Photonic-Crystal Fibers Photonic Crystals: Periodic Surprises in Electromagnetism A Long and Winding Road
by user
Comments
Transcript
Photonic-Crystal Fibers Photonic Crystals: Periodic Surprises in Electromagnetism A Long and Winding Road
Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT A Long and Winding Road Photonic-Crystal Fibers 1/31/02 INSPEC literature search: 14810 hits 458604 hits 87652 hits Bloch’s theorem is more important than Maxwell’s equations ;^) Optical Fibers Today (not to scale) losses ~ 0.2 dB/km more complex profiles to tune dispersion “high” index doped-silica core n ~ 1.46 silica cladding n ~ 1.45 (amplifiers every 50–100km) “LP01” confined mode field diameter ~ 8µm protective polymer sheath [ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ] but this is ~ as good as it gets… The Glass Ceiling: Limits of Silica Loss: amplifiers every 50–100km …limited by Rayleigh scattering (molecular entropy) …cannot use “exotic” wavelengths like 10.6µm Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits (limited by mode area ~ single-mode, bending loss) also cannot be made (very) large for compact nonlinear devices Radical modifications to dispersion, polarization effects? …tunability is limited by low index contrast Long Distances High Bit-Rates Compact Devices Dense Wavelength Multiplexing (DWDM) Breaking the Glass Ceiling: Hollow-core Bandgap Fibers Bragg fiber 1000x better loss/nonlinear limits [ Yeh et al., 1978 ] (from density) 1d crystal + omnidirectional = OmniGuides 2d crystal Photonic Crystal (You can also put stuff in here …) PCF [ Knight et al., 1998 ] Breaking the Glass Ceiling: Hollow-core Bandgap Fibers Bragg fiber [ Yeh et al., 1978 ] [ figs courtesy Y. Fink et al., MIT ] white/grey = chalco/polymer + omnidirectional = OmniGuides silica [ R. F. Cregan et al., Science 285, 1537 (1999) ] 5µm PCF [ Knight et al., 1998 ] Breaking the Glass Ceiling: Hollow-core Bandgap Fibers Guiding @ 10.6µm [ figs courtesy Y. Fink et al., MIT ] (high-power CO2 lasers) loss < 1 dB/m white/grey = chalco/polymer (material loss ~ 104 dB/m) [ Temelkuran et al., Nature 420, 650 (2002) ] silica [ R. F. Cregan et al., Science 285, 1537 (1999) ] 5µm Guiding @ 1.55µm loss ~ 13dB/km [ Smith, et al., Nature 424, 657 (2003) ] OFC 2004: 1.7dB/km BlazePhotonics Breaking the Glass Ceiling II: Solid-core Holey Fibers solid core holey cladding forms effective low-index material Can have much higher contrast than doped silica… strong confinement = enhanced nonlinearities, birefringence, … [ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ] Breaking the Glass Ceiling II: Solid-core Holey Fibers endlessly single-mode [ T. A. Birks et al., Opt. Lett. 22, 961 (1997) ] polarization -maintaining [ K. Suzuki, Opt. Express 9, 676 (2001) ] nonlinear fibers [ Wadsworth et al., JOSA B 19, 2148 (2002) ] low-contrast linear fiber (large area) [ J. C. Knight et al., Elec. Lett. 34, 1347 (1998) ] Omnidirectional Bragg Mirrors a 1d crystal can reflect light from all angles and polarizations [ Winn, Fink et al. (1998) ] …it behaves like a metal (but at any wavelength) perfect metal OmniGuide Fibers omnidirectional mirrors c.f. Photonic Bandgap Fibers & Devices Group @ MIT (also a Cambridge MA start-up: www.omni-guide.com) [ S. G. Johnson et al., Opt. Express 9, 748 (2001) ] Hollow Metal Waveguides, Reborn G are Qraphics uickTim needed e™ decom toand see pressor athis picture. G are Qraphics uickTim needed decom e™ toand see pressor athis picture. metal waveguide modes OmniGuide fiber gaps frequency w G are Qraphics uickTim needed decom e™ toand see pressor athis picture. 1970’s microwave tubes @ Bell Labs wavenumber b wavenumber b Hollow Metal Waveguides, Reborn G are Qraphics uickTim needed e™ decom toand see pressor athis picture. G are Qraphics uickTim needed decom e™ toand see pressor athis picture. metal waveguide modes OmniGuide fiber modes frequency w G are Qraphics uickTim needed decom e™ toand see pressor athis picture. 1970’s microwave tubes @ Bell Labs wavenumber b wavenumber b modes are directly analogous to those in hollow metal waveguide An Old Friend: the TE01 mode lowest-loss mode, just as in metal E (near) node at interface = strong confinement = low losses from metal: optimal R ~ 10l R Here, use R=13µm for l=1.55µm … n=4.6/1.6 (any omnidirectional is similar) TE01 vs. PMD non-degenerate mode, so cannot be split i.e. immune to birefringence i.e. PMD is zero E Let’s Get Quantitative …but what about the cladding? Gas can have low loss & nonlinearity …some field penetrates! & may need to use very “bad” material to get high index contrast Let’s Get Quantitative Absorption (& Rayleigh Scattering) = small imaginary De Nonlinearity = small De ~ |E|2 Acircularity, bending, roughness, … = small perturbations Hard to compute directly … use Perturbation Theory Perturbation Theory Given solution for ideal system compute approximate effect of small changes …solves hard problems starting with easy problems & provides (semi) analytical insight Perturbation Theory for Hermitian eigenproblems Oˆ u u u Du & D u for small DOˆ given eigenvectors/values: …find change Solution: DOˆ (1) (2 ) Du 0 Du Du expand as power series in Du (1) u DOˆ u uu (1) & D u 0 D u (first-order is usually enough) Perturbation Theory for electromagnetism Dw ˆ H c H D 2w H H 2 (1) w De E 2 2 e E Db (1) Dw / vg (1) 2 …e.g. absorption gives imaginary Dw = decay! dw vg db Suppressing Cladding Losses G are Qraphics uickTim needed e™ decom toand see pressor athis picture. G are Qraphics uickTim needed decom e™ toand see pressor athis picture. G are Qraphics uickTim needed e™ decom toand see pressor athis picture. -2 1x1 0 G are Qraphics uickTim needed decom e™ toand see pressor athis picture. Bu lk C l add i ngLoss es: ModeLoss es 11 EH -3 / 1x1 0 La r ge G are Qraphics uickTim needed e™ decom toand see pressor athis picture. dif er e nt ialoss TE str ong ly su ppr e ssed 01 claddin g los -4 ! 1x1 0 TE 01 ( like oh m iclosse s) 1x1 0 -5 1.2 1.6 2 l (µm ) 2.4 2.8 G are Qraphics uickTim needed decom e™ toand see pressor athis picture. Suppressing Cladding Nonlinearity G are Qraphics uickTim needed decom e™ toand see pressor athis picture. * G are Qraphics uickTim needed decom e™ toand see pressor athis pictur -6 1x1 0 Cladding N onl ineari t y: ModeNonli nea ri t y / 1x1 0 Wil be -7 are G Qraphics uickTim needed decom e™ toand see pressor athis picture. do m ina t edby no nlinea r it yof a ir TE 01 -8 ~1 0, 00 0 t imesweaker 1x1 0 no nlinea r it yt hansilica (including factor of 10 in area) 1x1 0 * “nonlinearity” = Db(1) / P -9 1.2 1.6 2 l (µm ) 2.4 2.8 G are Qraphics uickTim needed e™ decom toand see pressor athis picture. Absorption & Nonlinearity Scaling G are Qraphics uickTim needed decom e™ toand see pressor athis picture. -2 1x10 -3 J J 1x10 J J J 3 G are Qraphics uickTim needed e™ decom toand see pressor athis picture. cla dding absorpt i o n ~1/ R J J -4 1x10 J J J J J J J J J J J J J J JJJ ( li ke m eta l o hm ic l o ss! ) -5 1x10 B -6 1x10 -7 B B B B B B B B B B B B BB BB BB BB BB B cla dding n onl ineari t y~ 1/R 1x10 -8 1x10 -9 1x10 3 core radius (µm) 10 13 5 G are Qraphics uickTim needed decom e™ toand see pressor athis picture. Radiation Leakage Loss (17 layers) G Qre raphics uickTim needed decom e™ toand see pressor athis picture. 5 1x10 4 leakage loss (dB/km) 1x10 mo desar e“l ea ky” 3 1x10 Finite #layers: 1x10 loss dec r eas es 2Qraphics are G uickTim needed e™ decom toand see pressor athis picture. 1 1x10 exp onen t ialy wit hnumber of layers 0 1x10 -1 1x10 3 ( ~1/ R -2 ) 1x10 -3 1x10 1x10 -4 1.2 1.6 2 l (µm ) 2.4 2.8 ther Losses Acircularity & Bending main effect is coupling to lossier modes, but can be ~ 0.01 dB/km with enough (~50) layers tricky Surface Roughness suppressed like absorption Acircularity & Perturbation Theory (or any shifting-boundary problem) De = e1 – e2 e2 e1 De = e2 – e1 … just plug De’s into perturbation formulas? FAILS for high index contrast! beware field discontinuity… fortunately, a simple correction exists [ S. G. Johnson et al., PRE 65, 066611 (2002) ] Acircularity & Perturbation Theory (or any shifting-boundary problem) De = e1 – e2 e2 De = e2 – e1 e1 (continuous field components) Dh Dw (1) w surf. 2 1 2 2 Dh De E|| D D e eE 2 [ S. G. Johnson et al., PRE 65, 066611 (2002) ] Yes, but how do you make it? [ figs courtesy Y. Fink et al., MIT ] 1 find compatible materials 3 (many new possibilities) 2 Make pre-form (“scale model”) chalcogenide glass, n ~ 2.8 + polymer (or oxide), n ~ 1.5 fiber drawing Fiber Draw Tower @ MIT building 13, constructed 2000–2001 ~6 meter (20 feet) research tower [ figs courtesy Y. Fink et al., MIT ] A Drawn Bandgap Fiber [ figs courtesy Y. Fink et al., MIT ] • Photonic crystal structural uniformity, adhesion, physical durability through large temperature excursions white/grey = chalco/polymer Band Gap Guidance Wavevector Transmission window can be shifted by scaling (different draw speed) original (blue) & shifted (red) transmission: Transmission (arb. u.) 1.2 0.8 0.4 0.0 10000 [ figs courtesy Y. Fink et al., MIT ] 8000 6000 4000 -1 Wavenumber (cm ) 2000 High-Power Transmission at 10.6µm (no previous dielectric waveguide) Polymer losses @10.6µm ~ 50,000dB/m… …waveguide losses ~ 1dB/m Log. of Trans. (arb. u.) -3.0 Transmission (arb. u.) 8 6 4 -3.5 [ B. Temelkuran et al., Nature 420, 650 (2002) ] -4.0 slope = -0.95 dB/m R2 = 0.99 -4.5 2.5 3.0 3.5 Length (meters) 4.0 2 cool movie 0 5 5 6 6 7 7 8 8 9 9 10 10 10 11 11 11 12 12 12 Wavelength(m) (m) Wavelength [ figs courtesy Y. Fink et al., MIT ] Enough about MIT already… 2d-periodic Photonic-Crystal Fibers [R. F. Cregan et al., Science 285, 1537 (1999) ] G are Qraphics uickTim needed decom e™ toand see pressor athis picture. air holes Not guided via 2d TE bandgap: a 0.6 EEJ J J J J J J EE E E E JE J JEJEJ JEE J JEE J JJ E J E J E J J J J J E J E E JJ J E E J E E J E JJ 0.5 J J J J J J J J J EEEEEE J JJJJJ JJ JJ J J J JJJJ JJJ J 0.4 J J J J JJJ J JJ JJ JJ J JJ JJ 0.3 EE J J JEJEJEJEJEE E JE J J J EEE J J J J EE EJ J J J J J J J J J EJ JE EJ 0.2 JE EJ JE EJ JE J TMbands E J 0.1 J E E J TEbands J E E J J J J E 0E M K silica (usually) b wavenumber breaks mirror plane, so no pure TE/TM polarizations PCF: Holey Silica Cladding r = 0.1a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.17717a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.22973a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.30912a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.34197a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.37193a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.4a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding r = 0.42557a w (2πc/a) light cone b (2π/a) 2r n=1.46 a PCF: Holey Silica Cladding n=1.46 2r a r = 0.45a light cone w (2πc/a) gap-guided modes go here index-guided modes go here b (2π/a) PCF: Holey Silica Cladding r = 0.45a light cone 2r n=1.46 a above air line: w (2πc/a) guiding in air core is possible [ figs: West et al, Opt. Express 12 (8), 1485 (2004) ] b (2π/a) below air line: surface states of air core PCF Projected Bands [ J. Broeng et al., Opt. Lett. 25, 96 (2000) ] w (2πc/a) 2.4 2.0 band gap “fingers” appear! 1.6 1.2 0.8 1.11 1.27 bulk crystal continuum 1.43 1.59 1.75 1.91 b (2π/a) 2.07 2.23 2.39 PCF Guided Mode(s) [ J. Broeng et al., Opt. Lett. 25, 96 (2000) ] 2.4 fundamental & 2nd order w (2πc/a) guided modes 2.0 fundamental air-guided mode 1.6 1.2 0.8 1.11 1.27 bulk crystal continuum 1.43 1.59 1.75 1.91 b (2π/a) 2.07 2.23 2.39 Experimental Air-guiding PCF Fabrication (e.g.) silica glass tube (cm’s) (outer cladding) ~50 µm fiber draw ~1 mm fuse & draw Experimental Air-guiding PCF [ R. F. Cregan et al., Science 285, 1537 (1999) ] 10µm 5µm Experimental Air-guiding PCF [ R. F. Cregan et al., Science 285, 1537 (1999) ] transmitted intensity after ~ 3cm w (c/a) (not 2πc/a) State-of-the-art air-guiding losses [Mangan, et al., OFC 2004 PDP24 ] hollow (air) core (covers 19 holes) guided field profile: (flux density) 3.9µm 1.7dB/km BlazePhotonics over ~ 800m @1.57µm State-of-the-art air-guiding losses larger core = less field penetrates cladding ergo, roughness etc. produce lower loss 13dB/km 1.7dB/km Corning BlazePhotonics over ~ 100m @1.5µm over ~ 800m @1.57µm [ Smith, et al., Nature 424, 657 (2003) ] [ Mangan, et al., OFC 2004 PDP24 ] State-of-the-art air-guiding losses larger core = more surface states crossing guided mode 100nm 20nm 13dB/km 1.7dB/km Corning BlazePhotonics over ~ 100m @1.5µm over ~ 800m @1.57µm [ Smith, et al., Nature 424, 657 (2003) ] [ Mangan, et al., OFC 2004 PDP24 ] Index-Guiding PCF & microstructured fiber: Holey Fibers solid core holey cladding forms effective low-index material Can have much higher contrast than doped silica… strong confinement = enhanced nonlinearities, birefringence, … [ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ] Holey Projected Bands, Batman! w (c/a) (not 2πc/a) (Schematic) band gaps are unused bulk crystal continuum guided band lies below “crystal light line” b (a–1) Guided Mode in a Solid Core G are Qraphics uickTim needed decom e™ toand see pressor athis picture. small computation: only lowest-w band! (~ one minute, planewave) 0.12 1.46 – bc/w = 1.46 – neff holey PCF light cone flux density 0.1 0.08 0.06 fundamental mode 0.04 (two polarizations) 2r 0.02 0 0.3 endlessly single mode: Dneff decreases with l 0.4 0.5 0.6 0.7 0.8 l/a 0.9 1 1.1 1.2 n=1.46 a r = 0.3a Holey Fiber PMF (Polarization-Maintaining Fiber) birefringence B = Dbc/w = 0.0014 (10 times B of silica PMF) Loss = 1.3 dB/km @ 1.55µm over 1.5km no longer degenerate with Can operate in a single polarization, PMD = 0 (also, known polarization at output) [ K. Suzuki, Opt. Express 9, 676 (2001) ] Nonlinear Holey Fibers: Supercontinuum Generation (enhanced by strong confinement + unusual dispersion) e.g. 400–1600nm “white” light: from 850nm ~200 fs pulses (4 nJ) [ W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002) ] Endlessly Single-Mode [ T. A. Birks et al., Opt. Lett. 22, 961 (1997) ] at higher w (smaller l), the light is more concentrated in silica …so the effective index contrast is less …and the fiber can stay single mode for all l! http://www.bath.ac.uk/physics/groups/opto Low Contrast Holey Fibers [ J. C. Knight et al., Elec. Lett. 34, 1347 (1998) ] The holes can also form an effective low-contrast medium i.e. light is only affected slightly by small, widely-spaced holes This yields large-area, single-mode fibers (low nonlinearities) …but bending loss is worse ~ 10 times standard fiber mode diameter Holey Fiber Losses Best reported results: 0.28 dB/km @1.55µm [ Tajima, ECOC 2003 ] G are Qraphics uickTim needed decom e™ toand see pressor athis picture. TheThe Upshot Upshot: Potential new regimes for fiber operation, even using very poor materials. The Story of Photonic Crystals Finding Materials –> Finding Structures