Comments
Description
Transcript
COMPETITIVE EXAMINATION - 2016 16
COMPETITIVE EXAMINATION - 2016 DATE SUBJECT 04-03-2016 CHEMISTRY MAXIMUM MARKS 200 SUBJECT CODE TIME 2.00 pm to 5.00 pm 16 TOTAL DURATION 210 Minutes MENTION YOUR REGISTER NUMBER GFGC MAXIMUM TIME FOR ANSWERING 180 Minutes QUESTION BOOKLET DETAILS QUESTION BOOKLET SERIAL NO. & VERSION NO. DOs: 1. Check whether the Register No. has been entered and shaded in the respective circles on the OMR answer sheet. 2. Check whether the Centre Code has been entered and shaded in the respective circles on the OMR answer sheet. 3. Check whether the subject name has been written and the subject code has been entered and shaded in the respective circles on the OMR answer sheet. 4. This question booklet will be issued to you by the invigilator after the 2nd bell i.e., after 1.55 pm. 5. The serial number of this question booklet should be entered on the OMR answer sheet. 6. The Version Number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely. 7. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided. DONTs: 1. The timing and mark’s printed on the OMR answer sheet should not be damaged / mutilated / spoiled. 2. The 3rd Bell rings at 2.00 pm, till then; • Do not remove the seal on the right hand side of this question booklet. • Do not look inside this question booklet. • Do not start answering on the OMR answer sheet. IMPORTANT INSTRUCTIONS TO CANDIDATES 1. 2. 3. This question booklet contains 100 questions and each question will have one statement and four distracters (Four different options / choices.) After the 3rd Bell is rung at 2.00 pm, remove the seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by complete test booklet. Read each item and start answering on the OMR answer sheet. During the subsequent 180 minutes: • Read each question carefully, • Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement. • Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet. Correct Method of shading the circle on the OMR answer sheet is as shown below: A 4. B C D Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet. 5. Use the space provided on the question booklet for Rough Work. Do not use the OMR answer sheet for the same. 6. After the last bell is rung at 5.00 pm, stop writing on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions. 7. Hand over the OMR answer sheet to the room invigilator as it is. 8. After separating the top sheet, the invigilator will return the bottom sheet replica (candidate’s copy) to you to carry home for self evaluation. 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year. 10. In case of any discrepancy in the English and Kannada Versions, the English version will be taken as final in case of Compulsory Paper – III and Optional Papers, except the languages of optional paper. 16 1. For the nth order chemical reaction of the type A + B + C + ….. → Z, the unit of the rate constant is A + B + C + ….. → Z ÔðêéєҴµå ²µÜå Èæ²ìåêÅ’å “Ð²ìðê²ìåêÑ–Ó “вìåì昵½å Ųìåê¼æÒ’å˜âµå Äÿå åêÆ ÜÈåë¡ÜÝ. 2. (A) Mol dm–3+ns–1 (B) dm3n+1mol–1s–1 (C) dm3n–3mol1–ns–1 (D) dm3n–3mol1+ns–1 The mass composition of dry-air near sea level is approximately, N2 75.5% : O2 23.2% : Ar 1.3%. The ratios of mole fraction of each component (given: the molar masses are N2 = 28.02, O2 = 32.00 and Ar = 39.95) ÜÈÔ å åêêÁµåÐ Ôåê®±Áµå §¸ßåÔ²ð ìåê ÜÈÒå ²ìðëé¦Äð (×ðé’å´µæÔæ²µåê) ÜÈ²å ™ ÜÈåêÔåìæ²µåê …Ò½Áµ.ð N2 75.5% : O2 23.2% : Ar 1.3%. 1 atm §¼å¾´Á µå µÑ å –Ó ÇÈåн ʷ昵Á å µå ÔðëÑó ƒÒ×åÔåíú † ’ðâÿ˜å Ä™ Òå ½Áµð : ÔðëÑæ²µó ÔåìæÜÈó N2 = 28.02, O2 = 32.00 Ôåê¼åê¾ Ar = 39.95 3. (A) 0.781 : 0.210 : 0.0093 (B) 2.694 : 0.725 : 0.032 (C) 0.0093 : 0.210 : 0.781 (D) 0.210 : 0.0093 : 0.781 An orthorhombic unit cell has the following parameters, a = 0.82 nm, b = 0.94 nm and c = 0.75 nm. The d-spacing of the (123) lattice planes is §ÒÁµåê „²µðëéÀ ²µðëÒÊ–’ó ’ðëé×åÁµå ÇÈåÐÕê½²ìåêê † ’ðâ’ÿå åÒ´µÒå ½Áµ.ð a = 0.82 nm, b = 0.94 nm Ôåê¼åê¾ c = 0.75 nm. ÕêÑÓ²µó ÜÈåëôæÏÒ’åÁµå d-ÜÈÜ ðÉ ÒÝ ˜µó (123) ¦ÿæÑ’åÜÔ Èå åê¼ð²ìåêê † ’ðâ˜ÿå Ä™ Ñ å –Ó ²ìåìæÔåíúÁµåê ? 4. (A) d123 = 0.21 nm (B) d123 = 0.11 nm (C) d123 = 0.124 nm (D) d123 = 22.04 nm The term symbols for ground and excited states of Hg atom respectively are ÁµåêϽ ÜÈÒå ÔðéÁµå ÇÈæÁµ²å µÜå Á Èå µå ÇÈ²å µÔ å åìæ¸êÔåíú ¼åâÿå Ôåê¼åê¾ ‡ÁµðÐ铼å ÜݽÀ ²ìåêÑ–Ó ÇÈÁ å µå ÜÈÒå ’ðé¼åÔåíú † ’ðâ˜ÿå Ä™ Òå ¼ð ÜÈåë¡ÜÈÊ å ßåêÁµæ˜™Á.µð (A) 61s0 and 63p1 (B) 63d0 and 61s0 (C) 63d0 and 53p1 (D) 61s0 and 53p1 Space For Rough Work 2 Chemistry 5. A piece of wood sample from ancient dwelling is found to have 14C activity, and it shows 13 disintegrations per minute per g. The similar measurements on living tree sample is 26 disintegrations per minute per g. How long ago the tree to which wood belongs, died ? (given : t1/2 for 14C = 5570 years). §ÒÁµåê ßåâ²ÿð ìåê ’å®±ÁÑ µå –Á Ó µå Ôåê²µÁ å µå ¼åêÒ´™Äå 14C “вìðê²ìåêê 13 Õ›å®Äð˜âµå Äÿå åêÆ /g/minute ßðëÒÁ™²µåê¼åÁ ¾ .µð ƒÁµ²å Òµå ¼ð²ìðê §ÒÁµåê ¨éÔåÒ¼å Ôåê²µåÁµå ¼åêÒ´µåê 26 Õ›å®Äð˜âµå Äÿå åêÆ /g/minute ßðëÒÁ™²µåê¼åÁ ¾ .µð † Ôåê²µÁ å µå ¼åêÒ´µåê Üȼå åê¾ ŠÚÈêå ± ’æÑæÔåÁ²·™ ìåì昙¼åê¾ ? (14C Äå t1/2 = 5570 ÔåÚ¤Èå ˜µâå ÿåê). (A) 11,140 years (C) 2,785 years 6. (B) 5,570 years (D) 1,400 years Complete wetting and non-wetting of a liquid sample to a given surface are expected when the respective contact angles are (A) θ = 90° for wetting and θ = 180° for non-wetting (B) θ = 0° for wetting and θ = 180° for non-wetting (C) θ = 180° for wetting and θ = 0° for non-wetting (D) θ = 90° for wetting and θ = 0° for non-wetting §ÒÁµåê ›åÄå ÔðêéÑðÍþϲìåêÑ–Ó ’åÐÔåêÔ昙 Ôð°±Ò˜µó Ôåê¼åê¾ ÄæÄó Ôð°±Ò˜µó ÁµåÐÔÔ å åíú Ôåìæ´µåêÔå ’æÒ¯æ’ó± ’ðëéÄåÔåíú (A) θ = 90° Ôð°±Ò˜µó˜µæ˜™ ß昵åë θ = 180° ÄæÄó Ôð°±Ò˜µó˜µæ˜™ (B) θ = 0° Ôð°±Ò˜µó˜µæ˜™ ß昵åë θ = 180° ÄæÄó Ôð°±Ò˜µó˜µæ˜™ (C) θ = 180° Ôð°±Ò˜µó˜µæ˜™ ß昵åë θ = 0° ÄæÄó Ôð°±Ò˜µó˜µæ˜™ (D) θ = 90° Ôð°±Ò˜µó˜µæ˜™ ß昵åë θ = 0° ÄæÄó Ôð°±Ò˜µó˜µæ˜™ 7. When the cap of the soft drink bottle opens, the CO2 bubbles come out of the liquid on account of decreasing the solubility due to the lowering pressure. This is the example of (A) Henry’s Law (B) Kelvin’s Law (C) Boyle’s Law (D) Charles Law ÜÈæÔåìæÄåÏÔ昙 ¼åÒÇÈåíú ÇÈæÅé²ìåêÁµå Ôåêêôå¢âÿÔ å Äå åêÆ ¼ð˜Á µð µæ˜µ,å ’æʤÄó ´µ„ ðñ ’ðûÞ ´ ñ µóÄå ˜µåêâÿðä˜âµå ÿåê ßðë²µÊ å ²µåê¼åÁ ¾ .µð ’æ²µå¸ §¼å¾´µå ’å´Ô ™ ðê²ìåìæÁµæ˜µå ’æʤÄó ´µ„ ðñ ’ðûÞ ñ´µó ÁµæÐÔåϼð ’å´Ô ™ ðê²ìåì昵åê¼åÁ ¾ µ.ð …Áµåê ’ðâ˜ÿå Ä™ å ²ìåìæÔå ŲìåêÔåê’ð” ‡Áµæßå²¹µå ð (A) ßðÅвìåê ŲìåêÔåê (B) ’ðÑ–ÖÄóÄå ŲìåêÔåê (C) Êæ²ìðêÓ ²ìåê ŲìåêÔåê (D) ôæÑóÞ¤Äå ŲìåêÔåê Space For Rough Work Chemistry 3 8. The E° of Al-air battery is 2.73 V and it involves 12 electrons in the process. Calculate the free energy change, ∆G° in kilojoules. ƒÑëÏÕêŲìåêÒ ‹²µó ÊæÏ®²™²ìåê ÔðëéÑð±é¦ÿó 2.73 V Ôåê¼åê¾ „ ÇÈåГвìðê²ìåêÑ–Ó 12 ŠÑð’æ±øÄó ƒÄåêÆ ÊâÿÜå Èåê¼åÁ ¾ .µð ß昙ÁµåÑ Â –Ó ∆G° (in KJ) Äå ÔåìòÑÏÔåíú ŠÚÈ汘µåê¼åÁ ¾ µð ? 9. (A) – 3161340 (B) 3161.34 (C) – 3161.64 (D) – 31613.4 A completely dissociated solution of 8.25 × 10– 4 M, Al2(SO4)3 at 25 °C has mean activity coefficient, 0.9913. The mean activity is 8.25 × 10–4 M Äå Al2(SO4)3 ²ìåê ÁµæÐÔ¸ å Ôåíú 25 °C ‡ÚÈ¼å» ð²ìåêÑ–Ó 0.9913 ÕêéÄó „“±Õ° ’ðëéŠÇ·Ú Ý ²Ý ìðêÒ¯ó ¼ðëé²™ÜÈåê¼åÁ ¾ ,µð Ôåê¼ð¾ † ÜÈÒå ²ìåêê’å¾Ôåíú ÜÈÒå ÇÈåÔ昙 Õ²ìðë騼åÔ昵åêÔåíúÁµåê. ß昙ÁÑ µå –Ó ƒÁµ²å µå ÕêéÄó „“±Õ° ÔåìòÑÏÔåíú 10. (A) 2.09 × 10–4 (B) 2.09 × 10–5 (C) 2.0 × 10–3 (D) 2.09 × 10–6 1 mole of an ideal gas at 27 °C is expanded isothermally and reversibly. It is expanded from the volume of 10 dm3 to 20 dm3. The respective values for q, w, ∆U and ∆H are §ÒÁµåê ²™ÔÜå ¤Ý ÊÑó ŒÜÈðëé Á¿Ô ·µå åê¤Ñó à˜µåêÕ š ’ð²ìåêÑ–Ó §ÒÁµåê ÔðëÑó Œ´™²ìåêÑó ƒÅÑÔåíú 10 dm3 ÅÒÁµå 20 dm3 à˜µåê¼ š Á å¾ µ.ð ƒÁµ²å µå q, w, ∆U Ôåê¼åê¾ ∆H ƒÒ×å˜âµå Äÿå åêÆ ÄåÔåêëÁ™Ü.Ý 27 °C, (A) –1729 J, 1729 J, 0.0 J mol–1 and 0.0 J mol–1 (B) 1729 J¸–1729 J, 0.0 J mol–1 and 0.0 J mol–1 (C) 0.0 J, 0.0 J, –1729 J mol–1 and 1729 J mol–1 (D) q = w = ∆U = ∆H = 0. Space For Rough Work 4 Chemistry 11. In principle, cathodic protection of iron will not be possible by coating it with (given, E°(Fe2+/Fe) = –0.44 V, E°(Zn2+/Zn) = –0.76 V, E°(CO2+/CO) = –0.28 V, E°(Cr3+/Cr) = –0.74 V and E°(Ti2+/Ti) = –1.63 V) ’åʖ̸Áµå ’æϼðëé´™’ó ÜÈÒå ²µå’åÛ¹ð²ìåêê ²ìåìæÔå ÑðéÇÈÄå Á å Ò™ Áµå ÜÈæÁ·ùµåÏÕÑÓ ? (given, E°(Fe2+/Fe) = –0.44 V, E°(Zn2+/Zn) = –0.76 V, E°(CO2+/CO) = –0.28 V, E°(Cr3+/Cr) = –0.74 V Ôåê¼åê¾ E°(Ti2+/Ti) = –1.163 V) (A) Zn (C) Cr 12. (B) Co (D) Ti Which of the following statement is correct ? (A) The efficiency of all reversible heat engines operating between same two temperature values must be same irrespective of nature of the material performing work. (B) The efficiency of some irreversible heat engines operating between same two temperature values must be same irrespective of nature of the material performing work. (C) The efficiency of all reversible heat engines operating between same two temperature values must be same and it depends on the nature of the material performing work. (D) The efficiency of all reversible heat engine operating between the same two temperature values will not be the same and it depends on the nature of the material performing work. …Ôåíú˜âµå Ñ ÿå –Ó ²ìåìæÔå ßðéâ–’ð ÜÈ²å ²™ ìåì昙Áµð ? (A) (B) (C) (D) Š²µ´ å µåê ¼æÇÈÔ å åìæÄå˜âµå ÿå ÔåêÁ·µåùÏÁµÑ å –Ó ’ðÑÜÈå Ôåìæ´µåêÔå ŠÑæÓ ²™ÔÜå ¤Ý ÊÑó àé¯ó …Ò¨ÄóÄå Áµ’å åÛ¼ð §ÒÁµéð …²µåê¼å¾Á,µð Ôåê¼åê¾ ƒÁµ²å µå ’æ²ìåê¤ Áµå’åÛ¼ð ÔåÜÈåêÕ ¾ Äå ÜÈåÖÊ·æÔåÁµå ÔðêéÑð ƒÔåÑÒÊ–¼Ô å 昙²µåêÔåíúÁÑ ™ .Ó Š²µ´ å µåê ¼æÇÈÔ å åìæÄå˜âµå ÿå ÔåêÁ·µåùÏÁµÑ å –Ó ’ðÑÜÈå Ôåìæ´µåêÔå ’ðÑÔåíú …²µåÐÔÜå ¤Ý ÊÑó àé¯ó …Ò¨ÄóÄå Áµ’å åÛ¼ð §ÒÁµéð …²µåê¼åÁ ¾ ,µð Ôåê¼åê¾ ƒÁµ²å åµ ’æ²ìåê¤ Áµ’å åÛ¼ð ÔåÜÈåê¾ÕÄå ÜÈåÖÊ·æÔåÁµå ÔðêéÑð ƒÔåÑÒÊ–¼Ô å 昙²µåêÔåíúÁÑ ™ .Ó Š²µ´ å µåê ¼æÇÈÔ å åìæÄå˜âµå ÿå ÔåêÁ·µåùÏÁµÑ å –Ó ’ðÑÜÈå Ôåìæ´µåêÔå ŠÑæÓ ²™ÔÜå ¤Ý ÊÑó àé¯ó …Ò¨ÄóÄå Áµ’å åÛ¼ð §ÒÁµéð …²µåê¼å¾Á,µð Ôåê¼åê¾ ƒÁµ²å µå ’æ²ìåê¤ Áµå’åÛ¼ð ÔåÜÈåêÕ ¾ Äå ÜÈåÖÊ·æÔåÁµå ÔðêéÑð ƒÔåÑÒÊ–¼Ô å 昙²µåê¼åÁ ¾ .µð Š²µ´ å µåê ¼æÇÈÔ å åìæÄå˜âµå ÿå ÔåêÁ·µåùÏÁµÑ å –Ó ’ðÑÜÈå Ôåìæ´µåêÔå ŠÑæÓ ²™ÔÜå ¤Ý ÊÑó àé¯ó …Ò¨ÄóÄå Áµ’å åÛ¼ð §ÒÁµéð …²µåêÔåíúÁÑ ™ Ó Ôåê¼åê¾ ƒÁµ²å µå ’æ²ìåê¤ Áµå’åÛ¼ð ÔåÜÈåêÕ ¾ Äå ÜÈåÖÊ·æÔåÁµå ÔðêéÑð ƒÔåÑÒÊ–¼Ô å 昙²µåê¼åÁ ¾ .µð Space For Rough Work Chemistry 5 13. The standard entropy change for the reaction, Ag2O(s) → 2Ag(s) + 1/2O2(g) Given that the standard entropies of Ag(s), O2(g) and Ag2O(s) are 42.67, 205.01 and 121.75 JK–1mol–1 respectively. ÜÈæ±Ò´µ²å µó¶ ŠÒ¯ðëÐÇÝ ÊÁµÑ å æÔå¹²ð ìåêÄåêÆ † ÇÈåГвìð꘵ð ÇÈåÐÜÈåê¼¾ Ç å È´ å Ü™ .Ý Ag2O(s) → 2Ag(s) + 1/2O2(g) ÜÈæ±Ò´µ²å µó¶ ŠÒ¯ðëÐÇÝ ÔåìòÑÏ † ²™é½ ’ðë´µÑ å 昙Áµ.ð Ag(s), O2(g) Ôåê¼åê¾ Ag2O(s) ˜µâå ÿåê ƒÄåê’åÐÔåêÔ昙 42.67, 205.01 and 121.75 JK–1mol–1 14. (A) 369.43 JK–1 (B) 66.09 JK–1 (C) 125.25 JK–1 (D) –125.25 JK–1 The binding energy of an α-particle from the following data will be (mass of Helium nucleus = 4.002870 amu; mass of proton = 1.007825 amu; mass of neutron = 1.008665 amu) ÇÈæ°¤’åÑóÄå ÊÒÁ·µå’å ×哲¾ ìåêÄåêÆ ’ðë´µÑ å æÁµå Áµ¼å æ¾Ò×åÁÒ™ Áµå ’åÒ´µåê à´™Îê²™. (àéÑ–²ìåêÔåìóÄå ÄåëÏ“Ó²ìåêÜÈóÄå ¼åë’å = 4.002870 amu; ÇÈðîЯæÄóÄå ¼åë’å = 1.007825 amu; ÄåëϯæÐÄóÄå ¼åë’å = 1.008665 amu) 15. (A) 1.98638 amu (B) 2.995045 amu (C) 0.03011 amu (D) 2.994205 amu The temperature condition for spontaneous vapourization of water will be (given ∆H = 9590 cal mol–1, ∆S = 26 eu) ²ìåìæÔå ‡ÚÈ¼å» ²ð ìåêÑ–Ó Åé²µåê ÜÈåÖÇÈðÐé²™¼Ô å 昙 Ê·æÚÝéÉ ’岵帘µðëâÿåêäÔåíúÁµåê. † ’ðâ˜ÿå µð Åé´™²µåêÔå Áµ¼å æ¾Ò×嘵âå –ÒÁµå Áµåï´·é™ ’å²Ü™ .Ý ∆H = 9590 cal mol–1, ∆S = 26 eu (A) T > 368.85 K (B) T < 368.85 K (C) T > 373 K (D) T < 373 K Space For Rough Work 6 Chemistry 16. A plot of conductance Vs. C for the ionic surfactant would look like ¡¼åÐÁÑ µå –Ó Ôæßå’¼å åÖÔÄå åêÆ Versus Üݱ鲙²ìðêé¯ó˜µð ÜÈ²å ²™ ìåì昙Á.µð C (ÜÈæ²µ)å ²ìåêÄåêÆ ƒ²ìåìæÅ’ó ÜÈ²å µóÇ·ÈæÏ’ó±Ò¯ó ÜÈðëé´™²ìåêÒ (I) Conductance (II) (III) (IV) C (A) (III) & (IV) (C) (V) 17. (B) (II) (D) (I) & (IV) For the liquid-vapour boundary, the molar entropy of vapourization at temperature T equal ∆Hvap,m . The Clapeyron equation will take a form, if the vapour behave as an ideal gas to T ÔðëÑæ²µó ŠÒ¯ðëÐÇÝ ƒÇ·Èó ÔðDzÈå µðÜñ éÈð ÚÈÄå ó ƒ¯ó T ‡ÚÈ¼å» ²ð ìåêÑ–Ó ÁµåÐÔÊ å ·æÚÈÁ åÉ µå ˜µ´ å ˜™ µð † ²™é½ ∆H m vap, ʲµ²ð ìåêÊßåêÁµåê. T ÜÈÕ å êé’岸 µå ÔåÄåêÆ Ê²µÎ ð ê²™. 18. . ƒÁµéð Ê·æÚÈÔ åÉ åíú „Áµ×å ¤å ƒÅÑÔ昙 Ô彤ÜÝÁ²µå µð ’æÓÇÈ²å µæÄó (A) ∆Hvap,m dP = dT T∆Vvap, m (B) dlnP ∆Hvap,m = dT RT2 (C) ∆Hvap,m dP = dT Tf.∆Vvap, m (D) dlnP ∆Hvap,m = dT RT Two equivalent p-electrons gives the following terms Š²µ´ å µåê ÜÈÔ å åìæÄæÒ¼å²Ô µå æÁµå P-ŠÑð’æ±øÄó˜µâå –˜µð ÜÈ²å ²™ ìåìæÁµå ®Ôåìó¤ ÜÈÒå ’ðé¼å˜âµå Äÿå åêÆ Ê²µÎ ð ê²™. (A) 1s, 3p, 1p (B) 4s, 2p, 2d (C) 1s, 4s, 2p (D) 1s, 3p, 2d Space For Rough Work Chemistry 7 19. At 25 °C pure water has concentration 25 °C ‡Úȼ å» ²ð ìåêÑ–Ó ×åêÁµåÂà Åé²™Äå ÜÈæ²µ¼å ²ð ìåêÄåêÆ Åé´™. (A) 18 M (C) 55.5 M 20. (B) 1 M (D) 5.55 M Destruction of ozone in the stratosphere is taking place by following mechanism : ÜÈæ±ø¯ðëéÜÝ²É ìåê²µóÄåÑ–Ó õ¦ÿðëéÄó ÇÈÁ å µ²å µÁ å µå Äæ×å † ²™é½²ìåì昙 „˜µåê¼åÁ ¾ .µð O3 + M k1 º O2 + O + M k–1 k2 O3 + O → 2O2 The rate of destruction will be ²ìåìæÔå ÜÈÕ å êé’å²µ¸ å Á™ÒÁµå õ¦ÿðëéÄó Äæ×åÁµå Ôðé˜µÔ å Äå åêÆ ½â–²ìåêÊßåêÁµåê ? d[O3] = – k1 [O3] [M] + k–1 [O2] [O] [M] – k2 [O3] [O] dt d[O3] (B) = k1 [O3] [M] – k–1 [O2] [O] [M] + k2 [O3] [O] dt d[O3] = k1 [O3] [M] + k–1 [O2] [M] – k2 [O3] [O] (C) dt d[O3] (D) = k1 [O3] [M] – k–1 [O2] [M] + k2 [O3] [O] dt (A) 21. For the first order sequential reaction k1 k2 A → B → C Which of the following statement is incorrect ? (A) [A] decreases exponentially (B) [C] increases exponentially (C) [B] is always greater than [C] (D) The tmax depends on k1 & k2 k1 k2 A → B → C ÔðêéÑ–Äå Ç·ÈÜå Èó± „´µ¤å ²µó ÇÈåГвìð꘵ð ’ðâ˜ÿå Ä™ å ²ìåìæÔå ßðéâ–’˜ð âµå ÿåê ÜÈ²å ²™ ìåì昙ÑÓ ? (A) [A] ›æ½é²ìåêÔ昙 ’å´Ô ™ ðê²ìåì昵åêÔåíúÁµåê (B) [C] ›æ½é²ìåêÔ昙 ßðô梘µåêÔåíúÁµåê (C) [B] ²ìåìæÔæ˜µÑ å ë [C] ˜™Ò¼å ßðô梘²™ µåê¼åÁ ¾ µð (D) tmax k1 Ôåê¼åê¾ k2 ÔðêéÑð ƒÔåÑÒÊ–¼Ô å 昙²µåê¼åÁ ¾ µð Space For Rough Work 8 Chemistry 22. x For the adsorption of gas on a solid, the plot of log vs. log P is linear with slope equal to m ƒÅÑÔåÄåêÆ ›åÄÔ å Üå ÈåêÕ ¾ Äå ÔðêéÑð ƒÁ·×™ ðëéÚÈ¹å ˜ð µðëâ–ÜÁ Ý µæ˜µå §Áµ˜å µåêÔå Áµ¼å æ¾Ò×åÁÒ™ Áµå ²µéð •–é²ìåêÔ昙Áµåê, ƒÁµ²å µå ÇÈåÐÔ¸ å ¼ð Ôæ®ÔåÄåêÆ ’ðë´™. 23. (A) k (B) log k (C) n (D) 1 n The Miller indices for the following 3D lattice, (seen along z-direction) is 3D ¦ÿæÑ’åÁÑ µå –Ó Z-Á™“”ÄåÑ–²Ó µåêÔå ÕêÑÓ²µó …Ò´µÜå ÜÝ Èó˜µâå Äÿå åêÆ ’ðë´™. (• ≡ lattice points; _____ ≡ planes) • (A) (210) – (B) (210) (C) (120) (D) (021) Space For Rough Work Chemistry 9 x log vs. log P m Following plots were obtained for three salts, A, B and C. The co-relation between the kind of salts and the plot will be A, B Ôåê¼åê¾ C ÑÔ帘µâå –˜µð ’ðâ˜ÿå Ä™ å ÇÈæ¯ Ó ó˜µâå Äÿå åêÆ ’ðë´µÑ å 昙Á.µð ÑÔ帒åë” Ôåê¼åê¾ ÇÈæ° Ó ˜µð …²µåêÔå ßðëÒÁµæº’ð²ìåêÄåêÆ ’ðë´™. 0.00 − 0.10 (A) log γ± 24. (B) − 0.20 (C) 4 (A) (A) ≡ MgSO4 8 100I ½ 12 (B) (A) ≡ MgCl2 (B) ≡ MgCl2 (B) ≡ MgSO4 (C) ≡ NaCl (C) ≡ NaCl (C) (A) ≡ NaCl (D) (A) ≡ NaCl (B) ≡ MgCl2 (B) ≡ MgSO4 (C) ≡ MgSO4 (C) ≡ MgCl2 Space For Rough Work 10 Chemistry 25. In the extraction of Iron, Fe2O3 is reduced by (A) Carbon dioxide (B) Silicon dioxide (C) Carbon and Carbon monoxide (D) Electrolytic Reduction ’åʖ̸Áµå ÜÈæ²™é’岸 µå ÁµÑ å –Ó Fe2O3 ƒÇÈ’å Ú å ¤Èå ¸’æ²µ’å å 26. (A) …Ò˜µæÑÁµå ´µðñ „’ðûÞ ´ ñ µó (B) ÜÝÑ–’æÄó ´µðñ „’ðûÞ ´ ñ µó (C) …Ò˜µæÑ Ôåê¼åê¾ …Ò˜µæÑÁµå ÔðëÄæ’ðûÞ ñ´µó (D) ÕÁµåêϼó ÜÈÒå ²ìðë阵å ×哲¾ ìåê ƒÇÈ’å Ú å ¤Èå ¹ð Constituent metals in Brass and Bronze respectively are à¼æ¾âÿð Ôåê¼åê¾ ’åÒ¡Äå Õê×åÐ Ñðëéßå˜âµå ÿåê 27. (A) Cu & Zn, Cu & Ni (B) Cu & Sn, Cu & Zn (C) Cu & Ni, Cu & Fe (D) Cu & Zn, Cu & Sn When ‘Nickel Matte’ is treated with carbon monoxide the product formed is (A) Nickel tricarbonyl (B) Nickel (C) Nickel tetracarbonyl (D) Nickel carbide Å’å”Ñó Ôåê¯ð±²ìåêÄåêÆ …Ò˜µæÑÁµå ÔðëÄæ’ðûÞ ´ ñ µóÄðëÒÁ™˜µð ÇÈåн“ÐÎêÜÝÁµæ˜µå (A) Å’å”Ñó ¯ðÐ ñ ’æÊðë¤éÅÑó (B) Å’å”Ñó (C) Å’å”Ñó ¯ð¯æÐ’æÊðë¤éÅÑó (D) Å’å”Ñó ’æÊ𤴠ñ µó Space For Rough Work Chemistry 11 28. Lanthanides elements have (A) Similar lattice energies but widely different solvation & ionization energies. (B) Similar lattice & solvation energies but widely different ionization energies. (C) Similar lattice & ionization energies but widely different hydration energies. (D) similar lattice energies, solvation energies & ionization energies. ÑæÏÒÁ¿Ä·µå ´ ðñ µó Á·µæ¼å꘵âå ÿåê (A) ÜÈÔ å åìæÄå ¦ÿæÑ’åדå ,¾ „Áµå²µð ¼åêÒÊæ ÕÊ–Ä· åÆ ÕÑ–éÄå ×哾 Ôåê¼åê¾ ƒ²ìåìæÅé’岸 µå ×哾 ßðëÒÁ™Ô.ð 29. (B) ÜÈÔ å åìæÄå ¦ÿæÑ’å ×哾 Ôåê¼åê¾ ÕÑ–éÄå ×哾 „Áµ²å µð ¼åêÒÊæ ÕÊ–Ä· åÆ ƒ²ìåìæÅé’å²µå¸ ×哾 ßðëÒÁ™Ô.ð (C) ÜÈÔ å åìæÄå ¦ÿæÑ’å ×哾 Ôåê¼åê¾ ƒ²ìåìæÅé’岸 µå ×哾 „Áµ²å µð ¼åêÒÊæ ÕÊ–Ä· åÆ ¦ÑÜÈÒå ²ìðëé¦Äð ×哾 ßðëÒÁ™Ô.ð (D) ÜÈÔ å åìæÄå ¦ÿæÑ’å ×å“,¾ ÕÑ–éÄå ×哾 Ôåê¼åê¾ ƒ²ìåìæÅé’å²µ¸ å ×哾 ßðëÒÁ™Ô.ð Class of silicates, which share all the four oxygen atom in their structural unit are called as (A) Neso-silicates (B) Soro-silicates (C) Phyllo-silicates (D) Tecto-silicates ²ìåìæÔå ÜÝÑ–’éð ¯ó Ô嘤µå ˜µâå ÿåê, ¼åÔåêÍ ²µô å Äå æ ›å®’åÁÑ µå –Ó ŠÑæÓ ÄæÑê” „Ôåê¦ Ó Äå’˜å âµå Äÿå åêÆ ßåÒ¡’ðëÒ´™Ôð ? (A) ÅÜÈðëé-ÜÝÑ–’éð ¯ó (B) ÜÈåë²µðëé- ÜÝÑ–’éð ¯ó (C) Ç·Ñ Ý ðëé- ÜÝÑ–’éð ¯ó (D) °’ðë±- ÜÝÑ–’éð ¯ó 30. The coordination number of Phosphorous in [PMo12O40]3– is [PMo12O40]3– ÜÈÒå ²ìåêê’åÁ ¾ µÑ å –Ó ²µÒå ¦’åÁµå ÜÈÔ å åêÄåÖ²ìåê ÜÈÒå •ÿðÏ (A) 2 (B) 4 (C) 5 (D) 6 Space For Rough Work 12 Chemistry 31. The equation to calculate lattice energy ∆U using common terms is ¦ÿæÑ’å ×哾 ∆U ’åÒ´µåê à´™²ìåêêÔå ÜÈåë¼åÐ (ÜÈæÔåìæÄåÏ ÇÈåÁ˜µå âµå Äÿå åêÆ ‡ÇȲå ìðë阙Ü)Ý (A) ∆U = (C) ∆U = 32. LAZ+Z–e2 4πε0r 4πε0r LAZ+Z–e2 (B) ∆U = LAZ+Z–e 4πε0r (D) ∆U = LAe2 4πε0r – Structures of [BrF2]+ and [BrF4] , according to VSEPR theory respectively are (A) Linear & Tetrahedral (B) Bent & Tetrahedral (C) Linear & Square planar (D) Bent & Square planar VSEPR ÜÝÁµæÒ Âà ¼åÁµå ÇÈåÐ’æ²µå [BrF2]+ and [BrF4]– ²µô å Äå ð²ìåêê (A) (C) 33. ²µéð •ÿð Ôåê¼åê¾ ôå¼åêÊ·åꤦ ²µéð •ÿð Ôåê¼åê¾ ÜÈÔ å åê¼åÑ ôò’å (B) (D) Ê昙Áµå Ôåê¼åê¾ ôå¼åêÊ·åꤦ Ê昙Áµå Ôåê¼åê¾ ÜÈÔ å åê¼åÑ ôò’å The hybridization involved in the molecular structure of PF5 is PF5 ²µô å Äå ²ð ìåêÑ–Ó §âÿ˜å µðëÒ´™²µåêÔå ÜÈÒå ’å²¸ µå 34. (A) sp3d (B) dsp2 (C) d2sp3 (D) sp3d2 Which equation is an example of Lewis acid-base reaction ? Ñ–ÕÜÈóÄå „Ôåê-Ó ÇÈÐå ¼æÏÔåêÓ ÇÈåн“вìðê²ìåê ‡Áµæßå²µ¹å ð (A) XeF4(g) + H2O(g) → XeOF2(g) + 2HF(g) (B) XeF2(g) + SbF5 → [XeF][SbF6] (C) Cl2(l) + Ca(OH)2(aq) → CaCl(OCl)(aq) + H2O (D) 4KClO3 + heat → KCl(S) + 3KClO4(S) Space For Rough Work Chemistry 13 35. The noble gas atoms in the liquid & solid state are held by (A) H-bonds (B) Covalent bonds (C) Vander Waal’s forces (D) Ionic bonds ÁµåÐÔå Ôåê¼åê¾ ›åÄå ÜݽÀ ²ìåêÑ–Ó ¦´µæÅјµâå ÿå ÇȲå Ô µå åìæ¸ê˜µâå ÿåÄåêÆ à´™Á° ™ ±²µåêÔå ÊÒÁ·˜µå âµå ÿåê (A) ¦Ñ¦Äå’Á å µå ÊÒÁ·˜µå µâå ÿåê (B) ’ðëÔðÑÅ ð Þ²ìåê ÊÒÁ·˜µå âµå ÿåê (C) Vander Waal’s Êјµâ å ÿåê (D) ƒ²ìåìæÅ’å ÊÒÁ·µå 36. Noble gases are mono-atomic because (A) Their densities are less than one (B) The Cp/Cv ratio is 1.67 (C) the Cp/Cv ratio is 1.41 (D) They are reactive ¦´µæÅјµâå ÿåê ‹’å-ÇÈ²å µÔ å åìæ¸ê˜µâå ÿ昙²Ñ µå ê ’æ²µ¸ å (A) ƒÔåíú˜â µå ÿå ÜÈæÒÁµåмð §ÒÁµ“å ”Ò¼å ’å´Ô ™ ðê²ìåì昙²µåê¼åÁ ¾ µð (B) Cp/Cv ƒÄåêÇÈæ¼å ÇÈåÐÔåìæ¸ 1.67 „˜™²µåê¼åÁ ¾ µð (C) Cp/Cv ƒÄåêÇÈæ¼å ÇÈåÐÔåìæ¸ 1.41 „˜™²µåê¼åÁ ¾ µð (D) ƒÔåíú˜â µå ÿåê ÇÈåн“ÐÎêÜÈåê¼åÔ ¾ ð 37. Rubredoxin (Rd) is (A) (1Fe-0S) Iron-sulphur protein (B) (2Fe-2S) Iron-sulphur protein (C) (1Fe-0Se) Iron-selenium protein (D) Rieske’s center Rubredoxin (Rd) ²ìåêê (A) (1Fe-0S) Œ²µÄ å ó-ÜÈÑ å ²Éà µó (B) (C) (D) 38. ÇÈðîÐé°éÄó (2Fe-2S) Œ²µÄ å ó-ÜÈÑ å ²Éà µó ÇÈðîÐé°éÄó (1Fe-0Se) Œ²µÄ å ó-ÜÈÑ ð –ŲìåêÔåìó ÇÈðîÐé°éÄó ²™éÜÝ” ÜÈÒð ®²µó Which statement about octahedral complex is correct ? Space For Rough Work 14 Chemistry (A) The eg orbitals are destabilized by +2/5 ∆o. (B) Ligand electrons make occupancy of the eg orbitals by metal electrons unfavourable. (C) The t2g orbitals point directly toward the ligands. (D) The C3 rotation axis causes the dxy and dx2-y2 orbitals to be degenerate. ’ðâ˜ÿå Ä™ Ô å åíú˜âµå Ñ ÿå –Ó ƒÚÈå±Ôåêê•–²ìåê ÜÈÒå ²ìåêê’å²¾ µå ²ìåìæÔå ßðéâ–’ð ÜÈ²å ²™ ìåì昙Áµð ? (A) eg ’å’åÛ’å˜â µå ÿåê +2/5 ∆o ÅÒÁµå ƒÜݲÀ Ô µå 昙Áµ.ð (B) (C) (D) 39. Ñ–˜µæÏÒ´µó ŠÑð’æ±øÄó˜µâå ÿåê eg ’å’åÛ’å˜âµå ÿÑ å –Ó …²µåêÔå ÑðëéßåÁµå ŠÑð’æ±øÄó˜µâå Äÿå åêÆ ƒÜݲÀ ˜µå µðëâ–ÜÈåê¼åÁ ¾ .µð t2g ’å’åÛ’å˜â µå ÿåê Ñ–˜µæÏÒ´µó ’å´˜µð µð ÔæÑ–Á.µð C3 ÇÈÐå Á“ µå Û¹ð²ìåê „“ÞÜÈó dxy Ôåê¼åê¾ dx2-y2 ’å’åÛ’å˜âµå Äÿå åêÆ ÜÝÀ½ ÊæßåêÑϘµðëâ–ÜÈåê¼åÁ ¾ µ.ð Which species as a three-fold C3 rotation axis ? ’ðâ˜ÿå Ä™ å ²ìåìæÔå ÇÈåÐÊéð ÁµÔ å åíú 2− Cl (A) “three-fold C3 rotation” axis ßðëÒÁ™Áµð ? Cl Cl Br Cl 3− Br Cl Cr (C) Br Br Cl Cl 15 Cl 3− Cl Cr (D) Space For Rough Work Chemistry Cl H3N Cl Cl Pt (B) Pt NH3 Br Br 40. When EDTA solution is added to Mg2+ ion solution, then which of the following statement is not true ? (A) Four coordinate sites of Mg2+ are occupied by EDTA and remaining two sites are occupied by water molecules. (B) All six coordinate sites of Mg2+ are occupied. (C) pH of the solution is decreased. (D) Colourless [Mg-EDTA]2– chelate is formed. EDTA ÁµÐå Ôå¸ÔåÄåêÆ ÜÈ²å ²™ ìåì昙²µåêÔåíúÁÑ ™ Ó? Mg2+ ƒ²ìåìæÄåê ÁµåÐÔå¸ÁµÑ å –Ó ÜÈéð ²™ÜÁ Ý µå²,µð ’ðâ˜ÿå Ä™ å ²ìåìæÔå ßðéâ–’²ð ìåêê ²ìåê ÄæÑê” coordinate sites mg2+ Ôåê¼åê¾ …ÄåêÆâ–Áµå Š²µ´ å µåê Åé²™Äå ƒ¸ê˜µâå Äÿå åêÆ ƒ’åÐÕêÜÝ’ðëÒ´™²µåê¼åÔ ¾ .ð (A) EDTA (C) ŠÑæÓ „²µåê coordinate site ÄåêÆ Mg2+ ƒ’åÐÕêÜÝ’ðëÒ´™²µåê¼åÁ ¾ .µð ÁµÐå Ô¸ å Áµå pH ’å´Ô ™ ðê²ìåì昵åê¼åÁ ¾ .µð (D) ʸ»²µåà¼å [Mg-EDTA]2- “Ñðé¯ó ²µåëÇÈ˜å µðëâÿåêä¼Á å¾ µð (B) 41. coordinate site The number of moles of KMnO4 that will be needed to react with one mole of sulphite ion in acidic solution is „ÔåêÓ ÁµæÐÔ¸ å ÁµÑ å –Ó §ÒÁµåê ÔðëéÑ–Äå ÜÈÑ å ðûÉà ¯ ñ ó ƒ²ìåìæÅÄðëÒÁ™˜µð ÇÈåн“ÐÎêÜÈÑ å ê Êðé’昵åêÔå ÔðëéÑ–Äå ÜÈÒå •ÿðÏ ŠÚÈåê± ? 42. (A) 1/5 (B) 1 (C) 2 (D) 2/5 KMnO4 Ion responsible for the colour in brown ring test is “ÊòÐÄó-²™Ò˜µó ¯ðÜÈó±” Äå ʸ»’ð” ’æ²µå¸Ô昵åêÔå ƒ²ìåìæÄåê (A) [Fe(H2O)6NO]2+ (B) [Fe(H2O)5(NO)2]2+ (C) [Fe(H2O)5NO]2+ (D) [Fe(H2O)NO]2+ Space For Rough Work 16 Chemistry 43. Of the following, which is used as insulin mimetic agent ? (A) cis-Platin (B) Aspirin (C) Oxaliplatin (D) bis(maltolato)oxovanadium (IV) (BMOV) ’ðâ˜ÿå Ä™ Ô å åíú˜âµå Ñ ÿå –Ó “…ÄåêÑ Þ –Äó” ƒÄåê’å²¹µå æ’æ²µ’å Ô å åíú ²ìåìæÔåíúÁµåê ? (A) ÜÝÜÈó-ÇÈæ° Ó Äó (B) „ÏÜݲ É Ä™ ó (C) „’æÞÑ–ÇÈæ° Ó Äó (D) Ê–ÜÈó (Ôðê¯æÑð¯ðë) „’ðëÔ Þ Äð ðñ´²™ ìåêÒ (IV) (BMOV) 44. In which of the following molecule, σ2pz molecular orbital is filled after π2px and π2py molecular orbitals ? ’ðâ˜ÿå Ä™ å ²ìåìæÔå ÇȲå Ô µå åìæ¸ê˜µâå ÿÑ å –Ó ¼åêÒÊÑÉ´µåê¼åÁ ¾ µð ? 45. σ2pz ƒ¸ê’å’åÛ’åÔåíú (A) O2 (B) Ne2 (C) N2 (D) F2 ƒ¸ê’å’åÛ’å˜âµå ÿå ÄåҼ岵å Which of the following actinides show oxidation states upto +7 ? ’ðâ˜ÿå Ä™ å ²ìåìæÔå Actinides ˜µâå Ñ ÿå –Ó ‡¼å”ÚÈ¤å ¹æ ÜݽÀ 46. π2px and π2py +7 „˜™²µåê¼åÁ ¾ µð ? (A) Am (B) Pu (C) U (D) La Of the following, which is paramagnetic carbonyl ? ’ðâ˜ÿå Ä™ Ô å åíú˜âµå Ñ ÿå –Ó ²ìåìæÔåíúÁµåê ÇÈæÓ²µæ’æÒ½é²ìåê ˜µåê¸ ßðëÒÁ™²µåêÔå ’æÊðë¤éÅÑó „˜™²µåê¼åÁ ¾ µð ? (A) V(CO)6 (B) [V(CO)6]– (C) Cr(CO)6 (D) Ni(CO)4 Space For Rough Work Chemistry 17 47. Normalization constant ‘N’ for the following orbital ψa = N[0.61 φ2pz + 0.79 φ2py – 0.50 φ2s] ψa = N[0.61 φ2pz + 0.79 φ2py – 0.50 φ2s] † ’å’åÛ’åÁµå ÄæÔåê¤Ñ–é’å²µå¸ Å²ìåê¼æÒ’å ‘N’ Äå ÊðÑð (A) N = 0.5 (C) N = 0.89 48. (B) N = 1.4 (D) N = 0.29 The electron in TV picture tube has an energy of 10 keV. The uncertainty in momentum is worked out be 5.41 × 10–23 Kg ms–1. The uncertainty in position will be °.Õ. ¡¼åÐÁµå ’ðëâÿÔ å ²ð ìåêÑ–Ó ŠÑð’æ±øÄóÄå ×哾 10 keV „˜™²µåê¼åÁ ¾ µ.ð ÜÈÒå Ôð阵Á å Ñ µå –ÄÓ å ƒÅØ¢¼¼å ²ð ìåêÄåêÆ 5.41 × 10–23 Kg ms–1 ŠÒÁµåê ’åÒ´µåê à´™²ìåêÑ昙Áµ.ð ß昵æÁµæ˜µå ÜÈæÄ À Á å åµ ƒÅØ¢¼¼å ²ð ìåêê (A) 5.41 × 10–11 m (C) 2 × 10–11 m 49. (B) 9.8 × 10–11 m (D) 2.5 × 10–11 m Which of the following statements is wrong ? (A) In the epoxidation of an alkene with a peroxy acid, the peroxy acid is electrophilic. (B) The addition of bromine to cyclohexene is stereospecific but the product is a racemate. (C) Hydroboration-oxidation of a terminal alkyne gives a ketone as the main product. (D) Hydrogenation of an internal alkyne over the Lindlar catalyst gives a cis alkene. † ’ðâ˜ÿå Ä™ å ßðéâ–’˜ð âµå Ñ ÿå –Ó ²ìåìæÔåíúÁµåê ¼åÇÈæ˜É Á ™ µð ? (A) (B) (C) (D) ÇȲð µðë“Ó „ÔåêÁ Ó µðëÒÁ™˜µð „Ñð”éÅÄå ŠÔðî“Þ“²µ¸ å ÁµåÑ,Ó– ÇÈå²µðëé“Þ „ÔåêÔ Ó åíú ŠÑð’ðë±øÇ·Ñ Ý –²ìåê „˜™²µåê¼åÁ ¾ µ.ð ÜÈ’ðñ ðëß Ó ð“ÅÞ ˜µð ÊðëÐéÕêÄó ƒÄåêÆ ÜÈéð ²™ÜÈåêÔåíúÁµåê ÕÄæÏÜÈå ÕØÚÈå±Ô昙²µåê¼åÁ ¾ µð „Áµ²å µð ‡¼åÄÉ åÆÔåíú ²µÜð Ô Ý ðêé¯ó „˜™²µåê¼åÁ ¾ µ.ð §ÒÁµåê ƒÒ½Ôåê „Ñð”þñÅÄå ßð´ ñ µðëÐÊðë²µéð ×åÄó ‡¼å”ÚÈ夹ð²ìåêê “¯ðëéÄó ƒÄåêÆ ÇÈåÐÔåêê• ‡¼åÄÉ åÆÔ昙 Åé´µåê¼åÁ ¾ .µð Ñ–Ò´µåÓ²µó “вìåìæÔåÁ¤·µå ’åÁµå ÔðêéÑð §ÒÁµåê „Ò¼å²™’å „Ñð”þñÅÄå ßð´ ñ µðëÐé¦Åé’å²µ¸ å Ôåíú ÜÝÜÈó „Ñ–”éÄó ƒÄåêÆ ’ðë´µåê¼åÁ ¾ .µð Space For Rough Work 18 Chemistry 50. The pKa of HCN is 9.15, that of water is 15.7, and that of acetylene about 25. Which anion, CN–, OH–, or acetylide, would add fastest to acetone ? (A) CN– (B) OH– (C) Acetylide (D) Both CN– and OH– HCN Åé²µåê Ôåê¼åê¾ ƒÜÈ° å Ñ–éÅÄå pKa ˜µâå ÿåê ’åÐÔåêÔ昙 9.15, 15.7 Ôåê¼åê¾ ÜÈåêÔåìæ²µåê 25 „˜™²µåê¼åÁ ¾ .µð ß昵æÁµ²å µ,ð ²ìåìæÔå CN–, OH– ƒÁ¿·µÔ å æ ƒÜÝ°Ñðñ´µó „ÏÄå²ìåìæÄåê, „ÜݯðëéÄó˜µð Ôðé˜µÔ å 昙 ÜÈéð ²™’ðëâÿåêä¼åÁ ¾ µð ? 51. (A) CN– (B) OH– (C) (D) CN– Ôåê¼åê¾ OH– ƒÜÝ°Ñð´ ñ µó Which of the following reactions will not yield benzoic acid as the major product ? † ’ðâ’ÿå Òå ´µå ²ìåìæÔå ÇÈåн“вìð꘵âå ÿåê ÊðÄðë«éÎê’ó „ÔåêÓÔåÄåêÆ ÇÈåÐÔåêê• ‡¼åÄÉ åÆÔ昙 ‡¼æÉÁÜ™ ÈåêÔåíúÁÑ ™ Ó? (A) H3O+ CN → heat (B) CO2 H3O+ MgBr → → Et2O (C) CH3MgBr H3O+ COOCH3 → → Et2O (D) H3O+ COOCH3 → Space For Rough Work Chemistry 19 52. The reagent used for the given transformation is † ÇȲå Ô ™ ¼å ¤å Äð˜µð ÊâÿÜå ÈåêÔå ÇÈåн’æ²µå’å OR 1 R − CH 2 C CHO R 2 → R − CH − CO − R 2 OR 1 (A) N-disubstituted formaldehyde/POCl3 (B) N-disubstituted formamide/POCl3 (C) Zn(CN)2/HCl and H2O (D) CO/HCl,AlCl3 and H2O 53. The following molecule can undergo intra molecular Diels-Alder reaction. Which of the following is the product of this reaction ? † ÔåêêÒÁ™Äå ƒ¸êÔåíú ƒÒ¼å²µå¸ê’å ´™éÑóÞ-„ÏѶ²µó ÇÈåн“вìð꘵ðëâÿåäÊßåêÁµåê. ß昵æÁµå²µð † ÇÈåн“вìðê²ìåê ‡¼åÄÉ åÆÔåíú ’ðâÿ’å Òå ´µÔ å åíú˜âµå Ñ ÿå –Ó ²ìåìæÔåíúÁµåê ? Diels-Alder reaction → O O O (A) (B) O O (C) (D) Space For Rough Work 20 Chemistry 54. Which one of the following is incorrect regarding E2 reactions ? (A) They follow second-order kinetics. (B) They are accompanied by rearrangements. (C) They show a large hydrogen isotope effect. (D) They are not accompanied by hydrogen exchange. E2 ÇÈåГвìð꘵â å –˜µð ÜÈÒå ÊÒÁ·Ü™ Á Ý µÒå ¼ð † 55. ’ðâ’ÿå Òå ´µå ²ìåìæÔå ßðéâ–’²ð ìåêê ÜÈ²å ™²ìåì昙²µåêÔåíúÁ™ÑÓ ? (A) ƒÔåíú˜âµå ÿåê Á™Ö½é²ìåê ’åÐÔåìæÒ’åÁµå ’ðÄñ ° ð ’óÞ ƒÄåêÆ ƒÄåêÜÈ²å ™ÜÈåê¼åÔ ¾ ð (B) ƒÔåíú˜âµå ÿåê ÇÈåíúÄ²å µó ÔåÏÔåܲÈðÀ ìåêÄåêÆ ßðëÒÁ™²êµå ¼åÔ ¾ .ð (C) ƒÔåíú˜âµå ÿåê Êïß¼å ó ßð´ ñ µðëÐé¦Äó ŒÜÈðëé¯ðëéÇÈó ÇÈ²å ¹™ æÔåê’å˜âµå Äÿå åêÆ ¼ðëé²™ÜÈåê¼åÔ ¾ .ð (D) ƒÔåíú˜âµå ÿåê ßð´ ñ µðëÐé¦Äó ÕŲìåêÔå꘵âå Äÿå åêÆ §âÿ˜å µðëÒ´™²µåêÔåíúÁÑ ™ .Ó The following compound can be properly named as † ÔðêéєҴµå ÜÈÒå ²ìåêê’åÔ ¾ Äå åêÆ ÜÈåë’åÔ ¾ 昙 à阵Òð Áµåê ßðÜÈå²Ü™ Ê Èå ßåêÁµåê. CH2CH3 H Cl H CH3 Cl H CH3 (A) (3R, 4S, 5R)-3,5-Dichloro-4-methylhexane (B) (2S, 3S, 4S)-2,4-Dichloro-3-methylhexane (C) (2S, 3R, 4R)-2,4-Dichloro-3-methylhexane (D) (2S, 3R, 4S)-2,4-Dichloro-3-methylhexane Space For Rough Work Chemistry 21 56. The major product formed in the following reaction is † ÇÈåн“вìðê²ìåêÑ–Ó ²µåëÇÝ¼Ô å æÁµå ÇÈåÐÔåêê• ‡¼åÄÉ Æå O Me Me H H HO (B) Me H OH H (C) Me H OH H (D) H H HO (A) LiAlH 4 → H H Me Space For Rough Work 22 Chemistry 57. Which reaction is not appropriate for the synthesis of the following ? † ÜÈÒå “ÓÚÈ幘ð µð ²ìåìæÔåíúÁµåê ÜÈåë’å¾ ÇÈåн“вìðê²ìåêÑÓ ? O MgBr (A) O MgBr + (B) Br (C) 58. O + O Li (D) (i) Et2O + CH3CN → (ii) H3O+ + (i) Et2O → (ii) H3O+ O (i) NaOEt, EtOH → OEt (ii) H2SO4,H2O ∆ (i) THF → (ii) H3O+ An unknown compound has the molecular formula C5H10O. It exhibited five signals in its 13C NMR spectrum. One of these was in the δ 170 to 210 range while the others were all in the δ 0 to 60 range. Its IR spectrum showed absorption bands at 1725, 2715 and 2810 cm–1. Which of the following compounds fits the data given for this unknown ? §ÒÁµåê ƒÔåÏ’å¾ ÜÈÒå ²ìåêê’åÁ ¾ µå ƒ¸êÜÈåë¼åÐÔåíú C5H10O „˜™Á.µð …Áµåê ¼åÄåÆ 13C NMR ²µðëéà¼åÁµÑ å –Ó ŒÁµåê ÜݘµåÆÑó˜µâå Äÿå åêÆ ¼ðëé²™ÜÈåê¼åÁ ¾ .µð …Ôåíú˜âµå ÿÑ å –Ó §ÒÁµåê ÜݘµåÆÑó δ 170 ÎêÒÁµå 210 ÔæÏÇݲ¾ ìåêÑ–Á Ó µå²Â µ,ð ‡â–ÁÔ µå åíú˜âµå ÿåê δ 0 ÎêÒÁµå 60 ²µÔ å ²å ˜µð Ä™ å ÔæÏÇݾ²ìåêÑ–Ó …²µåê¼åÔ ¾ .ð …Áµ²å µå IR ²µðëéà¼åÔåíú, ƒÔå×ðëéÚȸ å ÇÈ° å ±˜âµå Äÿå åêÆ 1725, 2715 ß昵åë 2810 cm–1 ˜µâå Ñ ÿå –Ó ¼ðëé²™ÜÈåê¼åÔ ¾ .ð ß昵æÁµ²å ,µð † ’ðâÿ˜å Ä™ å ²ìåìæÔå ÜÈÒå ²ìåêê’åÔ ¾ åíú, † ƒÔåÏ’å¾’ð” ’ðë°±²µåêÔå Áµ¼å æ¾Ò×å’ð” ßðëÒÁ™’ðëâÿåêä¼Á å¾ µð ? (A) CH3CH2CH2COCH3 (B) CH3CH2CH=CHCH2OH (C) CH2=CHCH2OCH2CH3 (D) CH3CH2CH2CHO Space For Rough Work Chemistry 23 59. The intermediate involved in the following reaction is † ÇÈåн“вìðê²ìåêÑ–Ó §âÿ˜å µðëÒ´™²µåêÔå ÔåêÁ·ùµåÏÔ彤 ∆ → N N3 H (B) (A) N3 N3 60. (D) : : (C) N N The reagents used to accomplish the following transformation are † ÇȲå Ô ™ ¼å ¤å Äð˜µð ƒ˜µ¼å åÏÔ昙²µåêÔå ÇÈåн’沵咘å âµå ÿåê ²ìåìæÔåíúÔåíú ? O OH O → O O O (A) KMnO4, NaOH, H2O, heat (B) DIBAL-H, CH2Cl2, –78 °C (C) CrO3, HCl, pyridine (D) H2CrO4, acetone, 35 °C 61. Which one of the following is incorrect regarding ionic liquids ? Space For Rough Work 24 Chemistry (A) They are salts with melting points less than 100 °C. (B) They have high vapour pressure. (C) They are designer solvents. (D) They are used as alternative reaction media. ƒ²ìåìæÅ’ó ÁµæÐÔ¸ å ˜µâå –˜µð ÜÈÒå ÊÒÁ·Ü™ Á Ý Òµå ¼ð † ’ðâÿå’Òå ´µå ²ìåìæÔå ßðéâ–’²ð ìåêê ÜÈ²å ²™ ìåì昙²µåêÔåíúÁÑ ™ Ó? 62. (A) ƒÔåíú˜âµå ÿåê, 100 °C ˜™Ò¼å ’å´Ô ™ ðêÎê²µåêÔå Á·µùåÐÕé’å²µ¸ å Ê–ÒÁµåêÕÄå ÑÔ帘µâå ÿåê (B) ƒÔåíú˜âµå ÿåê ßð¡¢Äå ÊæÚÈðëéÉ ¼å´ ¾ µÔ å Äå åêÆ ßðëÒÁ™²µåê¼åÔ ¾ .ð (C) ƒÔåíú˜âµå ÿåê ÕÄæÏÜÈ’å å ÁµæÐÔ’å ˜å âµå ÿ昙²µåê¼åÔ ¾ .ð (D) ƒÔåíú˜âµå ÿåê ÇȲå ìåì椲ìåê ÇÈåн“вìåìæ ÔåìæÁ·ùµåÏÔåêÔ昙 ÊâÿÜå ÈåÑ´ É µåê¼åÔ ¾ .ð Which of the following structures are aromatic according to Hückel’s rule ? ßå’Ñ å óÄå ŲìåêÔåêÁµå ÇÈåÐ’æ²µå † ÔåêêÒÁ™Äå ²ìåìæÔå ÜÈÒå ²µåôÄå ˜ð âµå ÿåê „²µðëéÔåìæÏ°’ó˜µâå ÿ昙Ôð ? I CH 2 IV II III V (A) I and III (B) I, III and IV (C) II and IV (D) I, III and V Space For Rough Work Chemistry 25 63. The reagents used for the following conversions are † ’ðâ˜ÿå Ä™ å ÇȲå Ô ™ ¼å ¤å Äð˜µð ÊâÿÜå Ñ Èå É´µåêÔå ÇÈåн’æ²µ’å ˜å âµå ÿåê NH 2 → Cl (A) (i) (B) (i) Cl2,Fe (ii) Fe,HCl (ii) HNO3+H2SO4 (iii) HCl (iii) Fe, HCl (C) (i) 64. HNO3+H2SO4 HCl, NaNO2 (D) (i) Fe, HCl (ii) Fe, HCl (ii) Cl2, Fe (iii) HNO3+H2SO4 (iii) HNO3+H2SO4 Which of the following compounds are achiral ? † ’ðâ’ÿå Òå ´µå ²ìåìæÔå ÜÈÒå ²ìåêê’嘾 âµå ÿåê ƒ’ðñ²µæÑó˜µâå ÿ昙Ôð ? (i) (iii) H Cl Cl H H C 2H 5 (ii) (iv) H C 2H 5 Cl C 2H 5 H Me C=C=C (A) (i) and (iii) (B) (i) and (ii) (C) (i) and (iv) (D) (ii) and (iv) H Me Space For Rough Work 26 Chemistry 65. The most stable conformation of cyclohexane-1, 2-diol is ÜÈ’ðñ ðëéÓ ßð’ðéÞ Äó -1, 2-´µ²ðñ ìåìæÑóÄå ƒ½ ÜݲÀ µå ƒÄåêÕÄæÏÜÈåÔåíú OH OH OH (A) (B) OH OH OH OH (C) 66. (D) HO The industrial and domestic microwave apparatus intended for heating purposes are regulated at Ê–ÜÝ Ôåìæ´µåêÔå ‡Áµéð ×å’攘™ ÊâÿÜå ÈåêÔå ’ð˜ñ µæ²™’æ ß昵åë ˜µåïßÜå ÒÈå ÊÒÁ·™ Ôðê’ñ ðëÐéÔðéÔó ‡ÇÈ’å ²å µ¸ å ˜µâå Äÿå åêÆ ²ìåìæÔå Ôðê’ñ ðëÐÔó ¼å²Òµå ˜µæҼ岵Á å µå ÔåѲìåêÁµÑ å –Ó Å²ìåêÒ½ÐÜÑ Èå 昵åê¼åÁ ¾ µð ? 67. (A) 1800 MHz (B) 2450 MHz (C) 1250 MHz (D) 800 MHz The hydrogen atoms at C3 in the following compounds are † ’ðâ’ÿå Òå ´µå ÜÈÒå ²ìåêê’åÁ ¾ Ñ µå –ÄÓ å C3 ²ìåê ßð´ ñ µðëÐé¦Äó ÇÈ²å µåÔåìæ¸ê˜µâå ÿåê ²ìåìæÔåíúÔÒð Áµ²å ,µð CH 3 H OH H H C 2H 5 (A) Homotopic (B) Homomorphic (C) Enantiotopic (D) Diastereotopic Space For Rough Work Chemistry 27 68. The product of following reaction is † ’ðâ˜ÿå Ä™ å ÇÈåн“вìðê²ìåê ‡¼åÄÉ åÆÔåíú O (i) O NH, TS OH, ∆ → (ii) BrCH2CO2Et (iii) HCl, H2O O ⊕ (A) CO2Et N O Br N (B) O O HO CO2 Et (C) 69. CO2Et CO2 Et (D) An organic compound with Molecular formula C12H16O3 displayed following spectral data IR: 3014, 2954, 1712, 1600, 1582, 1040 cm–1 1HNMR: δ 2.32 (s, 6H), 3.30 (s, 3H), 3.83 (t, 2H), 4.42 (t, 2H), 7.07 (s, 1H), 7.58 (s, 2H) The structure of compound is ƒ¸êÜÈåë¼åÐ C12H16O3 „˜™²µåêÔå „˜µæϤŒó ÜÈÒå ²ìåêê’åÔ ¾ åíú † ÔåêêÒÁ™Äå ²µðëéà¼å Áµ¼å æ¾Ò×åÔÄå åêÆ ¼ðëé²™ÜÈåê¼åÁ ¾ .µð IR: 3014, 2954, 1712, 1600, 1582, 1040 cm–1 1HNMR: δ 2.32 (s, 6H), 3.30 (s, 3H), 3.83 (t, 2H), 4.42 (t, 2H), 7.07 (s, 1H), 7.58 (s, 2H)). ß昵æÁµ²å µð ÜÈÒå ²ìåêê’åÁ ¾ µå ÜÈÒå ²µô å Äå ð²ìåêê (A) (C) O O O O O (B) (D) O O O O O O O Space For Rough Work 28 Chemistry 70. The saponification of the optically active ester as shown below would most likely produce which of the following products ? † ’ðâ˜ÿå µð ¼ðëé²™Ü²Ý µåêÔåÒ¼ð „Çݱ’Ñ å – “вìåìæ¼åÍ’å ŠÜÈ屲ę å ÜÈÊ å ëÅé’岸 µå Ôåíú, † ’ðâ’ÿå Òå ´µå ²ìåìæÔå ‡¼åÄÉ åƘâµå Äÿå åêÆ ‡¼å½É ܾ Ê Èå ßåêÁµæ˜™Áµð ? CH 3 H O Na18OH → H218O O Ph CH 3 H CH 3 OH Ph (A) CH 3 18 71. CH 3 H HO Ph (C) OH Ph (B) H O 18 H H Ph (D) The heterocycle formed in the reaction given below is O KCNS → NH 2 (A) substituted thiazole (B) substituted isothiazole (C) substituted imidazole (D) substituted pyrazole † ÇÈåн“вìðê²ìåêÑ–Ó ²µåëÇÈ˜å µðëÒ´µå ÕÚÈÔ å åê ôå’åÐ ÜÈÒå ²ìåêê’å¾ O KCNS → NH 2 (A) ÇÈÐå ½ÜÈæÇ À ¼Ý å Á¿·™²ìåìæ¦ÿðëéÑó (B) ÇÈåнÜÈæÇ À ¼Ý å ŒÜÈðëéÁ¿²·™ ìåìæ¦ÿðëéÑó (C) ÇÈÐå ½ÜÈæÇ À ¼Ý å …Õê´µæ¦ÿðëéÑó (D) ÇÈåнÜÈæÇ À ¼Ý å ÇÈðñ²µæ¦ÿðëéÑó Space For Rough Work Chemistry 29 72. The product formed in the following reaction is † ’ðâ’ÿå Òå ´µå ÇÈåн“вìðê²ìåêÑ–Ó ²µåëÇÈ˜å µðëÒ´µå ‡¼åÄÉ åÆ O NH2 HN O N H NH2 O O N HN (A) H 2N 73. (B) O O O N H N H HN NH2 N H O O N N H H N HN N H N HN (C) H2NCONH2 → ∆ (D) H2 N H N O N N H The temperature at which the oil vapours catch fire and continue to burn is called as (A) Fire point (B) Aniline point (C) Flash point (D) Ignition point ¼ðÑ ñ Áµå ßåʲð ìåêê ßðë½¾ ‡²™Áµåê, ‡²™²ìåêê¼åÑ ¾ ð …²µåêÔå ‡ÚÈ¼å» ²ð ìåêÄåêÆ (A) ƒ˜™Æ Ê–ÒÁµåê (B) ƒÅÑ–Äó Ê–ÒÁµåê (C) ôåÔåê’åê Ê–ÒÁµåê (D) ¦ÖÑÄå Ê–ÒÁµåê 74. Example for the primary explosive is (A) RDX (C) Nitrocellulose (B) (D) Silverazide CL-20 (B) (D) Silverazide CL-20 ÇÈæÐÁ¿·µÕ å ê’å ÜÈðëéÉà ®’å’ð” ‡Áµæßå²µ¹å ð (A) RDX (C) Äð¯ ñ ðëÐÜÑ Èð êÏÑðëéÜÈó Space For Rough Work 30 Chemistry 75. Chemically Plaster of Paris is ÇÈæÜÓ Èå±²µó „Ç·Èó ÇÈæϲ™éÜÈóÄåêÆ ²µÜå Èæ²ìåêÅ’åÔ昙 76. (A) CaSO4⋅H2O (B) CaSO4⋅2H2O (C) CaSO4⋅1/2H2O (D) CaSO4⋅MgSO4⋅2H2O The Pigment Volume of Concentration (PVC) of paint is defined as ÇݘµóÔðêÒ¯ó ÔæÑëÏÔåìó ÜÈæ²µÔ å Äå åêÆ † ’ðâ˜ÿå Ä™ Òå ¼ð ÅÔå¤ôåÄð Ôåìæ´µÊ å ßåêÁµæ˜™Áµ.ð Volume of Pigment in oil (A) PVC = Volume of Pigment in paint + Volume of non-volatile vehicle constituent in paint Volume of Pigment in paint (B) PVC = Volume of Pigment in paint + Volume of non-volatile constituent in paint Volume of paint (C) PVC = Volume of oil Volume of Pigment in paint (D) PVC = Volume of non-volatile vehicle constituent in paint 77. The important use of silicon carbide is (A) Pigment (B) Refractory (C) Heating element (D) Super Conductor (B) ²™Ç·ÈæÐ’å±²™ ÜÈåëÇÈ²å µó ’åÒ´µ’å å±²µó ÜÝÑ–’æÄó ’æÊ𤴵óÄå Ôåêê•Ï ‡ÇȲå ìåêê’å¼¾ ð (A) Ç·˜ Ý µóÔðêÒ¯ó (C) àé°Ò˜µó ŠÑ–ÔðêÒ¯ó 78. (D) The transition of polymer from solid to softening stage is known as (A) Melting (B) Glass transition (C) Orientation (D) Curing ›åÄå ÇÈæÑ–Ôåê²µÄå åêÆ ÔðêÁµåê¼åÖ˜µðëâ–ÜÈåêÔå ÜÈÒå ’åÐÔåê¸Ôåíú (A) ÁµÐå Õé’å²µå¸ (B) (C) ƒÊ–· ÕÄæÏÜÈå (D) ˜µæÜÓ Èó ¯æÐÅéÞ ×åÄó ÜÈÒå ÜÈ唲™ÜÈåê Space For Rough Work Chemistry 31 79. Polyaniline is an example of (A) Normal Polymer (C) Insulating Polymer ÇÈæÑ–ƒÅÑ–Äó † ²ìåìæÔåíúÁ’µå ð” ‡Áµæßå²¹µå ð (A) ÄæÔåê¤Ñó ÇÈæÑ–Ôåê²µó (C) ÕÁµåêϼó ŲµðëéÁ·µå’å ÇÈæÑ–Ôåê²µó 80. (B) (D) High Strength Polymer Conducting Polymer (B) ßðôåê¢ ÊÑÔåíúâÿåä ÇÈæÑ–Ôåê²µó ÕÁµåêϼó Ôæßå’å ÇÈæÑ–Ôåê²µó (D) Elastomers have (A) High glass transition temperature. (B) Very low glass transition temperature. (C) Glass transition temperature is above room temperature. (D) Glass transition temperature is above 1000 °C. ŠÑæÜÈðë±Ôåê²µó˜µâå ÿåê (A) ßðôåê¢ ˜µæÜ Ó Èó ¯æÐÅÚ Þ ÄÈå ó ¯ðÒÇÈ²å µðéôå²µó ßðëÒÁ™²µêå ÔåíúÔåíú (B) ’å´Ô ™ ðê ˜µæÜÓ Èó ¯æÐÅÚ Þ ÄÈå ó ¯ðÒÇÈ²å µéð ôå²µó ßðëÒÁ™²åêµ ÔåíúÔåíú (C) ˜µæÜ Ó Èó ¯æÐÅÚ Þ ÄÈå ó ¯ðÒÇÈ²å µéð ôå²µó ²µåëÔåìó ¯ðÒÇÈ²å µéð ôå²µó˜™Ò¼å ßðôåê¢ (D) ˜µæÜ Ó Èó ¯æÐÅÚ Þ ÄÈå ó ¯ðÒÇÈ²å µéð ôå²µó 1000 °C “”Ò¼å ßðôåê¢ 81. Ceramics belongs to a _____ class of compounds. (A) High mechanical strength (B) (C) Ionic compounds (D) ÜȲð µæÕê’óÞ ²ìåìæÔå ˜µåêÒÇÝÄå ÜÈÒå ²ìåêê’å’¾ ð” ÜÈéð ²™Áµð ? (A) ßðôåê¢ Ôðê’æÏÅ’åÑó ÊÑÕ²µåêÔå (C) ƒ²ìåìæÅ’ó ÜÈÒ å ²ìåêê’嘾 âµå –˜µð 82. (B) (D) High loss Rubbery materials ßðñ ÑæÜÈó ²µÊ å ̲µó ÔåÜÈå꘾ âµå ÿå ˜µåêÒÇݘµð Ziegler-Natta Catalyst is used specially in the polymerization of (A) Olefins (B) Phenols (C) Anilines (D) Alkanes ¨é²ìð꘵²åÓ µó-Äå¯æ± Ôðé˜µå “Ð²ìåìæÔåÁ¤µå ’åÔÄå åêÆ Õ×ðéÚÈÔ å 昙 † ’ðâ˜ÿå Ä™ å ²ìåìæÔå ÇÈæÑ–Ôåê²µÄå åêÆ ¼å²ìåìæ²™ÜÑ Èå ê ‡ÇȲå ìðë阙ÜÈåê¼æ¾²µð ? (A) §Ñ–ÇÄ Ý óÞ (B) Ç·ÄÝ æÑóÞ (C) ƒÅÑ–ÄóÞ (D) „Ñð”þñÄóÞ Space For Rough Work 32 Chemistry 83. 84. The lowest segment of the atmosphere is (A) Mesophere (B) Stratosphere (C) Thermosphere (D) Troposphere Ôæ¼æÔ岸 µå ÁµÑ å –Ó ƒ½ ’ðâ˜ÿå Ä™ å ʷ昵å (A) ÕêÜÈðëéÜݲ É ìåê²µó (C) Á¿Ô ·µå ðë¤éÜÝ²É ìåê²µó (B) ÜÈæ±øûϯðëéÜÝ²É ìåê²µó ¯ðëÐéÇÈðîéÜÝ²É ìåê²µó (D) The presence of ozone layer in the atmosphere helps in filtering of (A) IR radiation (B) Microwave radiation (C) UV radiation (D) γ radiation Ôæ¼æÔ岸 µå ÁµÑ å –Ó õ¦ÿðëéÄó ÇÈÁ å ²µå Á µå µå …²µåêÕ’ð²ìåêê …Áµå²µå ÜÈðëéÜÈåêÕ’ð²ìåêÑ–Ó ÜÈß å ’å ²å Ü™ Èåê¼åÁ ¾ .µð (A) IR Õ“²µ¸ å (B) Ôðê’ñ ðëÐéÔðéÔó Õ“²µå¸ (C) ƒ½ Äðé²µâ å ÿð Õ“²µ¸ å (D) γ Õ“²µ¸ å 85. Dissolved oxygen of polluted water is determined by (A) Conductometric method (B) Amperometric method (C) Winkler’s method (D) Turbidometric method ÔåìæÑ–ÄåϘµðëÒ´µå Åé²™ÄÑ å –Ó ÕÑ–éÄ嘵ðëÒ´µå „Ôåê¦ Ó Äå’Ô å Äå åêÆ ÅÁ·¤µå ²™ÜÈåêÔåíúÁµåê (A) ’åÒ´µ’ å ðë±øéÔðê°Ð’ó ÕÁ·µæÄå (B) „ÏÒÇȲð µðëéÔðê°Ð’ó ÕÁ·µæÄå (C) ÕÒ’å² Ó µó Äå ÕÁ·µæÄå (D) ®Ê–¤´µðëéÔðê°Ð’ó ÕÁ·µæÄå 86. For a given sample of sewage water, the following always happens (PV: potassium permanganate value) §ÒÁµåê ’ðë°±²µåêÔå §âÿô å ²å Òµå ´™ Åé²™Äå ÜÈæÏÒÇÈÑ å ó˜µð ’ðâ˜ÿå Ä™ Á å µåê ÜÈÁ å µæ Äå´µð²ìåêê¼åÁ ¾ .µð (PV: (A) COD<BOD>PV (B) BOD>COD>PV (C) COD>BOD>PV (D) PV<COD>BOD Space For Rough Work Chemistry ÇÈðî¯æÏÜݲìåêÔåìó ÇÈÔ å åìæ¤Ò˜µÄå éð ¯ó) † 33 87. ‘Smog’ formation in air takes place because of the presence of (A) Nitrogen oxides emitted from automobiles. (B) Suphur oxides emitted from automobiles and industries. (C) Carbon dioxide and carbon monoxide. (D) Nitrogen oxides, sulphur oxides, peroxy acetals nitrates PAN and carbon monoxide. Ôæ²ìåêêÕÄåÑ–Ó ‘Á·µåëÔåêÐ’æÔåâÿ’å Áµå ²µåëÇÈåíú˜µðëâÿåêäÕ’ð²ìåêê ²ìåìæÔåíúÁ²µå µå …²µêå Õ’ðÎêÒÁµå Äå´²µð ìåêê¼åÁ ¾ µð ? 88. (A) Ôðëé¯æ²µåê ÔæßåĘå âµå –ÒÁµå ‡¼å¨ Þ ¤¼å˜µðëÒ´µå Äð¯ ñ ðëÐé¦Äó „’ðûÞ ´ ñ µó˜µâå ÿåê. (B) Ôðëé¯æ²µåê ÔæßåĘå âµå ÿåê ß昵åë ’ð˜ñ µæ²™’˜ð âµå –ÒÁµå ‡¼å¨ Þ ¤¼å˜µðëÒ´µå ˜µÒå Á·’µå Á å µå „’ðûÞ ñ´µó˜µâå ÿåê. (C) …Ò˜µæÑÁµå ´µ„ ðñ ’ðûÞ ´ ñ µó Ôåê¼åê¾ …Ò˜µæÑÁµå ÔðëÄæ’ðûÞ ñ´µó (D) Äð¯ ñ ðëÐé¦Äó „’ðûÞ ´ ñ µó, ˜µÒå Á·µ’å Á å µå „’ðûÞ ´ ñ µó, PAN Ôåê¼åê¾ …Ò˜µæÑÁµå ÔðëÄæ’ðûÞ ´ ñ µó Which of the following can’t be recycled ? (A) Waste paper (B) Cotton (C) Heavy metal (D) Skeletons † ’ðâ’ÿå Òå ´µÔ å åíú˜âµå Ñ ÿå –Ó ²ìåìæÔåíúÁµÄå åêÆ ÇÈåíúÄåʤâÿ’å ð Ôåìæ´µÑ å 昵åêÔåíúÁÑ ™ Ó? 89. (A) ²µÁ å ™Â ’昵Á å µå (B) ßå½¾ (C) Ê·æ²µå Ñðëéßå (D) ƒÜÝÇ ¾ ÒÈå ¦²µå (A) 50-60 kM (B) 25-32 kM (C) 43-51 kM (D) 10-15 kM The thickness of biosphere is approximately ¦ÿÔ ðñ ˜å µðëéâÿÁ å µå ÁµÇ å ÈâåÉ ¼ÿå ²ð ìåêê ƒÒÁµæ¦ê ŠÚݱ²êµå ¼åÁ ¾ µð ? Space For Rough Work 34 Chemistry 90. Indicate which of the following pair of Sugars consists of epimers. † ’ðâ˜ÿå Ä™ å ²ìåìæÔå ×å꘵²å µó˜µâå ÿå ¦ÿðëé´™²ìåêê ŠÇÝÔåê²µóÞ ˜µâå ÿ昙²µåê¼åÔ ¾ ð? (A) D-Glyceraldehyde and Dihydroxy acetone (B) D-Glucose and D-Mannose (C) D-Glucose and D-Fructose (D) D-Galatose and D-Glucose 91. A Ribose Sugar is linked to adenine by N-glycosidic bond at position §ÒÁµåê ²µÊ ðñ ðëéÜÈó ×å꘵²å µó ŠÄó-˜µüÓð ñ’ðëÜÈ´ ðñ ’™ ó ÊæÒ´µóÅÒÁµå ƒ´™ÄÄðñ ó˜µð † ÜÈâåÀ Á ÿå Ñ µå –Ó ÊÒÁ·µÔ å 昙²µåê¼åÁ ¾ .µð 92. (A) N-1 (B) N-3 (C) N-7 (D) N-9 Which of the following is not a prosthetic group ? † ’ðâ˜ÿå Ä™ Ô å åíú˜âµå Ñ ÿå –Ó ²ìåìæÔåíúÁµåê ÇÈðîÐÜÈð° À ’ó ˜µåêÒÇÈíå ú „˜™²µåêÔåíúÁÑ ™ Ó? 93. (A) NAD (B) Fe+3 (C) ATP (D) Co-enzyme A Which of the following vitamin acts as antioxidant ? † ’ðâ˜ÿå Ä™ å ²ìåìæÔå ¨éÔåܼÈå åÖÔåíú ‡¼å”ÚÈ¤å ¸ Õ²µðëéÁ·µå’Ô å 昙Áµð ? 94. (A) Vitamin-D (B) Vitamin-K (C) Vitamin-A (D) Vitamin-E The following amino acid reacts with α-naphthol and sodium hypochlorite to give red colour † ’ðâ’ÿå Òå ´µå ²ìåìæÔå ƒÔðêÄñ ðëé „ÔåêÔ Ó åíú α-ÄæÇ·ùÈð îúé¾ Ñó ß昵åë ÜÈðëé´™²ìåêÒ ßðÇ ñ Èðîé ’ðëéÓ ²µ´ ðñ µó ÄðëÒÁ™˜µð ÇÈåн“вìð꘵ðëÒ´µåê ’ðÒÇÈåíú ʸ»ÔÄå åêÆ Åé´µåê¼åÁ ¾ µð ? (A) Arginine (B) Tyrosine (C) Histidine (D) Cysteine Space For Rough Work Chemistry 35 95. Amino acid is placed in alkaline solution pH=11. What will be the status of protonation ? (A) Both NH2 and –COOH group protonated. (B) –NH2 group protonated and –COOH group deprotionated. (C) –NH2 group deprotonated and –COOH group protonated. (D) Both –NH2 and –COOH group will be deprotonated. ƒÔðêÄñ ðëé „ÔåêÔ Ó Äå åêÆ ’æÛ²™é²ìåê ÁµæÐÔ¸ å pH=11 ÄåÑ–ÓÁµæ˜Â µå ÇÈðîÐé¯æÅé’岸 µå Áµå ÜݽÀ ‹Ä昙²µåê¼å¾Áµð ? (A) NH2 ß昵åë –CCOH Š²µ´ å µåë ˜µåêÒÇÈåíú˜âµå ÿåê ÇÈðîÐé¯ðëéÅé’å²µ¸ å ˜µðëâÿåêä¼Á å¾ .µð (B) –NH2 ˜µåêÒÇÈåíú ÇÈðîÐé¯ðëéÅé’å²µ¸ å ˜µðëâÿåêä¼Á å¾ µð ÇÈðîÐé¯ðëéÅé’岸 µå ˜µðëâÿåêäÔåíúÁ™Ñ.Ó ß昵åë (C) –NH2 ˜µåêÒÇÈåíú ÇÈðîÐé¯ðëéÅé’å²µ¸ å ˜µðëâÿåêäÔåíúÁ™ÑÓ ÇÈðîÐé¯ðëéÅé’岸 µå ˜µðëâÿåêä¼Á å¾ µ.ð (D) –NH2 ß昵åë –COOH Š²µ´ å µåë 96. ß昵åë –COOH ˜µåêÒÇÈåíú –COOH ˜µåêÒÇÈåíú ˜µåêÒÇÈåíú˜âµå ÿåê ÇÈðîÐé¯ðëéÅé’å²µ¸ å ˜µðëâÿåêäÔåíúÁ™Ñ.Ó A stranded DNA has a melting temperature of 86° C has 55% of G≡C, what will be the fraction A in a DNA which has a melting temperature of 88 °C ? ´™ŠÄóŠ ¼åÒ¼åêÕÄå ÁµåêÐÕé’岸 µå ‡ÚÈ¼å» ð²ìåêê 86° C …Áµåê, G≡C ‡ÚÈ¼å» ²ð ìåêê 88 °C …Áµæ˜Â µå ´™ŠÄóŠ ²ìåêÑ–Ó Š ƒÒ×åÔåíú ŠÚݱ²µåê¼åÁ ¾ µð ? 97. (A) 40% (B) 20% (C) 25% (D) 30% (A) PLP (B) TPP (C) FMN (D) NAD 55% …²µåê¼åÁ ¾ .µð ÁµåêÐÕé’å²µ¸ å The co-enzymic form of Vitamin-B6 is ¨éÔåܼÈå åÖ B6 Äå ÜÈß å å “¸Ö¼åÖÁµå ²µåëÇÈå Space For Rough Work 36 Chemistry 98. Systematic name of the enzyme lactate dehydrogenate is written as ÑæÏ’ð±éÜÈó ´™ßðñ´µðëÐé¨ÄðéÜÈó “¸ÖÔÄå åêÆ ’åÐÔåêÊÁµÔ åÂà 昙 à阵Òð Áµåê ßðܲÈå Ü™ Ê Èå ßåêÁµåê. (A) L-Lactate : NAD-Oxido reductase (B) L-Lactate – NAD-oxido reductase (C) L-Lactate dehydrogenate (D) NAD-Oxido reductase 99. The role of glucagon is (A) Increase the blood glucose in the liver. (B) Decrease the blood glucose in the liver. (C) No effect on the blood glucose in the liver. (D) Maintains the blood glucose in the liver. ˜µüðÓ ’ñ ðë阵æÄóÄå ÇÈæ¼åÐ (A) ²ìåê’åï¼óÁµå ²µå’Á å¾ Ñ µå –ÄÓ å ÜÈ’å 唲µ²ð ìåêÄåêÆ ßð¡¢ÜÈåê¼åÁ ¾ µ.ð (B) ²ìåê’åï¼óÁµå ²µå’Á å¾ Ñ µå –ÄÓ å ÜÈ’å 唲µ²ð ìåêÄåêÆ ’å´Ô ™ ðê Ôåìæ´µåê¼åÁ ¾ µ.ð (C) ²ìåê’åï¼óÁµå ²µå’Á å¾ Ñ µå –ÄÓ å ÜÈ’å 唲µ²ð ìåê ÔðêéÑð ²ìåìæÔåíúÁµéð ÇÈ²å ¹™ æÔåê Ôåìæ´µåêÔåíúÁÑ ™ .Ó (D) ²ìåê’åï¼óÁµå ²µå’Á å¾ Ñ µå –ÄÓ å ÜÈ’å 唲µ²ð ìåêÄåêÆ ’æÇÈæ´µåê¼åÁ ¾ .µð 100. The following molecule is the direct precursor of Vitamin-D. ¨éÔåܼÈå åÖ -D ²ìåê Äðé²µå ÇÈåîÔ夘µæÕê²ìåêê † ƒ¸êÔ昙²µåê¼åÁ ¾ .µð (A) Cortisole (B) Cholesterol (C) Testosterone (D) Estra diol _________ Space For Rough Work Chemistry 37 Space For Rough Work Space For Rough Work 38 Chemistry Space For Rough Work Space For Rough Work Chemistry 39 ¢£ÁAPÀ «µÀAiÀÄ ¸ÀàzsÁðvÀäPÀ ¥ÀjÃPÉë 2016 «µÀAi ÀÄ ¸ÀAPÉÃvÀ «µÀAiÀÄ 04-03-2016 ²µÜå Èæ²ìåêÄå ×æÜÈå¾ø 16 UÀjµÀÖ CAPÀUÀ¼ÀÄ GFGC ¸ÀªÀÄAiÀÄ ªÀÄ.2.00 jAzÀ ¸ÀA.5.00 gÀ ªÀgÉUÉ ªÀÄ. ¸ÀA. MlÄÖ CªÀ¢ü 210 ¤«ÄµÀUÀ¼ÀÄ 200 ¤ªÀÄä £ÉÆAzÀt ¸ÀASÉåAiÀÄ£ÀÄß ¨gɬÄj GvÀÛj¸À®Ä EgÀĪÀ UÀjµÀÖ CªÀ¢ü 180 ¤«ÄµÀUÀ¼ÀÄ ¥Àæ±ÉߥÀwæPÉAi ÉAiÀÄ ÀÄ «ªÀgÀUÀ¼ÀÄ ¥Àæ±ÉߥÀwæPÉAiÀÄ PÀæªÀÄ ¸ÀASÉå Ôåê¼åê¾ ªÀµÀð£ï ¸ÀASÉå ªÀiÁr £ÉÆAzÀt ¸ÀASÉåAiÀÄ£ÀÄß N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è §gÉzÀÄ CzÀPÉÌ ¸ÀA§A¢ü¹zÀ ªÀÈvÀÛUÀ¼À£ÀÄß ¸ÀA¥ÀÆtðªÁV vÀÄA©¢ÝÃgÉAzÀÄ SÁwæ¥Àr¹PÉƽî. 2. PÉÃAzÀæ ¸ÀAPÉÃvÀªÀ£ÀÄß N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è §gÉzÀÄ CzÀPÉÌ ¸ÀA§A¢ü¹zÀ ªÀÈvÀÛUÀ¼À£ÀÄß ¸ÀA¥ÀÆtðªÁV vÀÄA©¢ÝÃgÉAzÀÄ SÁwæ¥Àr¹PÉƽî. 3. ¥ÀjÃPÁë «µÀAiÀĪÀ£ÀÄß N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è §gÉzÀÄ ºÁUÀÄ «µÀAiÀÄzÀ ¸ÀAPÉÃvÀªÀ£ÀÄß §gÉzÀÄ CzÀPÉÌ ¸ÀA§A¢ü¹zÀ ªÀÈvÀÛUÀ¼À£ÀÄß ¸ÀA¥ÀÆtðªÁV vÀÄA©¢ÝÃgÉAzÀÄ SÁwæ¥Àr¹PÉƽî. 4. PÉÆoÀr ªÉÄðéZÁgÀPÀjAzÀ F ¥Àæ±Éß ¥ÀwæPÉAiÀÄ£ÀÄß ¤ªÀÄUÉ 2£Éà ¨ÉGï DzÀ £ÀAvÀgÀ CAzÀgÉ ªÀÄ. 1.55 DzÀ £ÀAvÀgÀ PÉÆqÀGÁUÀĪÀÅzÀÄ. 5. ¥Àæ±Éß ¥ÀwæPÉAiÀÄ PÀæªÀÄ ¸ÀASÉåAiÀÄ£ÀÄß N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è §gÉAiÀĨÉÃPÀÄ. 6. ¥Àæ±Éß ¥ÀwæPÉAiÀÄ ªÀµÀð£ï ¸ÀASÉå,, N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è §gÉzÀÄ CzÀPÉÌ ¸ÀA§A¢ü¹zÀ ªÀÈvÀÛUÀ¼À£ÀÄß ¸ÀA¥ÀÆtðªÁV vÀÄA§¨ÉÃPÀÄ. 7. N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ PɼÀ¨sÁUÀzÀ ¤UÀ¢vÀ eÁUÀz°è PÀqÁØAiÀĪÁV ¸À» ªÀiÁqÀ¨ÉÃPÀÄ. ªÀiÁqÀ¨ÉÃr 1. N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è ªÀÄÄ¢ævÀªÁVgÀĪÀ mÉÊ«ÄAUï ªÀiÁPÀð£ÀÄß wzÀݨÁgÀzÀÄ / ºÁ¼ÀĪÀiÁqÀ¨ÁgÀzÀÄ / C½¸À¨ÁgÀzÀÄ. 2. ªÀÄÆgÀ£Éà ¨ÉGï ªÀÄ. 2.00 PÉÌ DUÀÄvÀÛzÉ. C°èAiÀĪÀgÉUÀÆ, • ¥Àæ±Éß ¥ÀwæPÉAiÀÄ §®¨sÁUÀzÀ°ègÀĪÀ ¦£ï CxÀªÁ ¹ÃGï C£ÀÄß vÉUÉAiÀĨÁgÀzÀÄ. • ¥Àæ±Éß ¥ÀwæPÉAiÀÄ M¼ÀUÀqÉ EgÀĪÀ ¥Àæ±ÉßUÀ¼À£ÀÄß £ÉÆÃqÀ®Ä ¥ÀæAiÀÄw߸À¨ÁgÀzÀÄ. • N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è GvÀÛj¸À®Ä ¥ÁægÀA©ü¸¨ÁgÀzÀÄ. 1. C¨sÀåyðUÀ½UÉ ªÀÄÄRå ¸ÀÆZÀ£ÉUÀ¼ÀÄ 1. 2. 3. ¥Àæ±Éß ¥ÀwæPÉAiÀÄ°è MlÄÖ 100 ¥Àæ±ÉßUÀ½zÀÄÝ, ¥Àæw ¥Àæ±ÉßAiÀÄÄ MAzÀÄ ºÉýPÉAiÀÄ£ÀÄß M¼ÀUÉÆArzÀÄÝ ªÀÄvÀÄÛ 4 §ºÀÄ DAiÉÄÌ GvÀÛgÀUÀ¼ÀÄ EgÀÄvÀÛªÉ. ªÀÄÆgÀ£Éà ¨ÉGï CAzgÉ ªÀÄ. 2.00 gÀ £ÀAvÀgÀ ¥Àæ±Éß ¥ÀwæPÉAiÀÄ §®¨sÁUÀzÀ°ègÀĪÀ ¦£ï / ¹ÃGï vÉUÉzÀÄ F ¥Àæ±Éé ¥ÀwæPÉAiÀÄ°è AiÀiÁªÀÅzÉà ¥ÀÄlUÀ¼ÀÄ ªÀÄÄ¢ævÀªÁV®èzÉà EgÀĪÀÅzÀÄ PÀAqÀÄ §AzÀ°è CxÀªÁ ºÀjzÀÄ ºÉÆÃVzÀÝ°è CxÀªÁ AiÀiÁªÀÅzÉà LlAUÀ¼ÀÄ ©lÄÖºÉÆÃVzÀÝ°è, CzÀ£ÀÄß RavÀ¥Àr¹PÉÆAqÀÄ, F jÃw DVzÀÝgÉ ¥Àæ±ÉߥÀwæPÉAiÀÄ£ÀÄß §zÀGÁ¬Ä¹PÉƼÀÄîªÀÅzÀÄ £ÀAvÀgÀ N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è GvÀÛj¸À®Ä ¥ÁægÀA©ü¸ÀĪÀÅzÀÄ. ªÀÄÄA¢£À 180 ¤«ÄµÀUÀ¼À°è • ¥Àæw ¥Àæ±ÉßAiÀÄ£ÀÄß JZÀÑjPɬÄAzÀ N¢. • ¥Àæw ¥Àæ±ÉßAiÀÄ PɼÀUÉ PÉÆnÖgÀĪÀ £Á®ÄÌ §ºÀÄ DAiÉÄÌAiÀÄ GvÀÛgÀUÀ¼À°è ¸ÀjAiÀiÁzÀ GvÀÛgÀªÀ£ÀÄß DAiÉÄÌ ªÀiÁr. • ¥Àæ±Éß ¥ÀwæPÉAiÀÄ°è£À ¥Àæ±ÉßUÉ C£ÀÄUÀÄtªÁVgÀĪÀ ¸Àj GvÀÛgÀªÀ£ÀÄß N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è CzÉà PÀæªÀÄ ¸ÀASÉåAiÀÄ ªÀÄÄAzÉ ¤ÃrgÀĪÀ ¸ÀA§A¢ü¹zÀ ªÀÈvÀÛªÀ£ÀÄß ¤Ã° CxÀªÁ PÀ¥ÀÄà ±Á¬ÄAiÀÄ ¨ÁGï ¥Á¬ÄAmï ¥É£ï¤AzÀ ¸ÀA¥ÀÆtðªÁV vÀÄA§ÄªÀÅzÀÄ. N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°ègÀĪÀ ªÀÈvÀÛUÀ¼À£ÀÄß vÀÄA§ÄªÀ ¸ÀjAiÀiÁzÀ «zsÁ£À : 4. 5. 6. 7. 8. 9. 10. A B C D F N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ£ÀÄß ¸ÁÌöå£ï ªÀiÁqÀĪÀ ¸ÁÌöå£gï §ºÀ¼À ¸ÀÆPÀëöäªÁVzÀÄÝ ¸ÀtÚ UÀÄgÀÄvÀ£ÀÄß ¸ÀºÀ zÁR°¸ÀÄvÀÛzÉ. DzÀÝjAzÀ N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ°è GvÀÛj¸ÀĪÁUÀ JZÀÑjPÉ ªÀ»¹. ¥Àæ±Éß ¥ÀwæPÉAiÀÄ°è PÉÆnÖgÀĪÀ SÁ° eÁUÀªÀ£ÀÄß gÀ¥sï PÉ®¸ÀPÉÌ G¥ÀAiÉÆÃV¹. N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ£ÀÄß EzÀPÉÌ G¥ÀAiÉÆÃV¸À¨ÉÃr. PÉÆ£ÉAiÀÄ ¨ÉGï CAzÀgÉ ¸ÀA. 5.00 DzÀ £ÀAvÀgÀ GvÀÛj¸ÀĪÀÅzÀ£ÀÄß ¤°è¹. ¤ªÀÄä JqUÉÊ ºÉ§âgÀ¼À UÀÄgÀÄvÀ£ÀÄß ¤UÀ¢vÀ eÁUÀzÀ°è ºÁQ. N.JA.Dgï. GvÀÛgÀ ¥ÀwæPÉAiÀÄ£ÀÄß PÉÆoÀr ªÉÄðéZÁgÀPÀjUÉ AiÀÄxÁ¹ÜwAiÀÄ°è ¤Ãrj. PÉÆoÀr ªÉÄðéZÁgÀPÀgÀÄ, ªÉÄÃGÁãUÀzÀ ºÁ¼ÉAiÀÄ£ÀÄß ¥ÀævÉåÃQ¹ vÀ£Àß ªÀ±ÀzÀ°è ElÄÖPÉÆAqÀÄ vÀ¼À§¢AiÀÄ AiÀÄxÁ¥ÀæwAiÀÄ£ÀÄß C¨sÀåyðUÀ½UÉ ¸ÀéAiÀÄA ªÀiË®åªÀiÁ¥À£ÀPÁÌV ªÀÄ£ÉUÉ PÉÆAqÉÆAiÀÄå®Ä PÉÆqÀÄvÁÛgÉ. GvÀÛgÀ ¥ÀwæPÉAiÀÄ £ÀPÀ®£ÀÄß MAzÀÄ ªÀµÀð PÁ® ¸ÀÄgÀQëvÀªÁV Er. PÀ£ÀßqÀ DªÀÈwÛAiÀÄ ¥Àæ±ÉßUÀ¼À°è GvÀÛj¸ÀĪÀ C¨sÀåyðUÀ½UÉ PÀ£ÀßqÀzÀ°è ªÀÄÄ¢ævÀªÁVgÀĪÀ ¥Àæ±ÉßUÀ¼À §UÉÎ K£ÁzÀgÀÆ ¸ÀAzÉúÀ«zÀÝ°è EAVèõï DªÀÈwÛAiÀÄ ¥Àæ±ÉߥÀwæPÉAiÀÄ£ÀÄß £ÉÆÃqÀ§ºÀÄzÀÄ. 16