Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT International
by user
Comments
Transcript
Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT International
NUREG/IA-0033 International Agreement Report Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT Small Break Experiment L3-6 Prepared by John Eriksson Swedish Nuclear Power Inspectorate S-102 52 Stockholm, Sweden Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 July 1990 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP) Published by U.S. Nuclear Regulatory Commission NOTICE This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party Would not infringe privately owned rights. Available from Superintendent of Documents U.S. Government Printing Office P.O. Box 37082 Washington, D.C. 20013-7082 and National Technical Information Service Springfield, VA 22161 NUREG/IA-0033 International Agreement Report Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT Small Break Experiment L3-6 Prepared by John Eriksson Swedish Nuclear Power Inspectorate S-102 52 Stockholm, Sweden Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 July 1990 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP) Published by U.S. Nuclear Regulatory Commission NOTICE This report documents work performed Under the sponsorship of the SKI/STUDSVIK of Sweden. The information in this report has been provided to the USNRC under the terms of an information exchange agreement between the United States and Sweden (Technical Exchange and Cooperation Arrangement Between the United States Nuclear Regulatory Commission and the Swedish Nuclear Power Inspectorate and Studsvik Enerigiteknik AB of Sweden in the field of reactor safety research and development, February 1985). Sweden has consented to the publication of this report as a USNRC document in order that it may receive the widest possible circulation among the reactor safety community. Neither the United States Government nor Sweden or any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, or any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 1987-11-03 John Eriksson ICAP ASSESSMENT OF RELAP5/MOD2, CYCLE 36.04, AGAINST LOFT SMALL BREAK EXPERIMENT L3-6 ABSTRACT The LOFT small break experiment L3-6 has been analyzed as part of Sweden's contribution to the International Thermal-Hydraulic Code Assessment and Applications Program (ICAP). Three calculations, of which two were sensitivity studies, were carried out. The following quantities were varied: the content of secondary side fluid and the feed water valve closure the two-phase characteristics of the main pumps All three predictions agreed reasonably well with most of the measured data. The sensitivity calculations resulted only in marginal improvements. The predicted and measured data are compared on plots and their differences are quantified over intervals in real time. Approved by97 STUDSVIK ENERGITEKNIX AB STUDSVIK/NP-87/128 1987-11-03 LIST OF CONTENTS 1 INTRODUCTION 2 FACILITY AND TEST DESCRIPTION 3 2.1 2.2 2.3 2.4 Test Facility The Experiment Assessment Parameters Measurement Uncertainty 3 4 5 5 2.5 Experimental Data Preparation 6 3 CODE AND MODEL DESCRIPTION 7 3.1 Code Features 7 3.2 Input Model 7 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 Initial system pressure Primary fluid temperatures Core flow bypass Environmental heat losses Break discharge coefficient Pump model Steam generator 8 9 9 10 10 11 11 4 THE BASE CASE CALCULATION 13 5 SENSITIVITY RESULTS AND DISCUSSION 17 5.1 5.2 6 .,P80 AH Page 1 Case B Case C RUN STATISTICS 17 18 20 STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 1987-11-03 7 CONCLUSIONS REFERENCES TABLES FIGURES APPENDICES NP'.t AH A B Input Listings Data Comparison Plots C D Calculation of Data Uncertainties Description of the Accompanying Data' Package 21 23 STUDSVIK ENERGITEKNIK AB STUDSVIX/NP-87/128 1 1987-11-03 1 INTRODUCTION An International Thermal-Hydraulic Code Assessment and Applications Program (ICAP) is at present being conducted by several countries under the auspices of the USNRC (Ref 1). The goal of the program is to make quantitative statements regarding the prediction capabilities of current best-estimate thermal-hydraulic computer codes. Such codes have been used for many years as state-of-the-art instruments to study and verify numerical and correlative computational models with experimental results. Some of these codes have reached a high degree of sophistication. They include models for all processes which are essential to thermalhydraulic scenarios in the nuclear power reactor application. So far, however, these codes have not achieved status as reactor licensing tools, i.e. they do not fulfil the Appendix K rules (Ref 2), although they are often applied to other calculations. The present ICAP aims to quantify uncertainties in the codes so that the codes may be used for licensing purposes. Sweden's contributions to ICAP encompass assessment calculations using the two thermal-hydraulic codes TRAC-PFl/MODl (Ref 3) and RELAP5/MOD2 (Ref 4). The work is conducted by Studsvik Energiteknik AB and is sponsored by the Swedish Nuclear Power Inspectorate. NP80 AH STUDSVIK ENERGITEKNIK AB 2 STUDSVIX/NP-87/128 SUSI/P8/2 1987-11-03 A brief description of the LOFT test and the L3-6 experiment is given in facility Chapter 2. In Chapter 3 the model and procedures used in the calculations are discussed. The base case and sensitivity predictions are discussed and compared in Chapters 4 and 5 and in the plots, is presented in Appendix B. The run statistics Chapter 6 and Appendix C. Chapter 7 gives some conclusions from the code assessment. The input listings of the calculations are collected in Appendix A. A data package on tape containing input files and predicted data has been produced. The content is described in Appendix D. A copy of this tape is submitted to USNRC as a part of the ICAP agreement. NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIX/NP-87/128 3 1987-11-03 2 FACILITY AND TEST DESCRIPTION The LOFT-experiment series L3 was intended to provide large-scale blowdown system data for PWR small break transients. To the Swedish ICAP contribution two experiments of the L3 series were assigned. In the experiment LOFT L3-5, treated earlier in Ref 15, the main circulation pumps were stopped shortly after the break had been opened. In the experiment, LOFT L3-6, treated in this report, the pumps were allowed to operate at normal speed throughout the test in order to provide data for analyzing the differences in the two-phase scenarios between the two tests. Apart from the difference in pump operational mode the two experiments were nominally identical. This chapter shall briefly describe the test facility, the L3-6 experiment, the assessment parameters used and some aspects of the measurement uncertainties. 2.1 Test Facility The objective of the LOFT experiments was to demonstrate thermal-hydraulic phenomena which might occur in commercial PWR systems during abnormal situations. The facility is capable of performing a variety of operational transients and LOCAs. Brief descriptions of LOFT are given in a number of experiment reports such as Ref 5. The most thorough description is provided by Reeder (Ref 6). Only particular design features and characteristics relevant to the L3-6 experiment will be discussed in the following sections. NP80 AH STUD SV1K ENERGITEKNIK AB SUSI/P8/2 STUDSVIK/NP-87/128 4 1987-11-03 A general view of LOFT is shown in Figure 1. In the L3-6 small break experiment the two isolation valves on the broken loop legs were closed so as to prevent the passage of fluid via the header to the suppression vessel. The break was simulated by a 205.9 mm2 orifice in a T-branch line from the intact loop cold leg near the reactor vessel. The aim of the break configuration was to simulate an equally placed 4-in diameter small break on a four-loop 1000 MW(e) PWR. During the L3-6 experiment the only primary coolant injection was carried out by the HPIS into the reactor vessel downcomer. The experiment was terminated before the LPIS pressure set point was reached. 2.2 The Experiment After approximately 99 h of nuclear heating the initial conditions listed in Table 1 were obtained. The sequence of events which occurred during this experiment is listed in Table 2. Main imposed actions during the experiment were: NP80 AH a. At the time of reactor scram (which for safety reasons had to be verified before the break) the steam generator feed water and steam line valves started to close. b. LOCA initiated 5.8 s after the scram. c. The HPIS injection started at 13.2 MPa. d. The steam generator auxiliary feed was initiated and terminated manually. STUDSVIK ENE1(GITE1(NIX AB STUDSVIK/NP-87/128 SUSI/P8/2 5 1987-11-03 2.3 Assessment Parameters The selection of the appropriate assessment parameters for the LOFT L3-6 experiment, Table 3, followed the recommendations of the ICAP Guidelines (Ref 1). The selection was made during the input preparation since a number of expanded Edit/Plot variables from RELAP5/MOD2 calculations are not available from the restart file but must be collected as control variables. In some cases liquid level data are compared as pressure differences. For the upper plenum and downcomer levels only bubble plot data shown in Ref 5 were available. These plots were converted into slightly smoothed elevation histories. Due to ambiguous plot'data the resulting level behaviour is rather uncertain (Plots B.15 and B.16). The early break flow was not qualified by the experiment until 50 s after the break, and showed rather large errors during the remainder of the transient. Predictions of mass inventory obtained through flow integration were therefore not carried out. For the energy balance, the steam generator heat transfer was not known, and could not be estimated by the steam produced. 2.4 Measurement Uncertainty The experiment instrumentation involves a variety of transducers which may have different accuracies for the same kinds of quantities (Refs 5, 6). Table 4 is a summary of the accuracies of the measured quantities. NP80 AH ~ STUDSVIK ENERGITEKNII( AB DVKNP8/2 STUDSVIK/NP-87/128 6 1987-11-03 2.5 Experimental Data Preparation The preparation of the experimental data for plotting and uncertainty analysis required several steps of manipulation of the information. First of all, the data were copied from the original blocked tape files to the CDC standard display code. A program, LOFTDEC, was developed to sort out the keyword and channel information to be used in the assessment work. The program also decimated the channel data by averaging over time intervals so that information was copied to an intermediate channel information file only every 2nd second up to 200 s after the break, and then every 5th second. A program, R5SILFT, was developed to select data for desired channels from the intermediate data file. These data were transformed into a new file with the same format as a RELAP5 restart file. Experimental and predicted data could later on be similarly used in plotting and assessment. NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 7 1987-11-03 3 CODE AND MODEL DESCRIPTION The assessment calculations with RELAP5/MOD2 for the LOFT L3-6 experiment were carried out using the cycle 36.04 code version. The code was implemented in June 1986 on a CDC 170-810 computer. The calculational model was based on available LOFT input files and listings, among those the L3-5 input (Ref 15). A number of geometrical model features were introduced as a result of findings in the L3-6 experiment. 3.1 Code Features The descriptive document available for the RELAP5/MOD2 code is a rather detailed code manual (Ref 4). The main characteristics of the code are summarised in Table 5. A new feature of RELAP5/MOD2 is the cross junction which, according to code manual recommendations, was applied at the steam separator upstream volume and at the hot leg and cold leg vessel junctions. 3.2 Input Model The preparation of the LOFT L3-6 input proceeded from an input of the closely similar L3-5 experiment which had earlier been assessed for ICAP (Ref 15). In its turn this input had been set up from a LOFT fast transient input and with additional updates from other available input listings (Refs 7, NP80 AH 8, 9). STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 8 1987-11-03 Changes introduced for the L3-6 calculations, compared with those of the L3-5 case, include new initial conditions, other trip times and a continuous operation of the main recirculation pumps. However, some changes in the calculation model are due to experiences gained during the L3-5 assessment. Reasons for particular approaches used in the calculation model are presented below. Figure 2 shows the nodalization used. The input files are given in Appendix A. 3.2.1 Initialsystempressure To avoid an explicit steady-state pressurizer pressure and level control, the surge line junction was modeled as a trip valve which was closed until scram. The pressurizer initial conditions were satisfied with the correct fluid content and saturated water. Pressurizer heat structures were modeled with the outer surface at saturation temperature until scram and then at room temperature. A time dependent volume was connected to the pressurizer surge line by a trip valve adjacent to the pressurizer bottom in order to maintain the initial primary pressure constant during the steady state calculation. During steady state the pressurizer was isolated from the surge line. The pressure of the time dependent volume was equal that of the pressurizer bottom volume. At scram the trip valve closed at the same time as the pressurizer isolation ceased. NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 9 1987-11-03 3.2.2 Primary fluid temperatures The measured temperatures of the coolant circulating through the core and the steam generator show considerable variations from the standpoint of heat balance. This is particularly the case in the vessel downstream of the core. The same situation was also noticed during the L3-5 assessment (Ref 5). However, the L3-6 measurements of 577.1 K in the hot leg and 557.9 K in the cold leg fulfil the conservation of energy and are consequently accepted for the steady state. In the calculation the primary fluid temperatures are controlled through the steam generator operation and feed water temperature, see Section 3.2.7. 3.2.3 Core flow bvass Several core bypass flows exist. Two of these (Ref 7) were modelled by servo valves adjusted for the correct flows until scram: the inlet annulus to upper plenum with 6.6 % o± primary loop flow the lower plenum to upper plenum with 3.6 % of primary loop flow the reflood assist bypass valve leakage with 1.3 % of primary loop flows. The leakage from the vessel cold leg inlet annulus to the upper plenum is caused by a flow path in the narrow gap between the filler blocks and the vessel wall. This leakage has a vertical extension equal to the cold leg nozzle diameter. To achieve a more realistic description in the case of stratification the leakage has been divided into two flow path junctions. One low path NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 10 1987-11-03 connects the volumes below the inlet and outlet at their upper ends, junction 297 in Figure 2. Similarly, the higher level volumes are connected at their bottom ends by a second junction, junction 296. This second leakage junction will preferrably bypass steam in the case of void thus promoting a reduced leakage pressure difference. 3.2.4 Environmental heat losses The exchange of heat with structure material is important in small break analysis. Since the input had only restricted material ininitial cluded, structures had to be added to the input. The bulk structures of the facility were modeled to represent the correct structural masses. RELAP5/MOD2 does not facilitate an exterior surface heat transfer control during calculation. An environmental heat transfer coefficient had to be found by test calculations to obtain approximately the total heat loss of 250 kW as found in the experiment (Ref 7). 3.2.5 Break discharge coefficient Test calculations show a too rapid decrease in the pressurizer inventory when the default subcooled discharge coetZicient of unity was used. Applying a coefficient o± .85 the rates of emp- tying the pressurizer and of the early system. depressurization turned out close to the experiThe assumption that the pressurizer emptying rate is an indicator of the break discharge flow is only applicable for a low flow mental values. pressure drop in the surge line as it occurs in small break experiments. The pressurizer level during the emptying period is NP80 AR shown on Plot B.54. STUDSVIK ENERGITEKNIK AB 11 STUDSVIX/NP-87/128 1987-11-03 3.2.6 Pum2 model The main circulation pumps were allowed to run at the constant initial speed during the L3-6 transient. The pump characteristics applied in the previous L3-5 calculation, which originated from an early LOFT base input (Ref 16), were also applied in the first two calculations, whereas modified two-phase characteristics were applied in the last calculation, Case C. 3.2.7 Steam generator A RELAP5/MOD2 separator component is contained in the steam generator, see Figure 2 volume 520. The vapor outlet space above that volume is divided into two parallel and vertical volumes according to the recommendations of the code manual (Ref 4). Of these the one with the larger cross section area, volume 525, receives the steam from the separator component. This volume is connected by a cross-junction to the parallel volume 526, which has a smaller cross section area and which formally represents the downcomer top. The steam generator initial conditions were established by using auxiliary components for the control of - dome pressure downcomer water level - rate of feedwater and steam mass flows - recirculation ratio feedwater internal energy. - The dome pressure was controlled by a time dependent volume at the correct pressure and connected by an open junction to the steam dome. NP80 AH The STUDSVIK ENERGITEKNIX AB STUDSVIX/NP-87/128 12 1987-11-03 downcomer level was regulated by the direction and flow rate through a time dependent junction connecting a time dependent volume with saturated water. The initial feedwater mass flow rate, 27.8 kg/s, was obtained by using a time dependent junction. Moreover, the internal energy of the fluid in the time dependent volume, which delivers the feed water, was regulated by the steam flow generation rate which in its turn must be equal to the feedwater flow rate. The initial main steam mass flow rate being equal to the feedwater mass flow rate is controlled by a time dependent junction. The flow rate during the valve closure, which starts at scram, is obtained from the valve characteristics (Ref 6) and a valve stem closure rate of 5 % per second. The reason for using this model is the simplicity by which the closed valve leakage can be calculated. Condie et al (Ref 7) estimated this leakage to be .120 kg/s at 4.5 MPa in the L3-6 experiment. At other pressures a linear dependence is assumed. Uninitionally the steam valve partly let steam through from 89 s to 99 s after the break. The flow rate during this time interval was assumed to be correct by adjusting the steam lift so that a pressure drop rate close to the measured one (see Plot B.51) was found. The steam mass flow was during these 10 seconds only a few per cent of that for a fully opened valve. The junction 516, Figure 2, at the bottom of the downcomer is modelled as a regulated valve to achieve an initial recirculation ratio of 4.7. NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIX/NP-87/128 13 1987-11-03 4 THE BASE CASE CALCULATION The base case (Case A) calculation could be carried without any urgent code problems. Thus a very limited computation mass error, Plot B.62, was saved up by the code. Still, however, the computation CPU time required was very extensive, Plot B.61, as a consequence of time step transport limit caused by the continuous main pump operation. Thus one separate calculation consumed about 18 h CPU time .on a Cyber 170-810. The system heat balance was initially dominated by the reactor power, Plot B.2, which was mainly carried over to the steam generator secondary, Plot B.53. The predicted initial heat loss to the environments, was 260 kW, which is close to the 250 kW estimated in the experiment (Ref 7). The heat generated in the core after scram was determinated by the space independent reactor kinetics option of the code. The predicted decay heat, Plot B.2, compares well with the decay heat curve given in Ref 5. The mass flow rates predicted in the hot leg, Plot B.25, and at the core inlet, Plot B.11, show a smooth decrease during the transient which is mainly a result of the decrease of the fluid density. Unfortunately no internal flow rates in the experiment are qualified for comparisons after the break opened. The predicted break mass flow rate, Plot B.39, is within the uncertainty band of the measured flow rate from 100 s on, see Ref 5. The experimental flow rate is qualified from 50 s. In the interval from 50 s to 100 s after the break the NP80 AH STUDSVIK ENERGITEKNIK AB 14 STUDSVIK/NP-87/128 1987-11-03 predicted break mass flow rate is apparently overestimated, however, some doubt may also be put on the experimental flow rate. During this time interval there is good agreement between the predicted break fluid density and the chordal density measurement, Plot B.38. Whereas the break fluid subcooled period ends at 44 s in the experiment, it is at about 200 s, predicted to occur much later, in the calculation, Table 2. The behaviour of the main recirculation pumps is showing up in the pressure head, Plot B.36. An obvious cavitation in the experiment occurs at 290 s at which time also the loop seal becomes filled with water, Plot B.31, and the steam generator pressure difference, Plot B.46, rapidly diminishes (Ref 12). In addition effects from the cavitation in the experiment can be seen in the pump speed, Plot B.37, density, Plot B.28, and in sity, Plot B.38. in the cold leg fluid the break fluid den- A pump cavitation is dicted at the time it occurred in not pre- the experi- ment. On the other hand the prediction shows an earlier pump head loss when the two-phase fluid starts to appear in the suction line, Plot B.36. The primary side depressurization, as in the hot leg, Plot B.27, is sligthly underpredicted from 300 s on. Pressures at high elevations, Plots B.21 and B.57, compare similarly. System pressures at low elevations as in the lower plenum, Plot B.22, and also in the cold legs, Plots.B.34 and B.35, are still more underpredicted. As seen, there might be a systematic error in the prediction. However, the discrepancies are within the measure- ment errors, NP80 AH Table 4. 6'WtDSVIK 2NERGITEKNIK ABSTDV/N-7185 STUDSVIK/NP-87/128 is 1987-11-03 After the fast depressurization has ceased the primary fluid temperatures remain close to the saturation temperature, Plots B.9, B.17, B.18, B.20, B.26, B.33 and B.44. Minor deviations from this situation are due to errors in the measured temperatures, Table 4, and by the HPIS coolant injection. As for the pressure, the predicted underestimate of primary temperatures for the rods, Plots B.3 through B.8, and for the fluid, Plots B.9, B.17, B.18, B.20, B.26, B.33, B.41 and B.44, increase in time. A possible reason for that is the uncertainty, 15 % up to 1 435 s, in the measured break flow and consequently also in the primary enthalphy content. There is one plainly seen inconsistency in the secondary side prediction of Case A. The downcomer collapsed level, Plot B.49, falls about .6 m too low until the level starts to recover due to the injected auxilliary feedwater. This early level error, which corresponds to about 150 kg of fluid mass, then remains during all the transient. Secondly, too fast a depressurization particularly at the end of the transient is predicted, Plot B.51. Similar predicted pressure behaviours were obtained by the participants of the ISPl1 (Ref 13) which also dealt with the L3-6 experiment. Consequently there are reasons to assume some inadequacy to be found in the commonly used steam generator models. NP80 AH STUDSVIX ENERGITERNIX AB TDV/N-/186 STUDSVIX/NP-87/128 16 1987-11-03 Several causes for the low fluid content may be suggested, including errors in the feedwater valve operation timing and the steam valve leakage. The void distribution in the boiling section may be wrong due to the geometric model used. Moreover, a non-negligible amount of water droplets may initially reside in the dome space above the fluid level of the steam separator volume. The predicted pressurizer fiuid temperatures in the liquid space, Plot B.55, and in the vapor space, Plot B.56, show substantial deviations from the experiment. In the liquid space. the computed water temperature, close to the saturation line, was compared with apperently superheated steam sensed in the experiment. The computed steam superheating, Plot B.56, was not large enough. An other possible explanation, would be some direct influence from the pressurizer vessel wall in the experiment. NP80 AH STUDSVIK ENERGITEKNIK AB 17 STUDSVIK/NP-87/128 1987-11-03 5 SENSITIVITY CALCULATIONS The base case prediction displayed some deviations from the experiment which provide arguments for the sensitivity studies. A fluid temperature and system pressure decrease faster than in the experiment is in the first place assumed to be a consequence of the steam generator behaviour or simply of the choice of break discharge coefficient. In the Case B predictions the steam generator model is changed. The sudden pump cavitation in the experiment was not predicted. Consequently one calculation, applied other pump characteristics. 5.1 Case C, Case B Steam generators are supposed to act as the dominant heat sinks during small break transients. However, the 4-in. diameter equivalent L3-6 ex- periment shows an substantial depletion of coolant through the break so the steam generators become less important as heat sinks, ref 5. Actually the steam generator heat transfer rate, Plot B.53, compared with the break energy release, Plot B.40, and the structure heat losses, Plot B.2, confirms that. Thus, the behaviour of the steam generator will be of less importance for the primary side cooling. The steam generator design, Figure 3, exhibits a package of U-tubes which are supported by horizontal plates at equidistant heights. These plates,' have possibly been understood to be inpgnetratable for fluid thus bringing the geometry found in the .Case A input. Then the boiler flow is forced to a zigzaged flow path directed by the plates. In reality the tube support plates are ported to permit penetration of steam NP80 AH and water (Ref 6). STUDSVIK Eh'ERGI-Ij ,TDSI/N-./2 2TUDS',.'IK/NP-87/128 - 18. 18 1987-11-03 Consequently the boiling section flow was directed vertically in the Case B calculations. A more efficient void rise indeed increased the initial fluid mass by 90 kg. Further division of the boiler flow into two parallel paths, one with the ascending primary flow and one with the descending flow, added another 50 kg initial fluid mass. Although the changes in the boiler geometry increased the amount of initial water a lot, it accounted only for part of the fluid mass missing in the Case A calculation. According to Plot B.49 the discrepancy in liquid level between prediction and experiment increased with time in Case B contrary to Case A. The transport time from the feedwater inlet to the downcomer bottom is quite short in the initial state. The liquid temperature at the downcomer bottom, Plot B.50, indicates that the feedwater valve closure starts later than at the scram. Consequently in the Case B calculation a feedwater valve closure starting at the HPIS trip signal was additionally applied. As a result another 70 kg of water was added to the fluid mass, 5.2 Plot B.49. Case C The previous two calculations predicted from 300 s on a slightly faster decrease in primary system pressure and in fluid temperature than measured. On the other hand were fluid densities, Plots B.23, B.24, B.28, B.29, B.30 and B.38, reasonably well predicted. Discrepancies from the experiment starting at 290 s are more evident in the loop seal liquid level, Plot B.31, and in the downcomer liquid level, Plot B.15, as the pumps start to cavitate, NP80 AH Plot B.36. Obviously, STUDSVIK ENERGITEKNIK AB STUDSVIX/NP-87/128 19 1987-11-03 the accumulation of water in low elevation areas ot the loop starts with the cavitation. This is the time at which the discrepancy in the depressurization rate starts oft. The two-phase pump head, Plot B.36, was underpredicted in the Cases A and B. Chen (Ref 12) and Modro and Chen (Ref 14) found less degradation for mainly all void fractions compared with the pump characteristics of the LOFT base case input (Ref 16) so far assumed. Because of that the same pump data as those used by Grush et al. (Ref 8) were applied in the sensitivity calculation Case C. These data had been obtained from Chen's and Modros' works. In Case C also the updates of Case B were included. The new two-phase pump characteristics resulted in a better prediction of the pump head, Plots B.36 and B.46. At the time of the pump cavitation, at 290 s, a rapid head loss appeared in Case C too. However, as before in the Cases A and B, the pump head turned out underpredicted during almost all the transient. In the same way the liquid levels in the downcomer, Plot B.15, and in the loop seal, Plot B.31, did not show any better agreement with the experiment. NP80 AH STUDSVIK ENERGITEKNIK AB 20 STULSVIK/NP-87/128 1987-11-03 6 RUN STATISTICS The input model for the base case RELAP5/MOD2 calculation for LOFT L3-5 encompassed: 113 volumes 122 junctions heat structures 99 The volumes include two pump components, one separator component and nine time dependent volumes of which three were involved for the steady state. Among the junctions there are totally tive valve components and four time dependent junctions which are connected during steady state. During the transient calculation the following resources were used: computer time number of time steps CPU = 58 675 s DT = 36 920 number of volumes transient real time C RT resulting in tor (Ref 1) = 113 = 2 150 s the following code efficiency fac- CPU * 103=140 C * DT The computer used was a Cyber 170-810. NP?') AH STUDSVIK ENERGITEKNIK ABSTDV/P-/281 STUDSVIK/NP-87/128 21 1987-11-03 7 CONCLUSIONS The LOFT L3-6 small break experiment has been calculated using the RELAP5/MOD2 code as part of Sweden's contribution to ICAP. The results from the three-calculations done compare reasonably well with most of the experimental data. None of the sensitivity calculations has the capacity of considerably increasing the prediction quality. Consequently all three calculations show mostly rather similar curves jointly away from the measurements. Some more calculations had been desirable but could not be afforded. The steady state calculation was done in the common way of applying auxiliary components and regulators to speed up and stabilize. Acceptance of a steady state followed when all the auxiliaries had lost importance for the subsequent calculations. Of a particular significance was the temperature regulation of the feedwater to achieve the correct steam generation rate. One sensitivity calculation, Case B, addressed the question of why initial secondary side fluid content had been considerably underestimated in the base case calculation. The two updates of a vertical boiler flow and o± a delayed feed water valve closure were not capable to fully rise the low downcomer liquid level up to the measured value. Actually, the reason for the low predicted fluid content of the secondary side was not fully understood. NP80 AH STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/128 22 1987-11-03 The other sensitivity calculation, Case C, focused on the behaviour of the main recirculation pumps which were allowed to run at a constant speed during the experiment. Updates in the two-phase characteristics improved the prediction of the pump head in the crucial degradation region.. However, no other substantial improvements obviously turned out from this calculation. The RELAP5/MOD2 code worked well during the calculations. The computer resources, made available by the Swedish Nuclear Power Inspectorate, were quite extensive for this assessment test case. NPSO AH STUDSVIK ENERGITEKNIK AB STUDSVIX/NP-87/128 23 1987-11-03 REFERENCES NP80 AH I ODAR, F and BESSETTE D E Guidelines and Procedures for the International Thermal-Hydraulic Code Assessment and Applications Program (Draft) U.S. Nuclear Regulatory Commission, 1985 2 Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled Nuclear Power Reactors, 10 CFR, Part 50 (Appendix K), Fed Regist, 39(3). (January 1974) 3 TRAC-PF1/MOD1: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis. NUREG/CR-3858 4 RANSOM, V H et al RELAPS/MOD2 Code Manual Volume 1: Code Structure, Systems Models, and Solution Methods Volume 2: Users Guide and Input Requirements (Draft) EG&G Idaho, Inc. NUREG(CR-4312, EGG-2396) (August 1985) 5 BAYLESS P D and CARPENTER, J M Experimental Data Report for LOFT Nuclear Small Break Experiment L3-6 and Severe Core Transient Experiment L8-1. NUREG/CR-1868, EGG-2075 (Jan 1980) 6 REEDER D L LOFT System and Test Description (5.5-ft Nuclear Core 1 Loces) NUREG/CR-DR47 TREE-1208 7 CONDIE, K G et al Four-Inch Equivalent Break Loss-of-Coolant Experiments: Posttest Analysis of LOFT Experiments L3-1, L3-5 (Pumps off), and L3-6 (Pumps on) EGG-LOFT-5480. 8 GRUSH WM, TANAKA M and MARSILI P Best estimate predictions for the OECD LOFT Project Small Cold Leg Break Experiment LP-SB-3 OECD LOFT-T-3603 (Febr 1984) EGG-LOFT-5480 (Oct 1980) STUDSVIK ENERGITEKNIK AB STUDSVIR/NP-87/128 24 1987-11-03 NP80 AH 9 KMETYK L N RELAP5 Assessment: LOFT Small Break L3-6/L8-1. NUREG/CR-3163, SAND83-0245 (March 1983) 10 MODRO, S M and CONDIE, K G Best Estimate Prediction for LOFT Nuclear Experiment L3-5/L3-SA (Sept 1980) EGG-LOFT-5240 11 WHITE J R et al Experiment Prediction for LOFT NonNuclear Experiment L1-4. (April 1977) TREE-NUREG-1086 12 CHEN, TH Primary Coolant Pump Performance During LOFT L3-6 Experiment. EGG-LOFT-5414. 13 PETERSON, A C and COOK, C International Standard Problem 11. (LOFT Experiment L3-6/L8-1). Final Comparison Report. EGG-NTAP-6112. 14 CHEN, T H and MODRO, S M Transient Two-Phase Performance of LOFT Reactor Coolant Pumps. ASME Winter Annual Meeting Nov 13-18, 1983. CONF-831111-16. 15 ERIKSSON, J ICAP, Assessment of RELAP5/MOD2, Cycle 36.04, Against LOFT Small Break Experiment L3-5. STUDSVIK Technical Note NP-87/63. 16 KEE, E J et al Base Input for LOFT RELAP5 Calculations. EGG-LOFT-5199. 25 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 Table 1 Initial conditions. Measured Case A Predicted Case B Case C 483.3 14.87 557.9 577.1 483.3 14.88 559.7 578.6 483.3 14.88 560.4 579.3 483.3 14.88 560.4 579.4 50. 50. 50. 50. 614.7 14.90 1.18 614.8 14.90 1.18 614.8 14.90 1.18 614.8 14.90 1.18 (K) (K) 557.6 561.4 559.6 557.8 560.6 556.1 560.6 556.1 (i) 0.22 0.22 0.22 0.22 542.8 5.57 27.8 534.4 5.57 27.8 536.0 5.57 27.8 535.9 5.57 27.8 Quantity Primary coolant system Mass flow rate Hot leg pressure Cold leg temperature Hot leg temperature Reactor vessel Power level Pressurizer Water temperature Pressure Liquid level Broken loop Cold leg temperature Hot leg temperature SG secondary side Water level Water temperature Pressure Mass flow rate (kg/s) (MPa) (K) (K) (MW) (K) (MPa) (m) (K) (MPa) (kg/a) Table 2 Sequence of events. Time (a) Event Reactor scrammed LOCA initiated HPIS Injection Initiated Prssurizer emptied Upper plenum reached saturation Intact loop hot leg voiding begin Intact loop cold leg voldin begin End of subcooled break flow SCS auxiliary feed initiated SCS pressure exceeds primary pressure SCS auxiliary feed terminated Imposed action System reaction -5.8 0. 3.6 20.2 28.5 29.4 31.4 44.2 73.4 1856. 930. Case A -5.8 0. 2.3 25.4 40. 38.7 35. 91.6 73.4 1925. 1856. Predicted Case B -5.8 0. 2.6 25.4 40. 38.9 35. 91.6 73.4 1720. 1856. Case C -5.8 0. 2.6 25.4 40. 39.1 35. 91.6 73.4 1740. 1856. 26 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 Table 3 Parameters plotted and used in assessment comparisons. COMPONENT - CORE EXPERIMENT (IDENTIFIER) CONTINOUS PARAMETER * PREDICTION (MINOR EDIT) FLUID DENSITY (INLET) C1? C2? 8. 1 B. 2 ---- •S RKTPOW 0 VOLUME I (BOTTOM) TE-2G14-011 TE-SG6-O1 TE-516-005 CNTRLVAR 903 C 3X C 37 B. 3 oVOLUME 2 TE-1F7-015 TE-1 F7-021 TE-2G08-021 TE-4114-021 TE-SF4-01S TE-516-021 CNTRLVAR 903 C4X C47 8.4 TE- F7-026 TE-t F7-030 TE-2GI4-030 TE-2H02-032 TE-4H14-028 TE-4H14-032 TE-SH7-026 CNTRLVAR 905 C SX C S? 8. 5 - VOLUME 4 TE-2G08°039 TE-2H01-037 TE-3CI1-039 TE-4114-039 TE-SH6-037 CNTLRVAR 906 C 6X C 6? B. . VOLUME 5 TE-2G14-045 TE-4G14-045 TE-5F9-045 TE-SG6-045 TE-SHS-049 CNTRLVAR 907 C7X C7? B. 7 -VOLUME (TOP) TE-5H7-058 TE-SG6-062 CNTRLVAR 908 C eX C a? B. 8 TEMPERTURE (OUTLET) TE-IUP-0O01 TE-SUP-001 TE-SUP-003 CNTRLVAR 909 C 9X C 9? B. TEMP. TE-I UP-001 TE-ILP-001 CNTRLVAR 910 C AX C A? 8.10 CLAD TEMPERATURE. __. - " - DIFF. * VOLUME 3 6 (OUTLET-INLET) 6 9 MFLOWJ 225.01 C B? B.11 CORE INVENTORY POE-RV-002 ** CNTRLVAR 912 C C? 8.12 DOWNCOMER MASS INVENTORY POE-RV-003 S CNTRLVAR 913 V 1? 8.13 CNTRLVAR 914 V 2? 8.14 8.15 CORE FLOW (INLET) MASS INVENTORY (TOTAL VESSEL) HOT LEG PLOT NO. CNTRLVAR 901 HEATING POWER VESSEL PLOT IDENTIF. EXP. CALC. - ---- - ----------------- - DOWNCOMER LIOUID LEVEL LE-IST-0O01 CNTRLVAR 915 V 3X V 3? UPPER PLENUM LIQUID LEVEL LE-3UP-O01 *5 CNTRLVAR 916 V 4X V 4? 8.16 DOWNCOMER TEMPERATURE TE-IST-O01 TE-25T-0O01 TEMUPF 205 V 5X V 5? 8.17 UPPER PLENUM TEMPERATURE TE-IUP-O01 TE-4UP-001 TE-SUP-001 TEMPF 240 V eX V 6? 8.18 UPPER PLENUM FLUID SUBCOOLINO SC-SUP-102 CNTRLVAR 919 0.19 TE-1LP-001 TENPF 225 V 7X V IX V 77 LOWER PLENUM TEMPERATURE V a? 9.20 UPPER PLENUM PRESSURE PE-IUP-OO1A1 P 245 V 9X V 9? 0.21 P 225 V AX V A? 0.22 RHO 105 HLIX HLI? 8.23 DE-BL-0028 RHO 305 HL2X HL2? 8.24 MASS FLOW RATE FT-P139-27-1 FT-P139-27-2 *5 FT-P139-27-3 ** MFLOWJ 110 HL3? 8.25 TEMPERATURE (I.L.) TE-PC-0026 TEMPF 105 HL4X HL4? PRESSURE (I.L.) PE-PC-002 P 105 HL$X HLS? 8.26 8.27 (INLET) LOWER PLENUM PRESSURE PE-IST-OO1A PE-2ST-OO1A FLUID DENSITY (I.L.) DE-PC-205 DE-PC-002A DE-PC-0028 DE-PC-002C FLUID DENSITY (B.L.) ** * 5* NP-87/128 bTUDSVIK ENERGITEKNIX AB 27 1987-11-03 Table 3 (cont'd) COLD LEG FLUID DENSITY (1.L) DE-PC-1IS 15 DE-PC-OOIA DE-PC-DOtC FLUID DENSITY (I.L. PUMP SUCTION) CL2? 9.29 RHO 345 CL3X CL3? 9.30 CL4X CL4? B.31 CLS? B.32 CNTRLVAR 931 CNTRLVAR 932 TEMPERATURE (I.L. NEAR VESSEL) TE-PC-004 TEMPF 185 CL6X CL6? 8.33 PRESSURE (I.L.) PE-PC-OOS P 120 CL7X CL7? 8.34 PE-SL-DOI P 345 CL5X CLS? 8.35 PDE-PC-001 CNTRLVAR 936 CL9X CLS? 8.36 PUMP SPEED (PUMP 1 ) RPE-PC-O01 PMPVEL 135 CLAX CLA? B.37 FLUID DENSITY DE-PC-SO2A RHO 800 BRIX SRI? MASS FLOW RATE FR-PC-SBRK a. MFLOWJ 805 BR2X BR2? 9.38 8.39 8R3? 8.40 TE-PC-SOIC TEMPF 800 SR4X 8R4? 8.41 CNTRLVAR 942 8RSX BRS? 9.42 BRSX 8R6? 8.43 (S.L.) DIFF. (ACROSS THE PUMPS) ST-PC-S101 - TE-PC-SOIC INLET SUSCOOLING ** CNTRLVAR 940 INLET PRESSURE PE-PC-SOI P 800 TEMPERATURE (INLET) TE-SG-DOI TEMPF 115.03 SPIX SPI? 0.44 CNTRLVAR 945 SP2X SP27 8.45 CNTRLVAR 946 SP3X SP3? 1.46 SSI? SS2? 8.47 0.48 TE-SG-O01 - TE-SG-0O2 TEMP. DIFF. (INLET-OUTLET) PDE-PC-002 PRESSURE DIFF. SG CL2X LEPDE-BL-014 ** (8.L.) INLET TEMPERATURE SIDE RHO 115.13 LEPDE-PC-028 ENERGY RELEASE SG SEC. 8.28 LIOUID LEVEL CI.L. LOOP SEAL) PRESS. SIDE CLI? DE-8L-105 DE-L-COO1A DE-eL-O0IB OE-DL-OOIC - " - So PRI. a. CLIX FLUID DENSITY (B.L.) - 0 - BREAK DE-PC-305 /DE-PC-003A/ /DE-PC-0038/ /DE-PC-003C/ RHO 185 FLUID DENSITY RHO 515.03 MASS FLOW RATE MFLOWJ 516 LIOUID LEVEL LD-PO04-0088 CNTRLVAR 949 SS3X SS37 8.49 LIOUID TEMPERATURE TE-SG-003 TEMPF 515.03 SS4X SS4? 8.50 PRESSURE PE-SGS-O01 P 530.01 S5SX SS5? CNTRLVAR 952 S IX S I? 8.52 S 2? 8.53 P 1? P 2? 8.54 PRIMARY-SECONDARY TEJ.P.-DIFF. (AT INLET) TE-SG-O01 - TE-SG-003 HEAT TRANSFER RATE a. CNTRLVAR 953 LIOUID LEVEL LT-PI39-006 CNTRLVAR 954 LIOUID TEMPERATURE TE-PI39-020 TEMPF 415.02 P 1x P 2X STEM TE]MPERATURE TE-PI39-019 TEMPG 415.07 P 3X P 3? 9.56 PRESSURE PE-PC-004 P 415.08 P 4X P 4? 8.57 ECCS HPZS VOLYMETRIC FLOW RATE FT-P128-104 CNTRLVAR 958 ECIX EdI? 9.S8 SYSTEM MASS BALANCE CNTRLVAR 959 SYI? 0.s9 CNTRLVAR 960 SY2? 9.60 CNTRLVAR 982 SY37 S. CPUTIME 0 ElMASS 0 R 1? R 27 8.61 8.62 PRESSURIZER COOLANT EGY. BALANCE (INTEGR.) PRIM. RELAP5 EXTERNALS HEATFLOW a.l a. a. CCOMPUTATION CPU TIME ** COMPUTATION MASS ERROR * THE COMPARISON PARAMETERS ARE THOSE REPORTED AS DIRECTLY MEASURED OR AS CCMPUTED RESULTS FROM THE EXPERIMENT a. NO DATA AVAILABEL FROM THE EXPERIMENT a.. DATA OBTAINED FROM BUBBLE PLOT IN EXPERIMENT REPORT / EXPERIMENT DATA AVAILABLE BUT NOT USED IN COMPARISONS ? / CALCULATION CASE (A. 8 OR C) 5.55 2 E 'Ail<K .3 NP-87/128 28 1987-11-03 Table 4 Measurement errors Quality Uncertainty Comment Pressure 251-282 kPa 120 kPa Primary side Secondary side Fluid temp 2.7-3.1 K .5 K 5.9 K 10.4 K Mostly TE-P139-019, steam TE-SG-001, TE-SG-002 TE-PC-004 Fluid density 78-82 kg/m3 129-131 kg/m3 Many measure DE-BL-001A, DE-BL-001C DE-PC-002B, DE-PC-002C Cladding temp 3.1-3.2 K All Diff Pressure .49 k Pa PDE-RV-003 1. kPa PDE-PC-002 PDE-RV-002 1.3 kPa 1.8 kPa PDE-PC-001 Mass flow .02 L/s 6.3 kg/s 17 kg/s 25 percent 1 kg/s HPIS I.L. init condition I.L. hot leg Break, 40-750 s Break, 750-2100 s Liq level .04 m .05 m .099-.137 m Bubble plot Pressurizer SG secondary Cold legs Upper plen, downcomer Speed 1.22 rad/s Main recirc pumps S ouVSV. T:EINI2 AB :~. NP-87/128 29 1987-11-03 Table 5 RELAP5/MOD2 code features. COMPUTATION PROCESSING FEATURES - Several problem type and execution control options as a. steady state initiallsation using fictitious structure heat capacities b. transient c. strip for faster convergence calculation type execution, to select requested parameters from a restart file d. trip system, to decide on actions during calculation due to reaching specified conditions in calculation parameters. a. ability to delete or add hydrodynamic components, structure components and control variables at a restart of calculation. CLASSIFICATION OF HYDRODYNAMIC MODEL - One-dimensionil, with provisions for a. choked flow model - b. abrupt area change model c. cross flow junctions. Two-fluid, six equation, space-time numerical solution scheme. - flow regime oriented field characteristics depending on mass flux and void fraction for a. horizontal fields flow with bubbly, slug, mist and stratified b. vertical flow with bubbly, slug, annular-mist (and stratified) fields c. high mixing flow with bubbly and mist fields (for pumps). NP-87/128 STUDSVIK ENERGITEKNIK AB 30 1987-11-03 Table 5 cont'd HYDRODYNAHIC COMPONENENTS (Input systemat1cs) - Volume type components a. single b. pipe and annulus, volume for condensed input of several similar single volumes c. time dependent volume, for defining a boundary source with a time dependent fluid state d. branch, a volume capable of two or more connecting junctions at either end e. pump, characterized by rated values for flow, head. torque. density and moment of inertia. The single phase homologous curve, two-phase multipliers and phase difference tables to model the dynamic pump behaviour f. - special system components for steam separator, jetmixer. turbine and accumulator. Junction type components a. single Junction b. time dependent junction, for a time dependent Junction flow whith a time dependent or controlled flow state c. cross-flow Junction, to model a small cross flow, a tee branch or a small leak flow d. valve, various operation characteristics available for check valve, trip valve, inertial valve and relief valve. INTERPHASE CONSTZTUTVE BOUATIONS - Interphase drag a. steady drag due to viscous shear depending on flow regime. Semi-empirical mechanisms to describe flow regime transitions b. dynamic drag due to virtual mass effect. - Interphase mass and heat transfer depending on flow regime and the fluid fields to saturation temperature differences STUDSVIK ENERGITEKNIK AB NP-8'1/128 31 1987-11-03 Table 5 cont'd FLUID TO WALL CONSTITUTIVE EQUATIONS - Wall friction due to wall shear effects formulated for flow regimes and based on a two-phase multiplier approach. - Wall heat transfer depending on flow characteristics defined" for - a. single-phase forced convection (Dittus-Doelter) b. saturated nucleate boiling (Chen) c. subcooled nucleate boiling (modified Chen) d. critical e. transition film boiling (Chen) f. film boiling (Bromley-Pomeranz g. condensation (partly Dittus-Doelter). heat flux (Blasi or modified Zuber) and Dougall-Rohsenow) Interfacial mass transfer at the wall depending on wall, fluid and saturation temperatures for a. subcooled and saturated boiling b. transition film and film boiling c. condensation. HEAT STRUCTURES These may be rectangular, The structure position is cylindrical or spherical in shape. defined through component numbers of left and right hand side hydraulic components. A structure is physically defined by the geometry and the temperature dependent conductivity and volumetric heat capacity data. The structure model is further specified by the number of internal mesh points in the direction of heat flow. CONTROL COMPONENTS By these new (control) variables are defined from calculated parameters using algebra, standard functions, trip type operands or integrals. STUDSVIK ENERGITEKNIK AB .,P-d 1/128 32 1987-11-03 Broken loop Intact loop rA A Reactor vessel Figure 1 LOFT system configuration. Downcomet C•re Lower plenum 555 550 ,En 530 tlj 560 415 z 519 517 115 '-a ~0 0 -4 z I-I s-h 0 625 235 226 Figure 2 The nodalization diagram for LOFT L3-6. (AJ STUDSVIK ENERGITEKNIK AB NP-87/128 1987-11-03 Figure 3' The LOFT steam generator. 34 rtn : 6. LOFT L.3; 0MI0O00 NEW 0000101 Rm 0000102 WI .000104 ANALYSIS (PRIJRY.SECODRY.KINTCS) 0 U) STOY-ST S$ i-4 HOACTION )000105 120. 0000120 0000121 000201 *e 200.0 100010000 0.0 117010000 0.0 T1IMEENDO IN STP 144.2 I.OE-6 WATER WATER MAXSTP .20 PRIMARY SECONDARY EDT OPT 00001 WON 25 MAJR RST 4000 4000 0000221 0000330 0000331 0000332 0000333 0000334 0000335 0000336 0000337 o 11SO20000 R140 345010000O C4TRLVAA 931 CNTRLVAR 932 TEM)F 135010000 P 120010000 P 345010000 OETRLVAR 936 FMPVEL 13S 66*I.**3563S5.6466065505664486565 * BREAK 000033: 0000339 0000340 0000341 0000342 0000343 0000344 MINNOR EI)T VARIABLES FOR THEICAP ASSESSMENT &000301 €XrRLVAR 0000302 0000303 0000304 0000305 0000306 000030? 0000308 0000309 0000310 0000311 0000312 901 RKTPOW 0 CNTRLVAR 903 CHTRLVAR 904 CHTRLVAR 905 CNTRLVAR 906 CNTRLVAR 907 CHTRLVAR 908 CNTRLVAR 909 CHTRLVAR 910 MFLOWJ 225010000 CNTRLVAR 912 SS*****S*SS.SSS4SS*~94S**6454S640*4S64*e * VESSEL CKT RLVAR CNTRLVAR CNTRLVAR 914 915 116 0000317 0000316 0000319 0000320 0000321 0000322 TEMPF IEMPF CNTRLVAR TEMPF P P 205010000 240010000 919 225010000 245010000 225010000 e HOT LEG * RHO RHO MFLOXJ TEMPF P 105010000 305010000 110010000 105010000 105010000 COLD LEO 0000328 *3564**44,00 0000346 0000346 0000347 0000348 0000349 00003S0 0000351 0000352 0000353 T46T**8o 43*S*54*56 511 CNTRLVAR 545 CHTRLVAR 546 RIH SI030000 WNL09J 516000000 COTRLVAR 949 1EMPF 1150300010 P 530010000 ConTALVAR952 CTRALVAR 953 * EcCS 0000358 5 CKTALVAR 9S6 SYSTEM 0000359 0000360 0000382 9e14 * RELAPS 0000361 0000362 1S5010000 SIm *• Ill 641 S S) P0•M92 135 'SS BRAK.N CLOSE SOS MLOW ScAS 'TRIP DIRECTION OF FLON FROM ORE mSP. BREAKPLOWOUALIFIED 9t 240 OS STOP AIV. Of CALCURATION 48 6564544 *46446*66454*8*S*5*6654666 BREAKOPEN SOS PRESS. VALVEOPEN. AFTER 55 435 INITIATED 640 PUMP COOLANT INJECTION 901 CIITIME (MASS 0 0 CTARLVAR 272 CN3RLVAR296 CNTRLVAR 372 Ct RLVAR 291 CHITLVAR 216 CNIRLVAR 601 CNTRLVAR 606 CHTRLVAR 960 CHIRLVAR S52 S--h 00 :01 *.56565.0*S*S6*.*665*6548*6658S94*6 It -4 SSSSS*85665555S5#*53*665655545466*o 608 &10 Sil 612 * STEADYSTATE CONTROLS 0000370 0000371 0000372 0000373 0000374 000037S 0000376 0000360 0000352 548 AFTER EXPERIMENT EDO *5*** eee e5o e6 * 56*55 **SS 555. 4S6*$6.5646**6@S.*SS*S***5****54*650 RHO TIME ALOXFEEDWATER TRIP eaga*~eeess.ae.~s.sms.556.545S*6e*56 COTRLVAR 255 C)TRLVAR 560 CHTRLVAR 932 H REACTIVITY. OEN. TABLE 6011 SS AUXPRESSUIIZ. VALVEClOS 410 550 MAIN STEM. VALVE. CLOSE FEED WATERVALVE. CLOSE 560 [*T-TrT*5456*3 4 CNTRLVAR5S4 TEIMF 415020000 TEMPO 416070000 P 41E060000 5650 TRIP INPUT DATA T *s~teesss4eese*5e554*S**S5$535 ***5**5~45666*5e'S5454SSSSS*S568l 0000354 0000355 0000356 0000i37 p O*5548543S55533855546S518866S8S545666*54*094945658*56556 Is5010000 806000000 940 300010000 S42 IS5010000 116030000 e PRESSURIZER 0000314 0000315 0000316 0000323 0000324 000032S 0000326 00003!7 moO MFLOWJ CN•RLVAR IYEPF CNTRLVAR P TEMPF 0 STEAMGENERATOR 0 t•l 613 514 515 $1i 520 521 622 623 0530 5131 535 533 561 562 600 660 £61 699 600 *602 1603 610 TIME TIME TIME TIME TIME P £554554 c- I S-' 0 0 a CE GE HULL 0 IJLL 0 GE TIMEOF 601 IIMEOF 510 L L a GE CE 144.2 0.0 5.8 10000. L L MILL 0 13.23& N 0 100010000 LIE P TIME 100010000 LE 0 GE VELFJ P P 240010000 CE 530020000 CT 630020000 LT P 530020000 P 530020000 OETRLVAR 10 CXTRLVAR 10 TIME 0 TIME 0 P 1000o0000 GT TIME 0 St . A 514 AM $13 ANO -614 AND 530 OR -s31 ^NO 562 AO 612 Oft GT LT LT GC GE GT GO I -514 .514 502 601 602 530 MILL 0 NULL 0 TIMEOF S14 WULL 0 HULL 0 MULL 0 MULL0 MILL 0 OILL 0 PULL 0 TIMEORSIO TIM(OF SI0 P 530020000 TIMiOF 640 N N N N N Nf 10000. 2.1516 20. 0.0 S.63(6 S.51[& S.SSE6 5.53E6 3.10 3.15 50. £3. 0. 1800. S-a L L L N4 N N CD N N N N L N N L k1 I... I- -521 611 AND NCO -610 610 N SI 64 616s -522 -all a's O0 AND AND AND 523 613 501 614 N N SI S 633 $634 634 533 633 510 AND oft AND -660 603 too SI S L No -514 S NC -601 S L11 612 13 614 61 S 616 510 64S S46 46 -S01 * t o4e0044440~oo~.... . ..so 0 .................... En eet44S8SoS*404*o 4*S95440004555*0 LOOP INTWCT * G eS e0SsSSS655S5•46444S4emS04466S6*44eS044SS44444 eSSoeSee.S545S 0 • VESSEL NOZZLE INTACTLOOP NOT LEG SREACTOR 1000OO0 1000001 1000101 1000102 1001101 1002101 RWI1a 2 0.0634 4.06-5 296010000 100010000 B6RAIC. I 1.5373 0.0 100000000 I0SO000X 0.0 00 0.0634 0.0 0.0 0.1 0.06S 0.0 0.0 0.1 0.065 0102 0l00 •*65e4545*455544 * PRESSURJZER 1050000 S1060001 1050101 1050102 1051101 TEE REACTOR VESSEL SIDE •ONNECTION PITRY'S 1 0.0634 4.OE-6 10501000I BRANC4 1 0.0• 1.634 00 0.0 10000000 0.0 0.0 0.0 0.0 0.0s6 O.06s 0100 *..4ee44e440*ees S STEAM 7 GENERATOR INLET PIPING 1100000 1 00001 1100101 1100 102 1101101 SGII4LP I 0.0 4.0E-5 110010000 BIKAMCI I 0.06204 1.1303 00 0.0 I16000000 0.0 1160000 1150001 1150101 SAPS 13 0.0O PIPE 1150102 1160103 IISO104 11SO301 1150202 1150203 1150204 1150205 1150301 0.151 0.0 0.0634 0.0 0.0512 0.0 0.0512 0.0 0.93124 9 12 13 1 2 9 10 12 1 0• 0 0.63 1.0022 .7102 0.7576 .7102 1.0022 2 3 4 5 7S a 1160309 1150310 1160311 1160313 11.0401 0.63 0.547 0.669 0.535 0.05426 10 I1 12 12 1 1150402 1150403 1150404 115040S 0.057 0.223 0.0 2 93 1150406 1150407 1160408 1160501 1150601 11 50602 1150603 1160701- 0.0437 0.0462 0.0 0.0 1.0 90.0 -90.0 0.0 II 12 13 13 1 6 13 I 1150702 11MM02 1150704 115070S 1160704 1160707 1150700 1160709 1150710 11650•11 1150712 1150713 1150801 0.246 0.613 1.:322 .7102 0.:576 -0.8574 -. 7102 -1.0022 -0.513 -0.494 -0.689 -0.356 4.00-S 2 3 4 5 6 7 0 • 10 if 12 13 0.0 0.223 0.0 0.0 1150802 11 S0•03 4.0-5 1.0E-3 0.02 0.0:,1013 0.17 0.17 0100 1160604 1150605 1150901 1150902 1150903 1150904 116090S 1160906 1150907 11 0904 1160909 1151001 1151101 1151102 1151103 1151300 4.0E-5 4.05-5 0.255 0.048 0.0 0.096 0.192 0.096 0.0 0.046 0.096 00 0100 0000 0100 1 0.0102 0.0 0.255 0.046 0.0 0.096 0.192 0.096 0.0 0.045 0.096 13 3 2 12 4*e**0**t44•44• * ti W 1203101 125O00 1250001 1250101 1250102 1251101 1252101 PSTEE 3 0.0634 4.0E-S 115010000 120010000 PISTOL 2 0.0 4.06-5 0 126010000 12500000 : PtW I INLET PIINL 1300000 1300101 4.06-6 1300102 0.0 S BRANCH 1 0.0 0.0613 1.003 00 .0 0.1 130000000 0.0 .012417 O.0 155000000 1-4 0.2 0100 90.0 0.521 0100 6010 0.1 0.0 S SNCLV4L 0.457 0.0 e PRIMARY COOLAN PFLW I 13S0000 1350101 1360102 1350108 1350109 1350301 1350302 1350303 1350308 1350310 10 13 t 2 4 5 6 ? t to 12 0.0 00 0. 0.0317 PCPI 0.0364 0 130010000 140000000 0 0 369.0 613.6 .212465 0.0 0.0111. 00 0.0 40.0 0.467 0.319 TRIP-511 PIJ 0.0 0.099 0.0 90.0 0.0 0.0 -I 0 0.911 0.0 0.0 0.0 0.0 0.05 S11 -1 0.31S$ 207.4 -26. 0.0 0.0 0.04 C 96.0 0.004 29.6 0100 0100 S00.6 11.698 6.28 1.431 0.0 1400000 1400101 1400102 0.0 0.0 0.0 0.096 0.2 0.096 0.2 0000 0100 PIOTLPI 0.0364 4.06-6 $NGLVOL 0.0 0.602 00 0.0 PCPWATER1SUVOL 1.0 7.E-3 0.0 0.0 I 30S. 0.0 305. 10000. 0.0 0.0 00 0.0 POPTS 2 BRANCH I 1.4004 1450101 0.0 1450102 1461101 0.0 4.0E-6 140010000 145)00000 ID I.-A I 0.0 0 No co ti, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (I) 5 * PUWI OUTLETPIPE TEE SIDE 14S0000 1450001 z 1.4 PUMP INJ. (JOINED ONEPUMP) e COOLANT 0 I1CPJUN PCPINjI 9010000 110000000 140000000 0.0 9010101 611 1 9010200 0.0 0.0 -1. 1010201 0.0 .096 0.0 9010202 0.0 .094 10000. 9010203 ;100000 9100101 :100102 100200 1100301 S100202 I-A co * PUMP I OUTLETPUM SIDE 6 BSANCH I 0.76 0.0 120000000 126000000 0.2 0 SPUMP SUCTIONTEE 1200000 1200001 1200101 1200102 1201101 1202101 120010000 165000000 0.0317 o PIAIPI SUCTION TEE OUTLET I0 0.0 SSS*Soo**oSS**S*SSS04¢leeee*40SS4*SSS4,SSS44*,0444 SSTEA.A GENERATOR PLUS PIPING * 11 60302 1150303 1150304 1150305 16SO306 1150307 1150300 0.0633 0.0 0.0 0.0 00 0.0 0.0 0.0 0100 10* ti• I.-,- x4 "tJ 1452101 * P1t 1450I0000 1000000 .035073 0.0 0.0 0100 OUTLET TEE 1S300000 1I SO00 1500101 1S00102 1601101 1602101 POTLTEE 2 0.034 4.MO-M 170010000 10010000 0 BRAWC.: I 0.4966 0.0 0.0 00 150000000 .0271528 175000000 0.0 0.0 0.0 0.0 0.2 0.134 0.2 0.134 0100 0100 PUP 2 SUCTION TEE CUTLET 1550000 IS•0001 15SO101 15St002 1551101 PUP P25TO. I 0.0 4.OE-s 155010000 SpkC4 I 1.003 0.0613 0.0 00 160000000 0.0 P21N1 0.0 4.0GE- 0.05 90.0 O.OS 0100 0.0 10.0 0.457 S PR•IMAy COOLANIT PUMP2 1610O0 1610101 1610102 1650108 1650109 1650301 1650302 1650303 1650308 1610310 PCP2 0 *S*S• ••*••** o PUM 1700000 1700001 1700101 1700102 1701101 0.0300 0 160010000 110000000 135 136 369.0 613.6 .212465 0.0 •lls*el• * PUWM 0 0.0 0.031 0.0 90.0 0.0 0.0 135 -1 O.sl.1 0.0 0.0 0.0 0.0 0.05 -1 S11 0.31s5 207.4 -25. 0.0 0.0 O.Os 0 96.0 0.004 29.5 0100 0100 41•5*S*9405•549•• 500.6 19.598 S.26 0.319 1 0.0366 4.OE-S 145010000 17,1300 I 1 tij z 1I- 1800001 1500101 1500102 1$01101 0 1 0.0634 4.0-E3 17.1010000 SCOLDLEO PIPE 1 .701 0.0 10000000 '-4 0.0 00 0.0 • 2000000 2900001 2900101 0.0 0.0 0.0 0.064 0.0664 0100 PAN6ECC CHEECTIO0N TO REACTORVESSEL S 0 1550000 1:510001, CLPRVS 2.03 1050101 1850102 1851101 1652101 1.461 0.0634 4.06-S 0.0 155010000 29000000 180010000 155000000 BRANCH 1 0.0 00 0.0634 0.0 0.0 0.0 0.0 1. 0.0 1. 0.0 0101 0100 PTECT 2 0.O064 0.0 0.553 0.613 0.0 0.0 0.0 0.0 4.O6-5 PIPE 2 I I 2 2 2 2 2 0.0 .076 4.6-S .172 00 200010000 290000000 0.0 0.0 0.0 0.0 -90. -. 30 •*..*o z * INLET ANNULUS TOP VOLUME 2000102 4.0-5 0.0445 00 0.178 0.0 90.0 2050101 20SO102 9I1101 0.0 4.O4-1S 20601000 0.274 0.172 0.07t o00 210ROLI0 0.0 0.0 0.0 DISCHARGE D VOLUME :200000 6200101 0200102 0.0 0.0 0.2 0.2 0100 0.10 o.o.os.•**.-*ss e~*..o.s••*•**.*os.*s..*. 9499e55•445•6,555 0.0 LI-4 0100 9S459905**S0SS**SSA .**..s.s.....*ee 5200200 8200201 5200202 BREARVOE.IIMDPVO 3.6E-3 0.0 2 0.0 100OO. I. 0.0 1 .S I.E5 0.0 0.0 0.0 0.0 0.0 8000001 6000000 8000101 8000102 6001101 I SROUTL 1. I. o BRAKEVALVE(ORIFICE) 9010000 SJT~vLv VALVE 800010000 820000000 205.6-.6 5050101 1TRVLV 5050300 S. S14 641 9030301 0.0 0.0 0.0 .S .5 0102 .4 .4 0100 0.0 *.o,.e••s.o¢*..*•ooeooe~els.....*•*•e*oe.elole••*eleese*.ae.*•*s' * REACTORVESSEL C00.D LEG INLET ANNULUS DWMIVCO4R PIPE 2100001 4 0.142 4 2100201 21 00301 210O401 2 100501 210¢601 2100801 0.0 O.9S4 0.0 0.0 -90.0 4.OE-5 3 4 4 4 40.102 2100001 O0 2100901 I BRANCH .00090! 1.6 0.0 I.E-S 0.0 00 18S010000 O00000000 0.0 2100000 2100101 8REAKOUTLETLINE O 1o70000 10S00I 1?sO101 1750301 170301 11S0302 1710401 1I10101 1150601 1750701 175001 2W00I02 2901101 -90.0 0.0 S * COLDLEG PIPE 10 IOC CONNECTION TEE INANLCVOI. BFAIC I I 0.0 .30 2000000 'ZANLIVOL ORANO4 2000001 0 1 2000101 0.0 0.11 1.431 0.0 eutNm I 0.514 0.0 0.0 00 170010000 0.009073 I • 2 OUTLET P2mnm. 0.15 2 0100 0.621 S SNaOL1A. 0.465 0.0155 0.0 00 0.15 00 1751101 * ECC CONNECTION TEE PUM SIDE 0.0 2 INLET PIPE 1WO600 1600101 1600102 1760901 1751001 .$5 .85 2101101 2101300 0100 ~00e0005..SS.*.0S'*(S• I-A 2: 0 0.0 0.0 -0.274 0 ID 00 .0 PE 0.0 0 3 w• 0.0 2150102 21051101 4.0E-5 0.0 00 210010000 21S00000 0.0 2152101 21501000 0.0 220 00 CA, • OWERt PLENUM•UPPER VOLUME 2150000 LPUVO BRANCH 2150001 3 4 2150101 0.740 0.34 2153010 I' 215000000 225000000 0.16 0.0 0.0 0.0 0.0 -90.0 0.0 0.0 0.0 -0.360 0100 0100 0100 • LOWER PLENUM LUWER VOLUIE 2200000 LPLOV04. RSNGLVO 2200101 2200102 0.790 4.O6-S 0.360 0.0 0.0 00 •2510000 LOWER COlRE SUPPORT20T STRU•CTURE[ LCOS 0. 2250001 2•05101 2250102 1 O.25 4 0.0 1 0O2- 0 2 0 0.0 .19 0.0 -90.0 -0.370 '6*SSSS**S*••••*SSS*S .J. . 0.0 0.0 x 00.0 0.32 (Si 1.2251101 22501OOO 220000000 0.097S 2.4 2.4 0100 En * VALVE JUNCTION FOR CORE BYPASS FLOW 2260000 2260101 CBPVLV VALVE 226010000 235000000 2260201 2260300 2260301 I S"WLV 226 .015 20. 0.0 I. I, 0100 0.0 • **S$SSeSooSS SSSSS*S•40S*S*S*SSS*e4S**S6SSSSSS*SSSS* * UPPER FLOW SKIRT REGION 0 * ACTIVE CORE 2300000 2300001 2300101 2300201 2300202 2300203 2300204 2300205 2300301 2300302 2300401 2300S01 2300601 2300801 2300901 2300902 2300903 2300904 2300905 2301001 2301101 2301300 CORE 6 0.170S 0.1705 0.1440 0.1705 0.1440 O.1705 0.2795 0.3776 0.0 0.0 90.0 4.O6-5 0.0 .6 0.0 .5 0.0 00 0O00 I 6 I 2 3 4 5 a 6 • 6 6 0.012 0.0 .5 0.0 .6 0.0 6 5 2450000 2450001 2450101 PIPE UFOSRIE SRANIh 0.114 0.693 I SSS*SSo*Seee I 0.0 0.0 2450102 4.0E-S 0.131 00 2461101 240010000 246000000 0.0 0.0, **4**S@******,4 *S* *9,6**•e*SS4,0*te6.4**94S,*S* ***S••eSS 90.0 0.093 0.0 0100 •0s*SSSS**9SS D EADFEND OF FUELMCOULES 2460000 2460001 2460101 2460102 2461101 FI 1. I 0.153 4.OE-6 240010000 SRANWN I 0.700 0.214 24600000O : UPPERPL5NIA UPPER VOLUMt 0 0.0 00 0.0 0.0 90.0 0.700 0.0 0.0 Ot00 o**S*******SS*SoS6•*S@*oSSSSSSSSS*6o*S96oe**So~o*Se*o4**•),*•440. 6 1 2 2 4 S 295OO00 2950001 2950101 2990102 2951101 2960000 2960101 2960201 2960300 2960301 PIPE 3 2 2 2 3 3 3 3 0.002 0.0 3 2 WIUOUlr 1 1 .201 4.6-S 245010000 2400001 2400101 2400102 2401101 2402101 0 UCOSST 2 0.297 4.06-5 230010000 235010000 .30 0.0 0.0 00 296000000 0.0 2970000 2970101 2970201 2970300 2970301 2 2 0.0 00 0.12 0.0 H 0.0 90.0 0.712 tl, oSS S96•66966*S*6S66o*SS• PRESSURIZER s(d. .30 0.0 0.0 0100 4000000 4000001 4000101 4000102 4001101 4002101 S*e *SS too IAUPVL.V VALVE 200010000 250000000 .01 I 15.0 0.0 SRV.LV 296 I. 0.0 1. 0100 IAUPVLI VALVE 205000000 245010000 .01 I 16.9 0.0 SRWLV 296 0.0 90.0 1.118 2.O 1.so 2.40 1.60 0100 0100 2910000 2910101 2910201 2910300 2910301 **S*SSS*556 IAUOOM VALVE 290010000 205000000 0.269 I 444.9 0.0 SRVVLV 291 I. 0.0 I. 0100 I. 0.0 BAPNCH I 0.704 0.0 0.0 00 250O000000 0.0 265000000 0.0 S*e••e•~e•eeeoloeoee•eeeooeooeee, 4050000 4050101 4060102 SLPRV 0.00145 4.O0-6 SNGLVOIL 3.45 0.0 0.0 00 SLVALV VALVE 405010000 416000000 0.0 TRPVLV b01 4100000 4100101 4100300 4100301 * PRESSURIZER VESSEL 1. 0100 555e5t See5e5*ee~tS*S4SS*eSeeoS*SS*e*IsS.S**.*tS* UPLLVOL 2 0.2096 4.06-S 295010000 260010000 0 SURGE LINE PRESSURIZER VESSEL S 0.0 90.0 0.60 $-A * UPPER PLENUMLOWERVOLUME 2SO0000 2500001 2600101 2500102 2501101 2502101 SPCS BRANICH 2 I O.0O146 3.45 0.0 0.0 90.0 0.64 4.06-6 0.0 00 110000000 400000000 0.0 0.93 0.93 0100 400010000 405000000 0.0 0.93 0.93 0000 4 ooeSS.S.SS6S..,*S66*•.•om**6•S*SSS*66944446696SSS66S * PRESSURIZER SURGE LINE VALVE 0 VALVEJUNCTION INLET ANM.TO OW4CCOWR S 9 SSURGELINE PC$ SI0E 0.0 * VALVEJUNCTION4INLET ANN. TO UPPER PLE5NM BRANCH I 1.I1a 0.145 240000000 240000000 0 H BIRANCH ****5454555*5565.46546455S6*se**s**66***..4e**.696..9..494.9 *S.*S*SSSSSS*SSSSSSSS.oe. oee~eoe••s....,.S*S**.*96eeSSS*S*SSooo** * UPPER CORE SUPPORT STRUCTURE 2400000 *,**9*olaf*SSS*SSooqs*•ebS*6,*S*S4*Se*6SSS S* • VALVEJUNCTION INLET ANM. TO UPPER PL[NUM. BYPVOL 3 0.01 0.0 0.559 0.657 0.0 0.0 90.0 4.OE-5 0.0 00 0000 I UPLUVO. SNGLVO.L 0.244 0.712 0.0 0.0 00 4.06-1 * REACTOR VESSEL HOT LEG OUTLET * BYPASS VOLUAME 23S0000 2350001 2350101 2350201 2350301 2350302 2350401 2350501 2350601 2350801 2350901 2351001 2351101 23S1300 265O000 2650101 2650102 666.4 . 0.0 90.0 0.704 0.0 0.0 0.0 0.0 0100 0100 4150000 4150001 4150101 4150102 4150103 4160104 4150201 4150201 4150302 4150303 4150304 416030S 4150401 4150501 4150601 4150e01 4151001 4161002 4151101 4161102 4161300 * 0 PRESSV a 0.362 0.665 0.466 0.13 0.0 0.274 0.403 0.207 0.1700 0.115 0.0 0.0 90.0 4.0E-5 00 01 0100 0000 1 S ID I, CO 0.93 0.93 0100 -J4 I0 6 0 CO PIPE I 5 7 8 7 1 3 5 7 S 5 S 5 0.0 4 a I 7 TOP VOLUME PRESSURIZER "0 a (D CIA. 0 x 4200000 TOPPRE 4201101 0.13 0.236 0.0 :.SE-S 0.0 01 415010000 420000000 0.0 A200001 A200101 42O1O02 I 8ARM:H 0 0.0 10.0 0.0 0.0 0.236 0000 r") iee...... e.eo.o o.o..46..46.4.eo..464u646.4.e*8.e)*0688**4686.886 : CORE SUPPORT BARREL HEATSTRUCTUREINPUT DATA 8 gs*oeo s0*. VESSEL * EACTOR 044#o*seen.*s.6*o.o4o.....e•.s86 HEAT STRUCTURES o8*6***844.66 * FILLER BLOCKSINLET ANNULUSTOP VOLUME 12000000 12000100 12000101 12000201 12000301 12000401 12000501 12000601 12000701 12000801 1 0 4 4 0.0 565.2 200010000 0 0 0 6 I 0.772 4 4 5 0 0 0.0 .178 2 1 12010000 6 12010100 0 12010101 4 12010201 12010201 12010401 4 0.0 565.2 200010000 0 I 12010502 12010503 205010000 0 210010000 0 I1 12010505 12010506 12010601 12010602 210030000 210040000 0 0 12010501 0.606 12010504 I 0 0.0 0.0 1 I 0.0 0.33 0.33 0.33 I I I I t LOCKSDOILE6 C0MERNO LOWERPLEUM 12100000 6 12 100100 0 12100101 4 12100201 4 12100301 0.0 12100401 565.2 12100501 210010000 121OOS0O 210030000 12100504 210040000 12100505 2350100X O 12100506 220010000 12100601 0 12100602 0 12100602 0 12100701 0 12100801 0 12100802 0 12100608 0 5 1 0.736 4 4 5 0 0 0 0 0 0 0 0.0 0.102 0.971 1.003 2 I I I I I 0 0 0 0.0 0.0 0.0 0.0 8 0.I01 0 12010604 12010605 0 0 1 I I I I 1 I 1 0.0 0.968 • 0.26 0.a37 0 0 0 0 I 0 0 1 1 0.33 0.424 0.0SS 0.956 1 I I 0 0 0 I 0.0 0.33 0.424 0.645 0.0 0.179 0.172 0.102 0.958 1 23 4 12300301 0.22I 0.954 0.424 0.958 a 12010601 0 12010602 0 12010803 0 0.958 00.956 .$56 6 I 2 6 2 3 4 5 6 8, * 0.424 0.424 I I 1 1 . 1 12010701 4 4 • 210020000 0 12010603 12010606 * FILLER BLOCKSINLET M4.US LOWER5LUd l2050000 1 2 I 12050100 1 12050101 4 0.768 12050201 4 4 12050301 0.0 4 12050401 565.2 6 12050SOI 205010000 0 1 I 12050601 0 0 0 1 12050701 0 0.0 0.0 0.0 12050801 0 .172 0.0 0.424 6 I-V 0.3110 5 1 0.4101 0.47 0.956 0.958 0.9,8 0.36 0.37 0.956 0.36 0.37 6 4 S FLOW SKIRT 12250000 12250100 12250101 12250201 12250301 12250401 12250501 12250502 12250SO3 12250304 I 3 4 5 a 4 6 6 1225050S 12250506 12250601 12250602 12250603 12250604 12250605 12250606 12250701 12250860 12260802 12250803 12250804 1225005 12250006 s - CORE FILLER AS. SOSLY 10 0 4 4 0.0 665.2 225010000 230010000 230060000 1 I 0.38 4 4 6 0 10000 0 240010000 0 245010000 246010000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0. 0.012 0.012 O.145 0.131 0.214 2 ! 1 I S 1 0.3 I 0.52 0.2295 0.3725 1.118 t 6 67 0.42 6 0.25 0.52 0.279S 0.2725 1.116 0.42 10 1 6 7 6 6 1 11 1 0 0 0 0 O I I I 1 I 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 0.52 0.279S 0.3775 1.118 0.42 0.35 0.35 10 I 6 7 a 6 10 1 0.0 1 10 12300302 12300401 1220040 12300501 12300502 12300601 12300602 12300701 12300702 12300703 12300704 12300?05 12300706 12300901 12300902 1.0 0.0 I100. 0. 0 0 230010000 232060000 I00O low0 1000 1000 1000 1000 0 0 • 6 6 8 0 0 1000 0 0.061 0.262 0.245 0.226 0.146 0.026 0.01260 0.01260 0 1 5263.3S 0 ? I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 490.7s I 3263.26 1 490.76 0.0 I 0.0 2 0.0 3 0.0 4 0.0 S O.0 6 0.2795 0.3??56• 6 ! I 0.0 1 1 0.0 0.0 0.0 1 I 1.8 1.8 1.8 1. 1.0 I I 1 so 66 tI' *FUEL56OULIESS 12460000 12460100 12460101 12460201 12460301 12460401 12460501 12460601 12460701 12460601 12460901 1 0 4 4 0.0 665.2 24501000 0 246010000 0 0 0 S 1 0.01 4 4 • 0 0.0 0.131 0.214 1 1 z -A -,2 *REACTOR VESSEL BOTTOM 12200000 12200100 12200101 12200201 12200201 12200401 12200501 12200601 12200701 12200901 I 0 4 4 0.0 665.2 -999 220010000 0 0 22C0000O 12260100 I 0 12260101 12260201 12260301 12260401 12260501 12260601 12260701 12260801 4 4 0.0 565.2 225010000 0 0 0 S0 ;• • 02 1 1 0.092 4 4 8 0 0 0.0 0.0 1 3949 1 0.0 0.0 0;•• --.. 0 0 0.0 0.62 .. 0.0 .... 1.66 1.68 1 1 Io Ih) 0 02 1 ... ACTIVE CORE 12300000 6 9 12300100 12300101 o 1200102 12300103 1230001 02 1200202 12300203 0 6 I 2 1 4.647E-3 4.742E-3 8.3519-3 -2 -3 6 a 2 W ST U 0.262 0.3 4 4 S 0 0 0.0 0.0 1 0 € .0 CO.0 I I 0.0 0.52 "**S*aSSSS*@S;'..;,.6;*S,*............... 12400000 12400100 I 0 s I 2 1 0.52 0.52 1 1 1I "' ..... " ...... ' 0.262 (D x 1240010, 4 0.31 12400201 12400301 12400401 12400501 12400601 12400701 12400401 4 0.0 565.2 240010000 0 0 0 4 4 S * 0 0 0.0 :0.45 rJn 1-3 1 0 0.0 0.0 1 I 0.0 .859 .559 659 I 1 ! En H 02 0 • 1251080t UPPER HEAD TOP PLATE 12600•00 12550100 12550101 12550201 12550301 12550401 12SSOSOI 12550601 12550701 12S50801 1 0 4 4 0.0 566.2 25501000O -999 0 0 5 • 1 0.474 4 4 5 0 0 0 0.0 1a13• 12610602 1 1 0 4 4 0.0 665.2 2SOI0000 0 0 0 5 1 0.419 4 4 0 0• 0 0.0 0.0 1 3940 0.0 0.0 2 1 0 0.0 0.0 * CORE SUPPORT BARREL UPPE R PLENUI 12520000 12520100 12520101 12520701 12520301 12520401 12570501 12520601 12520701 12520801 1 0 4 4 0.0 665.2 255010000 -99" 0 0 $ 1 0.720 4 4 B 0 0.0 0.0 0.0 2 1 3949 0.0 0.0 I 1 0.0 0,712 0.712 0.712 I I ! 1 0.0 0.054 *BROKEN 0.3s1 0.54 •0.54 1 1 TOP VOLUME 1 1 I 0.0 O.712 4 12510201 12510301 12510401 12510501 12510502 12510601 4 0.0 665.2 250010000 255010000 0 12510602 12510?01 2 0 0 6 1 0.005 I 0•381 0.712 0.712 I I 0.0 4 4 5 0 0 0 0 0.0 I I , 0 0 0.0 1 I •0. 1.0 1.0 1.0 1.0 2 1.0 1.0 1 2 1-3 44•,99464*•64*9.899•I•**4.4*69 *6e*6644 4 LOWER VOLUME 1 0.0 0.0 o* S**SSSI*SSSSSSS0Se*566900I4***48***48400S***60*$4***448**S8*448 *PIR*S*4******S5**•**SS*S**6e* **44*40**56*4*6*4**S e*I********eo4 INTERNALS UPPER PLENUM 12SI0000 12510100 12510l01 0.0 0.0 0 * PlR4MSRY SYTE PIPSIG 0 6'l*SS4*SS***6*6584914u[*99*i9691 * CORE SUPPORT BARREL UPPER PLEUM l2SO0000 12500100 12500101 12500201 12500301 12500401 12500501 12500601 12500701 12500801 1 0 ! 2 HOT LE0 13160000 13150100 1 3l00 o o 13150201 131603041 13160401 13150501 13150502 13150601 13150602 13150701 13160801 13150602 2 0 5 4 0.0 w40. 315010000 315020000 -997 -997 0 0 0 0 0 0 0 0 0 0 0 12151000 13161100 13161101 13161201 13151301 13151401 13151501 13I51601 13151701 13161801 I 0 5 4 0.0 540. 316000000 -937 0 0 6 I .1350 6 6 6 0 0 0 0 13152000 131S2100 13152101 13152201 13152301 13152401, 13152501 13152601 131S2701 13152801 1 0 5 4 0.0 . j 40. 31509o0000 -997 0 0 S 1 .0840 5 0 a 0 13153000 13153100 13153101 13153201 13163301 13153401 13163501 13153502 13153601 13153602 13153701 13153601 13153•02 5 0 6 4 0.0 640. 315030000 315070000 -997 -997 0 0 0 6 1 .2248 S 5 6 10000 0 0 0 0 0 0 13164000 13154100 1313,4101 I 0 5 6 I .1620 S ,1 .0709 6 .0515 I I 3949 3949 0 a 0 1 1 1 1 0 .4054 .5265 .4054 .6265 .4054 .5265 32 2 1 .1074 1 1 0 2.971 2.671 2.671 1 1 I .0660 1 I 0 1.942 1.142 1.042 I I 1 .193S I I 1.699 .362. 1.69" .362 I 3940 0 0 3949 a I I 3949 1 3949 0 0 0 I 0 2 1 1.69" .362 2 4 5 .12115 13154701 13154301 13154401 13164501 13154601 13164701 13154S01 4 0.0 540. 316100000 -997 0 0 5 5 a 0 0 0 0 13000000 ,13000100 13000101 13000201 13000301 13000401 13000501 13000502 1300003 13000601 13000602 13000603 13000701 13000801 13000802 13000403 3 0 5 4 0.0 640. 300010000 30501000O 310010000 -999 -999 -999 0 0 0 0 6 1 .1700 a 0 a 0 0 0 0 0 0 0 0 0 0 I 3949 0 0 1 1 0 ."67 .607 .667 2 1 .1420 1 1 1 3949 3949 3949 0 0 0 0 I 1 I 1 3 1 0 .0750 .6960 1.424 .760 .6560 1.424 .8760 .5690 1.424 3 1 2 3 .111 :24 z- 5 23 2 3 0 * AEFLOO ASSIST BYPASS I37S0000 13750100 13750101 13750201 13750301 13750401 13750501 13750502 13750601 13750602 13750701 13750601 13750002 2 0 5 4 0.0 640. 37001000 360010000 -299 -999 0 0 0 6 I .1365 6 5 0 0 0 0 0 0 0 0 2 I 1 1 1 1 13350000 2 I-& 4.415 5.240 3949 I 4.41S 3949 I 5.240 0 0 2 0 4.415 I 0 5.240 2 *OeS'.o*oS*e.*e*S*S4•*o******e*Sees*S..6.osMa.94oe,*9•4RR9ek04.. B.L. COLD LEG D 13350100 13350101 13350201 13350301 13350401 13350501 13350502 13350503 13350601 13350602 13350603 13350701 13350601 12350802 13350603 3 • 0 S 4 0.0 540. 335010000 340030000 345010000 -999 -999 -999 0 0 0 0 1 .1760 s $ 6 0 0 0 0 0 0 0 0 0 0 13soI000 13501100 13601101 I 0 5 a 1 .1207 1 1 3949 3949 3949 0 0 0 0 2 I 1 1 1 I I I 0 .7495 .6600 ,9740 1 I 2 I- 1 2 I o t%) €0 .1420 .7495 .:9,0 .9740 .7495 .6260 .9740 3 I 2 3 .0003 2 23 23 (1) x a.' I13501201 4 $ 13501401 540. a 13501301 135010 0.0 5 3!50010000 a 1 1 2.0105 : INTACTLOOP PIPING 11001000 110011 00 11001101 11001201 11001301 11001401 11001501 11001502 11001503 11001604 11001505 11001506 11001507 11001560 11001509 11001510 11001511 11001512 11001601 11001602 11001603 11001604 11001605 11001606 11001607 11001608 1100160 11001610 11001611 11001612 11001701 11001g01 11001802 11001803 11001804 11001805 11001806 1100190? 11001508 11001809 11001810 11001811 11001812 11002000 11002100 11002101 11002201 11002301 11002401 11002501 11002502 11002601 11002602 12 0 1 A 4 0.0 540. 1000100o0 105010000 110010000 116010000 115120000 116130000 120010000 150010000 175010000 115020000 IB0010000 185010000 -199 -099 -999 -999 -999 -99 -999 -999 -990 -999 -999 -990 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 4 0.0 540. 115020000 111 610000 -.99 -999 .142 9 .lie 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 .2030 • 5 6 0 0 0 0 1.5373 1.6340 1.1303 .93124 .9690 3949 i 3949 3949 3949 3949 3949 3949 3942 3940 3949 394: 1 I I 1 I I 1 1 I 1 0 0 1.573 1.W340 0 0 0 0 0 0 0 0 0 0 1.12303 .93124 .6890 .5590 .7600 .4966 .5590 .5130 .7010 1.461 2 1 .7600 .4964 .5590 .6130 . 010 1.4610 1.S373 1.6340 1.1303 .93124 .6690 .5590 .7600 .4966 .3590 .5130 .7010 1.461 12 I2 cn 1 3049 I 13501601 2.0965 t -507 0 13501701 0 0 0 0 0 2.0065 II 13501801 0 0 8 ,**889*48**S8.086888*888896606884988m88888S960966888W8886 1 2 3 4 1 II a 7 10 11 12 H I-4 11002701 11002801 11002802 0 0 0 0 a 0 11003000 11003100 11003101 11003201 11003,01 11003401 11003501 11003S02 11003503 11003504 11003505 1100354A 11003507 11003601 11003602 11003603 11003604 11003605 11003606 1100360? 11003701 11003601 11003802 11003803 11003804 1100380S 11003806 11003807 7 0 S 4 0.0 M40. . 12S010000 120010000 140010000 145010000 155010000 150010000 170010000 -099 -999 -990 -999 -999 -999 -9:9 0 0 0 0 0 0 0 0 8 1 !,us8 a 5 11004000 11004100 1 004101 11004201 11004301 11004401 11004501 11004502 11004501 11004602 11004701 11004801 11004802 11004901 2 3 4 6 5 10 II 12 .1625 2 0 S 4 0.0 640. 116030000 11S100000 -:99 -119 0 0 0 0 1 I 3940 3948 I I 1 1 .706 .547 .S4? .700 .54? 12 2 21 0.701 ,547 2I 2 I-I 14152301 1 6 I .7147 S 5 6 0 0 0 0 0 0 0 0 1 I I I I 1 3949 3949 3949 2949 1I 1 1.002 .457 .602 1 I I I 1 1 II 1.4044 1.003 .457 .514 1.003 0452 .024 1.4084 3949 3949 3949 0 0 0 0 0 0 0 0 1 I 1 0 1.003 .457 .502 1.40•4 1.003 .457 .514 1'.D03 .457 .614 7 I 2 3 4 8 6 7 2 1 .608U I I 3949 3949 0 0 0 0 1 1 1 I 0 .630 .630 .630 .29 .2S .25 .25 2 1 2 2 S 1111.. .6S..11 1.....811 PRESSMIZERH4EAT STRUCTURES 14151000 ldl81100 14151101 14111201 1411.301 14151401 14151501 14151601 14161701 14151601 14112000 14152100 14152101 14152201 1 0 5 5 0.0 518.. 415010000 -99H 0 0 7 0 5 S t~l .106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 seel......e.e*....1toS1.....*..... : 0 00 1 1 .0762 5 5 1 0 0 0 0.0 6 1 .49911 $ 1 3949 0 0.0 2 I 1 2 4 7 23 4 7 1 1 2 S11M8 14162401 14125201 14162602 14162603 14152604 14152601 14152602 14152603 14152604 14152701 14152801 14162000 14162100 14162101 14162201 14152301 14162401 14162501 14162501 14152701 14162801 14202000 14202100 14202101 14702201 14202301 14202401 14702501 14202601 14202701 14202801 14201000 14201100 14201101 14201201 14201301 14201401 142015so 14201601 14201701 14201801 5 4160o000( 41 020000 416040000 41SO60000 -991 -290 -990 -998 0 10000 10000 10000 0 0 00 0 0 I 0 5 5 0.0 41a. 416040000 0 0.0 I I .3043 a S 05 -998 0 0 1 0 5 5 0.0 618. 420010000 -994 0 0 I 0 5 a 0.0 61a. 420010000 -998 0 0 0 0 0.0 6 I .3683 5 5 6 0 0 0 0.0 a 1 .16415 5 8 6 0 0 0 0.0 ti1 I I 1 3940 3940 3949 3949 0 0.0 2 I I I I I I I 1 0 0.0 I .224 .403 .207 .1705 .224 .403 .207 .1705 7 7 .2032 1 3 7 3 2 7 1 31949 0 0.0 2 I 1 0 0.0 1 .111 .112 1I I 31149 0 0.0 I I 1 0 0.0 I .111 .11 1 I 0.0 H .2032 Go Q w1 I 3949 D 0.0 I 0 0.0 .130 .130 I I -.1j Co Z I I I 0 IA 0.0 8 I 1 0 0.0 I 0.0 .362 .362 1 .41 STEANCENERATORP1i-SEC NEATSTNJC1$tfs SSTEAMCENERATOA TIMING (INCL. 1006000 10060100 10060101 10060201 10060301 10060401 10060601 10060602 10060603 10060604 1006060S 0 10060606 1006050t 10060•O2 6 0 7 6 0.0 540.0 511010000 517020000 617030000 HALF THE W 8 2 I 0.006341894 7 7 a 0 I 0 1I 0 1I 157..8. 1310.32 1682.27 1 !1 I 1562.27 1310.32 1579.62 617030000 a 17020000 0 5170l0000 0 115040000 0 115050000 0 I I SIHET) 1 I I 1579.60 I I 1310.32 8 0.0051054 1 2 3 4 5 a I 2 (D I-4 cnJ 10060503 10060504 10060505 10060506 10060701 10060801 10060901 115060000 115070000 116080000 115090000 0 . 0 0 0 0 0 0 0 0 0 1 I I I I I I 1 0 0 0 1582.37 1582.27 1310.32 1579.69 a 0 0 2 4 5 6 C') 6 6 0 HEAT STRUCTURE THIERMAAL PIOPERTY DATA ;0100100 20100200 20100300 20100400 20100500 20100600 * T9L'FCTN TOL/FCTN TBL/FCTN S-STEEL C-STEEL T8L/FCTH I I I I I , I 1 * S UJ02 CAP INCONEL 600 THEI•MAL CONOCTIVITY 002 20100101 20100102 20100103 20100104 20100105 20100106 20100107 20100108 366.45 616.48 866.48 1088.71 1366.48 1616.48 2255.37 3088.71 7.7796 4.6228 3.8803 3.1561 2.7138 2.4490 2.3071 2.9942 449.01 699.82 949.$2 1199.62 1449.02 1699.82 2533.15 6.6267 4.6332 3.5965 2.9838 2.6082 2.3919 2.4334 523.15 783.15 1033.16 1283.15 1533.32 1977.59 2010.53 5.7624 422.13 3.3576 2.8367 2.5217 2.2698 2.6•19 * 273.15 473.15 1773.15 2373.15 2873.15 4699.82 2.310466 2.9207E6 3.531066 4.8824E6 .682556 6.6005E6 323.15 673.15 1973.15 2673.15 2973.15 2.572066 3.1307E6 3.7926E6 6.015556 6.7133E6 373.15 1373.15 2173.15 2773.15 3113.15 2.746466 3.443856 4.2285E6 6.3210E6 6.800566 9.5744 273.1S 17.0079 873.15 1473.15 25.0109 2073.15 44.0178 473.15 12.0044 1073.15 19.0087 1673.15 30.0127 2273.65 55.0225 673.15 1273.15 1673.15 2473.16 14.0051 22.0098 36.0149 60.0203 • VOLVIWETRIC HEAT CAPACITY ZR 20100351 20100352 1.9041E6 255.37 1248.43 2.311666 THER6MALCONDUCTIVITY CAP 20100201 20100202 20100203 :0100204 ?010020S !0100206 273.15 590.0 810.0 1090.0 1370.0 3260.0 0.14 0.24 0.29 0.36 0.42 0.75 13.85 I-I 20100602 477.6 15.92 588.7 700.0 810.9 922.0 1033.2 1144.3 t477.6 18.17 20.42 22.50 24.92 26.83 29.42 36.06 z HEATCAPACITY GAP * VOLUMETR1C 20100251 20100252 273.15 3260.0 5.4 6.4 20100651 20100652 20100653 20100654 20100656 20100657 20100658 20100659 366.5 477.6 588.7 700.0 810.9 $22.0 1033.2 1477.6 3.90865 4.08465 4.260E5 4.436E5 4.66565 4.92965 5.10565 5.7276S s HEATSTRUCTUREGENERALTABLES. TH6*RAt CO•I4UCTIVITY ZR 20100301 20100302 20100303 20100304 366.5 HEATCAPACITY INCONEL600 • VOLUMETRIC * VOLYIWTRIC NEAT CAPACITY U02 20100151 20100152 20100153 20100154 20100155 20100156 20100601 20100603 20100604 20100605 20100606 20100607 20100608 20100609 R H * THERM4ALcOHOUCTIV TY INCONEL 600 8 1077.69 2.3122E6 2199.82 2.3122E6 1185.923 5.7124E6 20299900 20299901 TEMP 0.0 20299800 20299801 20299802 TIAl -I. 0.0 501 614.7 305. 20299700 20299701 20299702 TEMP -1. 0.0 501 558. 305. 20294900 20294901 KTC-T 0.0 305. 20. HEATLOSS • 260 KS $5 SJURROUHNINGS **.**.R*o oS*S***o*oS4.*o *S*888*.,*8*o*oeo*ooeSe *o Sooeo*SSs*R • POWER 20290000 20290001 20290002 POWER 0.0 1000.0 0.0 0.0 * )**o****oe*•4o4**oo**S****e*,,******e*****8******4*e***S**S*S*oSS * PUMP DATA :.SINGLE PHASE HEAOCURVES ee*8 Hi ti t.MED CUM HO. I 1351100 I 1351101 0.000000C400 1351102 1.906100OE-01 1351103 3.896300E-01 1351104 5.9396005-01 1351105 7.902000-01 1351106 1.OOOOOOEOO 1 I.403600E#00 1.363O6OE400 1. 318600tE00 1.232806E*00 I. 133600E#00 I.00000OE400 * HEADCURVENO. 2 1351200 1 1351201 O.000000E*00 1351202 2.O000000601 4.00006OE-I 1351203 5.7554006-O1 1351204 7.443206OE-l 1351205 1351206 7.7340OOE-01 1351207 6.631300E-01 1351208 1.OOOOOOE400 2 -6. 70000OE-01 -5.0000OOE-Ol .-2.S00000E-01 0.0OOOOE*O 2.5830OOE-OI 3.778000[-01 6. 3260OOE-01 I.000OOE00. * HEADCURVENO. 3 1351300 1 -.1.000000600 1351301 1351302 -8.057400-C01 13512303 -6.0690OOE-01 1351304 --4.0683006-O1 1351305 -2.0017106-01 1351306 O.OOOOOOE*00 3 2.4722006500 2.0474006E00 i.831000E00 I 624000E600 1.4705005*00 1.4036006*00 * HDCURVE NO. 4 1351400 I 1351401 -1.000000E00 1351402 -8.2297005-01 1351403 -6.3332OOE-01 -4.5534OOE-01 1351404 1351405 -2.7109000-01 1351406 -I .7716OOE-01 1351407 -9.0730OOE-02 1351406 0.000000E*00 4 2.4722006800 1.996500E600 00 l. 589700* 1.3276OOE#OO 1.194SO0E6OO 1.06050OE400 I.0156006E00 .3427906-01 * HEADCURVENO. 6 1351500 f 1351501 0.0000006.00 1351502 2.OO00OE-01 1351503 4.000000--01 1351504 4.I180OOE-Ol 1351605 5.976300E-01 7.934670E-01 1351506 1351607 l.O000000E00 5 2. 000E0-01 2.8000006.-0 3.40000OE01 2.768000E-01 4.68400OE-01 6.992000E-Ol 1.0000006400 SHEADCURVENO. 6 351600 1 1351601 O. 0OOOOO. 00 9.1099O0-02 1351602 :.,65090.-01 1351603 1351604 2.71762O-0I1 1361605 4.5587206-01 1351606 5.744060E-01 S 9.3427906-Cl 9.122900E-E0 *.968000E-01 3.7500E*01 6.4330006-01 N.35500'6-01 wo Ia 60 z ,,.1, !- i-J If 0 0o LAi ,:pi ::3 En 1351607 1351606 1351609 1351610 7.4057606-01 7.66619E0-01 0.7147105-01 I4.0000000*400 8.4660005-Ol 6.4690006-01 8.63800OE-01 I. .0000)E0.00 1-3 HEAD CUWVE NO. 7 1351700 1351701 1351702 1351703 1351704 1351705 1351706 I -1.0000006.00 8.OOOOOOE-Ol -6:.000OOOE-01 -4.0OOOOOE-01 -2.000000E-01 0. 000000E*0 M, HEADWAVE 1351800 1 --. 1351603 1351804 1351605 1351806 -6.000000E-O1 -4.0O0000)-Ol -2.0000OO4-O1 0.0O00000.00 *TOROUE -I.O00000.E+O0 -6.300000-01 -3.00000E-01 -5. 00000E-02 I.5000006-01 2. 50000GEO01 1352203 1352204 1352205 1352206 1352207 1352208 No0.8a 1351801 * SINGLE a 7 000000-01 8 1352300 1352301 1352302 1352303 1352304 -1.0700000E-00 -9. 500000E-01 -8.600006E-01 -8.0000OOE-01 -6.7000006-01 PHASE TORQ•UE DATA • CURVE NO.* TOROUE CURVE NO. S v 2 -1.0000006.00 -6.2234006-01 1352S00 1352501 1352502 1352503 1352504 2 O.00000E4600 9.064300E-02 I.885690E-01 2.7347006-01 4.586690E-0 I 5.74480OE-01 7.3516006-O1 7.6952OOE-01 0.700570E-01 I. 0000OE6.00 2 -1.0000006E00 -3.O6OOOOE-Ol -2.000000E-01 0.00000E600 13S7600 1352601 1352602 1352603 1352604 2 -1 . 000000.E00 -2.5 OOO0-01 -8.0000006-02 0.0000006.00 6 -1.000000E#00 -9.000000-lE0 -6.0000006-01 -6.7000006--1 000*** ***m$o10 *01*1**•4*44o*00****43*444 o TWO - PHASE MJLTIPLIER DATA 1353100 1353101 0 O.000000.E00 0.000006E.00 1353102 1353103 1353104 1.2500002-01 1.650000E-01 2.4000OE-01 7.0OOOOO-02 2.250000E-01 5.6000. E-01 1353105 2353000 1353001 1353002 1353003 1353004 1353005 1353006 1353007 1353008 1353009 1353010 1353011 1353012 1353013 0 0.0OOOE,0600 2.000006E-02 6.OOOOOOE-02 l.OO0000E-0I 2.0000006-01 2.40OOOOO-01 3.OOOO -01 4.0000OOE-01 6.00000OE-01 8.0OO0006-01 9. 00000O-01 9.6000016-01 1.0000OO0e00 0.00000E.00 2.000006E-02 5.0000006-02 1.0000006-Ol 4.600000E-01 6.00OOOOE-02 9.6OOOOOE-02 9.800006E-01 8.7OOOOE-01I 9.0000OOE-01 8.OOOOOOE-Ol 5.0000006-Ol 0.000000E.00 9.60000O--01 1353107 I. 0000006.00 5.6000006-02 4. S00000-01 0.0000006E00 2-PHASE DIFFERENCE DATA POW Q,HEAMWARVENO. I 2354100 1354101 1354102 1354103 1364104 1354105 1354106 1354107 I 0. OOOOOE0 06000.OOOE00 0 I.000000E-01 2.0000004-01 6.0OOO0E-01 7.0000OOE-01 9.OOOOOE-01 I. 000000400 I 8.3000OOE-02 1.O9OOOOE.O0 1.020000E+00 1.010000E.00 9.400000E-O1 2.000000E*O0 *...S.S.16....s4s.....**5**64,...6....SSS.S...,44...S44..,.4.4.. * HEAD WARVE810. 2 1354200 1354201 1354202 1354203 1354204 1354205 1354206 1364207 1354208 *HEAD * HEADWURVE 8.0000006-01 1353106 0 7 -1.0OOOOOOEOO -9.000000E-01 -5.000000E-Ol -4.5000006-01 N *TORQUECURAVE 6 1.2336106*00 1.1965006.00 1.1096006.00 1.0416006,00 .9580001[-01 7.807000E-01 6.1340OOE-01 5.8490OOE-01 4.8770OOE-01 3. $69000-O01 (OR TORUE CUVE NO. 6 F • 4 1.984300E.00 1.8308006.00 1352400 1352401 1352402 1352403 1352404 1352405 1352406 1352407 1352408 1352409 2352410 S 3 1.984300E.00 1.394000E.00 1.0975o.OE00 8.2200006-01 6.6480006-01 6.032000;-01 TOROQUECURVE NO. 4 1352200 1352201 2352202 td 5 -4.5000006-0I -2.50OOOO1-01 0.000000E.00 3.569000E-01 e TOROUE CURVE NO. 7 3 2 -1.O0,000OE0.0 -8.0096006-01 -6.063800E-01 -4.06866OE-01 -1.9928006-01 0.00OOOE*OO 2 0. OOOOOE 00 4.000000-02 6.00OOEI-0 1. 0000OOE.00 H • * TORQUE CURVE NO. 6 1352000 2 2 1352001 0.OOOOOE*100 -6.7000006-01 1352002 4.0.00.0_-OI -2.50OOOO-01 2352003 5.0000006-01 1.500OOE-OI 1352004 7.372550E-01 5.2658606-01 1352005 7.680490E-01 6.0659406.01 1352006 8.672300E-01 7.4366005-01 1352007 1.0000006.00 1.000000.E00 *.*9*996*455*******4**5*****e6***ss**;55*8*56*855*S4**55**545*S*• 1352100 1352101 1352102 1352103 '352104 " 52105 .52206 1.6824006.00 1.5570OOE00 1.4346200E#00 1.3879006*00 1.348100.400 1.2336106*00 * TORUE CURVE 040. 5 1351900 2 1 1351901 0.0000006.00 6.0320004-01 1351902 1.930000E-01 6.3250OCE-01 1355903 3.9300OOE-01 7.3690001-Ol 1351904 5.8552006.02 6.3310006-01 1351905 7.9782OO-09.2290ooE-01 1351906 1.000000100 I. OOOO0O06. *****W 66*S6**s*se**4**.8868888..*5SSSS8S4S *..*oo***O*O*55*9* * TORO.E CURVE NO. 2 S. -6.33710OE-02 -4.5853006-01 -2.670230E-01 -1.761070E-01 -6.931000-02 0.0000006.00 1 0.00OOOOE.00 1.0000OOE-01 2.OOOOOE-Ol 3.000000E-01 4.0000006-01 8.0000006-Ol 9.OOOOO1-01 I.OOOOOOE.00 2 O.OOOOOOE600 -4.0000006-02 0.0OOOOO.00 1.0000OOE-01 2.1000OOE-01 6.7000005-02 6.00OOOOE-01 1.00OOOE400 1 -1. OOOE0O0 -. 000OOOE6-Ol -8.0OOOOO-O -7.0OOOOO-01 -6.00000062E-5.0OOOOOE-01 -4.0000006-01 -2.5000006-01 -1.0000006-01 O.0O000.00 (.3 C) W CURVENO. 35 2354300 1354301 1354302 1354303 1354304 1354305 1354306 1354307 1354308 1354309 1354310 to 00 K) 3 -1.260000.E00 -1.240oooE.00 -1.7700006+00 -2.360000E*00 -2.7900006.00 -2.9200006E00 -2.6700OOE600 -I.690o000*00 -S.0OOOOO-02l 0.0000006.E00 s HEADWARVENO. 46 1354400 1354401 1354402 1354403 1354404 1354405 1354406 1354407 1354406 1354409 I -I.0000006E00 -9.0oo0006-Ol -8.0000006-01 -7.000000E-O1 -6.000000E-Ol -5. 0OOO0 1 -3.5OO0006-Ol -2.0000006-Ol -1.0OOOOO-O 4 -1.160000E+00 -7.8000OO-0I1 -5.00000OE-01 -3.100000E-O0 -1.70000O0-01 -a OO.OOOE-02 0.0000006.00 5.0000006-02 B . 00000oo -02 Pa (D :j EL 1354410 *HE~AD 0.0000006.00 C 0 I.1000OOE-01 En CURVE NO. 5 1354500 1354501 1354502 1354503 1354504 1354505 1354506 *4*#4*S*..9 1 O.00OOO.OO 2.OOOOOOE-01 4.0000006-O 6. OOOOOO-1O 8. 000006-O I .000000E.00 4•.* 444 ........ S 0.0OOOOE-00 -3.4000OOEO-O -6.5000OE-O1 -9.3000006-01 -I. 190000 .00 -l .4700006'400 .............. 444 4*4 * 44, ...... 44 444494 *HEAD CURVENO. 6 1354600 1354601 1354602 1354603 1354604 1354605 1354606 1354607 1354608 1354609 1354610 4*44*4e* 4***.. 1 O.O0OOO0E00.00 1.000OOE-01 2.5OOOOOE-01 4.000000E-01 5.000000E-O1 6.000000E 01 7.000OOE-01 8.0 O E-01 9.OOOOOOE 01 49 .0OO000006 *.44*• ..... 44*04 1 -1.0000006.00 0.0000006.00 44 4HEAD I354000 1354801 354802 44* 1354900 1354901 1354902 ,354903 '54904 1:549OS 1354906 7 O.OOOOOE00 0.000 06E00 1355300 1355301 1355302 1355303 1355304 44,44449444 * ....... .e4 CURVEHO. 8 1 -1.000000E.00 0.000000E6O0 TOROJE CURVE NO. 5 O.OOOOOE.00 4.000006-O1 5.OOOOOOE-01 7.37255OE-01 7.680490E-01 8. 672300E-01 1.OOO006oO 2 -1.0000OE.00 -8.0096OOo-01 -6.0638OO-01 6.032000E-01 6.325OO-01 7.369000E-01 8.3310O-01 9.229000E-01 1.000000O.00 *0*#* 44*4 * * DELAYED NEUTRON CO14STANTS S -4.60000OE-Ol -2.500000E-01 O.OOOOOO.00 3.6690OOE-O0 2 2 0.000000E600 9.0643006-02 1.8856906-01 2.734700o-01 4. 86690O-01 6.744600E-01 7.3616ooE-O1 7.6852006-01 8.700570E-01 I.0OOOO6OO40 2 -1.000000E#00 -3.0OOOOO-01 -1.000000E-01 O.O0OOOE6OO 6 2 -1.000OOOEtOO -2.500000OE01 -8.0OOOOOOO2 O.OO0000E600 25.E.6 60.0E.6 30. 69. 30000501 30000502 30000503 30000504 30000505 30000506 30000507 30000506 4.54 94...4*9d4~*9.*.40044444444*.*.49944499e444e4e.e494o49o*99**94*649 0.8125 0.875 0.6375 1.0 1.0625 1.125 1.1875 1.25 -3.4 -1.6 -0.3 1.0 2.2 3.1 4.0 4.9 0. 371.875 M ::9...4 4 4.4...,..,. . ..... .....4. .... :4 *DOPPLER REACTIVITY TABLE6 S 0 50.06 4444,.... . cl4 30000601 30000602 30000603 30000604 30000605 30000606 30000607 30000608 30000609 30000610 30000611 30000612 255. S0o. 750. 1000. 250. 1500. 1750. 2000. 2250. 2500. 2750. 3000. 1.5 0.3 -0.7 -:.6 -2.1 -3.0 -3.7 -4.3 -4.9 -6.4 -8.9 -6.3 *SCRAMRO0 WORTH CURVE POINT GCM4-AC 4,... .... ... tlj 94:44 9*:494 4494:4 444 a -1.0OOOOOOO0 -9.00000OE-01 -8.000000E-O1 -6.700000-o01 REACTORKINETICS 30000000 30000001 .,.,.. CURVE 0 MODER9ATOR DENSITY REACTIVITY TABLE 7 -1.000000E600 -9.000000E-01 -5.0OOOOOO-01 -4.5OOOOOE-01 * POINT KINETICS HR HR l0000011 609 44444449444 4444400*4444444*44t444444#44444*44444404444*4*44445946•• * 2.01 1.14 3.301 0.301 0.305 0.0124 *4644444444*44,4 .... ... *REACTIVITY 0 TORQUECURVENO. 6 1355600 1355601 1355602 1355603 1355604 0.042 0.1150 0.3950 0.1960 0.2190 0.0330 *POWER HISTORY6 6 1.233610E+00 1.196500E.00 1.1096OOE00 1.041600E*00 8.958000-OI 7. 807000E-O 6.1340OOE-01 6.849000E-01 4.877000EO01 3.6668000-01 * * *4* * 4 44*49944444*4**8449*99 0000101 30000102 30000103 30000104 30000105 30000106 30000401 30000402 0*4994994994*44444**4*94*4944*445 TOROUECURVENO. 7 1355500 1355501 1355502 1355503 1355504 -6.700000E-01 -2.500000-01 1.SOOOOE-01 5.265660E-01 6.065940E-01 7.4366DO6-01 1.0000006,00 3 1.9643OOE00 . 3940006.00 I.0925OO6.00 494 0*9*4*0* 0 13SS400 1355401 1355402 1355403 1355404 1355405 1355406 1355407 1355406 1355409 1355410 I 2 0. O0OOO0600 1. 930OOO-01 3.930000E-01 5.955200E-01 7.978200E-01 2 • o.OO00OOEO0 4.000000E-01 5.000000-OlO 1.000000E600 til STOROUECURVENO. 6 8 0.OOOOOEO00 0.000000.E00 TOROUE CURVE NO. 3 t.5I00 .. 510I 't,5102 355103 1-3 6 1355200 2 4 1355201 -I.000000400 1.9643100600 1355202 -8.22340O6-01 1.8308OOE600 1355203 -6.337100E-01 1.682400.00 1355204 -4.566300E-01 I.557000E.00 1355205 -2.670230E-01 1.436200*00 1355206 -1.761070E-01 1.3679006.00 1355207 -8. 931000E-02 1.348100E00 1355206 O.OOOOOE00 1.2336106E00 9eo~4.**94e*9944*99oe4499499S449**9994e49eee*44449949440*44e***44* 9**** 7IORUE CURVENO. 2 1355000 2 .35500I 1355002 1355003 1355004 •135S005 1355006 "1355007 8.2200006-01 6.6480OOE-01 6.032000E-01 6 1.1O OOE-0I 1.3000OOE-01 1.5000006-01 1.3000OOE-01 OOOOOOE-02 -4. OOOOOE-02 -2.300000E-01 -5.100000E-O1 -9.10000F6-01 -1.4700006e00 444 9 4.4............449,**,*44**94*494ee .4 .... 9*4*.................... , TOROUE CURVE NO. -4.0666006-O1 -1.9926006-01 0.000000600 * TOROUE CURVE NO. 4 I HEAD CURVENO. 7. 1354700 1354701 1354702 135S104 1355105 1355106 20260900 20260901 20260902 20260903 20260904 20260905 20260906 20260907 20260908 20260909 20260910 20260911 REAC-T 0.0 0.9 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9 1.0 601 0.0 -2.9 -4.3 -4.8 -9.2 -9i.9 -12.2 -12.9 -13.3 -13.6 -13.7 CIA 609t 6 0 C I. 20260912 20260913 20260914 20260915 1.2 1.8 1000. <n C-, -12.8 -13.9 -14.0 -14.0 * 6,2OERATOR DENS. FEEDBACK 30000701 30000702 30000703 30000704 30000705 30000706 * DOPPLER 30000801 30000602 30000803 30000804 30000805 30000806 0 0 0 0 0 0 230010000 230020000 230030000 230040000 230050000 230060000 6 0.15746 0.15746 0.15746 0.15746 0.15746 0.21270 0.0 0.0 0.0 0.0 0.0 0.0 5202101 5203101 0 0 0 0 0 0 0.0170 0.3639 0.2747 0.2379 O.0976 0.0089 S. 0.4 5. 0.4 1000 1000 5250000 SOTSTI 5250001 1 5250101 6250102 5251101 0.0 0.0 0.0 0.0 0.0 0.0 a ORAN4CH tij I .90 0.762 0.0 A.E-S 0.0 00 525010000 530000000 0.0 0.0 90.0 0.762 0.6 0.* 0100 s * BELOW MIST EXTRACTOR.PRALLELVOLUME 6260000 5260001 6260101 5260102 6261101 5262101 STEAM GENERATORSECONDARY SIDE 81 tI- .10 * BELOW MIST EXTRACTOR. ABOVE TOP OF SHROUD IN STEAM DOME FEEDBAC 2300001 2300002 2300003 2300004 2300005 2300006 520000000 505000000 0.0 619010000 620000000 0.196 BOTSTIMMP 2 1 .2146 0.762 4 .E-S 0.0 526010000 525000000 626010000 600000000 0 0 CNTRLVAR 606 .6540C6 6.0E6 .65406E 2.785E6 1.037866 6.056 1.037656 2.78566 0.0 -90.0 -0.762 0.6 0.0 0.6 0.0 0103 0100 6550000 5650101 COACCO SNGLJUN 535010000 640000000 0.0 SEHEAT OP OF DOWNCCMER (OUTLET OF PRIMARYSEPARATOR) .44,(0000 DOl"ITOP BPRANCH • -001 I 1 0101 1.273 0.718 ;011A02 4.E-5 0.7874 .,"J101 500010000 505000000 a 8. *..C6CcCC **CCC * LON#WER SEPARATOR SECTION .. 0000 LWR-SEP 0101 1.273 :-41102 4.E-5 0 0.0 00 0.0 0.0 0.0 -90.0 0.0 -0.718 0100 **'***'**CC*666;**6*C6C*6686686*6*****'*86 SNGLVDL 0.718 0.0 0.7874 00 0.0 -90.0 -0.719 F0 INLET VOLUME 200 101 ý1*.I0 l.,'.0102 S51101 -32101 FEED-INLET 2 1 0.7525 0.518 4.E-5 0.10796 505010000 510000000 510010000 515000000 0 BRAIJON 0.0 00 0.0 0.0 0.0 -90.0 0.0 0.0 0.0 0.0 (PARATOR(INSIDE SHROUD.ABOVETUBES) i300GO0 SEPAR SEPARATR 500001 3 I 5200101 0.27671 0.718 0.0 0.0 52OO102 A.E-S 0.0 00 5201101 520010000 $25000000 0.0 2. -0.518 * MIST EXTRACTOR AND STEAMGENOUTLET PIPE TO SCV 6300000 6300001 5300101 5300102 6300201 6300301 5300302 6300401 5300601 6300602 5300001 S300901 5301001 5301101 5301300 6301300 ONODINL. 0.06557 64.44 4.E-S 0.0 PIPE 2. 0.719 1000 .5 2 1 S S8.GLVOI. 0.0 0.0 00 0.0 0.0 0.0 0.0 * MAXEUP fEED STORAGETAWE FEEOTA.K 29.61 4.6-5 3.048 0.0 0100 STRJCTURE INPUrT DATA s SHROUD SECONDARY SIDE STEAM GEN1ERATOR 5400O CONOSER TMDPVOL 6400101 0.21677 17.67 0.0 0.0 6400102 4.E-5 0.02 00 5400200 2 5400207 0.0 2.0200E6 1.0 6400208 1000. 2.020016 1.0 5450000 6450101 $450102 0.0 $STEAMGENERATOR HEAT STRUCTIJRES 6 AIR COOLED CON0ENSER 90.0 0.0 S * PIPE DORWSTREAM OF SCV 5350000 5350101 6350102 0100 0100 STSU-PIPE 2 0.799008 I 0.04636 2 0.01365 I 0.762 1 25.074 2 0.0 2 90.0 I 0.0 2 4.E-S 0.0 0.4 0.4 00 2 0100 I 0 I .S .S * FLOW PATH TO THE AIR COOLED CONDENSER $RANCH 0.0 00 0.0 0.0 S450200 5460201 5450202 15000000 1S000100 15000101 16000201 15000301 16000401 1500050t 16000502 "16000503 15000601 16000602 15000603 16000701 15000801 16000901 15160000 15160100 15150101 16160201 15160301 16160401 15150501 1,150502 tS160601 15160602 15150701 15150801 51650901 3 0 3 6 0.0 640.0 600010000 505010000 610010000 520010000 619020000 519010000 0 0 0 4 0 2 5 0.0 540.0 510010000 515010000 619010000 517030000 0 0 0 60S VE[SSEL VALL - TlDPVOL 0.0 00 0.0 0.0 0.0 1 6050000 16050100 15050101 16050201 15050301 15050401 1505051 s 15050502 15050503 15050601 15050602 15050603 4 I 0.314325 3 3 4 0 0 0 0 0 0 0 0.0 0.0 4 I 0.6572 3 3 4 0 10000 0 -10000 0 0.0 0.0 I 0.3046 1 1 I I 1 I 0 0.0 0.0 2 I 1 I 1 1 I 0 0.0 0.0 0 0.7725 0.7726 O.152 0.7725 0.7725 0.152 3 3 3 0.6445 1 2 3 1 2 3 z C> L.i I'- -J4 CO 1 1 1 1 0 0.0 0.0 1 I I 1 0 0.0 0.0 0.152 0.7113 0.162 0.:7113 4 4 4 1 4 I 4 SURROUNDINGS 5 0 41 3 S 0.0 540. 505010000 510010000 .73512 3 3 4 0 0 615010000 10000 -999 -999 -996 S 2 0 0 0 2 ! I I 3949 3949 3949 .7112 I I l l I .71s .516 .7102 .710 .616 .7102 2I S 1 2 5 :3j 15050701 0 0.0 0.0 0.0 5 15050901 0 0.0 0.0 0.0 5 15050801 0 0.0 0.0 0.0 cn 1-3 6 <n H * S.0. SECONDARY 0V,4C-60IL-RISR * SO DOHCOWR TO BOILING SECTION. * STENA GENRATOR 0OI4NCOC5R 5150000 5150001 5150101 5150201 5150301 5150401 5150601 5150701 5150801 515090! 5151001 5151101 5151300 D4C18 3 0.23226 0.0 0.7102 0.0 -90. -0.7102 4.E-5 0.0 00 0000 I PIPE 3 2 3 3 3 3 0.10796 0.0 3 2 3 2 8ILSCT 3 0.27871 0.0 1.85075 0.0 21.0 0.7102 4.E-5 0.0 0.0 00 0000 0 RISER 2 0.27671 0.0 1.85075 0.718 0.0 i1.0 90.0 0.518 0.718 4.E-5 4.6-S 0.0 00 0000 0 1. 0100 H So BOILING SECTION TO RISER 6180000 5180101 BOILRSR SNGLJUI 517010000 619000000 0.0 0.0 0.0 0000 *BROKEN LOOP PIPE 3 2 3 3 3 3 0.0192 0.0 0.0 3 2 8 REACTOR VESSEL BROKEN LOOP HOT LEO 3 1 2 SSTEAM GENERATOR RISER 5190000 5190001 5190101 5190201 5190301 5190302 5190401 5190601 5190602 5190701 5190702 5190801 8190802 5190901 519100 1 5191101 5181300 I. 0.0 ••*•5*5**ose**•5*5S•***•*555*ssssss**s*ssss4eee*••*..**ss*ss••*s•• : STEAM GENERATOR BOILING SECTION 5170000 5170001 5170101 5170201 5170301 .:|70401 70601 , ,70701 .170801 !170901 u170902 5171001 bl71101 5171300 * z~2j VALVE fOR RECIRCULATION RATIO VALVE 0W9O0IL 515010000 617000000 .232 I 130.7 0.0 SRVVLV 216 5160000 .160101 5160201 6160300 5160301 PIPE 2 RV13LHL 3000001 3000101 3000102 3001101 3002101 2 0.0634 4.0E-5 295010000 300010000 3050000 3050001 3050101 3050102 3051101 HLPI.AS 1 0.0634 4.0E-5 305010000 3100000 3100001 3100101 3100102 3101101 3102101 1 2 I BAOpium I 0.876 0.0 0.0 0.0 0.0 00 300000000 0.0634 0.1 0.1 305000000 0.0 0.1 0.1 *•*5555*5*5*o**555*5;5*****e*•5**5555*5•**s*5s****•ss**e•s•*ssss•• * HOT LEG PIPE TO REFLOO ASSIST BYPASS TEE * STE,, I I 2 2 I 2 1 2 0.5957 0.0 0.0 2 I 3000000 w S.C. 3150000 '3150001 3150101 3150102 3160103 3150104 3160106 3150201 3160202 3150203 3150204 BRNAI I 0.698 0.0 0.0 00 310000000 0.0 0.0 0.06 0.0 0.05 GENERATOR SIILS6LTOR INLET 0.0 0102 0000 • 0.0 0100 S SGSII BRANCH 2 I 0.0 1.424 0.0668 0.0 0.0 0.0 4.OE-5 0.0 00 370010000 310000000 0.0 0.0 0.0 0100 310010000 316000000 0.0 0.05 0.05 00DO PIPE AND PUMP SIIMJLATOR SGPSI PIPE 10 0.00836 2 0.100 7 0.0 S 0.00836 9 0.0525 10 0.0 2 0.0326 6 0.0 7 0.0081 a S 315020S 3150301 3150302 3150303 3150304 3150305 3150306 3150307 1150308 1150309 3150310 3150401 3150402 5150403 J3150601 3150602 31SO603 3150604 315060S 3150701 3150702 3150703 3150704 315070S 3150706 3150707 3150708 3150709 3150710 3150801 3150802 3150803 3150804 3150805 3150901 3150902 3150903 3150904 3150905 3150906 3150907 3151001 3151101 3151300 0.0 0.4054 '-3 9 I 0.5265 2 0.362 3 1.692 4 1.699 5 1.692 6 0.362 7 2.671 8 1.842 9 0.667 10 7 0.0 0.081 I0 0.0 10 90. 4 0. 5 -90. 8 90. 910 0. l 0.127 2 0.486 0.362 3 1.692 4 0.0 5 -1 .692 6 -0.362 7 -I .529 H N 8 V.214 8 0.0 10 4.0E-S 0.0 3 4.0-5 0.0124 4 4.0Z-O 0.0 6 4.06-S 0.124 6 4.06-5 10 0.1 0.1 I0.0 0.1 0.1 2 93.9 93.9 4 93.9 83.9 6 0.0 0.0 ? 4.1 4.1 a 0.4 0.4 9 00 10 0100 9 I z '., Ito 5-a 0 *BROKENLOOPCOLD0LEG REACTOR VESSELNOZZLE 3350000 3350001 3350101 3350102 3351101 3352101 RVNBL 2 0.0634 4.OE-S 290000000 335010000 BRANCH 1 0.7495 0.0 335000000 340000000 0.0 00 0.0634 0.0 0o to 0.0 0.0 0.0 1.0 0.1 1.0 0.1 0102 0000 * CONNECTION TEE OF THE BYPASS ASSIST SYSTEM REACTOR VESSEL SIDE* 3400000 CT8ARV BRANI 3400001 1 I 0.0 0.0 0.0 0.69G 0.06!4 3400101 3400102 4.0-5 0.0 00 0.1 0.1 340010000 345000000 0.0 3401101 *s***ss**•oooo*gs**s*ssee••q*8s5o5o•,e**50•••5**55••555555*•••Ol*5 0.0 0000 N3 : BYPASS ASSIST OUTLET ECCTEE COLD LEG 3450000 BAOET BRANCH 3450001 2 I 3450101 0.0634 0.274 0.0 0.0 0.0 3450102 4.OE-5 0.0 00 3451101 300010000 345000000 0.0 0.0 3452101 345010000 350000000 0.0 0.0 c= 0 :n 0.0 H 0.0 0.0 0100 0100 6300205 6300206 E CCC TEE OF BROKENLOOP 3500000 3500101 3500102 8.3597T6 .31536 17.243666 .31636 0.0 0.0 0.0 0.0 ti' ETIVCL SNGLVOL 0.0 2.0965 0.08311 4.OE-5 0.0 00 0.0 0.0 0.0 *CAP ASSESSMEIT PARAMETERS • REFLOOOASSIST HOT LEO 3700000 ^100101 £700,02 5' RFASHL 0.0388 4.06-5 SNOLVO0. 0.0 0.1713 0.0 00 90. 0.653 4*44.4**4******.*44*.4**488****848*888#4*8****4*8*8**88444448*** * VALVEJUNCTION FOR THE AABV 200~0 RBV VAL•E .:!1010 380000000 370000000 .01 3720201 1 6.28 0.0 3120300 SRWLV 3720301 372 1. 0.0 A. 0100 * .... **4...***S***4**..*4..**..............*.s....s.. EGG SYSTEM O8WSTHPIS 6250000 6250101 6250102 6250200 6250201 6250202 * vTHmPI TS0PVOL 20.44 S.0 0.0 4.0F-6 0.0 00 3 0.0 1.05 305.0 1000.0 1.065 305.0 8 0.0 90.0 5.0 HIGH PRESSURE INJECTION SYSTEM- A#8 HPIS T50PJUN 625000000 210000000 0. 0090"S 1 661 p 210010000 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .75687 0.0 0.0 .772566 .75687 0.0 0.0 6300000 6300101 6300200 6300201 6300202 6300203 6300204 20591203 20591204 1. 0.0 1 . 0.0 1 1. 0.0 CNTRLVAR 601 C*4TRLVAR 602 R00 CL.A00INGTEMPERATURE SAVE UP 20590300 CLOTEUPI MULT I. 20590301 HT1TE6 230000109 20590400 CLOTEMP2IIJLT 1. 20590401 HTTEMP 230000209 20S50500 CLOIEVAP3MULT 1. 20590501 HTTEMP 230000309 20590600 CLOTEMP4 MULT I. 20590601 HTTEMP 230000409 20590?00 CLDTEMP5MaLT I. 20590703 HTTEMP 230000609 20590800 CLOTEMP6WULT 1. 2055080! H'TEEP 230000609 REFLOCOASSIST BYPASS SINGLE PIPf COLDLEG SIDE 3800000 RFASCL SNGLVOL 3800101 0.0388 0.0 0.20353 0.0 90. 0.653 3800102 4.06-5 0.0 0 * INLETFLUID DENSITY 20550100 DCOREINFMULT 20550101 VOIOFJ 225010000 20550102 RPIOFJ 226010000 20550200 OCOWEINOulL E 20550201 VOIDGJ 225010000 20550202 RHOGJ 225010000 2050100 DENSCORIN SU1 20590101 0.0 1. 20590102 I. *CORE 0.0 FLUID TEMPERATURE AT THE COREOUTLET 20550400 FLOVDIR TRIPUlIT 1. 20550401 518 1 0.0 I 0.0 I 0.0 I 0.0 1 0.0 1 0.0 1 0.0 I 20550500 20550501 20550502 TOIRP MUiLT 1. CNTRLVARS04 TES8PF 230060000 0.0 1 20550600 20550603 FLODIFN4 -516 0.0 I 20SS07DO 20550701 20550702 TD1PM MULT I. CNTRLVAR 606 TEWPF 240010000 0.0 I ;0590900 20590901 20590902 TCOlOUT SUlI I. 0. I. CNTRLVAR SOS 1. CNTRLVAR 607 0.0 I TRIPUNIT I. 0 CORE TEMPERATURE DIFFERENCE 20591000 .CTOIFF SUli I. 20591001 0. 1. TEMPF 20591002 -I. TEMPF * PRESS. DIFF. OVER THE CORE 20551200 COREINV SUM 1. 20591201 0.0 I. P 20591202 -2.26 Rito 0.0 1 240010000 225010000 0.0 1 225010000 225010000 -I. P 3.31 RHO : PRESS.OIFF. OVER THE DORINCOUER 20591300 OWIWINV SUM I. 20591301 0.0 I. P 20S51302 -I. P 20591303 .75 RHO 245010000 245010000 1',9 0.0 0 185010000 H * VESSEL M•ASSIWUEPTOAY 20551400 VESSMSI SUM 20553401 0.0 .0465 205S1402 .018 20551403 .071 20551404 .136036 20551405 .136036 20551406 .136036 20SSt40T t536036 20551408 .2664 20553409 .2923 20551410 .130 20551411 .04765S 20551412 .04765S 20551413 .047655 20551414 .047655 20551416 .047655 20SS1416 .064364 I. R4HO RHO 'RHO R1H0 We RHO RHO RHO RHO RHO RHO RHO RiO ,1HO RHO RHO 0.0 20551500 20551501 205S1502 20551503 20551504 20551505 20553506 20551507 20551508 20551509 1. RIK) 81l0 RHO RHO RHO RHO rd" RHO 8H0 0.0 3 235010000 20591400 20591401 20591402 VESSMS2 0.0 VESSMASS 0.0 SUM .00838S .008385 .008385 .332046 .079002 .1328 .0603 ,202752 .173728 'SUM I. I. OIOCIMER LIOUID LEVEL 20591500 O0O4LEV SUM 2051501 0.162 .106S 2059502 .300 20591503 .274 20591504 .956 2059150S .958 20591506 .958 205507 .956 20591508 .360 20591509 .208 : UPPER PLENUMLIOUID LEVEL 20591600 UPLEV SUM td 215010000 215010000 20O010000 290010000 205010000 210010000 210020000 210030000 210040000 215010000 220010000 225010000 230010000 230020000 230030000 230040000 230050000 230060000 L0 235020000 235030000 240010000 co 245010000 246010000 295010000 250010000 I.-A 255010000 I. CRTRLVAR CSTRLVAR 0.0 I. VOl OF VOl OF Vol OF VOl OF VOl OF VOl OF Vol OF VOl DF Vol OF 0.0 1 200010000 290010000 20SO10OO 210010000 210020000 210030000 210040000 215010000 220010000 I. VO1OF VOlOF Vol OF VOIOF 0.0 1 240010000 245010000 295010000 250010000 1. 4T TEMP 0.0 1 240030000 z i.,. 00 0t, I 614 61S * 20591601 20555602 20591603 20591604 3.764 .3084 .693 .300 .3251 0 UPPER PLENUJ1 SUSCOOLING 20591900 20591901 UPSCOOL SUM 0.0 1. 5. .4 .4 4. '.J x1 En 10591902 -1. I CNTRLVAR 909 (n * I.L. LIOUID LEVEL. FOR .66 M / LEPOE-PC-28 20553100 20553101 20553102 20553103 20553104 P31A 0.0 sum 1. -. 183 -. 817 -6.475 I. P P P RHOG 0.0 120010000 155050000 160010000 155010000 20553200 20553201 P318 0.0 SUM 1. 9.81 RHOF 0.0 1 155010000 20593100 LIO.IL DIV 1. 0.0 20593101 !0593102 CNTRLVAR CNTRLVAR 532 631 20553202 -I. HPJOG 15010000 1 4 , B.L. LIQUID LEVEL. ?0553300 .P32A 20553301 0.0 .0553302 ?US553303 70553304 FOR 4.86 U / LEPOE-OL-14 Sum I. 0.0 1 I. P 315080000 8.97 RHO 315080000 -I. P 315050000 -47.87 65400 316060000 2O553400 20553401 .!0553402 P321 0.0 Sum 1. -1. 9.81 RHOF RHO• 0.0 1 315060000 315060000 2U593200 20593201 .0593202 LIO19 CHTRLVAR CNTRLVAR DIV 634 633 I. 0.0 PUMP PRESSURE DIFF. 20593600 DPPUMS6 20593601 0.0 "0593602 .:0593603 1 * SUM .5 .5 -1. 1. P P P : BREAK ENERGY RELEASE 20553700 PRESSE MULT 1. 20553701 MFLORJ 805000000 20553702 P 800010000 0.0 150010000 145010000 120010000 0.0 1 PRESSENT RHO CHTRLVAR DIV 1. 800010000 537 0.0 1 20553900 20553901 20553902 20553903 20553904 BRUFFL UFJ VELFJ VOIOFJ RHOFJ SAULT 205.6--6 805000000 805000000 805000000 805000000 0.0 1 20SS4000 20554001 20554002 20554003 20554004 BRUGFL UGJ VELGJ VOIDOGJ RHOGJ aiAT 205.0E64 805000000 805000000 805000000 805000000 0.0 20594000 20594001 20594002 20594003 ORENRELEA SIN 0.0 I. I. I. : BREAK INLET FLUID SU6COOLING 0.0 5392 540 530 0.0 1 600010000 80001 0000 SO0 PRIM. TEMPERATURE DIFF. 20594500 SGTEDIFF SIU 20594501 0.0 I. 20594502 -I. I. TEI6PF TEPF 0.0 115030000 115100000 : SO PRIM. PRESSURE 0IFF. 20594600 SGPRPRS SUM 20594601 0.0 5. 20594602 -I. I. P P 0.0 1 115010000 120010000 : SO LIUID LEVEL 20594900 SGLIOLEV 20594901 -2.946 20594902 20594903 20594904 20594905 20594906 20594907 I. VOIDF VOIDF VOIDF VOIOF VOIOF VOIOF VOIOF 0.0 ! 515010000 515020000 615030000 510010000 605010000 500010000 526010000 BRSUBCOOL Still 0.0 . -i. SUN .7102 .7102 .7102 .518 .716 .716 .762 1 1 FLUID INNER ENERGM 0 STEA4 INNER ENERGY 0 POV EHTKIAPY PART : SO HEAT TRANSFER RATE 20595300 SGHTTRAHS SUM 20595301 0.0 50.6736 20595302 42.0327 20595303 50.7563 20595304 60.s563 20595305 42.0327 20595306 50.6736 & PRESSURIZER LIQUID 20595400 PRLIOLEV 20595401 0.0 20595402 20595403 20595404 2059S405 20595406 20595407 20595408 LEVEL SUM .224 .403 .403 .207 .207 .1705 .1705 .118 0.0 1 006000100 006000200 006000300 006000400 006000500 006000600 1. VOIDF VOIOF VOIDF VOIOF VOIDF VOIOF VOIOF VOIDF 0.0 1 415010000 415020000 415030000 415040000 415050000 415060000 415070000 415080000 0.0 0 830000000 : MASS BALANCE. INTEGRATED FORM BREAK TIME 20555900 TRIPSO TRIPUNIT 1. 0.0 20555901 510 z-, x H N- -1. HTRNA HTRNR HTRNR ITRNR HTRNR HTRIR HPIS VOLYMETRIC FLOW RATE 20595800 HPISVOLF DIV 1000. 20595801 RHO 625010000 MFLOWJ t,.3 1 : SO PRIM. TO SEC. TIM' DIFFERENCE. INLET 20595200 SGPRSETD SUM 1. 0.0 1 20595201 0.0 5. TEYIPF 115030000 20595202 -1. TEMPF 515030000 20553800 20553801 20553802 1. CNTRLVAR CHTRLVAR €CIALVAR I. SATTEMP TEI6PF 20594200 20594201 20594202 1 20556000 20556001 20556002 20556003 IdMSALI 0.0 SUM I. -1 . 1. 1. MFLOWJ MFLOWJ UAFLOWJ 0.0 I 630000000 605000000 001000000 20556100 20556101 20556102 MSBAL2 CHTRLVAR CNTRLVAR MULT 559 660 1. 0.0 1 20595900 20595901 0 * PRIMARY 20556200 20556201 20556202 20556300 20556301 20556302 IASSSAL CNTRLVAR INTEGRAL 661 I. 0.0 0 COOLANT ENERGYBALANCEtPOV 1S CNSERVM) HPISEGY MFLOWJ UF hILT 5. 630000000 5250100O0 0.0 1 PUEPENGY DIV 2. 0.0 I 1. HTRNR HTRNR HTRNR HTRNR HTRHR HTRNR 0.0 I 230000101 230000201 230000301 230000401 230000501 230000601 RHO PMPHEAD 135010000 135 : COREHEATING OF FLUID 20556400 COREHTFL SLIM 20556401 0. 12.234S7 20556402 12.23457 20556403 12.23457 20556404 12.23457 20556405 12.23457 20556406 16.52433 • PUMP SEAL WATERHEAT FLOW 20556500 PIMIPF MULT 1. 20556501 MFLOWJ 901000000 20556502 UF 910010000 0.0 I * SS PRESSURE HEAT FLOW 20556600 SSPRHF IULT 1. 20556601 MFLOWJ 435000000 20556602 UF 405010000 0.0 I 20596000 20596001 20596002 20596003 20596004 20596005 20596006 20596007 PRIENBAL 0.0 SUM -1. -I. 5. -I. 1. 1. -1. 2: I., I. 0.0 CNTRLVAR 953 CNTRLVAR 982 CKTRLVAR 562 CNTRLVAR 940 CHTRLVAR 564 CHTRLVAR 56 CNiTRLVAR566 1 So * EXTERNALS 0 HPIS * BREAK • CORE 8 PUMPSEAL WATER SS PRESSURIZER Ito 'I co '--* * PRIMARYHEATLOSSES TO SUWRUNOINGS 20555100 20555101 20555102 20555103 20555104 20555105 20555106 20555107 20555108 20555109 20555110 2055511 1 20555112 20555113 20555114 20555115 20555116 20555117 20555116 STR-HTLI" 0.0 205SS200 20556201 STR-NTL2 0.0 SUM 1.3716 1.4579 1.0085 .8309 .7229 1.4776 1.4776 .5585 .6147 .4968 6 .6806 .3101 .3406 .SS7 .6806 .3101 .3496 -1. NTRNR HTRHR HTRNA WRI'4R HIRNR HTRNR HTRNR HTRNR HNRuNR HTR4R IRNR HIRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR 0.0 I 100100I00 100100200 • 100100300 1001004006 100200100 100400100 6 100400200 0 100200200 OO100506 100100600 100100700• 100300100 6 100300200 8 100300300 0 100300400 0 100300500 6 100300600 100300700 * SUM .4431 -1. HTRNR 0.0 I 100100600 6 150 100 105 1110 115.1 115.2 115.3 115.10 511.11 115.12 1105.13 120 12S 130 140 145 155 30 M2 160 170 / 14.322 1 p-a :j CD, 2055S202 20555203 20559204 rO555305 20555206 20S55207 20555208 20555209 20555210 2055521t 20555212 20555213 20555214 20555215 20553216 20SSS217 2055216 20555219 20556220 20S55300 20555301 20555302 20555303 20555304 20555305 20555306 20555307 STR-HTLW 0.0 20558200 20598201 20598202 20598203 STR-HTL 0.0 .4988 .5469 .6254 1.3035 .6687 .6228 .6690 1.0578 3.6545 .1312 .1704 1.9589 1.9589 1.9589 1.9589 .4174 1.8029 .7639 .9365 HTRNP HTRNR HTRNR HTRNR HTRNR HTRIR HTRNR HTRNR HTR/dR H1T4R HTRIR HTRNR HTRNR HTRNR ITRNR HTR4R HTRNR HTRHR HTRNR 100100900 . 100101000 0 100101100 S 100101200 8 335000100 8 335000200 0 335000300 350100100 * 375000200s 315000100 • 315000200 * 315300100 * 31S300200 • 315300300* 319300400 0 315300500• 315100100 8 315200100t 315400100• SUM .7616 .6228 1.2705 3.0792 -1.6600 1.7045 .7120 -t. HTRNR H5I11R H1TRNR HTRNR HTRHR HTRNR ITRHR 0.0 I 300000100 8 300000200* 300000300 8 375000100 220000101 • 252000100 * 255000100 4 SUM I. I. I. 1. CHTRLVAR CNTRLVAR CHTRLVAR 0.0 551 552 553 175.1 175.2 too 165 335 340 34S 350 380 315.1 315.2 315.3 315.4 315.6 315.6 315.7 315.8 315.9 315.10/ ri) I-n 0 0-3 5600000 5600101 FWVLV TDPJUNI 545000000 510000000 0.05 5600201 5600202 5600203 I SO5 -1. 0.0 .7 27.80 27.80 0.0 5600200 96W0203 - 21.9 300. 0.0 0.0 z 0.0 0.0 0.0 ti 0.0 ****** gSo AUX. FIEUWATER 5540000 5540101 5540200 6540201 300 305 310 370 220 252 255 / tic: 0.0 0.0 0.0 6480000 6480101 -9.8506 M2 5480200 54*0201 5480202 I 6480203 5480204 S T.AREA -46.1242 M2 5480205 21SO200 AUXFTANK 3.0 1 0.0 l906VL 10.0 0.0 315.0 0.0 AUXFJUN 554000000 1 -1. 73.3 73.4 1856. 1657.0 TDPJUNl 610000000 610 0.0 0.0 .SO364 .50364 0.0 0.0 0.0 0.0 3.33E-S .1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8' ********8*8***ee*ee4¢** *e*est**ee•€•*•et • * 0OUUNDAAY C0"ITION CONTROL MAIN STEAM CONTROL VALVE 5500000 5500101 9500200 6500201 5500202 6500203 5500204 9S00209 5500206 5500207 5500200 5500209 5500210 5500211 5500212 5500213 5500214 5500215 MSFCV TMOPJUN 630010000 I S01 -1. 0.0 0.0 0.0 3. 0.0 6.0 0.0 9. 0.0 13.6 0.0 13.6 0.0 94.8 0.0 94.8 0.0 104.8 0.0 104.8 0.0 500. 0.0 1000. 0.0 1l00. 0.0 2370. 0.0 F EED WATER VALVE 635000000 27.80 27.80 23.4 15.1 9.3 6.2 .181 .181 2.89 2.65 .181 .173 .1•0 .136 .113 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8* 0.002573 * * * * FLOW KATE FROM HUREG/CR-0247 PRE.SSURE RISE 5.57 - 6.90 IWA 51 CHANCE RATE ASSUMED LEAKAGE VALVE OPEN AT 89 5 * VALVE CLOSE AT 99 S • LEAKAGE * FROM EXP. SCONOARY PRESSURE * LINEAR P-DEPENOENCE ASSUMED a .120 K1,/S AT 4.5 MPA * SS VOUIME STATES 1000200 1050200 1100200 1151201 1151202 1151203 1151204 1151205 1151206 1151207 1151208 1151209 1151210 1151211 1151212 1151213 1200200 1250200 1300200 1350200 1400200 1450200 1S00200 1550200 1600200 1650200 1700200 1751201 1751202 1800200 1650200 2000200 2050200 2101201 2101202 2101203 2101204 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 14.6096E6 14.6832E6 14.8606E6 14.860756 14.8624S6 14.7634E6 14.7603E6 14.7365(6 14.7195E6 14.7116E6 14.704656 14.6967E6 14.6968(6 14.6191(6 14.6097E6 14.6046E6 14.6010E6 14.5005E6 14.567056 14.8202(8 15.082156 15.0878(6 15.0603E6 14.S884(6 14.5679(6 14,8239E6 15.0669(6 15.0542(6 15.0473E6 15.0436(6 15.0417E56 15.0400(6 15 0190(6 IS01716 15.023156 15.0292E6 15.03356 577.73 577.23 677.72 677.71 577.71 577.68 573.53 569.96 566.28 663.09 560.77 658.68 558.68 558.66 558.65 558.6S 658.65 558.64 558.63 558.78 558.78 558.79 558.83 956.64 558.63 558,78 558.87 558.81 958.81 558.81 S5.81 558.82 558.80 558.80 655.01 558.81 55.8 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11510 2 3 4 6 6 7 6 9 10 11 12 13 0.0 0.0 0.0 0.0 0.0 0.0 1 • 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 2 2 4 1.0 2200200 2250200 It 3301201 2301202 2301203 23301204 2301205 2301206 S3,1201 2351203 2400200 2450200 2460200 2500200 2900200 2950200 3000200 3050200 3100200 3151201 3151203 3151204 3151205 3151206 3151207 3151208 3151209 3151210 3350200 3400200 3450200 3500200 3700200 3800200 4000200 4000200 4151201 4151201 4151203 4151204 4151205 415120. 4151207 4151208 4200200 5000200 5050200 5100200 5100200 5151201 6151202 5151203 6171201 5171202 -6171203 5191201 5191202 5200200 5250200 5260200 5301201 5301202 15.043756 15.0464E6 15.03235( 15.0042E6 14.9994E6 14 .991(611 14.987056 14.979326 14.9737(6 14.9879E6 14.9764(6 14.9640(6 14.9512E6 14.9316(6 14.94656 14.9329S6 14.92756( 15.0404E6 14.935856 14.935986 14.935856 14.9358(6 14.9354(6 14.9331[6 14.9299(6 14.922356 14.91606 14.9223(6 14.9299(6 14.9380(6 14.9402(6 14.9357(6 15.0404E6 16.040456 16.0404(6 1I.0404E6 14.9362f6 18.0426(6 14.9131(6 14.9O92(6 14.907156 14.9052E6 14.9028(6 14.9011(6 14.9006(6 14.9004(6 14.9002(6 14.9001(6 14.6999(6 8.57031(6 5 7233E6 6.657631(6 5.58077(6 6.58619E6 S.5916276 5.59162E6 6.$8571(6 6.578416 6.57236f6 6.57141(6 5.57045(6 5.57011[6 6.$7011(6 5.56987(6 5.42900(6 558.82 550.82 558.62 659.98 566.20 57i.49 0.0 * 0.0 0.0 576.31 579.37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 3 0.0 0.0 0.0 0.0 4 6 680.13 655.61 658.81 558.81 6-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H 6 1 2 3 0.0 0.0 0.0 0.0 579.53 z w 578.71 570.71 657.75 557.75 558.81 577.75 556.69 656.62 656.93 596O.0 658.00 6598.00 598.00 558.00 558.00 558.00 558.00 558.00 558.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O. 0.0 1 2 3 4 6 8 7 a ' 10 80 -I zO 658.70 556.58 556.40 t 556.00 557.16 557.73 ST2.85 577.24 0.0 0.0 0.0 .05661 1. I. I. 1. I. I. .0144 534.87 534.93 534.99 635.05 .044 .O95 .164 .189 .194 .348 1.0 1.0 1.0 1.0 ! 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 2 3 4 8 6 0.0 7 0.0. 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 co -,4 (.,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 2 1 2 3 2 3 1 2 (D L,- 0.0 0.0 0.0 0.0 x Lii 5350200 8000200 2.03274E6 15.0012E6 2 3 in 1.0 477.00 1-3 : 35 JUNCTION STATES 0.0 0.0 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 241.6 241.6 0.0 0.0 0.0 0.0 0.0 241.6 241.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0. 0.0 0.0 0.0 0.0* 0.0 0.0 00. .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0. 0.0 0.0 0.0 0.0 0.0 O.Q. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1001201 1002201 1051201 1101201 1151301 1151302 1151303 1151304 I151305 1201201 1202201 1203201 1251201 1252201 1350201 1350202 1451201 1452201 1501201 1502201 1551201 1650201 1650202 1701201 1751301 1001201 1851201 1852201 2051201 2101301 2101302 2151201 2152201 2153201 2251201 483.3 483.3 463.31 483.3 483.3 483.3 483.3 483.3 483.3 463.3 241.6 241.6 241.6 0.0 I 1 241.6 241.6 241.6 483.3 241.6 I I 0.0 483.3 483.3 403.3 483.3 445.1 445.1 445.1 445.1 i.E-S 445.1 427.7 2301301 2351301 2401201 2402201 2451201 2461201 2501201 2502201 2901201 427.7 17.4 427.7 17.4 445.1 I.E-S -15.9S 0.0 -15.95 2951201 461.1 3001201 3002201 3051201 3101201 3102201 3151301 3351201 3352201 3401201 3451201 3452201 0. -6.28 0 -6.28 0.0 -6.26 0.0 0.0 -6.28 0.0 0.0 0.0 0.0 0.0 9 0.0 6.28 0.0 0.0 6.28 0.0 6.28 -6.28 0.0 0.0 0.0 0.0 0.0 - 0.0; 0.0 0.0 00 0.0 2 4 97 12 0.0 0.0 0.0 0.0 2 3 226 COREBYPASS/ 3.6 % 6 2 4001201 4002201 4100201 4151301 4201201 5001201 5101201 5102201 6151301 5156302 5160201 5171301 5171302 372 0.0 0.0 0.0 0.0 0.0 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0 43S 0.0 0 ;001201 8050201 * 1 27.8 0.0 0630 0.0 I SS SYSTEMPRESSURE M 0.0 0.0 I 0.0 1 0.0 2 0.0 0.0 21 0.0 5180201 0 3.001 4.176 0.0 4.073 0.0 I 3.489 5191301 27.80 0.0 0.0 6201201 5202201 102.9 0.0 0.0 5001 102.9 27.80 0.0 5203201 27.80 0.0 5261201 0.0 27.80 0.0 5261201 0.0 0.0 0.0 5262201 0.0 2.0 0.0 5301301 0.0 27.8 0.0 1 5550201 • * z 1.3 % tI- 0.0 0.0 0.0 102.7 0.0 130.7 0.0 130.7 0.0 130.7 0.0 1 130.7 0.0 1.260 1.608 2.829 2.010 RABV / En H tdJ 0.0 0.0 0.0 0.0 SS CONTROLFOR THE RABVLECAGE / 1.3 % 20537000 20537001 20537002 20537100 20537101 20537102 20537200 20. 20537201 5 550 MAIN STEAMVALVE 0.0 560 FEED WATERVAi.VE 571 SG SS LEVEL RSUE20590 50SSS PRESSURE •991 SG HPIS INJECTION RARVW INTEGRAL CNTRLVAR 371 * SS CONTROL FOR INLET hAN. TO IAOCERR SUM 20528900 1. -4C3.3 20528900 1. -483.3 20526501 *0529000 IADCREO MULT 20529001 CHTRLVAR 289 CHTRLVAR 512 20529002 0.0 901 PUP COOLMITIPJECTION 20529100 20529101 3SS 0 SS CONTROLFOR TKE CORE FLOWBYPASS 3.6 291 INLET AMN. TO 0OWNCC6ER 296 INLET ANN. TO UP / 6.6 X 1. MFLONJ 120521400 0.0 2260000 185010000 I. 0.0 I .214 0 20522400 20522401 20S22402 CPERR 0. 20522500 20522501 20522502 MJLT CBPREG CNTRLVAR 224 CN7TALVAR512 20S22600 20522601 INTEGRAL -.10 C8PV CNTRLVAR 225 SUM SU036 -.I.PRL SUM I. -. 013 RADVREO hILT CHTRLVAR370 CNTRLVAR 612 RAVVERR 0. 3 0.0 0 372000000 185010000 0.0 0 -. 03 .079 0 3 .01 .99 3 .01 .99 D0wNC(ICER FLOW 0 0.0 1. 00 0.0 FLOWJ 165010000 0 0.0 I. -. 06 .384 0 CONTROLFOR VALVE516. RECIRCULATION RATIO - 4.7 20521401 20521402 20521500 20521501 20521502 .01 IADCV INTEGRAL CNTRLVAR 290 ;. MFLOWJ ILOW.J 1. 9920521600 20521601 SU3. I. -4.7 RECSI6 MULT CNTRLVAR 214 CNTRLVAR 512 ERRS16 0. V516 CNTRLVAR INTEGRAL 215 0 0.0 1. MFLOWJ 516000000 WFLOWJ 560000000 I. 0.0 0 CO 00 -. 1 .739 0 3 .01 .99 0 FOR FEEDWATERENT4ALPIY * SS CONTROL 0.0 0.0 0.0 SSS CONTROLFOR INLET Nel.TO UPPER PLENU14FLOW/ 6.6 SLIM 1. I. -. 066 20529400 20529401 20529402 20529403 IAUPERR 0. 20529500 20529501 20529502 JAUPREG MULT CNTRLVAR 294 CNTRLVAR 512 20529600 20529601 IAUPV C•TRLVAR INTEGRAL 295 1. MFLOWJ MFLOWJ UFLOWJ 0 0.0 296000000 297000000 185010000 I. 0.0 -. 06 .210 8 0 0 3 .01 20560100 20560101 20560102 20560103 20560104 20560105 20560108 20560107 20560108 99 205601092 20560110 20560111 20560112 20560113 20560114 20560115 20560116 020$60117 0.O60200 20560201 SPROERR 0. SENTHI 0.0 SUM 1.0 -1. MFLOWJ .914014 VAPGEN VAPGEN .914014 .389795 VAPGEN .164951 VA1"EN VAPGEN .164951 VAP•EH .164951 .515823 VAPGEN VAPGEN .515823 VAPGEN .51 823 VAPGEN .515823 VAPCEN .200114 VAP•EN .200114 VAP•EN .685800 VAPGEN .163678 VAPGEN .608844 VAPGEN 1.16210 SUM l.0 1.0 UG 0.0 0 560000000 500010000 505010000 510010000 515010000 515020000 515030000 517010000 S17020000 SI7030000 519010000 519020000 520010000 525010000 526010000 530010000 S30020000 1 0.0 517030000 to) (D :J. x (A) (1) 20560202 En -1. UP 517030000 -1. 0.0 0 I. 1 0.0 603 0 20560300 SSXI WULT 20560301 20560302 20560303 CINTRLVAR CNTRLVAR CHTRLVAR 601 602 M12 20560400 20560401 SSX2 UFLOWJ MhLT 1. 660000000 2056OS0 20560501 SSX3 CNTRLVAR DIV 604 I. CMTRLVAR 20560600 20560601 * FOWENTH CNTRLVAR INTEGRAL 605 .10 *4350000 .98OES 0 3 I .600E6 H td I. 4300201 4300202 1.0066 5900000 5900101 5900102 5900200 5900201 5900202 5910000 SlO0Ol 59102Oi 5910300 5910303 . SGSSPR .1 4.E-S 2 0.0 10000. T4DPVOL 1.0 0.0 0.0 0.0 00 0.0 6.5766 5.67E6 4350101 4350201 4350300 4300 e STEAM GENERATOR SS PRESSURE * EN0 0.0 .166 16.E6 .IE6 16.M6 576. 576. 1-3 PRVALVE VALVE 405010000 430000000 0.0 0.0 0.0 I TAPVLV .093 0.0 .093 0100 64 OF FILE -td 55 N t. 1. VALVE SCSSPRJ 530000000 590000000 0.0 0.0 0.0 1 TRPVLV 646 0.0 0.0 0.0 0.0 0.0 0100 SO STEADY STATE LEVEL HOLDING 5700000 5700101 5700102 5700200 5700201 5700202 SGLHOLDV .1 4.6-S 2 4.E6 7.E6 TUOPVO. I. 0.0 0 4.E6 ?.E6 S710000 5710101 5710200 S71020) 5710202 SGLHOLDJ 505010000 1 -10. 10. TPSDPJUN 570000000 CNTRLVAR 0 0.0 -10. 0.0 1O. .1 S1 0.0 0.0 S**ee45*454*** 2OSS1100 20551I01 SGLEVERI -. 22 SUM I. 0.0 949 0 20551200 YTRP-So TRIPUIEIT . 2055120) -501 20551300 20551301 20551302 SGLEVER2 CNTRLVAA CHTRLVAR * 0.0 00 p .6 .6 0.0 505010000 60. CMTRLVAR I MXLT 511 512 PRVOL .362 4.E-S 3 '4 z t 00 0.0 -j 0.0 1. 0 SS SYSTEM PRESSU E 4300000 43()o01 4300)02 4300200 50 -J o 00 IA TMOPVOL .224 0.0 0 0.0 11 p 0.0 0.0 .224 415010000 0 mJ Di cn 0 *S*o LFBR2 ess RESTART OF LOFT CALCULATION L3-6 FROM SS RUN I-3 - LOWI RESTART too RESTART STOY-ST 101 RUN 103 2196 t05 100. 120. 0000201 SOt 20299700 20299701 20299702 * 200. TIME TIP -1. 0.0 1.06-6 0 a .20 GE 00001 NULL 0 5190001 5190101 4000 4000 25 1000. L 5190102 S190201 5190301 601 30S. 305. SO HEAT TRANSFER RATE 20595300 • SGHTTRANS SUM 20595301 0.0 42.03127 20595302 42.0327 2059S303 42.0327 8.7237 20595304 8.7237 2059530S 42.0327 20595306 42.0327 20595307 20595308 42.0327 -1. TRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR 0.0 1 006000100 006000200 006000300 006000400 006000500 006000600 006000700 006000800 * STEAM GENERATOR BOILING SECTION BILSCT 3 0.363105 0.0 0.7102 0.0 90.0 0.7102 4.E-S 0.0 0.0 00 0000 0 9370000 5370OO1 6370101 5370201 S370301 5370401 5370601 S370701 5370801 5370901 5370902 5371001 5371101 S371300 8ILSCT 3 0.363105 0.0 0.7102 0.0 90.0 0.7102 4.E-S 0.0 0.0 00 0000 0 PIPE 3 2 3 3 3 3 0.020 0.0 0.0 3 2 3 1 2 RISER G-2 10060504 10060SO5 10060506 10060507 10060508 10060701 10060801 10060901 **4*S44**04**4 SO D00NCCR TO BOILING SECTION. VALVE FOR RECIRCULATIOG RATIO 9160000 S160101 5160201 5160300 5160301 EWIBOIL VALVE 615010000 517000000 .116 I 65.35 0.0 SRWVLV 216 1. 0.0 5360000 5360101 5360201 5360300 5360301 6WNSOIL VALVE 515010000 537000000 .116 I 65.35 0.0 SRVVLV 216 1. 0.0 9180000 5180101 BOILRSR SNGLJUN 517010000 619000000 0.0 S280000 BOILRSR SNGLJUN 5280101 537010000 519000000 0.0 *.......... 3 1 2 * STEAM GENERATOR RISER 5190000 2 1 I 1. 0100 S171201 5171202 6171203 5191201 9371201 5371202 5371203 9191202 I. 0100 S171301 5171302 S160201 5191301 5371301 5371302 5200201 115060000 0 115070000 0 116070000 0 1 I I 115000000 0 116090000 0 0 0 I I 0 0 0 1 1 I I I 271.9S 271.95 1310.32 1310.32 1310.32 0 0 0 4 6 6 7 6 0 0 0 8 a 0 to 8 2 5.59162E6 0.0 0.0 2 2 2 2 2 2 6.68571E6 5.57814C6 5.57236E6 9.59162E6 86.571E6 6.57814E6 .095 .164 .189 .000 .044 .095 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 3 1 2 6.57141E6 .194 0.0 0.0 0.0 2 .044 w 2 3 0.403 0.822 0.0 1 0.605 1.257 0.0 2 0 2.3741 4.1176 0.0 3.050 4.162 0.0 1 0.403 0.822 0.0 1 0.605 1.257 0.0 2 0 2.3741 4.1876 0.0 * SO BOILING SECTION TO RISER PIPE 3 2 3 3 3 3 0.020 0.0 0.0 3 2 0.2787i 0.0 0.:102 1 5190302 0.718 2 6190401 0.0 2 6190601 90.0 I 6190602 90.0 2 5190701 0,:18 1 5190702 0.718 2 5190601 4.E-6 0.8957 1 5190602 4.E-6 0.0 2 5190901 0.0 0.0 I 5191O01 00 2 5191101 0000 I 5191300 0 5* S65o5* 5,0**5 *5*58 * 5*8 500,,**S*4S,* S*S*S****444 S lt70000 5170001 5170101 5170201 5170301 $170401 5170601 S170701 9170801 5170901 5170902 6171001 51t1101 5171300 2 0.72631 * S PIPE * SS CONTROL FOR VALVE 516. 0.0 0.0 0000 0.0 0.0 0000 STEAM GENERATOR TUBES I0060000 10060100 10060101 10060201 10060301 10060401 10060601 10060602 10060603 10060604 10060605 10060606 10060607 10060608 10060501 10060502 10060503 6 0 5 6 0.0 550.0 617010000 517020000 517030000 519010000 519010000 637030000 537020000 537010000 115040000 115050000 115060000 6 2 I 0.006340984 6 5 6 0 1 1 0 I 0 . . 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 I 0.0051054 I 20521400 20521401 20521402 20521403 ERR516 0. 20521600 20521601 V516 clTRIVAR * 2 23 4 6 6 7 2 3 z 4.7 I. UFLOWJ MFLOWJ MFLOWJ 0.0 0 616000000 526000000 660000000 INTEGRAL 215 -. 01 .117 0 00 *4 3 .01 1-4 .92 FEED WATER VALVE 5600000 6600101 1310.32 1310.:2 1310.23 27195 271.96 1310.32 1310.32 1210.32 1310.32 1310.32 1310.32 RECIRCULATION RATIO - SUM 1. 1. -4.7 6600200 5600201 5600202 5600203 5600208 FwJLV TIEIAJIM 545000000 510000000 o.os I -I. 0.0 .7 3000. 513 27.80 27.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4 v SS CONTROL FOR FEED WATER ENTHALPHY 20560100 20560101 20560102 20560103 20560104 20560105 20560106 20560107 20560106 20560109 20560110 20560111 20560112 SPRDERR 0. SUM -I. .914014 .914014 .389795 .164951 .164951 .164951 .257877 .257877 .297877 .51523 .200114 1.0 MFLOWJ VAPGEN VAPGEN VAPOEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPCEN VAPGEN VAP-EN 0.0 0 560000000 500010000 505010000 510010000 515010000 516020000 516030000 517010000 517020000 617030000 619010000 519020OO0 to to to. 0x 20560113 .200114 20560114 20560115 20560116 20560117 20560118 20560119 205600 20560601 .685800 .163670 .608844 .257877 .257877 .257877 FOWMNTh CNTRLVAR INTEGRAL 605 VAPGEN VAPIEN VAPGEN VAPGEH VAPGEN VAPG-N VAPGEN .0 : TOTAL 90 DOWNCOR MASS FLOW 20594500 SGOCFLW SMU 1.0 20594801 0. 1. WkLOJ 20594802 UFL0WJ M. END OF FILE 520010000 525010000 526010000 530010000 537010000 537020000 537030000 .,8066 0 3 C En H .$6OE6 .lO6 t'd 0.0 0 616000000 536000000 H H co cl I' .e3 I - 0 e*g LFCR3 ccc RESTART OF LoFT CALCULATION 1.3-6 FROM SS RIN * E~n LON00 RESTART 10 RE1START TRANSNT l01 RUN 103 a 1O5 100. 120. )000201 260. 1.O-6 *PRIMARY COOLANT PUMP I 1350000 1350101 1350102 135010. 1350109 1350301 1350302 1350303 1350308 1350310 PCPI PUMP 0.0366 0.0 0 130010000 0.0 140000000. 0 0 0 -1 369.0 0.911 613.6 0.0 .212465 0.0 0.0 0.0 H .20 00001 28 4000 TRIP-Si1 4000 4 0.099 0.0 90.0 0.0 0.0 -I 511 0.3155 207.4 -25. 0.0 0.0 0.05 0 96.0 0.004 29.5 0100 0100 0.319 1351400 1351401 13S1402 1 -I. .0000001.0 -:.229700[-01 13S1403 1351404 1351405 1351406 1351407 1351408 -6.333200E-01 -4.:553400E-01 -2.710900E-01 - .771600E-01 -9.0730001-02 0. OOOOOOE00 4 2.472200[E00 1.9968001,00 1. 897004+00 1.3279001e00 1.1949001,00 1.060500E#00 1.0156001e00 9.342790E-01 * HEAO CURVE NO. 5 C 500.6 19.698 6.28 1.431 0.0 PHASE HEAD CURVES I SINGLE 1351500 1351501 1351502 1351503 1351504 1351505 1351506 1351507 tij C I 0.O00000E0O0 2.000000E-01 4.00000O0-01 4.1180001-01 5.9763001-01 7.9346701-01 1 OOOOOEeOO 6 2.500000E-01 2.800000E-01 3.4000001-01 2.76800OE-01 4.5840001-01 6.992000-01 1.000000E*00 1351101 1351102 1351103 1351104 1351105 1351106 I 0.O00000E+00 1.906100E-01 3.89630OE-01 5.93960OE-01 7.9020001-01 I.100000O0 g 1.403600E*00 1.363600E*00 1.318600[400 1.2328001.00 1.133600E#00 I.O0000OOE00 * HEAD CURVE NO. 2 1351200 13S1201 1351202 1351203 1351204 13S1205 1351206 1351207 13S1208 1 O.O0OOO0E+OO 2.OOOOOO-Ol 4.000000E-O 5.7554001-01 7.443200E-01 7.734600[-01 8.6313001-01 1.000000E100 * HEAD CURVE NO. g 2 -6.7000OOE-01 -5.0000001-Ol -2.600000E-01 0.000000.+00 2.5830001-Ol 3.778000E-01 6.3260001-01 1.000000E.00 3 1351300 1 !3S1301 -1.000000E+00 351302 -8.057400F-01 1351303 -6.0690006-01 1351304 -4.068300O-01 1351305 -2.001710E-0I 1351306 0.*00000*1O*0* HEAc CR NOcecec. * gg*cc e *O ge* e * HEAD CURVE NO. A 1351600 1351601 1351602 13S1603 1351604 1351605 1351606 1351607 1351608 1351609 1351610 C I 0.000000E*00 9.109900E-02 1.865090E-01 2.7176201-01 4.5587201-01 6.744060E-01 7.405760E-01 7.6661901-01 8.7147101-01 1.0000001'00 6 9.342790E-01 9.229000[-01 8.968000E-01 8.7500OOE-01 8.4330001-01 8.3550001-01 8.4660001-01 8.4690001-01 6.8380001-01 I.0000001e00 C 13S1700 1351701 1351702 1371703 1351704 1351705 1351706 e seeceecce C 7 -I .000000E100 -6.3000001-01 -3.000000E-01 -5.0000OOE-02 I..50000OE-01 2.600000[-0l I -1.0000001*00 -9.7000OO1-01 -9.500000E-01 -8.8000001-01 -8.0000001-01 -6.7000001"01 ccc.. ccccceceeec geeccce..... *.... '" 0 SINGLE PHASETORQUE DATA • TOROUE CURVE NO. 1391900 1351901 1351902 1351903 2 0.000000E*00 4.0000OOE-01 6.0000001-01 7.3725501-01 7.680490E-01 4.672300E-01 .00000010E00 1 2 0.000000=E00 1.930000E-01 3.9300001-01 C 1352200 1392201 1352202 1352203 1392204 1352205 1352206 1352207 1352208 1352300 1352301 1392302 1362303 1352304 w 2 -1.000}001E00 -8.0096001-01 -6.0638001-01 -4.068600o-01 -1.9928001-01 0.0000001.00 3 1.9843001400 I..3940001E00 1.0975001.00 8.2200001-01 6.6480001-01 6.0320001-01 2 -1.000000E#00 -8.223400E-01 -6.3371001-01 -4.8553001-01 -2.670230E-01 -1.761070E-01 -8.9310001-02 0.000000OO00 4 1.9843001.00 1.0308001+00 1.682400E.00 1.6570001.00 1.4362001400 1.3879001.00 1.3481001.00 1.2336101E00 2 0.0000001*00 4.0OOOOOE-01 6.0000GOE-01 1.0000001.00 z3 00 00 C 6 -4. 500000-01 -2.500000-o01 0.0000001.00 3.6690001-01 I-o C)3 s TOROUE CURVE NO. 6 eg""8'"g'8'84'8"4"'"'1 4 1 6.0320001-01 6.3250O-01 7.3690001-01 x 2 -6.700000[-01 -2.6000OO-01 I. 5000001-01 8.2565860-01 6.065940E-01 7.436600[-01 1.0000001.00 cTRQUE CURVE NO. I - .000000E*00 -8.00000OE-01 -6.OOOOOOE-01 -4.000001E-01 -2.0000001-01 0.-00000O00 H g TOROUE CURVE NO. 4 c HEAD CURVE NO. 8 a I351300 13S1601 1351802 1351803 1311804 1351(0S 1351606 I.331000=-01 0.2290001-01 1.0000@00400 cTORQUE CURVENO. 3 0 I -I.000000e=00 -8.000000E-O -6.000000E-01 -4.OOOOOOE-01 -2.0000E0-01 0.O00000E0,O 1352000 1352001 1392002 1352003 1352004 1352009 1352006 1352007 1352100 1352101 1352102 13S2103 1352104 1352105 1352106 c HEAD CURME NO. 7 e 3 2.472200E+00 2.047400E#00 1.831000E*O0 1.624000WE00 1.4705001,00 1.•403600E#00 see**O ec** ee**e g 5.9S52006-01 7.978200E-01 I.OOOOOOEe00 o TORQUE CURVE NO. 2 0 HEAD CURVE NO. 6 * HEAD CURVE NO. 1351100 I 1351904 13S1905 1351906 1352400 1352401 1352402 1352403 13S2404 1392409 1352406 1352407 13S2408 1352409 "1352410 2 0.0000001,00 9.0643006-02 1 8856901-01 2. 7347001=-01 4.58669012-01 6.7448001-01 7.3816001-01 ?.689200E-01 8.700570E-01 1.000000E,00 6 1.233610E400 1.1965001400 1.109600E.00 1.0416001E00 8.9580001-01 7.8070001-01 6.1340006-01 5.8490001-01 4.877D0O-01 3.5690001-01 g TORQUE CURVE NO. 7 T132500 1352501 1352502 1352903 2 -I o*0000001'00 -3.000000E-01 -I .0000OOO-01 " -I .0000001.0o -9.0000001-01 -6.00000O-O l Sd :j En 1352504 O. O0OOOE+0O .4.500000[-Ol En 8 -I. 000006*00 .9.000000E-Ol .6.0OO00OE-01 -6 70000OE-01 M z * FOR TORQUE CURVE NO. a 1352600 1352601 1352602 1352603 1352604 2 -I. 0000006400 -2.5000OOE-0I -8.OOOOOOE-02 0.00OOOOE.00 * *TW TWO- P*A*S** PISASEMULTIPLI* I8JLTOPLI6R D*A*58*8*5585504 DATA 555* 8 55 **S***5654*** * HEAD CURVE 1353000 1353001 1363002 1353003 1353004 1353005 1353006 1353007 1353008 1353009 1353010 1353011 1353012 1353013 1355014 S**. 445*. 0 0.000000E+00 0.00004OE,00 1.0000005-01 7 .00000E-02 2.0000006-01 I .8000006-01 3.000006E-01 3.4000006E-0 3.5000006-01 6.000000E-01 3.7000O06-01 7. 00000E-01 4 0000006-01 7.200000E-01 .OOOOOOE-O1 7.500000S -01 6.000000-01 7,7000006-01 7.00000F-01 7.7000006-01 8.OOOOOE-0l 7.400000E-01 9.000000E-01 6.100000D-01 S. 500000-01 4.0 (W000 -01 0.O00000E*O0 0000006O0 1. 555550 45 05 54554445*555****** 5*5*445555****5*4S*5*S**** TOROU1 CURVE Y 1353100 1353101 1353102 1353103 1353104 1353105 1353106 1353107 1353108 1353109 353110 1353111 1353112 0 0.000000E400 1.0000006-01 2.000OOOE-01 3.000000E-01 3.500000E-01 4.000000E-01 5.000006E-01 6.O000006-01 7.0000006-01 8.0000006-01 9.000000E-01 1.000000E*00 O:0000000E00 0. 00000E,00 I.OOOOOOE-0I 3.O000006-01 5.000000E-01 7.000006-01 7.600000E-01 ?.500000E-01 7.500000E-01 7.500000E-01 6.0000006-Ol 0.O000000E*0 pU.MP 2-PIASE DIFFERENC6E DATA P A CURVE HEAD 1354100 1354101 1354102 1354103 1354104 1354105 1354106 00. 1 1 0.000000E#00 1.9061006-01 3.896300E-01 5.9396006-01 7.9020006-01 1.000000E.00 1.403600E400 1.363600E*00 1.3186006400 1.2328006400 1.133600E+00 1.00000E.00 SHEADCURVE NO. 2 1354200 1 2 1354201 1354202 1354203 O.0000006E00 2.000000,-01 4.0G0000E-01 1354204 1354205 1354208 6 1354207 1354206 5.755400E-01 7.4432006-01 . 7348000-01 8.631300E-01 1.0000OE6.00 -6.700006-01 -5.00000E-01 -2.5000OE-01 M~ 0. O00OE#0 2.5830006-01 3.778000E-01 6.326000E-01 1.000000E.00 to, 1354702 CURVE NO. 3 HEAD E 13S4800 1354801 1354802 I 0.0000001£00 2. 000000-01 4.000000E-01 6.000006E-01 8.0000OOE-01 . OO0OOOE00 1354600 1354601 1354602 1354603 1354604 13S4605 13S4606 1354607 1354608 1354609 1354610 1 0.0000006.O00 I.0000006-0I 2.600OOE-01 4.0000006£-0 S.OOOOOOE-Ol 6.0000006-01 7.00000E-O01 8.0000OOE-01 9.0000006-01 1.000000E.00 *HEAD CURVE NO. 1354700 1354701 *****4 **58554505 .,4,***** 8 1355000 1355001 1355002 1355003 1355004 1355005 1355006 1355007 *TOROUE 1355100 1365101 1355102 1355103 1355104 1355105 1355106 6 1.1000006-01 1.30000OOE-01 1.SOOOOOE-O 1.3000006-01 7.0000OOE-02 -4.000000E-02 -2.30000OE-01 -5.100000E-01 -9.1000001E-O -1.470000E.00 5355200 1355201 1355202 1355203 1355204 1355205 1355706 1355707 1355208 ." 1 6.0320006-01 6.325000E-01 7.369000£-01 8.33100OE-01 9.2290OOE-01 . 0000OOE000 2 0.0000001,00 4.0000006-Ol S.OOOOOOE-01 7.3726506-05 7.6804906-01 8.672300E-01 I.O00000,E0O0 2 -6.700000-01 -2.5000009-01 1.500000E-01 6.2668606£-05 6.065940£-01 7.43660OE-01 I.O0006OOE0 :9 CURVE NO. 3 2 -1.0000006400 -8.0096006-01 -6.0638006-01 -4.06860016-01 -5.9928006-01 0.90000E000 3 1.9843006.00 1.9394000E.00 1.097500E#00 8.2200006-01 6.6460 0-01 6.032000E-01 co 03 -j *TORQUECURVENO. 4 7 I -1.000000E.00 I 2 O.0000006.00 1.930000E-01 3.93000O6-01 8.9552006-01 7.978200E-01 1.0000006,00 8 0.0000006#00 0. 00000000 a TORQUECURVENO. 2 6 0.000OOE.00 -3.400000E-01 -6.600000E-01 -9.3000006-01 -1.1900006.00 -I .470000,E00 * HEAD CURVE NO. 6 I -1.0000009400 0.O000000E.00 " TOR*UE CURVE NO. 1354900 1364901 1354902 1354903 1354904 1354903 1354906 1354400 1354401 1354402 1354403 1354404 1354405 1354406 1354407 1354408 1354409 1354410 1354500 1354605 1354502 1354503 1354504 1354505 1354506 . 0.0000,OE#0 *HEAD CURVE NO. 8 1354300 I 3 1354301 -1.000000E#00 -I *160000E#00 1354302 -9.000000E-01 -1.240000E*00 1354303 -0.0000006-01 -1.7700006E00 1354304 -7.0000006-01 -2.3600006.00 1354305 -6.000000E-01 -2.790000E.00 1354306 -5.000000E-O -2.910000E+00 1354307 -4.0000006-01 -2.6700006E00 1354300 -2.5000005-01 -1.6900006E00 1354309 -. 0000OOE,-01 -S.000006E-01 1354310 0.00000.E00 0.09000OOE.00 ***55*54*585*S*58*5*5*8555555d**5***5*S*s***4e5***4****S55*5*R5*** * HEAD CURVE NO. 4 1 4 -1.000000E+00 -I.1600006*00 -9.000000E-01 -7.80000OE-01 -8.0000001-01 -5.000000e-0O -7.000000-E01 -3.100000E-01 -6.000000E-O1 -1.7000006-01 -S.00000E6-Ol -S.000000E-02 -3.5000006-01 0.O00000.E00 -2.0000006-01 6.0000001-02 -I.00000,6-01 8.000000E-02 0.000OOE.00 1.1000001-01 55545 4455* 5* * 54 05S5S***,0.**•***.***55* * HEAD CURVE NO. 5 O. 0000006.00 7 0.000000E.00 2 -1.0000006,00 -8.2234006-01 -6.337100(-01 -4.5853006-01 -2.6702306-01 -1.7610706-01 -8.9310006-02 0.OO0OOO,00 TOR•UE CURVE NO. 4 1.5643006o,0 I.83080OE#00 1.682400EO00 1. 557000E*00 i.4362006*00 1.3879006.00 5.3481006.00 1.2336106*00 6 1355300 2 1355301 0.000000E600 1355302 4.000000E-01 1355303 6.0000O00-Ol 1355304 1.0000E000 5055*5S0*655 'lO' 5540;••' ....... 6 -4.S00001•-01 -2.500000"01 0.OO0000.E00 3.56900OE-01 p554 ........ t ....... tl ,..''5058*...''' *1TROUE CURVE NO. 6* 5365400 1355401 1366402 136S403 2 0.000000EO0 9.0643006-02 5.68666E-01 5 6 1.23361PE.00 1•196500E.00 . 10W66OE600 to3 Ma Un 1355404 1355405 1355406 1355407 1355408 1355409 1355410 * 2. 734700-01 4.5806690-01 S.7448005-01 7.381600E-01 7.6e5200E-01 8. 700570E-01 1.OOOOOOE.00 1-3 I .0416006.00 8.95000-01 7.807000E-01 6.134000E-01 5.849000E-01 4.877000E-01 3.56BO006E-01 C j' TOROUE CURVE NO. 7 236550 1355501 1355502 1355503 1355504 -o.000000E.0 -3.000000E-01 -I.O00000E-01 O.000000.00 * TOROUE CURVE NO. 1355600 7 -|.000000600 -9.000006E-O -5.000000E-01 -4.6000006-01 tol S .2 1355601 1355602 1355603 1355604 -1.000000E6.0 -2.500000E-01 -8.0000006-02 0.000000E.00 1350200 1350201 1350202 END M OF 3 14.A19556 I 241.6 I 241.5 FILE "1- a -1.0000006.00 -9.000000E-01 -8.000000E-01 -6.700000E-Ol 560.35 0.0 0.0 0.0 0.0 I Io ,-1 I h,.) $-A CD mJ x STUDSVIK ENERGITEKNIK AB Appendix B.1 NP-87/128 1987-11-03 0 CORE INLET FLUID DENSITY CORE INLET FLUIO DENSI T CORE INLEt FLUID DENSITT 0 A (CNTRLYAA SO) CASE A (CNIRLVAR R011 CASE I ICNTRLYAR O l CASE C Plot B. 1 ___ "___ o0 w 0 -2S0 0 230 500 750 1000 TIME 0 0 IC + 0 1230 1500 2000 ITSO REACTORPOWER IRKTPOV 0) CASE A REACTORPOWER NRKrPOW 0) CASE B REACtOR POWER KRKrPOW 01 CASE C PRIM. EXTERNALS HEAT ,L.0W ICNTRLYAR9821 CASE A PRIM. EXTERNALS MEAT FLO W .CtRLVAR 982) CASE e PRIM. EXTERNAALS MEATFLOW (CRIRLYAR 982) CASE C ____ ____ _______ _______ 2230 250 i0 (S) Plot B. 2 -- o "T 0 _______ _______ _______ Ir re =t 0~ 0 - - 0~~ 0 -250 -250 - 0 -e--~ -~ 500 Soo 250 -e--~ -e--.~ -~_ 750 750 1o000 1250 TIME. (S) - 1500 isoo - 1750 •o 2000 20060' - 2230 2250 2300 2500 (31) NP-8-7/128 STUDSVIK ENERGITEKNIK AB Appendix B.2 1987-11-03 0 0 CORE CLAD rEMPERATURE VOL. I cr'-2014-O1| £t CORE CLAD CEtiPERATURE VOL. I 'CI.RLVAR 103) CASE S CORE CLAD TEM'P'ERATURE VOL. I ICYNRLYAR 903) CASE C CORE CLAD TEMPERATURE VOL. I (CrIRLYAR ... I 9031 EXP. CASE A Plot B. 3 w 0 (L: -20 a 20 Soo 750 1000 1250 1500 17_0 2000 2250 25b 0 TIME 0 0 A• CORE CLAD fEMP[RATURE VOL. CORE CLAD TEMIPERATURE VOL. CORE CLAD tEMPERAIURE VOL. CORE CLAD TEMIPERATURE VOL. 2 2 2 2 (s) ... 1 EXP. (E-IF?-01 (CftRLVAR 904) CASE A (CYTRLVAR904) CASE B (CRIRLVAR 904) CASE C Plot B. 4 w CL 0,. -250 0 250 S00 750 1000 1250 TIME (S) 1500 1750 2000 2250 25S00 STUDSVIK ENERGITEKNIK AB NP-87/128 Appendix B.3 1987-11-03 a a CORECLADTEMPERAIURE VOL. 3 IYE-IF7-026 .. ICXP. CDORE CLAD TEIPERATURE VOL. 3 ICNTRLRARSOS) CASE A A CORE CLAD TEMPERATURE VOL. 3 (CNIRLVAR 905) CASE 8 CORECLAD TEMPERATURC VOL. 3 (CMIRLYARSS) CASE C Plot B. 5 LIJ CL -250 0 250 500 750 1000 1250 1500 1150 2000 2250 250 i0 TIME (S) 0 a A. CORE CLAD TEMPERATUREVOL. 4 (TE*2LO-D3t CORE CLAD (EMPERA URC VOL. CORE CLAD TErMPERATURE VOL. CORE CLAD TEMPERATURE VOL. 4 4 4 .. C EXP. ICNTRLVAR 906) CASE A (CNTRLVAR 9062 CASE B (CNTRLVAR 9062 CASE C Plot B. 6 W% LI cc 0w a_ 1: 725o 0 250 500 750 1000 1250 TIME (S) 1500 1750 2000 2250 250 0 STUDSVIK ENERGITEKNIK AB Appendix B.4 NP-87/128 1987-11-03 CORE CLAD TEMPERATUREVOL. CORE CLAD TEMPERATURE VOL. CORE CLAD TEMPERATURE VOL. CORE CLAD TEMPERATURE VOL. 0 a 3 5 5 5 (Tt-20I4-04S ... 1 EXP. (CNTRLYAR9073 CASE A (CNIRLVAR $07) CASE B (CMTRLVAR 07) CASE C Plot B. 7 D-- 9 w w. -250 - 0 250 Soo 1000 7'50 12,50 1300 1730 2000 2230 250I0 TIME (S) 0 a CORE CLAD TEMPERATURE VOL. G ITE-SH?-062 .. I EXP. CORECLAD TEMPERATUREVOL. 6 (CNTRLVAR908) CASE A CORE CLAD TEMPERATURE VOL. 6 (CWARLVAR908o CASE 8 CORECLAD TEMPERATURE VOL. 6 (CNTRLYAR908) CASE C A o 5-~ Plot B. ______ 0 _______ _______ 8 _______ ________ w a. r 0 o _______ _______ _______ _______ _______ qr -25 I 0 ., 250 - 500 9 750 - 9 1000 1250 TIME (S) .I 1500 9 1750 2000 9 2250 2500 Appendix B.5 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 0 a CORE OUTLETtEMPEfRATUALC IL.IUP-00 I..' LE? CASR% I (CNTLYAR90910 AATEA COALtOUILET IfWERAI 909) CASE a CORAEOUJTLETTEMPERATURE ICOOTALYAR CORE OUTLET LTEMPEATURE (CMTALVAR909) CASE C 4£ Plot B. 9 --.-.----- N 0 ____________ _____ U, 'C (L -20 20 S0 70 I0 0_______ 20 I•0 15 00 25 M___s_ 00 0 f. CORE FLUID TEMPERATUREDIFF. 01FF. CORL FLUID TEMPERATUR_ 0IFF. CORE FLUID EIMPERATURE CORE FLUID IEMPERATURE 01FF. ~vJ1 (TL-IUF-OOI (Cm RLVAR9101 ICMTRLVAR910) (CN RLYAR 910) tE-ILP;OOIf EX?. CASL A CASE 8 CASE C Plot B. 10 _____ ______ C LL W, C -- o - -20 - ,k~ 25O 500 n4Ai~ no0 1000 1250 TIME (S) 1500 In50 2000 2250 2500 STUDSVIK ENERGITEKNIK AB Appendix B.6 NP-87/128 1987-11-03 0 a A CORE INLETMASS FLOW (CMFLOWJ 225) CASE A COREfINLET MASS FLO W t"FLOWJ 225) CASE I CORE 14L ! MASS FLOW (lIFLOWJ 225) CASE C Plot 0 _______ 0 0 ________ 0 ________ B.11 ______________________________________________________________ - __________________________________________________________________ 0 0 -j 3J- 0 _______ _______ cl) (n 0 ________ ________ _____________________________________ __________________ 0 0 0 *25O 0 250 500 750 3000 TI ME O O & CORE MASS INVENTORY (CNTRLVAR L12) CORE MASS INVENTORY IC NTRLVAR 932) 3250 ISCO 3750 2000 22S0 (S) CASE A CASE 8 CORE MASS INVENTORY (CNfRLVAR 932) CASE C Plot B.12 0. U. I... 0 Cd) U, LI 0~ 3000 TIME 1250 (S) 25)00 00 STUDSVIK ENERGITEKNIK AB Appendix B.7 NP-87/128 1987-•1,-03 0O A 9131 CASE A MASS INVENTORY (CNIftLVAR C0OWNC0P¶( OUNCOM(R MAS IVENSCA? ICATALVAR 913, CASI DO OMICtERMASS 2INVENITORY IC TLIAR 93) CASEC Plot B. 13 CL. TIME 0 0 A (S) VESSEL TOTAL MASS INVENTORY(CWTRLVAR914) CASE A VESSEL TOTAL MASS INVENTORY(CNTRLVAR9I4I CASE 8 VESSEL TOTAL MASS INVENTORY (CVTRLVAR9.4) CASE C :1 Plot B. 14 11111 o 0 0 o 0 _ _ _ _ _ _ -c r- 0 0 o _ _ _ _ * 0 ____ ____ _ ____ ____ ____ _ ____ (1 o -250 ____ ( 250 MS 300 560 750 m5 1000 TIME 1250 (S) 'SOC 15 00 1730 1 _ __ 2000 2060 _ J __ 2250 22'50 1 '0 251 25i 0 STUDSIVJA Appendix B.6 NP-87/128 ENERGITEKNIK AB 1987-11-03 O O 4 DOWCOMERLIQUID DOWCOMERLIQUID LIQUID ODM'NCOMER DOWNCOMER LIQUID LEVEL LEVEL LEVEL LEVEL 1XPV. ILE-S;-DQ (Ck RL AR 9151 CASE A (CRYRLVAR915) CASE B ICMIRLVAR 9131 CASE C Plot B. 15 -I LU TIME (S) a0 A * UPPER UPPER UPPER UPPER PLEWUMILIQUID PLENIUMLIQUID PLENUMLIQUID PLENUMLIQUID LEVEL LEVEL LEVEL LEVEL (LE-3UP-001I6LX?. (CNTRLVAR9I61 CASE A (CNTRLVAR916) CASE 5 (CNfRLVAR 916) CASE C Plot B. 16 data from bubble plot N -.J -250 0 -. 250 500 750 1000 TIME 1250 (S) 1500 1750 2000 2250 25100 NP-87/128 .STUDSVIK ENERGITEKNIK AB Appendix B.9 1987-11-03 0 a DOVWNCOMER INLET DOVNCOMER INLET INLET DOWNCOMER INLET DOWWC0MER TEMPERATUREITE-IST-CO3 .. CXP. TEMPERATURE(TEMPF 205) CASE A TEMPERATURE(TEMPF' 205) CASE 0 TEMPERATURE ITEMPF205) CASE C Plot B.17 'L :-230 a 2S0 500 750 1000 TIME O 0 A + (TE-IUP-0Ol UPPER PLENUM TEMPERATURE UPPER PLENUM TE MPERATURE (TEMPF UPPER PLENUM TEMPERATURE (TEMPF UPPER PLE NUUMTEMPERATURE (TEMPF 240) 240) 240) 12'50 1500 1750 20'00 2250 (S) ... 1 EXP. CASE A CASE 8 CASE C Plot B. 18 U, 'C TIME (S) 25bO0 STUDSVIK ENERGITEKNIK AB NP-87/128 Appendix B.10 1987-1-1-03 a a UPPER UPPER UPPER UPPER PLENUMSUMCMOLING(SC-SUP-1021 EXP. PLENUM SUBCOOLING ICNERLVAR91:) CASE A PLENUMSUBCOOILINGCCItRLVAR91i) CASE B PLENUMSUSCOOLING (CWTRLYAR$19) CASE C Plot B.19 Lu U) C - UJ -e5 _5 _00 0 _50 • 0____T_ ______ _ 0 _ 75 _00 25 __(S _ E a0 0 0 £ 4 LOVER PLENUMI?EMPERAVURE (TE-ILP-OOI) EXP. LOVER P1ENU.MI 'PERATURE IIEr1PF 225) CASE A LOWERPLEN" IW"f AERAIURE TEIMPF225) CASE B LOWERPLENUM TEMIPEERATURE (TEI PF 225) CASE C Plot B.20 U)J 0L TIME (S) STUDSVIK ENERGITEKNIK AB Appendix B.11 NP-87/128 1987-11-03 a a UPPERPLENUMPRESSURE (FE-IUP-OOIAI| UPPER PLECUMI PRESSURE (P 245) £. UPPER PLENUMPRESSURE PRESSURE UPPER PLENU4M EXF. CASE A (P 245) CASE 8 (P 2431 CASE C Plot B.21 0 -J 'n In W. -230 a 250 500 750 1000 TItME a a 0 LOVERPLENUMPRESSURE LOWERPLENUMPRESSURE LOWERPLENUMPRESSURE LOWERPLENUMPRESSURE (PE-IS?-OCIA ... (P 223) CASE A (P 2251 CASE 8 (P 223) CASE C ' 1250 1500 1750 2000 2250 25300 (S) EXP. Plot B.22 * -6-* _ 0 0 cr cn Lu 0 _______ _______ _______ _______ _______ _______ f• 2150 250 250 500 S0O .4. 750 730 +---4 1000 1250 TIME (S) 1500 I. 1750 2000 .42250 2500 STUDSVIK ENERGITEKNIK AB NP-87/i28 Appendix B.12 1987-.1.1.-03 0 0 I.L. I.1. h N |.L. 1.L. LOt LS MLO LEG HOT LEC HOT LEG FLUID FLUID FLUID FLUID DENSITT DENSITY DENSIT 1 DENSItT (DE-FC-20SI EXP. (RHO 1053 CASE A RHO 103S CASE 0 IRHO 1053 CASE C Plot B.23 I., r S.. C., z w a -50 0 250 Soo 750 1000 1230 1300 1750 2000 2250 TIME (S) 0 a *.LS-L. B*L. B-L. N HOT LEC FLUID HOT LEg FLUID HOt LEG FLUID HOT LEG FLUID DENSITY DENSITT DENSITY DENSITY IDE*BL-02B)I EXP. (RHO 3051 CASE A (RHO 3051 CASE S (RHO 3051 CASE C 0 250 00 Plot B.24 _______ U, _______ 0 U, _______ U, ft _ _______ _______ _______ z w 0 0 - _ _______ - - - 250 500 - - _ - _I N44;nýLý t -250 - 750 1000 TIME 1250 (S) 1500 1750 _ 4,4,ý 2000 22501 2500 NP-87/128 STUDSVIK ENERGITEKNIK AB Appendix B.13 1987-11-03 0 0 A ,Hot "Of LEC MASS FLOW RATE (3FLOWJ 1101 CASE A LEG MASS FLOWRATE (hFLOWJ 3 03 CASE 8 1103 CASE C N01, LtG MASS FLOWRAE CIMFLOWJ Plot B.25 9. 0ý Ln TIlME 0 0 4 I.L. 30? LEG L.1. 3t LEG :.L. NOT LEG L.1. NOT LEG (S) T" 'rERAT"URE ITE-PC-0026) EXP. TEMPERIAURE ITEMPF 1053 CASE A TEMPERATURE(TEMPF 3052 CASE 0 TEMPER AURE (TEMPF 3053 CASE C Plot B.26 10 U) U) 720 0 250 S00 750 3000 1250 TIME (S) 1500 1750O 2000 2250 25000 STUDSVIK ENERGITEKNIK AB Appendix B.14 NP-87/128 1987-11-03 0 0 'OT I.L. MCI. WOO LEC LEG PRESSURE PRESSURE 1.4. HOT LEC PRESSURE 1.1. 1OT LEC PRESSURE o _ o 0J 0 ______ (PE-PC-O02l (PtlOS) CASEEXP. A (P 105) CASE I (P l0) CASE C Plot B.27 _ _ _ _ ______ ______ ______ ______ ___ __ .i. ______ _______ 0.. 0 _______ C -50 ) 250 S0o 750 1000 TIME 0 0 £ 4 I.L. COLDLEG I.L. COLD LEG I.L. COLDLEG I.L. COLD LEG FLUID FLUID FLUID FLUID DENSITY DENSITY DENSITY DENSITY 1250 1300 1750 2000 2250 250 .0 (S) (DE-PCG-IS) EXP. (RHO IN5) CkSE A (RHO 18S1 CASE B (RHO 183) CASE C Plot B.28 w. z so 6 250 500 730 1OO0 1250 TIME (S) 1300 1150 2000 2250 250 0 STUDSVIK ENERGITEKNIK AB Appendix B.15 NP-87/128 1987-1.1-03 a 0 COLD LEG P:UP FLUID DENSITY COLD LEG *UMP FLUID DENSltY D-PC-3OSI ES?. CR1O 115.132 CASE A COLD LEG PUMP FLUID DENSITY l COLD LEG PUMP FLUID DENSIiTl Rl40 1t5,13 I1O 115.13) _ -230 0 250 Soo CASE 0 CASE C .1 t'50 _ 1000 TIME 0 .L. SB.L. S.L. 4. B.L. -250 Plot B.29 1250 150 sbo 1 ?0 2000 COLD LEG FLUID VENSIITY (OME-OL*IO) X CASE NI• RO45 COL COLD LEGLEGFUD FLUID ES T 0_ 3 CASE 9 COLD LEG FLUID DEWSIIT (RHO 345) CASE C 0 230 So0 750 2250 Plot 1000 250( (S) 1250 TIME (S) 1500 1750 2000 B.30 2250 2500 0 STUDSVIK ENERGITEKNIK AB Appendix B.16 NP-87/128 1987-11-03 a 0 I.L. LOOP SEAL.LIOUID LEVEL ILEPO;-PC-0213 EXP. l.L. CASE A LOOP SEAL LIOU1D LEVEL ICNIRLVAR I3) I.L. LOOP SEAL LIOUID LEVEL (C TRLVAR931) I.L. LOOP SEAL LIOUID LEVEL tCMIRLVAR 931) CASE 5 CASE C Plot B.31 w w -j -250 0 250 500a 70 1000 1250 1500 I ?so 2000 2250 TIME (S) 0 0 B.L. .L. LOOP SEAL LIOUID LEVEL LOOP SEAL LIQUID LEVEL .L. LOOP SEAL LIOUID LEVEL - (CWTRLVAR :32) (C ,TRLVAR 932) CASE A CASE 8 lCNTRL AR 932) CASE C Plot B.32 .J L.i TIME (S) 25(00 STUDSVIK ENERGITEKNIK AB Appendix B.17 NP-87/128 1987-A-1.i-03 0 S * I.L. 1.L. I.L: |.L. COLD LEO TEMPERATURE ITE-PC-004) EXP. COLD LEG TEMPERATURE4TEMPF 18531 CASE A (TEMPF 1853 CASE 0 COL.DLEO TEMPIERATURE COLDLEG TE IPERArURE |fCrlF 185' CASE C Plot B.33 w rw (L 230 0 250 So 750 1000 1250 1300 1730 2000 2230 2501 T IME (S) 0 0 1:L: COLD LEG FRESSURE (FE-PC*OOS1 EXP. I.L. COLD LEG t ESSUR E IP 20 CAS rA * I.L. I.L. COLOLEG PRESSURE (1 1203 CASE A COLD LEG PRESSURE (P 1203 Plot B.34 CASE C (L U11 cr" OU, Id 52SO 0 250 300 750 1000 TIME 1250 (S) 1500 1750 2000 2250 25000 Appendix B.18 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 0 0 A + 8.k. 3,. 8,L. .k. COLD LEG COLD LEG COLD LEG COLD LEG PRESSURE IPE*8k*0Ol) [XP. PRESSUREIP 343) CASA PRESSURC (P 345) CASE I PRESSURE tP.345) CASE C Plot B.35 oI w cc) D, C ___ ___ ___ *°2'50250 500 750 ___ ~~~I00 20 O0 _ 70 _ _ 200 20 25 00 TIME 0 PRESS.O IF. ACROSS PUMPS (POE*PC-1OO) 0 A + PRESSOIFF. PRESS.OIFF. PRESS.DWF. ACROSS PUMPS ACROSS PUMPS ACROSS PUMPS (S) CX?. (CNfRLVAR 936) CASE A (CMfRLVAR 936) CASE B (CNtRLYAR 836) CASE C Plot B.36 C 0 ' _____ :z 0 IL t ______ ______ ui~o° U- ,__ _ __. __| 0L C CI -250 0 25:0 500 750 (000 1250 TIME (S) 1500 1750 2000 22S0 2SC 0 STUDSVIK ENERGITEKNIK AB Appendix B.19 NP-87/128 1987-11-03 a a £ 4 SPMEE Or PUMPI IRPE-PC-O011 EXP. S3E 0 Of PUMPI IPUMPV[L 3,33) CASE A SPEC0 Or PUMP I (PUMPY L 1353 135) SPEEDOr PUMP I (PUIMPVEL CASE 8 Plot B.37 CASE C 0 0 e 0. 0 C uJ U) - 0 C. iI o _ -250 0 '_ _ 250 500 730 3O00 TIME 0q a. WqEARFLUID DENSITY S'EAK FLUIO DENSITY BREAKFLU|O 0DENSIT BMEAK FLUID DE NSITI 1250 __ _ 1500 _ 3750 _ 2000 2250 (S) (O-PC-SO2A) EXP. IRHO 300) CASE A (RHO a00) CASE B (RHO 800) CASE C Plot B.38 r z w a TIME (S) 250 0 STUDSVIK ENERGITEKNIK AB Appendix B.20 NP-87/128 1987-1.1-03 0 A 01 SNEkKK"AS$ OIEAI PISS OR AKMfASS O.IEKM ASS FLCOWRAITE tWR-PC-SI1231) g LOW RE tTFLCWJ 0S CASi A VLOd RATE (TVLVJ S03) CASE 6 fI.OW WAE (TfLOVJ 8031 CASE C Plot B.39 • I . C) -J In TI ME (S) 0 0 A WlEAK WlERGTRELEASE (C1t'LVAR 340) BMEAl IREAK MERGY RELEASE I.MERGYRELEASE CASE A (C TRLVAR 940) (CNITRLVAR 940) CASE 8 CASE C Plot B.40 0 N.' fA 0 0 -c U' AS 0 _______ _______ _______ C Y230 250 Soo 1750 750O TIME (S) 2000 2250 A- 2500 NP-87/128 STUDSVIK ENERGITEKNIK AB Appendix B.21 1987-11-03 0 C 4. BREAK INLET TEMPERATURE ITE-PC-SOIC) E)P. BIAK INLET TEIMERATUNE (TIVF 8001 CASE A OREAK INLET TEMPERATUR E IIEMPF 800) CASE B ICEMPF 800) CASE C BREAK INL E TEMIPERATURE Plot B.41 LU cr w m 0U 0i -50 0 250 Soo 750• 1600 TIME S 0 A 4. BREAK INLET SVOCBREAK INLET SUO C: BREAK INLET SVCJ. BREAK INLET SUBC- I-PC-S1 - TE-PC-S01C) 1250 1500 1750 2000 2250 250, (S) EXP. (CNTRLVAR 9:2,) CASE A (C I RLVA R 9421 CASE B ICNIRLYAR $42) CASE C Plot B.42 go, 0[ C, ..J 0D 0 C.) 3250 0 250 300 750 1000 TIME 1250 (S) 1500 1750 2000 2230 2S0( 0 STUDSVIK ENERGITEKNIK AB NP-87/128 Appendix B.22 1987-11-03 0 0 BREAK INLET PRESSURE (PE-PC-SOt) EXP. |REAK :ILETPRESSURE (P :001)CASE A BREAK INLET PRESSURE (P 8002 CASE I BREAK INLET PRESSURE tP 800) CASE C Plot B.43 Z 0j w C,, TIME 0 0 4. SC SC SC SC PRI. PIl. Pt,. PRI. SIDE SIDE SIDE SIDE (S) INLET TEMPERATURE tTE-SC-O01) EXP. INLEl TEMPERATULRE (TEMPF 125.011 CASE A INLET TEMPER AURE (TEMPt 115.03 CASE 8 INLET TEMPERATURE(TEMPF 113.03) CASE C Plot B.44 *01 w 4j (.1 r- wi w250 0 250 300 730 1000 TIME 1250 (S) 1500 IS0 2000 2250 250O0 Appendix B.23 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 U 0 TErM. DoFr. (rT-SC-OOI - IE-SC-iO2) TElI. DIFF. ICNTRLVAR CASE B A T[ilt. 03FF. ICISALYAR 943) 145) CASE TMP:1. 01FF. ICITRLVAR 943) CASE C SC Patl. SC PR). PRI. SC SC PRI. 4 EXP. Plot B.45 Li @a. a - - - . w 0 "230 230 Soo 750 1000 TI ME a O A + Sc Sc SC sC PR). PFR. PRI. PRI. SIDE SIDE SIDE SIDE PRESSURE PfESSURE PRESSURE PRESSURE DIFF. D0FF. DIFF. DIFF. 1250 500 1750 2000 2250 2501 (S) (POE-PC-OO2) EXP. (CmIRLVAR 94$) CASE A (CNIRLVAR 946) CASE B (CMIRLVAR146) CASE C Plot B.46 C,) w - 00 250 300 730 1000 .1250 TIME (S) 1300 1730 2000 2230 2300 J~vL\ENERGI T ;:iANIK NP-87/128 AB Appendix B.24 1.987-1.1'-03 0 I a SC FLUID DENS|IT (RMO 5IS.03) CASE A 03S.OlI CAS S Sc FLUID D(WSIIT (RHO SC FLUID aENSITI (RHO 51S.031 CASE C Plot B.47 %m w 0 -250 0 250 S;oo TSO 1000 T'IME 0 A h SC MASS FLOW RATE SC MASS FLOW RATE 1250 1300 1750 2000 2250 250( (S) (PFLOVJ SIG) CASE A (MFLOVJ 5161 CASE A SC ((ASSFLOWRAILf (ILOWJ 5A6) CASE C Plot 93.48 -J U-. r, 0 2S0 Soo 7so I I-Jil ' 2000 1250 TIME (s) 1500 1750 I 2000 2250 2500 STUDSVII\ ENERGITEKNIK AB NP-87/128 Appendix B.25 1987-11-03 O a a + SC SC SC SC LIOUID LIQUID LIQUID LIOUID LEVEL ILD-PO04oOD8I LEVEL (CM RLVAR 2491 LEVEL ICNIRLVAR :49) LEVEL ICN RLVAR 54 ) EXP. CASE A CASE a CASE C Plot B.49 2 -J w w -j TIME (S) O a + SC SSC SC SC LIOUID IEIPERATUVE R LIQUID 1TEMPtRATURE LIQUID IEIPERATUR LIOUID TEIMPERATUOE TE-SE-OS) EXP. (tIE PF 515.03) CASE A (TETIPF 515.03) CASE a ITEnPF 5)1.03) CASE C Plot B. 50 U) U) 0~ L U) TIME (S) STUDSVIK ENERGITEKNIK AB Appendix B.26 NP-87/128 1987-A.1.-03 a 0 £ SC PRfESSLRE SC PRESSURE SC PRESSURE SC PRESSURE (Pc-SCS-00t| EXP. (P 301 CASr A (P 530) CASE S (P 530) CASE C Plot B.51 t0 L r C! w U, U, LU C- 0 250 :'250 500 4 4 1000 1250 1500 1750 2000 2250 TIME (S) A 4 so S1 sc SC P1I.-SEC. PR1.ISEC. PRI.-SEC. PR1.-SEC. TEMP. I l TEi'. TEMP. O:F. 01FF. 0. 01FF. DIFF. (EEXSC-O0I -?E-Sc-0031 ExP. (CNTRLVAR552) CASE A (CNRLVAR 952) CASE B IC'R RLVAR 952) CASE C 0 X: IL TIME (S) 2500 I Plot B.52 Appendix B.27 NP-87/128 STUDSV11% JZNERGITEKNIK AB 1987-11-03 1 o A SC HEAT IRANSFER RATE (C-TRLVAR SS93 CASE A SC HEAT IRAHSIER RATE (CNTRL AR I3)CASE B SC HEAT IRAN$rER RAIE (C.TRLVAF 9S3 CASE C Plot B.53 oI w 0~ "230 0 250 S00 750 1000 TIME 0 4. PRESSUkIZER PRESSURIZER PRESSURIZER PRESSURIZER LIOUIO LIOUID LIOUID LIOU1O LEVEL LEVEL LEVEL LEVEL 1250 1500 ISO 2000 2250 25C 0 (S) tLI-PI39-006) EXP. (C3TRLVAR 954) CASE A ICCtRLVAR 9543 CASE B (CNTRLVAR954) CASE C Plot B.54 P sk c; -j w w -j c; 0; .j -2S50 0 250 S00 750 1000 1320 TIME (S) 1500 1750 2000 22S0 230 0 NP-87/1 28 STULb3VIK ENERGITEKNIK AB Appendix B.28 1987-11-03 O O £ 4 PRESSURIZER PRESSURIZER PRESSURIZER PRESSURIZER LIQUID LICUID LIQUID LIQUID TEMP. tE-P139-020) EXP. TEMP. ITEI9P 415.02) CASE A TEMP. ITEMP 415.02) CASE S TEmP. (TNETPV413.02) CASE C TIME 0 0 £ PRESSUkIZER PRESSURIZER PRESSURIZER PRESSURIZER STEAM TEMP. STEAM 1EMP. STEAM TEMP:. STEAM TEMP. Plot B.55 (S) ITE-PI39-01S) EXP. ITEMPO4;5.07) CASE A TTEMPO 435.0?) CASE 8 ITEMPO 415.07) CASE C Plot B.56 TIME (S) STUDSVIK ENERGITEKNIK AB Appendix B.29 NP-87/128 1987-11-03 8 O a + PRESSUR•IZER PRESSUNIZER PRESSURIZER PRESSURI|ZER PRESSURE PRESSURE PRESSURE PRESSURE 0 250 (PC-PC-004) (P 413.08) (P 413.08) (P 415.08) EXP. CASE A CASE 5 CASE C Plot B. 57 9 0 0- o w IA w O. -250 500 1000 730 TIME 8 O A * -c WPIS VOtTPETR1C FLOW RATE (FT-PI28-104) wPIS VOLTMIETRIC FLOW RATE (CNTRLVAR 0915 VOLYIIETRIC FLOW RATE (CNTRLVAR HWIS VOLTIETRIC FLOW RATE (CMIRLVAR 1S00 1750 2000 2250 2504 IXP. 958) CASE A 958) CASE 8 958) CASE C Plot B.58 f- 0 IL -- "; 0 I 4. O.4. 0 ft 1250 (S) 9 - + 4- + 4- 4 - jr I I_____ I_____ -250 so 4- _____ 250 250 _____ 500 300 _____ 7S0 _____ 1000 TIME _____ 1250 (S) _____ 1500 1300 _____ 1750 1730 _____ 2000 20 0 _____ 2250 2250 2500 2300 STUDSVIK ENERGITEKNIK AB Appendix B.30 NP-87/128 1987-.11--03 O a A ST"EIM IMASSBALANCE (CRNRLYAR 9S2) CASE A SYSTM MASS SATI.AC SSTESf MASS BM.ANCE (CNTRLVAl (CrIRLVAR I55) 559) CASE B CASE C Plot B.59 CaI in th TIME (S) 8 COOLANT ENERYC BALANCE 0 a COOLANT ENERT BALANCE (CNIRLYAR 960) CASE B COOLANTENERGYBALANCE (CNTRLVAR560) CASE C (CMINLYAR 9601 CASE A Plot B.60 oa -5 w Ca 2 -J 'C '5 :4 - LU -250 0 250 500 750 1000 TIME 1250 (S) 1500 1750 2000 2250 250 0 STUDSVIK ENERuITEKNIK AB Appendix B.31 NP-87/128 1987-11-03 a . CPU TIME (CPUTIME 0) CASE A COMPUTATION COMPUTAT ION CPU T IME CCPUTIPI 0) CASE 3 E04FU TATI ON CPU IIME (CPUTIME 0) CASE C A Plot B. 61 0 0 0 In 9- '1 u 0o 0. 0 0 0 d 00 250 500 1000 750 1250 1750 2000 2250 2500 TIME (S) COMPUTAIION O MASS ERROR (EMASS 0) CASE A O COMPUTAt ION MASS ERROR CEMASS0) CASE 9 SC0MPUTATI0O MASSERROR ([EMASS0) CASE C Plot B. 62 C ____ w. (A I., -c m~f o-2 0 -4-' 0 0 ______ 50 -4-- 0 100-5 50 |5 20 20 20 ____TIME___S) 0 Appendix C.1 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 Case A CALCULATION-TO-EXPERIMENT DATA UNCERTAINTY ANALYSIS FOR NRC/ICAP. ........................ = .................. DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL FIRST LINE MEAN DIFFERENCE OVER THE INTERVAL SECOND LINE MEAN SIGMA OVER THE INTERVAL (ROOT MEANSOUARE OF THE DIFFERENCE) THIRD LINE - ---- CODES - CALC. EXP. 0.0 - 20.00 - 80.00 - 200.0 -8.28 -6.81 6.65 -8.62 -8.20 8.20 -13.4 -10.1 10.2 -3.84 -3.38 3.38 3.25 3.60 3.61 -4.47 -4.72 4.73 .135E-01 .626E-01 .6586-01 -5.13 -4.03 4.05 3.45 3.22 3.22 -5.46 -4.77 4.79 -. 107 -. 3696-01 .5186-01 -7.44 -5.96 6.00 2.79 3.14 3.14 -7.11 -6.25 5.26 -. 285 -. 196 .194 -8.02 -7.38 7.38 2.76 2.77 2.77 -7.23 -7.00 7.00 -. 231 -. 247 .247 -13.5 -9.79 9.92 3.99 3.32 3.34 -12.6 -9.17 9.29 -. 419 -. 287 .293 -. 107 -. 866E-01 .610E-01 -. 252 -. 176 .182 -. 437 -. 341 .345 -. 301 -. 367 .370 -. 517 -. 378 .364 48.6 56.1 56.6 -72.4 -15.3 49.3 43.7 -48.9 80.2 42.0 58.2 58.6 -2.43 23.8 28.1 -31.2 -21.6 22.2 -. -. 262 .343 94.1 6.24 31.1 -1.93 -1.39 1.48 155. 20.0 Ill. -5.16 -3.49 3.56 16.1 68.2 78.2 8.95 -4.46 6.91 -5.64 -5.09 5.09 -11.6 -7.65 7.84 -. 114 -. 6566-01 .7056-01 -. 287 -. 203 .208 -. 201 -. 235 .236 15.5 17.5 20.2 131. 70.6 79.1 42.7 76.7 79.5 -. 359 -. 244 .249 1.18 11.3 16.8 353. 460. 466. 190. 269. 273. 52.6 114. 121. 12.5 26.5 29.0 V SA - V 8X -2.80 -3.08 3.08 -4.93 -3.99 4.07 -4.64 -5.04 5.04 V GA - V 6) -3.06 -1.54 2.13 6.59 7.12 7.13 -3.14 -3.00 3.01 .601 .740 .763 -3.03 -3.14 3.15 3.61 5.43 5.90 -4.86 -3.90 3.94 .960E-01 .292 .425 V M - V AX .479 .618 .633 -. 267E-01 .178 .354 HLIA - HLIX -31.5 -16.0 19.2 HL2A - HLX2 -29.2 -27.5 27.7 a70 -.810 .651 1.51 -12.0 -21.3 22.0 0. -. 996E-01 .212 HLSA - HLSX .680 .695 .706 .806E-01 .291 .421 CLIA - CL1X -2.62 -13.7 16.3 -60.3 -38.7 45.7 6.02 -16.8 26.4 CL2A - CL2X 744. 749. 749. 662. 700. 700. 586. 631. 631. CL3A - CL3K -5.17 -. 318 2.11 .252 .441 .475 -. 360 -. '409 .503 .668 .697 .710 -2.03 -5.87 7.38 -. 916 -. 666 .625 -2.37 -1.30 1.54 .105 .279 .402 V 7A - V 7X V SA -'V UX V 9A - V OX HL4A - HL4X CL4A - CL4X CL6A - CL6X CL7A - CLWX 29.0 2.13 22.6 - 2000. -5.62 -4.90 4.91 .556 .698 .733 C 9A - C 9X 1500. -. 437 -. 456 .489 .993 .176 .470 C &A- C OX - -. 535 -. 356 .398 -. 431 .647 1.35 C 7A - C 7X - -. 632E-01 -. 238E-01 .310 C M - C AX C SA - C 6X - -. 1000. -11.4 -7.87 8.04 -1.82 -1.90 1.90 -1.37 -1.30 1.30 -1.55 -1.42 1.42 -1.14 -1.18 1.19 -1.50 -1.38 1.38 -1.51 -1.49 1.49 -4.32 -3.84 3.84 C SA - C 5X 800.0 -5.90 -5.44 5.44 -5.24 -4.89 4.89 -5.39 -5.31 8.31 -5.67 -5.22 5.22 -5.89 -5.44 6.44 -6.29 -5.74 5.74 -8.73 -7.98 7.96 -2.01 -1.47 1.52 -1.27 -1.14 1.18 -1.20 -. 607 .701 -1.09 -. 817 .851 -1.22 -1.42 1.43 -1.46 -1.53 1.53 -3.51 -3.70 3.71 C 4A - C 4X - -5.42 -4.20 4.24 -4.96 -3.73 3.79 -5.34 -3.99 4.05 -5.24 -3.87 3.94 -5.42 -4.00 4.07 -5.45 -4.18 4.24 -8.01 -6.51 6.55 -1.32 -2.39 2.69 -. 770 4.44 6.56 -. 240 2.76 4.24 -. 570 3.76 8.87 -1.98 -2.13 2.18 -1.90 -2.30 2.36 -3.60 -3.09 3.15 C 3A - C 3X TIME INTERVAL - - .2196-01 .698E-01 .635E-01 4.34 -1.11 7.02 -1.72 -1.10 1.13 -1.90 -2.25 2.25 .467E-01 .734E-01 .7496-01 -3.20 -2.19 2.24 -2.66 -1.83 1.68 -2.84 -2.02 2.06 -2.60 -1.83 1.&8 -2.91 -2.00 2.05 -3.06 -2.20 2.25 -5.82 -4.55 4.58 .890E-01 .116 .198 167. 94.9 176. -3.15 -3.47 3.73 -2.49 -2.00 2.02 -. 164 -. 6726-01 .964E-01 -10.7 -7.18 7.32 -10.9 -7.34 7.52 -11.1 -7.53 7.69 -11.4 -7.82 7.98 -11.9 -8.25 8.41 -14.1 -10.4 10.5 -7.43 114. 136. -. 385 -1.33 1.54 -15.1 -13.7 16.4 -. 6376-01 -. 217 .241 -6.18 -11.8 12.4 -. 686E-01 -. 675E-01 .685E-01 -5.23 -3.74 3.82 -. 367 -. 265 .271 -5.61 -5.22 6.22 -11.2 -7.64 7.81 -. 298 -. 321 .322 -. 490 -. 359 .364 (6) STUDSVIK ENERGITEKNIK AB NP-87/128 Appendix C.2 1987-11-03 - COoDS - CAM. E. ---- 0.0 - 20.00 CLSA - CL6X .468 .617 •.631 CL9A - CLOX - 0.00 - 200.0 -. 873E-01 .135 .348 -. 187 -. 122 .125 -8.48 -1.60 3.03 -76.0 -43.6 51.6 CLt. - CLAX 17.8 14.7 14.8 BR1A - BRIX TIM INTERVAL ---- 500.0 - 10oo. - 1600. - 2000. -. 634 -. 395 .399 -. 476 -. 489 .489 -133. -88.5 90.4 -. 316 -. 245 .248 -32.1 -71.5 84.4 -13.3 -17.6 16.8 -13.4 -14.0 14.0 -. 669 -. 533 .536 -18.6 -16.7 16.8 1.60 -. 792 5.93 10.2 7.26 10.3 -14.9 -4.67 33.8 7.60 -11.8 12.3 -13.9 -12.5 13.1 -16.3 -13.6 13.7 10.2 44.8 68.3 -32.0 -23.3 30.7 79.3 14.1 32.2 180. 101. 107. 127. 123. 126. 26.3 71.6 75.6 SR2A - BR2X 8.81 7.26 8.22 1.17 3.54 3.93 .404 .630 .766 .1IIE-01 .298 .384 RAA - SR4X -. 370 -10.6 15.3 -1.82 -1.16 1.34 -1.62 -1.85 1.86 BRSA - BR6X 4.43 15.6 19.7 2.14 3.12 3.68 .956 1.82 1.86 BR6A - BR6X .551 .781 .809 .344E-01 .232 .384 SPIA - SPIX -9.06 -9.22 9.42 SP2A - SP2X -2.32 13.9 18.0 -. 236E-01 .204E-01 .179 -. 471E-01 .279 .315 -. 334 -. 696E-01 .306 -2.02 -1.55 1.57 -4.42 -3.12 3.21 -5.26 -4.77 4.77 -11.3 -7.43 7.63 .942 .551 .661 .804 .672 .680 1.24 1.05 1.05 1.71 1.37 1.38 -. 684E-01 -. 374E-02 .267E-01 -. 127 -. 100 .103 -. 293 -. 213 .219 -. 262 -. 271 .271 -. 474 -. 333 .339 -. 510 -3.64 4.34 -. 930 -. 681 .682 -3.46 -1.83 1.98 -6.33 -4.50 4.60 -6.72 -6.56 6.57 -13.0 -9.20 9.35 -7.42 -6.67 7.10 1.82 -1.79 3.22 1.99 2.34 2.38 1.97 2.67 2.60 1.84 2.39 2.42 1.60 2.26 2.27 3.67 2.60 2.65 SP3A - SP3X -4.49 -1.64 1.79 -70.6 -41.1 48.9 -77.5 -66.4 57.5 -18.5 -42.9 48.8 -15.7 -14.2 14.3 -16.2 -17.1 17.1 -20.0 -18.2 18.2 833A - nu -. 620 -. 628 .577 -. 648 -. 899 .600 -. 678 -. 562 .564 -. 576 -. 577 .577 -. 813 -. 566 .666 -.S1i -. 489 .489 -. 626 -. 672 .574 15.0 11.4 11.8 -. 940 5.88 7.91 -6.73 -3.64 4.09 -6.19 -7.65 7.67 -1.52 -4.17 4.48 2.00 1.53 1.96 -9.52 -1.72 3.63 -. 165 -. 662E-01 .902E-01 -. 476 -. 268 .300 -1.33 -. 882 .918 -2.06 -1.75 1.77 -5.19 -. 296 2.65 -9.63 -8.09 8.22 -3.34 -7.57 7.77 SS4A - SX IS33 - SS5X .101 -..647E-01 210E-01 S IA - S IX -24.1 -20.6 21.2 P IA - P IX .816E-01 .446E-01 .55OE-01 .130 .125 .128 .429 -9.41 12.2 .676E-01 .619E-01 .626E-01 .433E-01 .103 .112 5.81 3.06 3.70 3.03 6.75 5.83 .840E-01 .BO1E-01 .803E-01 .836E-01 .839E-01 .839E-01 .844E-01 .838E-01 .838E-01 .839E-01 .840E-01 .940E-01 .839E-01 .842E-01 .842E-01 P 2A - P 2X -20.1 -12.0 12.9 -2.15 -14.0 16.8 -9.29 -4.86 5.28 -34.9 -23.1 24.2 -56.6 -46.6 46.8 -71.6 -63.4 63.5 -93.9 -82.0 82.2 P 3A - P 3X -19.8 -13.3 14.0 2.07 -12.2 15.9 5.16 4.12 4.29 -6.62 -. 194 3.53 -21.6 -14.4 15.0 -33.6 -27.6 27.8 -45.5 -39.4 39.5 -. 442 -. 347 .361 -. 387 -. 405 .405 -. 576 -. 442 .446 P4A- P4X EC1A - ECIX .337 .300 .308 -. 670E-03 -. 136 .161 -. 162E-01 .179 .344 -. 985E-01 -. 417E-01 .474E-01 -. 266 -. 178 .185 -. 657E-01 .201E-03 .636E-01 -. 259E-01 -. 386E-01 .393E-01 .198E-01 -. 454E-02 .134E-01 .284E-01 .282E-01 .299E-01 .718E-02 .215E-01 .2456-01 .606E-01 .322E-01 .3486-01 Appendix C.3 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 Case B CALCULATI O-TO-EXPERIMENT DATAUNCERTAINTY ANALYSIS FOR NRC/CA. ............................. -. FIRST LIKE SECOND LINE THIRD LINE - DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL MEAN DIFFERENCE OVER THE INTERVAL (ROOT MAN SOUARE OF THE DIFFERENCE) MEAN 51GMA OVER THE INTERVAL CODES CALC. EXP. C 30 - C 3X --.0.0 - 20.00 .600E-01 -. 206 1.22 - 80.00 - - 200.0 TIME INTERVAL ---- 600.0 - 1000. - 1600. - 2000. -1.98 -. 957 1.22 -1.86 -1.81 1.51 -3.43 -2.29 2.34 -5.95 -4.92 4.97 -4.71 -5.16 5.17 -7.84 -5.33 5.40 C 48 - C 4X .600 6.57 8.25 -1.25 -. 639 .924 -1.42 -1.22 1.22 -2.81 -1.94 1.99 -5.60 -4.46 4.63 -4.06 -4.62 4.64 -7.13 -4.62 4.70 C 68 - C 6X 1.12 4.86 5.92 -1.18 -.10s .746 -1.61 -1.34 1.34 -2.99 -2.12 2.17 -5.67 -4.72 4.79 -4.20 -5.03 5.05 -7.34 -4.81 4.89 C 68 - C 6X .790 5.82 7.41 -1.09 -. 320 .708 -1.20 -1.11 1.11 -2.77 -1.94 1.99 -5.78 -4.61 4.69 -4.49 -4.96 4.96 -7.61 -4.99 5.06 C 78 - C 7X -. 600 -. 300E-01 .639 -1.22 -. 923 .964 -1.66 -1.30 1.31 -3.06 -2.11 2.16 -5.96 -4.73 4.81 -4.71 -5.16 6.17 -7.85 -5.29 5.37 C 8B - C OX -. s00 -. 199 .684 -1.45 -1.01 1.07 -1.56 -1.41 1.41 . -3.21 -2.31 2.35 -5.90 -4.91 4.99 -5.10 -5.46 5.48 -8.36 -5.70 5.77 C 98 - C SX -2.24 -. 975 1.32 -3.50 -3.21 3.25 -4.37 -3.76 3.77 -5.99 -4.65 4.66 -8.54 -7.24 7.29 -7.54 -7.70 7.71 -10.5 -7.84 7.89 C AS - C AX -. 343 .646 1.27 .977 ,190 .462 .558 .693 .730 -. 641E-01 -. 483E-01 .289 -.535 -. 357 .400 -. 424 -. 4"6 .480 V S8 - V 5X -1.61 -1.22 1.25 -4.91 -3.56 3.76 -4.72 -4.96 4.96 -6.00 -5.01 5.03 -8.82 -7.54 7.59 -7.43 -7.94 7.95 -9.73 -7.65 7.59 V68- V 6X -1.64 .539 1.74 -3.02 -2.63 2.70 -3.89 -3.30 3.30 -5.30 -4.13 4.16 -7.98 -6.69 6.74 -6.83 -7.10 7.12 -9.81 -7.21 7.27 V 78 - V 7X 5.16 5.25 5.27 3.60 5.11 5.46 3.24 3.59 3.60 3.46 3.22 3.22 2.78 3.14 3.14 2.76 2.77 2.77 3.98 3.32 3.34 V 88 -.V 8X -1.80 -. 817 .959 -4.03 -3.40 3.53 -4.52 -4.64 4.64 -5.62 -4.86 4.88 -7.64 -6.96 6.98 -6.04 -6.73 6.75 -8.94 -6.61 6.66 V 98 - V 9X .592 .781 .798 .954E-0I .310 .433 .750E-02 .898E-O1 .745E-01 -. 123 -. 4746-01 .617E-01 -. 330 -. 251 .269 -. 164 -. 230 .236 -. 246 -. 146 .149 V AB - V AX .469 .658 .678 -. 270E-01 .196 .359 -. 113 -. 494E-01 .574E-01 -. 268 -. 186 .192 -. 481 -. 406 .410 -. 224 -. 349 .360 -. 345 -. 237 .240 HLI0 - HLIX -34.4 -22.0 22.9 28.0 -. 245 22.3 47.4 64.9 55.5 -76.3 -15.5 48.6 50.2 -50.1 86.0 42.6 63.0 63.6 13.0 25.9 29.1 HL28 - HL2X -32.1 -30.3 30.5 -14.9 -24.3 24.9 -32.1 -23.2 23.8 92.8 5.79 31.2 159. 15.7 116. 19.7 73.0 83.3 10.2 -3.06 8.61 NL4X .990 2.68 3.08 .20OE-0I .433 .574 -. 620 -. 181 .327 -2.10 -1.50 1.59 -5.70 -4.23 4.32 -4.45 -4.81 4.83 -7.90 -5.08 6.17 HLSB - HLSX .570 .736 .751 .794E-01 .306 .428 -. 130 -. 9666E-01 .B10E-01 -. 332 -. 268 .274 -. 123 -. 218 .226 -. 186 -. 103 .106 HL4B - .137E-01 .621E-01 .871E-01 .849E-01 .101 .189 CLIO - CLIX -4.96 -17.1 19.4 -61.0 -39.5 45.6 6.69 -17.5 27.7 7.68 16.0 21.0 137. 88.7 80.4 44.4 79.8 83.8 S.77 14.7 18.6 CL28 - CL2X 742. 745. 745. 661. 699. 700. 8a6. 630. 630. 344. 461. 467. 195. 270. 273. 54.8 117. 124. 14.3 28.5 30.6 CL38 - CL3X -9.09 -3.96 4.56 -2.57 -7.95 8.85 3.23 -1.65 7.08 175. 68.7 121. -8.19 101. 123. -14.7 -13.6 15.3 -5.21 -11.1 11.0 CL48 - CLAX .286 .479 .512 -. 640 -. 469 .524 -1.57 -. 805 .873 -3.26 -3.46 3.73 -. 370 -1.44 1.63 -. 89E-'01 -. 178 .215 -. 5856-01 -. 6186-01 .529E-01 CL68 - CL6X .820 1.43 1.4$ -2.36 -. 855 1.46 -1.99 -2.17 2.18 -2.67 -2.12 2.14 -5.77 -4.48 4.57 -4.42 -4.95 4.97 -7.63 -5.10 6.18 CL78 - .557 .736 .755 -. 180 -. 792E-01 .107 -. 402 -. 332 .339 -. 221 -. 305 .310 -. 317 -. 21' CL7X .107 .300 .412 .385E-01 .8196-01 .8486-01 Appendix C.4 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 - COOES CAIC. EXP. 0.0 - 20.00 CL88 - CLSX .451 CL9B - CL9X -13.6 -7.58 7.86 .650 .669 - 50.00 -TIME INTERVAL ---- 200.0 - 600.0 - 1000. - 1500. - -. 937E-01 .146 .347 -. 195 -. 333 -. 579 -. 399 -. 471 .474 -81.2 -50.0 -130. -90.4 91.9 -31.6 -71.6 83.8 -12.9 -14.9 -12.9 -13.5 13.5 -18.3 -16.2 16.3 55.7 -. 120 .124 -. 257 .260 -. 460 .465 16.2 17.8 14.7 14.8 1.60 -. 792 8.93 10.2 7.26 10.3 -14.9 -4.67 33.8 7.60 -11.8 -13.9 -12.5 13.1 -16.3 -13.6 13.7 BRID - BRIX 7.85 42.3 57.0 -33.7 -24.5 31.0 80.3 164. 131. 121. 122. 26.7 .810 16.6 19.6 1R2B - 8R2X 8.59 7.08 8.02 BR48 - BR4X .810 -9.29 14.8 CLAB - CLAX BR58 - Sf5X SACI - BR6X 13.0 32.3 102. 109. .398 .572 .688 .232 .353 .506 -1.83 -. 737 1.25 -1.61 -1.78 1.78 -2.19 3.19 14.6 19.3 1.91 2.82 3.25 .975 1.78 1.82 .543 .821 .855 .850E-02 .245 .390 2.04 3.51 3. 186 -1.68 1.70 -. 300 -. 192 .196 -3.63 -1.94 2.09 1.96 2.58 2.61 -6.87 -5.24 5.34 -5.52 -6.29 6.30 -9.36 -6.63 6.70 1.84 1.60 3.67 2.60 2.65 -18.2 -16.5 -3.15 -. 689 .954 -76.9 -51.5 57.6 -80.3 -. 341 -. 177 .249 -. 117 -. 152 .162 -. 106 -. 111 .115 -. 125 .125 8.56 4.93 6.64 .540 3.50 4.37 -2;00 -1.35 -1.86 .147 .8156-01 .8376-01 .128 .131 .131 Is -'S IX P 1e - P IX P 28 - P 2X P 38 - P 48 - P 3X P 4X 5018 - ECIX -16.1 -12.3 13.1 .837E-01 .5686-01 .6366-01 -1.02 -6.51 8.02 .672E-01 .6196-01 .627E-01 -20.1 -11.8 12.7 -2.14 -13.8 16.6 -19.7 -13.0 13.7 1.74 -12.1 15.8 .341 .349 .363 -. 670E-03 -. 135 .161 -7.63 -4.86 4.96 -. 182 -. 252 .257 .117 2.02 2.35 8S5X -4.46 4.48 -. 335 -. 277 .283 -. 113 1.83 -1.66 3.05 S658 - -4.02 -. 143 -6.99 -6.88 7.13 am48 - SS4X -4.94 -3.85 3.95 -. 660E-01 .415E-03 .3306-01 8P28 - S2X - 9S3X -. 260 -. 207E-01 .285 .206 .254 1.72 1.37 1.38 -. 980 -. 489 .602 8333 -. 187 1.24 1.05 1.05 -. 480 -3.01 3.66 SP3X -. 5756-01 -. 1876-01 .149 .803 .679 .686 -7.52 -7.33 7.58 SP38 - 76.1 79.1 .535 .548 .558 SPIX SPIS - 12.3 2000. -. 497 -. 392 .393 2.39 -71.3 71.5 -41.9 2.40 2.42 2.26 2.27 -15.9 -16.9 -19.4 -17.5 17.6 -. 207 -. 169 .170 -. 297 -. 234 .235 -. 370 -. 321 .323 1.63 .574 1.55 3.26 2.77 2.84 -6.27 1.33 3.04 -13.0 48.0 13.2 -. 141 16.9 1.46 -2.84 2.67 .306E-01 .108 .121 -. 182 -. 7946-01 .102 -. 517 -. 351 .362 -1.24 -1.90 -1.58 1.60 1.03 .862 1.09 -1.46 -8.88 -5.78 6.27 -9.70 -2.94 -8.05 8.27 .8396-01 .BOE-01 .801E-01 .921 1.25 .836E-01 .838E-01 .8386-01 .844E-01 .8386-01 .838E-01 -. 857 .883 -9.06 9.08 .839E-01 .8406-01 .8406-01 .839E-01 .842E-01 .842E-01 -56.2 -47.2 47.6 -70.3 -63.1 63.2 -90.2 24.3 4.76 -6.88 -. 489 -21.5 3.52 -15.1 15.6 -32.2 4.13 -". 0 -37.6 37.8 -. 412 .417 -9.35 -4.77 5.22 3.96 -35.1 -23.2 -. 144E-01 .200 .349 -. 105 -. 3296-01 .439E-01 -. 281 -. 189 .196 -. 5586-01 -. 107E-02 .532E-01 -. 2566-01 -. 392E-01 .3996-01 .209E-01 -. 392E-02 .134E-01 -. 486 .3106-01 .320E-01 .336E-01 -26.7 26.8 -. 310 -. 388 .391 .259E-02 .205E-01 .237E-01 -79.4 79.6 -. 402 -. 301 .303 .504E-01 .2396-01 .267E-01 Appendix C.5 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 Case C CA•LCULATION-TO-EXPERIMENT FIRST LINE SECOND LINE THIRD LINE - DATA UNCERTAINTY ANALYSIS FOR NRC/ZCAP. DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL MEAN DIFFERENCE OVER THE INTERVAL MEAN SI(3M OVER THE INTERVAL (ROOT MEAN SOUARE OF THE DIFFERENCE) CODES - ---- CALM. EXP. C 3C - C 3X C 4C - C 4X C 50 - 0.0 - 20.00 - S0.00 - 200.0 TIME INTERVAL ---- 500.0 - 1000. - 1800. - 2000. -2.01 -. 947 1.21 -1.99 -1.92 1.92 -3.94 -2.59 2.67 -6.52 -65.44 5.48 -5.17 -5.73 6.74 -5.11 -5.80 5.66 .550 6.51 8.22 -1.27 -. 530 .911 -1.49 -1.31 1.31 -3.32 -2.24 2.32 -6.06 -4.98 5.04 -4.52 -5.19 5.21 -7.43 -8.08 6.15 C 5X 1.07 4.80 6.69 -1.19 -. 908E-01 .733 -1.66 -1.41 1.42 -3.60 -2.42 2.49 -6.44 -5.24 5.30 -4.67 -5.61 6.63 -7.60 -5.27 5.34 C 6C - C 6X .750 5.77 7.39 -1.08 -. 299 .683 -1.23 -1.16 1.17 -3.28 -2.23 2.31 -6.35 -5.13 5.20 -4.96 -5.52 5.54 -7.77 -5.46 5.52 C 7C - C 7X -. 650 -. 812E-01 .666 -1.18 -. 896 .929 -1.58 -1.36 1.36 -3.57 -2.40 2.47 -5.52 -5.25 6.32 -5.17 -5.74 5.75 -8.11 -5.75 5.62 .IOOE-01 - 260 1.21 C aC - C 8X -. 550 -. 247 .599 -1.46 -. 986 1.04 -1.47 -1.42 1.43 -3.69 -2.55 2.63 -6.54 -5.42 6.49 -5.56 -6.02 6.03 -8.66 -6.16 6.22 C 90 - C 9X -2.29 -1.03 1.38 -3.47 -3.17 3.21 -4.31 -3.77 3.76 -6.45 -4.80 4.93 -9.09 -7.75 7.80 -7.98 -8.24 8.25 -10.8 -8.30 8.36 -. 6SDE-0l -. 5654-01 .295 -. 537 -. 357 .399 -. 425 -. 449 .462 C AC - C AX -. 3S2 .549 1.27 1.00 .207 .486 .744 .786 .814 V sC - V ax -1.64 -1.19 1.22 -4.96 -3.56 3.75 -5.06 -5.16 5.16 -6.50 -5.41 5.42 -9.37 -6.06 8.11 -7.07 -6.44 8.46 -10.0 -8.02 8.05 V SC - V eX -1.69 .495 1.76 -3.00 -2.60 2.67 -3.91 -3.31 3.31 -5.76 -4.36 4.40 -8.63 -7.20 7.26 -7.27 -7.65 7.66 -10.1 -7.68 7.73 V ?C - V 7X 5.17 5.28 5.31 3.74 5.13 6.47 3.36 3.70 3.70 3.45 3.24 3.24 2.7$ 3.14 3.14 2.75 2.77 2.77 3.98 3.32 3.34 -1.85 -. 669 1.01 -4.86 -3.39 3.52 -4.63 -4.74 4.74 -6.08 -5.16 5.19 -8.19 -7.46 7.48 -6.48 -7.27 7.29 -9.23 -7.07 7.11 V 9C - V 9X .5687 .779 .798 .113 .316 .434 -. 167 -. 689E-01 .902E-01 -. 376 -. 297 .303 -. 183 -. 270 .276 -. 261 -. 173 .175 V AC - V AX .464 .656 .676 -. 310 -. 200 .213 -. 526 -. 451 .456 -. 253 -. 390 .400 -. 360 -. 264 .266 HLIC - NLIX -34.3 -21.9 22.8 28.2 .208 22.7 49.1 56.4 66.0 -73.5 -16.6 62.9 47.7 -53.6 67.6 38.2 56.1 68.6 10.5 23.7 27.3 HL2C - HL2X -32.1 -30.3 30.6 -14.9 -24.3 24.9 -32.3 -23.3 24.0 -239. -19.9 65.0 167. -. 940 121. 17.0 66.5 76.2 9.98 -3.62 6.36 NL4C - HL4X .940 2.64 3.05 .600E-01 .464 .575 -. 600 -. 173 .320 -2.57 -1.76 1.89 -6.28 -4.74 4.82 -4.90 -5.36 5.38 -6.20 -5.56 5.62 ML1. - HL5X .565 .733 .750 .103 .313 .429 -. 176 -. 926E-01 .111 -. 370 -. 314 .319 -. 153 -. 269 .267 -. 201 -. 130 .132 CLIC - CLIX -4.92 -17.2 19.4 -65.0 -41.1 47.7 -8.92 -26.3 32.3 11.0 6.58 16.0 133. 96.2 77.2 43.5 76.2 79.4 4.39 16.2 19.4 CL2C - CL2X 742. 745. 745. 657. 698. 699. 566. 621. 621. 364. 457.. 461. 197. 276. 276. 65.7 123. 130. 14.1 26.1 30.4 CL3C - CI.3X -9.04 -3.95 4.56 -2.75 -7.96 6.88 -. 470 -2.07 6.67 202. 67.6 145. -6.53 104. 126. -14.6 -13.7 15.4 -5.27 -11.2 11.9 CLAC - CLAX .2865 .479 .513 -. 787 -. 509 .561 -. 605 -. 649 .685 -3.08 -3.16 3.61 -. 391 -1.22 1.47 -. 835E-01 -. 228 .254 -. 594E-01 -. 623E-01 .6368-01 CL6C - CL6X .790 1.45 1.50 -2.41 -. 680 1.46 -2.39 -2.39 2.39 -3.17 -2.54 2.56 -6.32 -4.99 5.07 -4.63 -5.42 8.44 -7.96 -5.68 5.64 CLC - CL7X .552 .734 .766 -. 170E-01 .526E-01 .6278-01 -. 232 -. 131 .147 -. 449 -. 380 .386 -. 252 -. 34S .353 -. 332 -. 246 .247 V BC - V &X -. 570E-02 .204 .366 .975E-01 .299 .411 .232E-01 .777E-01 .612E-01 -. 805E-01 -. 323E-01 .4019-01 .187E-01 .7051-01 .752E-01 .767E-01 .187 .278 Appendix C.6 NP-87/128 STUDSVIK ENERGITEKNIK AB 1987-11-03 - COOES- CALC. EXP. CL8C - CLSX CL9C - CL9X CLAC - CLAX MRIC - BRIX TIME INTERVAL - - - ---- 0.0 - 20.00 - 80.00 - 200.0 - 600.0 -. 376 -13.6 -7.63 7.90 -52.5 -40.5 44.2 -27.4 -38.9 40.7 -23.1 -27.5 28.9 -. 624 -. 505 .609 -10.1 -11.5 13.1 17.8 14.7 14.8 1.60 -. 792 8.93 10.2 7.26 10.3 -14.9 -4.67 33.8 7.60 -11.8 12.3 7.89 42.2 57.0 -38.3 -25.6 32.5 66.8 4.87 27.8 167. 88.4 95.8 128. 117. 119. -. 266 .275 -4.12 -2.24 2.41 -5.76 -7.43 5.85 -5.98 -6.84 6.85 2.14 2.41 2.46 1.99 2.66 2.67 1.85 2.41 2.43 1.61 2.28 2.29 -9.65 -7.10 7.16 3.67 2.60 2.65 BR6X .538 .819 .855 .228E-01 .253 •390 -. 263E-01 .193E-01 .312E-01 SPIC - SPIX -7.56 -7.37 7.62 -. 450 -2.98 3.65 -. 208 -. 169 .170 -14.6 -14.5 14.15 -. 268 -. 236 .236 -19.4 -17.3 17.4 -. 369 -. 319 .321 -. 590 -1.96 2.00 1.08 .$94 1.07 2.83 2.21 2.29 -6.65 .319 2.82 .223E-01 .101 .115 -. 227 -. 109 .132 -. 563 -. 396 .406 -1.27 -. 8a" .923 -1.92 -1.61 1.63 .912 .821 1.01 -3.23 -. 264 1.24 -8.88 -6.42 S.68 -9.72 -9.05 9.07 -2.86 -8.00 8.22 -22.4 -26.9 28,1 -12.9 -17.3 17.8 -13.7 -11.0 11.2 -. 105 -. 111 .115 -. 138 -. 122 .123 -- 1.91 -1.35 1.43 6S4C - 334X 8.50 4.91 5.62 .360 3.19 4.48 S35C - S3SX .145 .635E-01 .680E-01 .132 .134 .134 8 10 - S iX P 10 - P IX P 2C - P 2X -20.1 -11.8 12.8 -2.03 -13.8 16.6 -9.24 -4.73 5.18 P 3C - P 3X -19.8 -13.0 13.8 1.90 -12.0 15.7 4.92 3.99 4.15 P 40 - P 4X 6CIC - ECIX .336 .245 .349 -. 670E-03 -. 135 .161 .671E-01 .618E-01 .626E-01 .839E-01 .•00E-01 .8015-01 .836E-01 .838E-01 .838E-01 .839E-01 .640E-01 .840E-01 .939E-01 .842E-01 .942E-01 -68.7 -47.7 48.1 -70.8 -63.7 63.8 -90.5 -79.9 80.1 -7.42 -. 836 3.76 -21.7 -15.4 15.8 -32.0 -26.7 26.9 -43.7 -37.6 37.7 -. 531 -. 458 .462 -. 339 -. 428 .432 -. 417 -. 328 .329 -. 931E-01 -. 287E-01 .397E-01 -. 327 -. 212 .223 685E-01 -. 2765-01 -. 400E-01 .407E-01 .234E-0? -. 318E-02 .146E-01 -. 148E-02 .533E-01 .844E-01 .838E-01 .8386E-C -35.6 -23.4 24.6 -. 280E-02 .206 .348 -. 1.27 17.1 20.3 -1.01 -. 525 .630 SR6C - .826E-01 .559E-01 .6266-01 13.7 -. 314 -. 219 .222 .546 .766 .863 -. 606 -6.17 7.82 27.2 73.2 76.7 -13.6 -. 215 -. 294 •298 1.70 2.16 2.17 -16.1 -12.3 13.1 13.1 -. 381 -. 322 .327 2.09 2.89 3.29 -. 117 -. 153 .162 -16.3 -12.5 -. 186 -. 126 .136 3.18 14.5 19.3 -. S41 -. 181 .250 -13.9 1.72 1.37 1.38 BRSC - 5R5X -28.7 -39.9 44.9 -18.2 -15.9 16.0 1.24 1.05 1.05 -2.65 -2.02 2.06 -3.18 -. 721 .990 -11.1 -9.95 9.97 -. 419 .420 .904 .685 .693 -1.95 -1.98 1.98 SP3X -. 512 -. 512 .616 -7.92 -5.33 5.41 -1.88 -. 734 1.25 8P3C - -. 428 -4.52 -5.03 5.04 .780 -9.27 14.8 1.83 -1.66 3.06 2000. -5.49 -4.36 4.45 9R4C - BR4X -6.99 -5682 7.07 - -. 252 .529E-02 .208 .243 .500 .522 SP2X 1600. -. 245E-01 .286 .325 .427 .653 .774 8P2C - - -. 606E-01 -. 481E-01 .159 2.31 3.54 3.89 - 863X 1000. -. 163 -. 9816-01 .101 .345 8.59 7.08 8.01 S33 - -. 716E-01 .155 .446 .648 .670 BR2X BR2C - - .3366-01 .346E-01 .361E-01 .430E-02 .2281-01 .2586E-01 .5136-01 .255E-01 .280E-01 STUDSVIK ENERGITEKNIK AB NP-87/128 Appendix D.1 (1) 1987-11-03 STUDSVIK THIS TAPE CONTAINS DATA FROM THE ICAP PREDICTION CALCULATION WITH THE RELAP5/MOD2/36.04 FOR THE LOFT EXPERIMENT NO. L3-6. CONTENTS, I. II. FILE 1. 2. 3. 4. 5. 6. 7. a. THIS DESCRIPTIVE TEXT INPUT CASE A, STEADY STATE B, -",UPDATES C, -",UPDATES DATA, EXPERIMENT - CASE A - CASE B - CASE C COMPUTER NAME WORD SIZE CYBER 170-810 60 TAPE FORMAT NUMBER OF TRACKS PACKING DENSITY RECORD SIZE BLOCKING FACTOR CODED CONTROL WORDS 9 1600 BPI 80 64 EBCDIC NO III. DATA FORMAT, FOR EACH OF THE FILES 5 THROUGH 8 TITLE RECORD(S). (FORMAT I5,A75) FIELD 1. THE NUMBER OF DATA CHANNELS ON THE FILE FIELD 2, PROBLEM IDENTIFICATION UP TO FIVE ADDITIONAL IDENTIFICATION RECORDS MAY BE ADDED BY 'C' IN COLUMN 1 OF FIELD 1 DATA SET RECORD 1, (FORMAT 215,A60) FIELD 1, NUMBER OF DATA POINTS FIELD 2. THE ENGINEERING UNIT CODE (EUC) VARIABLE FIELD 3. IDENTIFYING TEXT OF THE DATA REMAINING DATA SET RECORDS FORMAT 5(E16.9) FOR THE EACH DATA CHANNEL SUBMITTED IS GIVEN THROUGH TWO DATA SETS, THE FIRST OF WHICH IS THE TIME DATA SET. THE TWO SETS HAVE THE SAME NUMBER OF DATA POINTS. THE TIME DATA SET IS IDENTIFIED BY EUC-77 (FIELD 2) AND THE IDENTIFYING TEXT 'TIME' (FIELD 3). TO A + B U.S. NUCLEAR REGULATORY COMMISSION NRC FORM 335 I2-891 NRCM 1102. 1. REPORT NUMBER Add Vol.. Suoo.. Rev.. (Asigemd by NRC. and Addendum Numbemr. If any.) NIJREG/1A-0033 BIBLIOGRAPHIC DATA SHEET 3201.202. [See instructionson the reverse) STUDSVI K/NP-87/128 2. TITLE AND SuBTITLE Assessment of RELAP5/MOD2, Cycle 36.04 3. Against LOFT Small Break Experiment L3-6 DATE REPORTPUBLISHED EA ,,ONTH' July i 1990 4. FIN OR GRANT NUMBER N/A 6. TYPE OF REPORT 5. AUTHORIS) Technical John Eriksson 7. PERIOD COVERED inctveoi•ws. 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC. provide Oivision. Office or Region,'U.S. Nucleit, Rgularo,' Commisson. and mailing ad•oress.,it conttrtor, yowao,. nao" and mailing address.) Swedish Nuclear Power -Inspectorate..... Box 27106 10252 Stockholm Sweden 9. SPONSORING ORGANIZATION - NAME AND ADDR ESS III NRC. type "nwSeasooow"; ifcontractor. provide NRC Oivision. Office of Region. U4 Nuclea Regulatory Commisuon. and mailing addres.) Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 10. SUPPLEMENTARY NOTES 11.ABSTRACT 200 words orie The LOFT small break experiment L3-6 has been analyzed as part of.Sweden's contribution to the International Thermal-Hydraulic Code Assessment and Applications Program (ICAP). Three calculations, of which two were sensitivity studies, were carried out. following quantities were:varied: The the content of secondary side fluid and the feed water valve closure the two-phase characteristics of the main pumps All three predictions agreed reasonably well with most of the measured data. sensitivity calculations resulted only in marginal improvements. The The predicted and measured data are compared on plots and their differences are quantified over intervals in real time. 12. KEY WORDS/DESCR!PTORS fList words orohrases that wll &mistresearcher in locating the or..i . 3.AVAIASILI8TY STATEMENT Unlimited RELAP5/MOD2/ Cycle 36.04 Against LOFT Small Break Experiment L3-6 14.sEcURT CLASSIFICATION IThis PaOW Unclassified (This Roorr•l Uncl assi fi ed 15. NUMBER OF PAGES 16. PRICE NRC FORM 335 !2-8) NUREG/IA-0033 ASSESSMENT OF RELAPS/MOD2, CYCLE 36.04 AGAINST LOFT SMALL BREAK EXPERIMENT L3-6 JULY 1990