D=12:12 light=250-300 µE m-2s-1 Results Chlorella (green algae) CO2 10 6 cells ml -1 C 45 40 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223 day Max= 36 · 106 cell ml-1 µ= 1.17 d-1 T2= 14 Max= 32 · 106 cell ml-1 µ= 1.38 d-1 T2= 12 Results Chlorella (green algae) fatty acids (%) 100 80 60 40 20 0 C CO2 100% fatty acid composition fatty acid composition 100% 80% 60% 40% 20% 0% C saturated monounsaturated CO2 polyunsaturated 80% 60% 40% 20% 0% C CO2 C16 C18 C20 C16:1 cis9 C18:1 cis9 C18:1n7 C18:2 cis9,12 C18:3 cis9,12,15 Material & Methods Pleurochrysis (coccolithophore) Coccolithophores (Prymnesiophyceae) • calcareous nanophytoplankton • with external calcite (CaCO3) plates (coccoliths) covering their surface Play key roles in: • marine ecosystem as primary producers • marine biogeochemistry as producers of organic carbon, carbonate and dimethylsulphide Pleurochrysis cf. pseudoroscoffensis • marine species isolated in the Gulf of Trieste 10 µm 5 µm Material & Methods air gas mixer illumination Pleurochrysis (coccolithophore) CO2 cellular growth • cell abundances • growth rate • duplication time • maximum concentration lipid content • total lipid content • fatty acid composition morphometric analysis pH controller • cellular size • coccolith size chemical parameters control CO2 1% CO2 2% • nutrients • POC/PIC/PTN • pH Results Pleurochrysis (coccolithophore) 500 400 400 -1 500 300 200 p <0.05 100 0 0 1 2 3 4 5 day 6 7 8 9 CO2 2% pH= 8.1 ± 0.4 3 3 pH= 7.5 ± 0.2 10 cells ml -1 pH= 8.4 ± 0.3 10 cells ml CO2 C CO2 1% pH= 7.1 ± 0.1 300 200 100 0 0 1 2 3 4 5 day 6 7 8 9 Max= 2.86 · 105 cell ml-1 Max= 4.32 · 105 cell ml-1 µ= 0.86 d-1 µ= 1.01 d-1 T2= 19 T2= 16 Max= 2.71 · 105 cell ml-1 Max= 3.85 · 105 cell ml-1 µ= 0.82 d-1 µ= 1.06 d-1 T2= 20 T2= 16 Results 3500 -1 PTN (µmol l ) 2500 2000 1500 2500 2000 1500 1000 1000 500 500 0 3500 0 3500 3000 3000 -1 2500 2000 1500 2500 2000 1500 500 500 0 14000 0 14000 12000 12000 -1 POC (µmol l ) 1000 10000 8000 6000 4000 10000 8000 6000 4000 2000 0 CO2 2% 3000 1000 POC (µmol l ) -1 3000 Pleurochrysis (coccolithophore) 3500 PIC (µmol l ) -1 PIC (µmol l ) -1 PTN (µmol l ) CO2 1% CO2 C 2000 0 1 2 3 4 5 day 6 7 8 9 0 0 1 2 3 4 5 day 6 7 8 9 Results Pleurochrysis (coccolithophore) CO2 1% CO2 C 14 14 C A1 C A2 CO2 A1 CO2 A2 10 8 6 4 0 9d 3.0 3.0 CL CW CO2 L 2.0 1.5 1.0 0.5 5h CL CO2 W coccolith size (µm) 2.5 3d 7d 4 0 8d CO2 A2 6 0 3d day CO2 A1 8 2 5h C A2 10 2 0 C A1 12 cell size (µm) cell size (µm) 12 coccolith size (µm) CO2 2% CW day CO2 L 2.5 2.0 1.5 1.0 0.5 0.0 0.0 3d day 9d 2d 6d day CO2 W Results Pleurochrysis (coccolithophore) CO2 1% 10 µm C 10 µm CO2 2% CO2 10 µm 10 µm Results Pleurochrysis (coccolithophore) CO2 1% CO2 2% 20 total lipid content (%) total lipid content (%) 20 15 10 5 15 10 0 0 C CO2 1% 100 90 80 70 60 50 40 30 20 10 0 C fatty acid composition (%) fatty acid composition (%) 5 C saturated C16 100 90 80 70 60 50 40 30 20 10 0 CO2 1% monounsaturated C17 polyunsaturated C18 CO2 2% C saturated C16 CO2 1% monounsaturated C17 polyunsaturated C18 C20 C22 C24 C20 C22 C24 C16:1 cis9 C18:1 cis9 C20:1 w 9 C16:1 cis9 C18:1 cis9 C20:1 w 9 C22:1 w 9 C18:2 cis9,12 C18:3 cis 9,12,15 C22:1 w 9 C18:2 cis9,12 C18:3 cis 9,12,15 Conclusions Chlorella (green algae) • higher growth rate • higher number of divisions per day • higher lipid content Potential utilization in biodiesel production Pleurochrysis (coccolithophore) In both experiments (1 and 2% CO2): • • • • biomass increase higher growth rate higher number of division per day slight effect on morphology In the experiment with CO2 2%, the maximum of biomass was reached earlier Potential utilization in CO2 removal Perspectives • To test other species and strains • To search for the best growth conditions to have higher lipid synthesis and higher cell growth • To test the effects of other culture conditions (light, salinity, nutrients, temperature) • To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production Perspectives wastewater Biodiesel light CO2 Lipids Cosmetic nutrients Animal feed HARVESTING PROCESSING Proteins Nutritional supplement Ethanol BIOREFINERY Carbohydrates THANK YOU Si ringraziano per la collaborazione: - Cinzia Comici - Martina Kralj - Gianmarco Ingrosso - Ana Karuza - Cinzia Fabbro - Cinzia De Vittor - Michele Giani - Prof. Bogoni, UNITS - Prof. Procida, UNITS - Dott. Urbani, UNITS Parte di questo studio è inserito nel progetto CO2 Monitor Results Pleurochrysis (coccolithophore) CO2 C CO2 1% 800 800 600 400 200 P-PO 4 (µmol L ) 0 1 2 3 4 5 day 600 400 200 0 6 7 8 9 50 50 40 40 P-PO 4 (µmol L-1) -1 0 -1 N-NO3 (µmol L -1) 1000 N-NO3 (µmol L ) 1000 30 20 10 0 0 1 2 3 4 5 day 6 7 8 9 CO2 2% 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 day 30 20 10 0 0 1 2 3 4 day Perspectives la produzione di biodiesel da microalghe non è ancora una realtà commercialmente significativa abbattimento dei costi relativi alla somministrazione di nutrienti, tramite il trattamento delle acque reflue e l’utilizzo dei nutrienti in esse presenti abbattimento dei costi relativi alla somministrazione di CO2, tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi miglioramento delle tecniche per il processamento della biomassa, soprattutto per quanto riguarda la fase di raccolta applicazione di tecniche di ingegneria genetica per incrementare l’efficienza fotosintetica e quindi il rendimento della biomassa, il miglioramento del tasso di crescita, del contenuto in olio, e della tolleranza alla temperatura risoluzione del problema dell’applicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up); allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilità economica