...

International Agreement Report Assessment of RELAP5/MOD2,

by user

on
Category: Documents
74

views

Report

Comments

Transcript

International Agreement Report Assessment of RELAP5/MOD2,
NUREG/IA-0037
STUDSVIK/NP-87/63
International
Agreement Report
Assessment of RELAP5/MOD2,
Cycle 36.04 Against LOFT
Small Break Experiment L3-5
Prepared by
J. Eriksson
Swedish Nuclear Power Inspectorate
S-61182 Nykoping
Sweden
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
March 1992
Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment
and Application Program (ICAP)
Published by
U.S. Nuclear Regulatory Commission
NOTICE
This report was prepared under an international cooperative
agreement for the exchange of technical information.ý Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's
use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use
by such third party Would not infringe privately owned rights.
Available from
Superintendent of Documents
U.S. Government Printing Office
P.O. Box 37082
Washington, D.C. 20013-7082
and
National Technical Information Service
Springfield, VA 22161
NUREG/IA-0037
STUDSVIK/NP-87/63
International
Agreement Report
Assessment of RELAP5/MOD2,
Cycle 36.04 Against LOFT
Small Break Experiment L3-5
Prepared by
J. Eriksson
Swedish Nuclear Power Inspectorate
S-61182 Nykoping
Sweden
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
March 1992
Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment
and Application Program (ICAP)
Published by
U.S. Nuclear Regulatory Commission
NOTICE
This report documents work performed under the sponsorship of the SKI/STUDSVIK
of Sweden.
The information in this report has been provided to the USNRC
under the terms of an information exchange agreement between the United States
and Sweden (Technical Exchange and Cooperation Arrangement Between the United
States Nuclear Regulatory Commission and the Swedish Nuclear Power
Inspectorate and Studsvik Enerigiteknik AB of Sweden in the field of reactor
safety research and development,
February 1985).
Sweden has consented to the
publication of this report as a USNRC document in order that it may receive
the widest possible circulation among the reactor safety community.
Neither
the United States Government nor Sweden or any agency thereof, or any of their
employees,
makes any warranty, expressed or implied, or assumes any legal
liability of responsibility for any third party's use, or the results of such
use, or any information, apparatus, product or process disclosed in this
report, or represents that its use by such third party would not infringe
privately owned rights.
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
1987-06-09
SKI Project 85026,
John Eriksson
13.3-917/84
Swedish Nuclear Power Inspectorate
ICAP
ASSESSMENT OF RELAP5/MOD2, Cycle 36.04
AGAINST LOFT SMALL BREAK EXPERIMENT
L3-5
ABSTRACT
The LOFT small break experiment L3-5 has
been analyzed using the RELAP5/MOD2 code.
The code version used, Cycle 36.04, is a
frozen version of the code.
Three calculations were carried out in
order to study the sensitivity to changes
of steam generator modelling and of core
bypass flow. The differences between the
calculations and the experiment have been
quantified over intervals in real time for
a number of variables available from the
experiment.
Approved by
ý-7
CHRi
iii
K
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
1
1987-06-09
LIST OF CONTENTS
Page
3
1
INTRODUCTION
2
FACILITY AND TEST DESCRIPTION
2.1
2.2
2.3
2.4
2.5
Test Facility
The Experiment
Assessment Parameters
Measurement Uncertainty
Experimental Data Preparation
4
5
6
7
7
3
CODE AND MODEL DESCRIPTION
8
3.1
3.2
3.2.1
3.2.2.
Code Features
Input Model
Initial
System Pressure
Primary Fluid Temperature
8
8
9
9
3.2.3.
3.2.4.
Core Flow Bypass
Environmental Heat Losses
10
11
3.2.5.
3.2.6.
3.2.7.
Break Discharge Coefficient
Pump Model
Steam Generator
11
12
12
4
THE BASE CASE CALCULATION
(CASE A)
14
5
SENSITIVITY RESULTS AND DISCUSSION
16
5.1
5.2
Case B
Case C
16
17
6
RUN STATISTICS
21
7
CONCLUSIONS
22
REFERENCES
24
TABLES
26
FIGURES
33
APPENDICES
A
B
C
D
CHRi
Input Listing (Case A)
Data Comparison Plots
Calculation-to-Experiment Data
Uncertainties
Description of the Accompanying
Data Package
A.1
B.1
C.1
D.1
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
3
1987-06-09
1
INTRODUCTION
An International Thermal-Hydraulic Code Assessment and Applications Program (ICAP) is at
present being conducted by several countries
under the auspices of the USNRC (1). The goal of
the program is to make quantitative statements
regarding the prediction capabilities of current
best-estimate thermal-hydraulic computer codes.
Such codes have been used for many years as
state-of-the-art instruments to study and verify
numerical and correlative computational models
with experimental results. Some of these codes
have reached a high degree of sophistication.
They include models for all processes which are
essential to thermal-hydraulic scenarios in the
nuclear power reactor application. So far,
however, these codes have not achieved status as
reactor licensing tools, i.e. they do not
fulfill the Appendix K rules (2), although they
are often applied to other calculations. The
present ICAP aims to quantify uncertainties in
the codes so that the codes may be used for
licensing purposes.
Sweden's contributions to ICAP encompass assessment calculations using the two thermal-hydraulic
codes TRAC-PFl/MODI (3) and RELAP5/MOD2 (4). The
work is conducted by Studsvik Energiteknik AB
and is sponsored by the Swedish Nuclear Power
Inspectorate.
A data package on tape
and predicted data has
content is described in
this tape is submitted
ICAP agreement.
CHRI
containing input files
been produced. The
Appendix D. A copy of
to USNRC as a part of the
STUDSVIK ENERGITEKNIK AB
4
STUDSVIN/NP-87/63
2
FACILITY AND TEST DESCRIPTION
The LOFT-experiment series
L3 was designed to
provide large-scale blowdown system data for PWR
small break transients.
As part of the Swedish
ICAP contribution two experiments out of the L3
series
in
were assigned.
this
report,
In
the experiment treated
the LOFT L3-5,
the main cir-
culation pumps were stopped shortly after
break was opened.
In
the other experiment,
LOFT L3-6,
see
operate at
normal speed throughout the test
(7),
the
the
the pumps were allowed to
in
order to provide data for analyzing the differences in
the two-phase scenarios
between the two
tests.
Apart from the difference
tional
mode the two experiments were nominally
in
pump opera-
identical.
This chapter shall
facility,
briefly
describe the test
the L3-5 experiment,
the assessment
parameters used and some aspects of the measurement uncertainties
as well as experimental
data
preparation.
2.1
Test Facility
The objective of the LOFT experiments was to
demonstrate thermal-hydraulic
-might occur in
abnormal
situations.
phenomena which
commercial PWR systems during
The facility
is
performing a variety of operational
and LOCAs.
capable of
transients
Brief descriptions of the LOFT are
given in a number of experiment reports such as
(5). The most thorough description is provided
by Reeder (6). Only particular design features
and characteristics relevant to the L3-5 experi-
ment will be discussed in the following sections.
NP114 AW
STUDSVIK ENERGITEKNIK AB
5 ,
STUDSVIK/NP-87/63
1987-06-09
A general view of LOFT is shown in Figure 1. In
the L3-5 small break experiment the two isolation valves on the broken loop legs were
closed so as to prevent the passage of fluid via
the header to the suppression vessel.
The break was simulated by a 205.6 mm2 orifice
in a T-branch line from the intact loop cold leg
near the reactor vessel. The aim of the break
configuration was to simulate an equally placed
4-in diameter small break on a four-loop 1000
W (e) PWR.
During the L3-5 experiment the only primary
coolant injection was carried out by the HPIS
into the reactor vessel downcomer. The experiment was terminated before the LPIS pressure set
point was reached.
2.2
The Experiment
After approximately 45 h of nuclear heating the
initial conditions listed in Table I were
obtained. The sequence of events which occured
during this
experiment is
listed
in
Table
2.
Main imposed actions during the experiment were:
NP114 AW
a.
At the time of reactor scram (which for
safety reasons had to be verified
before the break) the steam generator
feed water and steam line valves
started to close.
b.
The two main circulation pumps were
manually tripped just after the break.
Pump coastdown was assumed to end at
750 r/min when the speed control
carried out by the motor-generator
driving unit was disconnected.
STUDSVIK ENERGITEKNIK AB
6
STUDSVIK/NP-87/63
1987-06-09
c.
The HPIS injection started at 13.2 MPa.
d.
The steam generator auxiliary feed was
initiated and terminated manually.
2.3
Assessment Parameters
The selection of the appropriate assessment
parameters for the LOFT L3-5 experiment,
3,
Table
followed the recommendations of the ICAP
Guidelines
(1).
The selection was made during
the input preparation,
since a number of ex-
panded Edit/Plot variables from RELAP5/MOD2
calculations are not available from the restart
file
In
but must be saved as control variables.
some cases liquid level data are compared as
pressure differences.
For the upper plenum and
downcomer levels only bubble plot data shown in
(5)
were available.
These plots were converted
into slightly smoothed elevation histories.
Due
to ambiguous bubble plot data the indicated
level behaviour is
rather uncertain.
The early break flow was not qualified until
40 s after the break,
and showed rather large
errors during the remainder of the transient.
Comparisons of mass inventory obtained through
flow integration were therefore not carried out.
For the energy balance,
the steam generator heat
transfer was not known,
and could not even be
estimated by the steam produced.
CIURI
STUDSVIK ENERGITEKNIK AB
.7
STUDSVIK/NP-87/63
1987-06-09
2.4
Measurement Uncertainty
The instrumentation involves a variety of
transducers which may have different accuracies
for the same kinds of quantities (5,6). Table 4
is
a summary of the accuracies of the measured
quantities.
2.5
Experimental Data Preparation
The preparation of the experimental data for
plotting and uncertainty analysis required
several steps of manipulation of the information. First of all,
the data were copied from
the original blocked tape files to the CDC
standard display code.
A program,
LOFTDEC,
was developed to sort out
the'keyword and channel information to be used
in
the assessment work.
The program also deci-
mated the channel data by averaging over time
intervals so that information was copied to an
intermediate channel information file
only every
2nd second up to 200 s after the break,
and then
every 5th second.
A program,
R5SILFT,
was developed to select data
for desired channels from the intermediate data
file.
These data were transformed into a new
file
with the same format as a RELAP5 restart
file.
Experimental and predicted data could
later on be similarly used in
assessment.
NP114 AW
plotting and
STUDSVIK ENERGITEKNIK AB
8
STUDSVIK/NP-87/63
1987-06-09
3
CODE AND MODEL DESCRIPTION
The assessment calculations with RELAP5/MOD2 for
the LOFT L3-5 experiment were carried out using
the cycle 36.04 code version.
implemented in
computer.
The code was
June 1986 on a CDC 170-810
The calculational model was based on
available LOFT input files and listings. Some
changes in
the input model were introduced as a
result of findings in
3.1
the L3-5 experiment.
Code Features
The descriptive document available for the
RELAP5/MOD2 code is a rather detailed code
manual (4). The main characteristics of the
code are summarised in
of RELAP5/MOD2 is
Table 5.
A new feature
the cross junction which,
according to code manual recommendations,
was
applied at the steam separator upstream volume
and at the hot leg and cold leg vessel junctions.
3.2
Input Model
The basis of the input preparation for L3-5 was
an existing file
which had previously been used
for RELAP5/MOD2 fast transient calculations on
LOFT.
It
was necessary to update and expand the
input file,
listings
and several of the available input
(7,
8,
9)
were used.
particular approaches used in
The reasons for
modelling are
presented below. Figure 2 shows the nodalization
used.
NPl14 AW
The input listing is
given in
Appendix A.
STUDSVIK ENERGITEKNIK AB
9
STUDSVIR/NP-87/63
1987-06-09
3.2.1
The Initial
System Pressure
To avoid an explicit steady-state pressurizer
pressure and level control,
the surge line
junction was modelled as a trip
valve which was
closed until scram. The pressurizer initial
fluid conditions were saturated with correct
fluid content and pressure.
In
the case A
calculation no boundary heat structures were
involved in keeping the pressurizer state
steady. However, for cases B and C pressurizer
heat structures were applied with the outer
surface at saturation temperature until scram
and thereafter at room temperature.
A time dependent volume was connected to the
pressurizer surge line by a trip
to the pressurizer bottom in
the initial
valve adjacent
order to maintain
primary pressure constant during the
steady state calculation.
During steady state
the pressurizer was isolated from the surge
line.
The pressure of the time dependent volume
was equal to the pressure in
the bottom volume
of the pressurizer. At scram time the trip valve
closed and the pressurizer isolation ceased.
3.2.2
Primary Fluid Temperatures
The bulk heat loss occurred in
tor.
the steam genera-
Effects from structural heat losses, pump
power and pump cooling water were relatively
small.
The base case fluid temperatures
hot leg were 576+2 K and in
(5).
the
the cold leg 558+1 K
These temperatures satisfy the loop flow
heat balance.
NP114 AW
in
STUDSVIK ENERGITEKNIK AB
10
STUDSVIK/IIP-87/63
1987-06-09
It
was observed that some of the primary fluid
temperature measurements were not consistent
with the heat balance.
inlet temperature
For example,
(TE-ILP-001 in
the core
the experiment)
was 3 K higher than the cold leg fluid temperature.
Several upper plenum thermocouple measure-
ments showed temperatures which were as much as
10 K higher than the measured hot leg fluid
temperature.
The reason for these inconsis-
tencies can not be fully understood although
three-dimensional flow might be the main cause.
Furthermore, the steam generator inlet to outlet
temperature difference was about 4 K lower than
it
ought to be.
The measured temperatures had
mostly uncertainties of about 3 K or more
3.2.3
Core Flow Bypass
Several core bypass flow paths existed.
following two (7)
in
(5).
The
were modelled by servo valves
order to adjust the flows before scram:
The inlet annulus to upper plenum with
6.6 % of the primary loop flow
The lower plenum to upper plenum with
3.6 % of the primary loop flow.
The reflood assist bypass valve leakage and the
broken loop heat up lines were not explicitly
modelled since the mass flow rates were quite
small.
is
The reflood assist bypass valve leakage
further discussed for the case C calculation
(see 5.2 below).
CHR1
STUDSVIK ENERGITEKNIK AB
11
STUDSVIK/NP-87/63
1987-06-09
3.2.4
Environmental Heat Losses
The exchange of heat with structural material is
important in
small break analysis.
Since the
available input had only restricted material
included,
structures had to be added to the
input. The bulk structures of the facilities
were modelled to represent the correct structural masses.
For RELAP5/MOD2 an overall environmental heat
transfer coefficient was determined by test
calculations in order to obtain approximately
the total heat loss of 250 kW as found in
experiment
3.2.5
the
(7).
Break Discharge Coefficient
Test calculations
showed a too rapid decrease in
pressurizer fluid inventory when the default
subcooled discharge coefficient of unity was
used.
Using a coefficient of .85
the rates of
emptying the pressurizer and of the early system
depressurization were close to the experiment.
The assumption that the pressurizer emptying
rate is
is
an indicator of the break discharge flow
only applicable for low pressure drop in the
surge line as it occurs in small break experiments.
CHRI
STUDSVIK ENERGITEKNIK AB
12
STUDSVIK/NP-87/63
1987-06-09
Pump Model
3.2.6
The primary coolant pumps were tripped .8
after the break.
s
Coast down followed under the
influence of the coolant flow inertia and the
pump moment of inertia.
in
Since the primary pumps
the experiment have a too small moment of
inertia, compared to that of commercial PWRs,
their coastdown was simulated by a fluid clutch
coupling to a motor-generator driving unit. When
the speed reached 12.5 Hz
(10)
the coupling was
disconnected.
The combined inertia of the pump and the motorgenerator flywheel was modelled by pump inertia
data closely similar to those reported by T R
White
(11).
The inertia polynomial was modified
to avoid negative moment of inertia at higher
pump speeds.
3.2.7
Steam Generator
The steam generator steady state was achieved
using auxiliary components.
The pressure was
maintained by a steam filled
control volume
connected to the steam generator top.
The
downcomer level was attained through a flow
controlled junction connecting a time dependent
volume to the upper part of the downcomer.
The main steam valve was modelled as a time
dependent junction rather than a motor or servo
valve. The main reason for this was to use the
steam flow
(6)
also to facilitate
directly as boundary value and
modelling of the pressure
dependent leakage of the closed valve
CHRI
(7).
STUDSVIK ENERGITEKNIK AB
13
STUDSVIR/NP-87/63
1987-06-09
Closure of the steam valve started from the
flow at 5.58 MPa steam
experimental initial
generator pressure and a 2.0 MPa downstream
pressure.
After the valve closure had been
initiated a secondary pressure of 6.9 MPa
was assumed in
order to obtain the mass flow
from the curve giving the valve characteristic
as a function of stem lift
The leakage from
(6).
the closed valve which was .053
(7),
kg/s at 4.19 MPa
was assumed to be proportional to the
the experiment.
secondary pressure measured in
The feedwater valve was modelled as a time
dependent junction which gave the experimental
mass flow until closure of the valve.
The
feedwater valve closure was assumed to be as
fast as in
the LOFT base input.
Test calcula-
tions showed that the predicted secondary
pressure continued to increase more than in
the
experiment when the steam valve began to close.
Discrepancies in
the downcomer level and the
pressure behaviour could be suspected to be
caused by the fast feedwater valve closure.
An
example of a different valve closure rate is
given in a calculation for the L3-6 experiment
carried out by L N Kmetyk
(9)
who used a rate of
5 %Is similar to the rate of the main steam valve.
No feedwater temperature data were found in
available reports.
Therefore the steam generator
operation was achieved by controlling the feedwater internal energy so that the sum of steam
generated in
each secondary volume was equal to
the main steam valve mass flow.
This procedure
achieves a steam generator steady state irrespective of the tube package heat transfer,
the heat exchange with structures.
NP114 AW
or
STUDSVIK ENERGITEKNIK AB
14
STUDSVIK/NP-87/63
1987-06-09
THE BASE CASE CALCULATION
4
The input listing of case A is
(CASE A)
given in
Appendix A.
After the depressurization had reached saturation conditions obstinate fluctuations in the
calculation time step were observed. This effect
was arrested by reducing the maximum time step
from 1. s to .4
s.
From previous experience,
the
RELAP5/MOD2 time step control may reduce the
time step so much,
after preceeding long time
that even execution errors might occur.
steps,
Mid-transient water packing occurred several
times due to water plugs in the cold leg passing
forth and back at the break line T-junction.
The
code water packing mitigation scheme dealt
correctly with the calculated pressure spikes,
and as a result the calculation could be continued.
The results of the comparisions are shown in
Appendix B. Primary system pressures are shown
in
Plots B.21,
B.43.
B22,
B.22,
B27,
B34,
B.35 and
After the subcooled depressurization,
primary system pressure is
about 900 s.
It
is
the
underpredicted until
noted that the experiment
depressurizes at an increased rate in
the time
interval from about 600 s to 1200 s which is
reflected in
the calculations.
temperatures,
B.33,
Plots B.9,
B.41 and B.44,
discrepancies.
B.17,
The primary fluid
B.18,
B.26,
show the corresponding
comparisons at the secondary side,
CHRI
B.20,
The pressure and temperature
and B.50 respectively,
not
Plots B.51
are also similar.
The
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
15
1987-06-09
decreased depressurization rate after about 1000
s is caused by the increased temperature
difference between primary and secondary sides
shown in the experiment, but not in the
calculations, Plot B.52.
A contributory cause for the mid-transient
increase of the experimental depressurization
rate is the hot leg steam production, Plots B.23
and B.24, which occurs in the time interval from
450 s to 800 s. The case A shows a corresponding
density decrease but it is delayed by about 500
s, and the calculated water content is not
reduced to the low experimental level.
The cold leg densities, Plots B.28 and B.30,
show opposite differences - the calculated
densities are lower than the experimental
densities.
The predicted main recirculation flows, Plots
B.11, B.25 and B.39, cannot be assessed due to
unqualified experimental data (5). The experimental hot leg mass flow, Plot B.25, is qualified
for the initial condition only. Condie et al
(7), assume that natural circulation continued
in the experiment from pump coast down until 750
S.
NP114 AW
STUDSVIK E14ERGITEKNIK AB
16
STUDSVIK/IIP-87/63
1987-06-09
5
SENSITIVITY CALCULATIONS
The case A comparisons,
dicussed in
Chapter 4,
revealed some discrepancies which were studied
by two sensitivity calculations, case B and case
C. The salient problems concern the fast early
phase of the depressurization and the primary
fluid temperatures.
5.1
Case B
The input changes introduced to the case B
calculation were aimed =t improving the predictions early in
the transient until 250 s.
Two
updates were introduced in the steam generator
modelling in this sensitivity study.
The first
update was to change the main steam
valve leakage after 68 s.
Due to instrument
noise the main steam valve started to open at
about this time and operated intermittently
during a period of 10 s. The unintended valve
cycle is
evident from the secondary pressure,
Plot B.51.
The base case calculation had used
the valve threshold mass flow,
acteristic
(6),
see valve char-
which at the prevailing pres-
sure,
ought to have been about 5.7 kg/s.
ever,
the pressure comparison,
How-
Plot B.51,
shows
a predicted pressure drop rate starting at 68 s
which is
about twice that of the experiment.
Consequently,
the steam mass flow in
the case B
was halved during the main steam valve open
cycle,
and a pressure drop rate close to the
measured one was calculated.
The second update concerned the downcomer liquid
level which had shown discrepancies,
Plot B.49.
Even though a questionably slow closure of
CHRi
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
17
1987-06-09
the feed water valve was applied in case A the
liquid level was predicted not to start to
recover by the auxiliary feed, until about 400 s
as compared to about 100 s in the experiment. A
contribution to that discrepancy would follow
from a predicted excess steam production in the
lower part of the riser section. A check-up of
the steam generator tube section primary and
secondary volumes distribution revealed an
inconsistency in the initial, case A, base input
used. Due to this error much steam was generated
in the lower riser volumes. A more correct tube
structure distribution was introduced. However,
only a slightly better agreement with the
experimental level rise turned out.
Some water still
remained distributed in the
pressurizer after the emptying period, Plot
B.54. The reason had been an unjustified application of the junction equal phase velocity
between the uppermost pressurizer volumes. A
correction was applied even though no apparent
effect on the prediction plots could be expected.
5.2
Case C
The next calculation, case C, focused on the
primary side hydraulic scenario. The loop mass
flow rate was not measured during the transient.
Moreover, the vessel downcomer and upper plenum
water contents measured by conductivity probes,
and presented as bubble plots (5), suffered from
error margins when converted into level heights,
Plots B.15 and B.16.
NP114 AW
S TUDSVIK ENERGITEKNIK ABSTDV/l-7/31 STUDSVIK/NP-87/63
18
1987-06-09
After disconnection of the flywheels the low
internal moment of inertia of the two recirculation pumps will make the speed of the two
recirculation pumps sensitive to the loop mass
flow. Plot B.37 evidently shows that the intact
loop flow of the experiment ceases at about 130
s.
The cases A and B show a prolonged and
gradual flow decrease. These two calculations
had about 20 kg/s primary mass flow at 250 s
through the steam generator.
about 6 kg/s prevailed in
A reverse flow of
the vessel inlet
annulus to the outlet plenum junction.
There was
also a 1.5 kg/s reverse core bypass flow. Thus
three paths of natural circulation due to the
core decay heat have been identified.
The modeled flow bypass from the vessel inlet
annulus to the upper plenum was insufficient to
reduce the intact loop driving pressure difference to stop the main fluid flow in
the
previous predictions as early as in the experiment. This may have partly been caused by the
omission of the reflood assist bypass valve
(RABV)
in
the model.
was that the initial
The reason for the omission
RABV vessel bypass flow was
quite low and uncertain.
Likewise the broken
loop hot leg and cold leg fluid temperatures did
not indicate any substantial initial
RABV
leakage.
The previous discussion focused on the natural
circulation in
the intact loop due to the core
decay heat. A flow reduction could result from
an increased bypass flow area between the inlet
annulas and the upper plenum.
for the case C calculation,
which terminates the loop
CHRi
It
was intended,
to determine an area
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
"19
1987-06-09
circulation at about the same time as in the
experiment. To obtain the initial intact loop
mass flow a servo valve was used as the junction
between the inlet annulus (vol.290) and the
downcomer (vol.205). Valve control was applied
only through the steady state. Ideally, the flow
control ought to have been applied at the inlet
nozzle (junction between vols. 185 and 290). A
cross junction modelling, however, cannot be
applied for a valve component.
The leakage from the cold leg inlet annulus to
the upper plenum is caused by a flow path in the
narrow gap between the vessel filler blocks and
the vessel wall. This leakage path has a vertical extension equal to the nozzle diameter. To
enhance a reduction of the transient pressure
difference over the core, the leakage junction
was divided into two junctions at slightly
different elevations. One leakage path connected
the upper ends of the adjacent volumes below the
inlet and the outlet annuli. The other path
similarly connects the bottom ends of the
volumes above the inlet and the outlet annuli.
This higher level
leakage will,
compared to the
previous modelling, promote steam bypass, and
thus contribute to a lower pressure difference
between vessel outlet and inlet .
The split up of the core bypass into two different leakage paths did not reproduce the fast
pump coast down at 130 s as seen in -Plot B. 37.
However, some improvement was obtained as can be
seen from the data uncertainty analysis in
Appendix C (experiment code CLAX). In addition
the core clad temperatures, Plots B.3 through
B.6, obtained in the case C are more similar to
the experiment than the two previous cases. This
NP114 All
STUDSVIK ENERGITEKNIK AB
20
STUDSVIK/NP-87/63
1987-06-09
is
more evident from Figure 3 which compares the
time derivatives,
obtained from Plot B.5,
of
the predicted and experimental
clad temperatures.
Evidently,
the flow bypass
the model change in
had a positive impact on the core fluid distribution. Moreover, the case C break fluid density
dropped at the same time as in the experiment
(at about 130 s),
NP114 AW
see Plot B.38.
STUDSVIK ENERGITEKNIK AB
.ý.-21. ' '
STUDSVIK/14P-87/63
1987-06-09
6
RUN STATISTICS
The input model for the base case RELAP5/MOD2
calculation for LOFT L3-5 encompassed:
volumes
junctions
113
120
heat structures
99
The volumes include two pump components,
one
separator component and nine time dependent
volumes of which three were used for the steady
state. Among the junctions there are totally
five valve components and four time dependent
junctions which are connected during steady
state.
During the transient calculation the following
resources were used:
Computer time
CPU=25778 s
Number of time steps
DT =12374
Number of volumes
C
Transient real time
RT =2032 s
resulting in
factor
=113
the following code efficiency
(1)
CPU * 103 = 18.44
C * DT
The computer used was a Cyber 170-810.
I
NP114 AW
STUDSVIK ENERGITEKNIK AB
22
STUDSVIK/NP-87/63
1987-06-09
7
CONCLUSIONS
The LOFT small break experiment L3-5 has been
assessed using the RELAP5/MOD2 code.
Three
calculations were carried out; one base case
calculation and two sensitivity calculations
with model changes concerning the steam generator operation and the core bypass mass flow.
The transient predictions compare reasonably
well with the experiment as regards first-hand
parameters such as system pressures and fluid
temperatures.
Uncertainties,
over time inter-
vals, of the predicted data compared with the
experiment are given in Appendix C.
In
the calculated steady state,
initial
the experimental
data could be fairly well reproduced.
Some experimental fluid temperatures,
in
the upper part of the vessel,
particularly
revealed
relatively large discrepancies which could not
readily be explained.
The predicted start
of voiding in
the intact
loop hot leg as well as the cold leg occurred
late as compared to the experiment although the
predicted system pressure was underestimated.
The steam generator liquid level rise,
by the auxiliary water feed,
in
case A.
recovered
was underpredicted
Although the limited steam generator
experimental data available do not help to
single out any particular detail in
the cause,
the model as
the most probable reason is
the
underestimation of the water content early in
the test.
NP114 AW
STUDSVIK ENERGITEKNIX AB
23
STUDSVIK/NP-87/63
1987-06-09
In the case B calculation,
the steam generator
boiling region was remodelled to promote void
formation at higher elevations.
gained in
The improvement
the transient downcomer level was
rather limited.
discrepancy in
A contributory cause for the
the level could be a significant
droplet field initially
residing in
the space
between the primary separator, modelled by the
RELAP5 separator component,
and the mist extrac-
tor adjacent to the steam line nozzle.
Imposing
a predetermined steady state water content on
this space is,
however,
geometric model is
not possible unless the
considerably modified.
The case C calculation concentrated on the
primary mass flow rate.
plenum leakage was split
The downcomer to upper
into one junction
promoting the steam bypass and an other one the
water bypass in
cold leg.
the case of voided fluid in
The clad temperatures as well as the
break fluid density were improved.
NP114 AW
the
STUDSVIK ENERGITEKNIE AB
STUDSVIK/NP-87/63
24
1987-06-09
REFERENCES
ODAR, F and BESSETTE D E
Guidelines and Procedures for the
International Thermal-Hydraulic Code
Assessment and Applications Program
(Draft)
U.S. Nuclear Regulatory Commission,
1985
NP114 AW
2
Acceptance Criteria for Emergency Core
Cooling Systems for Light-Water Cooled
Nuclear Power Reactors, 10 CFR, Part 50
,(Appendix K), Fed Regist, 39(3).
(January 1974)
3
TRAC-PFI/MODI:
An Advanced Best-Estimate Computer
Program for Pressurized Water Reactor
Thermal-Hydraulic Analysis.
NUREG/CR-3858
4
RANSOM, V H et al
RELAP5/MOD2 Code Manual
Volume 1: Code Structure, Systems
Models, and Solution Methods
Volume 2: Users Guide and Input
Requirements (Draft)
EG&G Idaho, Inc.
NUREG(CR-4312, EGG-2396)
(August 1985)
5
DAO, L T L and CARPENTER, J M
Experimental Data Report for LOFT
Nuclear Small Break Experiment
L3-5/L3-5A.
NUREG/CR-1695, EGG-2060 (Nov 1980)
6
REEDER D L
LOFT System and Test Description
(5.5-ft Nuclear Core 1 Loces)
NUREG/CR-DR47
TREE-1208
7
CONDIE, K G et al
Four-Inch Equivalent Break
Loss-of-Coolant Experiments:
Posttest Analysis of LOFT
Experiments L3-1, L3-5 (Pumps off),
and L3-6 (Pump on)
EGG-LOFT-8480.
8
GRUSH WM, TANAKA M and MARSILI P
Best estimate predictions for the OECD
LOFT Project Small Cold Leg Break
Experiment LP-SB-3
OECD LOFT-T-3603 (Febr 1984)
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/63
25
1987-06-09
NP114 AW
9
KMETYK L N
RELAP5 Assessment: LOFT Small Break
L3-6/L8-1.
NUREG/CR-3163, SAND83-0245 (March 1983)
10
MODRO, S M and CONDIE, K G
Best Estimate Prediction for LOFT
Nuclear Experiment L3-5/L3-5A
(Sept 1980)
EGG-LOFT-5240
11
WHITE J R et al
Experiment Prediction for LOFT NonNuclear Experiment LI-4.
(April 1977)
TREE-NUREG-1086
26
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
Table
1
Initial
conditions
Quantity
Case A
Predicted
Case B
Case C
476.4
14.86
558.
576.
478.8
14.86
557.4
576.4
476.4
14.87
559.4
578.4
476.6
14.86
559.9
579.5
49.
49.0
49.
49.
614.6
14.88
1.25
614.7
14.88
1.25
614.7
14.88
1.25
614.7
14.88
1.25
556.
562.
555.
561.
555.
561.
554.
559.
0.19
543.
5.58
26.4
0.19
544.
5.58
26.2
0.19
534.
5.58
26.0
0.19
532.
5.58
26.0
Measured
Primary coolant system
Mass flow rate
Hot leg pressure
Cold leg temperature
Hot leg temperature
Reactor vessel
Power level
Pressurizer
Water temperature
Pressure
Liquid level
(kg/s)
(MPa)
(K)
(K)
(MW)
(K)
(MPa)
(m)
Broken loop
Cold leg temperature
Hot leg temperature
(K)
(K)
SC secondary side
Water level
Water temperature
Pressure
Mass flow rate
(m)
(K)
(MPa)
(kg/s)
Table 2
Sequence of events
Time (s)
Event
Reactor scramed
LOCA initiated
Primary coolant pumps tripped
HPIS injection initiated (13.2 MPa)
Primary pump coastdown complete (12.5 Hz)
Prssurizer emptied
Upper plenum reached saturation
Intact loop hot leg voiding begin
SCS auxiliary feed initiated
intact loop cold leg voiding begin
End of subcooled break flow
SCS pressure exceeds primary pressure
Primary fluid mass at minimum
SCS auxiliary feed terminated
NP114 AW
Imposed
action
System
reaction
-4.8
0.
0.8
4.0
17.7
22.2
28.4
30.
63.
80.
92.9
745.
1480.
1800.
Case A
Predicted
Case B
-4.8
0.
0.9
2.5
20.8
24.4
38.3
42.
63.
138.
140.
1810.
not obtnd.
1800.
-4.8
0.
0.9
2.6
17.9
23.6
37.3
45.
63.
133.
109.
1490.
1750.
1800.
Case C
-4.8
0.
0.9
3.3
20.3
24.4
35.7
45.
63.
147.
163.
not obtnd.
not obtnd.
1800.
STUDSVIK ENERGITEKNIK AB
27
NP-87/63
1987-06-09
Table 3
Parameters plotted and used in
the assessment
comparisons.
COMPONENT
PREDICTION
(MINOR EDIT)
EXPERIMENT
(IDENTIFIER)
CONTINOUS PARAMETER *
PLOT IDENTIF.
EXP.
CALC.
PLOT
NO.
-------------------------------------------------------------------------------------------------------- ---------
CORE
FLUID DENSITY (INLET)
**
CNTRLVAR 901
CI?
B. 1
HEATING POWER
**
RKTPOW 0
C27
B. 2
TE-2614-011
TE-5G6-011
TE-516-005
CNTRLVAR 903
C 3X
C 3?
B. 3
VOLUME I
(BOTTOM)
CLAD TEMPERATURE.
-
-
-VOLUME
2
TE-1 F7-015
TE-1 F7-021
TE-2G08-021
TE-4114-021
TE-5F4-015
TE-516-021
CNTRLVAR 903
C 4X
C A?
B. 4
-
VOLUME 3
TE-I F7-026
TE-1 F7-030
TE-2G14-030
TE-2H02-032
TE-4Ht4-028
TE-4H14-032
TE-SH7-026
CNTRLVAR 905
C 5X
C S?
a. S
VOLUME 4
TE-2608-039
TE-2HOI-037
TE-3C11-039
TE-4114-039
TE-SH6-037
CNTLRVAR 906
C 6X
C 6?
B. 6
VOLUME 5
TE-2G14-045
TE-4614-045
TE-5F9-045
TE-5G6-045
TE-5H5-049
CNTRLVAR 907
C 7X
C 7?
B. ?
TE-SH7-058
TE-5G6-062
CNTRLVAR 908
C eX
C 8?
B. 8
TE-IUP-O0t
TE-SUP-001
TE-SUP-003
TE-IUP-001
CNTRLVAR 909
C 9X
C 9?
B. 9
CNTRLVAR 910
C AX
C A?
8.10
MFLOWJ 225.01
C B?
8.11
C C?
B.12
-
-
-
.VOLUME
-
(TOP)
6
TEMPERTURE (OUTLET)
TEMP.
DIFF.
(OUTLET-INLET)
TE-ILP-0O01
CORE FLOW (INLET)
VESSEL
CORE INVENTORY
PDE-RV-002
aie
CNTRLVAR 912
DOWNCOMER MASS INVENTORY
PDE-RV-003
S
CNTRLVAR 913
V I?
8.13
CNTRLVAR 914
V 2?
6.14
MASS INVENTORY (TOTAL VESSEL)
DOWNCOMER LIOUID LEVEL
LE-IST-O01
UPPER PLENUM LIOUID LEVEL
CNTRLVAR 915
V 3X
V 3?
8.15
LE-SUP-aOlt *0
CNTRLVAR 916
V 4X
V 4?
B.16
DOWNCOMER TEMPERATURE (INLET)
TE-IST-O00
TE-2ST-001
TEMPF 205
V"SX
V 5?
B.17
UPPER PLENUM TEMPERATURE
TE-IUP-O01
TE-4UP-OOl
TE-SUP-001
TEMPF 240
V 6X
V 6?
8.18
SC-5UP-102
CNTRLVAR 919
V 7X
V 7?
8.19
8.20
UPPER PLENUM FLUID SUBCOOLING
-
NOT LEG
.
ST-1UP-111
TE-IUP-001
LOER PLUWN TEMPERATURE
TE-ILP-O01
TEMPF 225
V 8X
V 8?
UPPER PLENUM PRESSURE
PE-IUP-00At
P 245
V 9X
V 9?
B.21
LOWER PLENLUM
PRESSURE
PE-IST-OOtA
PE-2ST-01A
P 225
V"AX
V A?
8.22
FLUID DENSITY (I.L.)
DE-PC-205
DE-PC-O02A
DE-PC-0028
DE-PC-O02C
RHO 105
HLIX
HLI?
8.23
HL2X
HL2?
8.24
HL3?
8.25
.9
**
s
FLUID DENSITY (B.L.)
MASS FLOW RATE
DE-BL-0028
RHO 305
FT-P139-27-1 s
FT-P139-27-2 **
FT-P139-27-3 **
MFLOWJ
TEMPERATURE (I.L.)
TE-PC-O02B
TEMPF 105
HL4X
HL4?
8.26
PRESSURE (I.L.)
PE-PC-002
P 105
HLSX
HL5?
8.27
110
NP-87/63
STUDSVIK ENERGITEKNIK AB
28
1987-06-09
COLD LEG
FLUID DENSITY (I.L)
DE-PC-115
DE-PC-OOIA
DE-PC-OI
DE-PC-O0IC
RHO 185
CLIX
CLI?
B.28
RHO 115.13
CL2X
CL2?
B.29
RHO 345
CL3X
CL3?
B.30
LEPDE-PC-028
CNTRLVAR 931
CL4X
CL4?
B.31
LEPDE-BL-014
CNTRLVAR 932
CLS?
B.32
TEMPERATURE (I.L. NEAR VESSEL)
TE-PC-004
TEMPF 185
CL6X
CL6?
B.33
PRESSURE (I.L.)
PE-PC-O05
P 120
CL7X
CL??
8.34
PE-BL-0O01
P 345
CL8X
CL8?
B.35
PDE-PC-001
CNTRLVAR 936
CL9X
CL9?
B.36
RPE-PC-OO1
PMPVEL 135
CLAX
CLA?
8.37
BRIX
BRI?
B.38
BR2X
BR2?
B.39
BR3?
B.40
FLUID DENSITY (1.L. PUMP SUCTION)
DE-PC-305
/DE-PC-O03A/
/DE-PC-0038/
/DE-PC-003C/
FLUID DENSITY (B.L.)
LIOUID LEVEL (I.L.
-
-
-
DE-BL-105
DE-BL-OO1A
DE-BL-001a
DE-BL-OOIC
LOOP SEAL)
(B.L.)
-
(B.L.)
* -
PRESS.
DIFF.
(ACROSS THE PUMPS)
PUMP SPEED (PUMP
BREAK
..
I)
*8
**
FLUID DENSITY
DE-PC-S02A
RHO
MASS FLOW RATE
FR-PC-SBRK
MFLOWJ 805
ENERGY RELEASE
CNTRLVAR 940
INLET TEMPERATURE
TE-PC-SOlC
TEMPF 800
BR4X
BR4?
B.41
INLET SUBCOOLING
ST-PC-SIOl
CNTRLVAR 942
BRSX
BRS?
B.42
-
SO PRI.
SIDE
SIDE
TE-PC-SOIC
INLET PRESSURE
PE-PC-SO)
P 800
BR6X
BR6?
8.43
TEMPERATURE (INLET)
TE-SG-O0
TEMPF 115.03
Spix
SPI?
8.44
TEMP.
TE-SG-O00
CNTRLVAR 945
SP2X
SP2?
B.45
CNTRLVAR 946
SP3X
SP3?
B.46
DIFF.
(INLET-OUTLET)
-
SG SEC.
TE-SG-002
PRESSURE DIFF.
PDE-PC-002
FLUID DENSITY
88
MASS FLOW RATE
SG
RHO 515.03
SS1?
B.47
MFLOWJ 516
SS2?
8.48
LIOUID LEVEL
LD-P004-008B
CNTRLVAR 949
SS3X
SS3?
8.49
LIOUID TEMPERATURE
TE-SG-003
TEMPF 515.03
SS4X
SS4?
B.50
PRESSURE
PE-SGS-001
P 530.01
SSSX
SSS?
B.51
TE-SG-O00
CNTRLVAR 952
S IX
S I?
B.52
S 2?
B.53
PRIMARY-SECONDARY
TEMP.-DIFF.
(AT INLET)
-
TE-SG-003
HEAT TRANSFER RATE
PRESSURIZER
00
CNTRLVAR 953
LIOUID LEVEL
LT-PI39-006
CNTRLVAR 954
P IX
P 1?
8.54
LIOUID TEMPERATURE
TE-PI39-020
TEMPF 415.02
P 2X
P 2?
B.55
STEAM TEMPERATURE
TE-P139-019
TEMPG 415.07
P 3X
P 3?
B.56
PRESSURE
PE-PC-004
P 415.08
P 4X
P 4?
B.57
ECCS
HPIS VOLYMETRIC FLOW RATE
FT-P128-104
CNTRLVAR 958
ECIX
ECI?
B.58
SYSTEM
MASS BALANCE (INTEG. FROM BREAK
NO PLUMPSEAL W.)
SYI?
9.59
CNTRLVAR 960
SY2?
9.60
CNTRLVAR 982
SY3?
B. 2
CPUTIME 0
R 1?
B.61
EMASS 0
R 2?
B.62
COOLANT EGY.
PRIM.
BALANCE (INTEGR.)
CNTRLVAR 959
8*l
EXTERNALS HEATFLOW
*8t
RELAPS
COMPUTATION CPU TIME
8*l
COMPUTATION MASS ERROR
THE COMPARISON PARAMETERS ARE THOSE REPORTED AS DIRECTLY MEASURED
OR AS COMPUTED RESULTS FROM THE EXPERIMENT
8
.8
NO DATA AVAILABEL
888
DATA OBTAINED FROM BUBBLE PLOT IN EXPERIMENT REPORT
/
?
/
FROM THE EXPERIMENT
EXPERIMENT DATA AVAILABLE BUT NOT USED IN COMPARISONS
CALCULATION CASE (A.
B OR C)
STUDSVIK ENERGITEKNIK AB
29
STUDSVIR/NP-87/63
1987-06-09
Table 4
Measurement errors
Quality
Uncertainty
Commen t
Pressure
251-282 kPa
120 kPa
Primary side
Secondary
side
Fluid temp
2.7-3.1 K
.5
K
5.9 K
10.4 K
Mostly
TE-P139-019,
steam
TE-SG-001,
TE-SG-002
TE-PC-004
Fluid density
78-82 kg/mr3 3
129-131 kg/m
Mostly
DE-BL-001A,
DE-BL-001C
DE-PC-002B,
DE-PC-002C
Clad temp
3.1-3.2 K
All
Diff pressure
.49 k Pa
1. kPa
1.3 kPa
1. 8 kPa
PDE-RV-003
PDE-PC-002
PDE-RV-002
PDE-PC-001
Mass flow
.02 L/s
6.3 kg/s
HPIS
I.L. init
condition
17 kg/s
25 percent
1 kg/s
NP114 AW
I.L.
hot leg
Break,
40-750 's
Break,
750-2100 s
Liq level
.04 m
.05 m
.099-.137 m
Bubble plot
Pressurizer
SG secondary
Cold legs
Upper plen,
downcomer
Speed
1.22 rad/s
Main recirc
pumps
NP-87/63
STUDSVIK ENERGITEKNIK AB
30
1987-06-09
Table 5
RELAP5/MOD2 code features.
COMPUTATION PROCESSING FEATURES
- Several problem type and execution control options as
a. steady state initiallsatlon using fictitious structure heat
capacities for faster convergence
b. transient calculation
c. strip type execution, to select requested parameters from a
restart file
d. trip system, to decide on actions during calculation due
to reaching specified conditions in calculation parameters.
e. ability to delete or add hydrodynamic components, structure components and control variables at a restart of
calculation.
CLASSIFICATION OF HYDRODYNAMIC MODEL
- One-dimensionai,
with provisions for
a. choked flow model
b.
abrupt area change model
c. cross flow junctions.
- Two-fluid, six equation, space-time numerical solution scheme.
- flow regime oriented field characteristics depending on mass
flux and void fraction for
a. horizontal flow with bubbly, slug, mist and stratified
fields
b. vertical flow with bubbly, slug, annular-mist (and stratified) fields
c. high mixing flow with bubbly and mist fields (for pumps).
STUDSVIK ENERGITEKNIK AB
NP-87/63
31
1987-06-09
Table 5 cont'd
HYDRODYNAMIC COMPONENENTS (Input systematics)
- Volume type components
a. single volume
b. pipe and annulus,
single volumes
for condensed input of several similar
c. time dependent volume, for defining a boundary source with
a time dependent fluid state
d. branch, a volume capable of two or more connecting junctions at either end
e. pump, characterized by rated values for flow, head, torque,
density and moment of inertia. The single phase homologous
curve, two-phase'multipliers and phase difference tables to
model the dynamic pump behaviour
f.
-
special system components for steam separator, jetmixer,
turbine and accumulator.
Junction type components
a. single Junction
b.
time dependent Junction, for a time dependent Junction
flow whith a time dependent or controlled flow state
c. cross-flow Junction, to model a small cross flow, a tee
branch or a small leak flow
d. valve, various operation characteristics available for
check valve, trip valve, inertial valve and relief valve.
INTERPHASE CONSTITUTIVE EQUATIONS
- Interphase drag
a. steady drag due to viscous shear depending on flow regime.
Semi-empirical mechanisms to describe flow regime transitions
b. dynamic drag due to virtual mass effect.
- Interphase mass and heat transfer depending on flow regime and
the fluid fields to saturation temperature differenca3
STUDSVIK ENERGITEKNIK AB
NP-87/63
32
1987-06-09
Table 5 cont'd
FLUID TO WALL CONSTITUTIVE EOUATIONS
- Wall friction due to wall shear effects formulated for flow
regimes and based on a two-phase multiplier approach.
- Wall
for
heat transfer depending on flow characteristics defined*
a.
single-phase forced convection (Dittus-Boelter)
b.
saturated nucleate boiling (Chen)
c. subcooled nucleate boiling (modified Chen)
d. critical heat flux (Biasi or modified Zuber)
e. transition film boiling (Chen)
f.
film boiling (Bromley-Pomeranz and Dougall-Rohsenow)
g. condensation (partly Dittus-Boelter).
-
Interfacial mass transfer at the wall depending on wall, fluid
and saturation temperatures for
a. subcooled and saturated boiling
b. transition film and film boiling
c. condensation.
HEAT STRUCTURES
These may be rectangular, cylindrical or spherical in shape.
The structure position is defined through component numbers of
left and right hand side hydraulic components. A structure is
physically defined by the geometry and the temperature dependent
conductivity and volumetric heat capacity data. The structure
model is further specified by the number of internal mesh points
in the direction of heat flow.
CONTROL COMPONENTS
By these new (control) variables are defined from calculated
parameters using algebra, standard functions, trip type operands or integrals.
STUDSVIK ENERGITEKNIK AB
33
NP-87/63
1987-06-09
Broken loop
Intact loop
deA,
Reactor
vessel
Figure 1
Downcomer
Core
Lower plenum
NP114 AW
LOFT system configuration
1
U)
550
555
530
1-3
M
z
560
415
519
517
115
c3
"0
-S
C)
0D
%D
625
235
226
Figure 2w
The nodalization diagram for LOFT L3-5
STUDSVIK ENERGITEKNIK AB
NP-87/63
35
1987-06-09
0
0
I
UP
4)
0.
14
0*
* ASEA
4)
P4
is
U-'
0
0
250
500
750
16000
TIME
Figure 3
1250
1500
(S)
Time derivative of the core volume 3
clad temperature
1750
H
. :* LOFT
(PRII.YSECODRY.KINTCS)
*to .3-S
so *to AKALYSIS
to******,~,tteete•oeo*e••*0*•••
000100
0000101
000 102
*
*0000t 04
NEW
STDY-ST
RUN
SI
SI
*8
r0000329
0000330
0000331
0000332
NOACTION
l0O010S40.
60.0
S0000333
0000120
100010000 0.0
0000121
$17010OO0 0.0
TIME ENO MIN STP
O3.06-o
4S.2
0000201
WATER
WATER
AX STP
.4
fmO
11502000
RHO
345010000
CNTRLVAR 931
CNTRLVAR
932
TEWPF
185010000
P.
120010000
P
345010000
CKTRLVAR 936
PRIMARY
0000334
SECONDARY
000033S
EDT OPT MOR MA.JR RST 8 0000336
8
13S
L,
OM33.
200
200
5
00001
OREMX
.*..*e*.*..*.*.**.*.**S*
*********f*8*S*******
***
•RK0000330 RHO
18500000
V
0000339
MFLOWJ 805000000
* MINOREDIT VARIABLES FOR THE ICAP ASSES•NT
0000340
CNTRLVAR 940
$
0000341
TEIPF
800010000
0000342
CNTRLVAR 942
0000343
P
185010000
*CORE
0000344
T'EMPF
115030000
*s
0000301
CNTRLVAR 901
S STE.AMZ
GENERATOR
0000302
RKTPOW 0
s
0000303
CNTRLVAR 903
0000341
CRTRLVAR 941
0000304
CNTRLVAR 904
0000346
CNTRLVAR 946
0000305
CNTRLVAR 90S
0000347
FMO
515030000
0000306
CNTRLVAR 906
0000348
M1LOWJ 516000000
0000307
CNTRLVAR 907
0000349
CNTRLVAR 949
0000308
CNTRLVAR 908
0000350
TEWPF
515030000
0000309
CHTRLVAR 909
0000351
P
530010000
0000310
CHTRLVAR 910
0000352
CHTRLVAR 912
0000311
MFLOWJ
225010000
0000353
CNTRLVAR953
0000312
CNTRLVAR 912
*SSS8*8*
*VESSEL
0000313
0000314
0000315
0000316
0000317
0000338O
SSS****ee*e**
0000319
CNTRLVAR 919
0000320
TEMPF
225010000
0000321
P
245010000
0000322
P
225010000
*. * 8 * 8****8*,,*t*teeete*e~ee,,,
e
e*t8*8
• HOT LEG
000323
RHO
101010000
31
0000324
RHO
305010000
110010000
MFLOWJ
000032S
0000326
TEJF
105010000
0000327
P
300010000
*
COLD LEG
O*******************************
000320
***e*
*8
e•
CNTRLVAR 9
913
CNTRLVAR 914
CNTRLVAR 911
CNTRLVAR 916
TEMAF
205010000
TE•P.F
240010000
RHO
105010000
eePMPVIE
TRIP
* 514
,0000**
0 ECCS
0000358
*
**
S*•e*@*et*e*f
l
240
EXP.
805
* 661
BREAK
HPIS
*699
*8*8**8.**tt8t*t******S888*8*
88***8*8888**8**ett*e **eS
CPUTIME 0
EIIASS
0
*
530
DIRECTION OF FLOWFROMCORE
50 S
646
CRTRLVAR958
5 TRIP INPUT DATA
• So
SCRAM
*
*
s*
MFLOW
*e 641
•00003
59
CNTR R 919
0000360
CNTRLVAR 960
8*.*.8*****•t CKTRLVAR
*
8te8*tSe*S**e*888**t*885*t
0000382
902
8 RELAPS
00361
000362
* Sln
* 600
s SYSTEM
*
H
E.
.805
Sts
So
88et
rt
P.
AFTER EXPERIMENT E1D
CHTRLVAR954
TE•IF
415020000
TEMPG
415070000
P
415080000
*eo**
1-1
135
165
PUW I
PUMP4
2
CLOSE
OREAM
535
8 PRESSURIZER
0000314
0D00351
0000356
0000357
H
REACTIVITY. GEN. TABLE
SS AUX PRESSURIZ. VALVE
MAIN STEAMVALVE. CLOSE CLOS
FEED WATERVALVE. CLOSE
609
410
550
560
TIME
AUX FEED WATER
548
S
508
510
510
512
513
514
515
518
520
521
522
523
*530
*531
535
533
561
562
6OO
660
661
699
*601
*602
*603
TIME
610
611
632
612
-521
611
633
614
615
636
OREM.CFLOWOUALIFIED
STOP ADV. OF CALCULATION
BREAKOPEN
805
PRESS. VALVEOPEN. AFTER 53
435
INITIATED
640
PLIF COOLANTINJECTION
901
0
TIME
0
TIME
0
TIME
0
TIME
0
P
100010000
P
100010000
TIME
0
VELFJ
240010000
P
530020000
P
530020000
P
530020000
P
530020000
CHTRLVAR 10
CNTRLVAR 10
TIME
0
TIME
0
P
100010000 GT
TIME
0
51S
S14
AND
513
AND
-514
AND
530
OR
-531
AND
562
AND
MULL0
NULL 0
GE
GE
GE
GE
GE
LE
LE
GE
GE
GT
LT
GT
LT
LT
GT
GE
CT
GE
P
TIMEOF 501
TIMEOF S10
HULL 0
HULL 0
MU.1 0
TIMEOF 51t
HULL
0
HULL 0
HULL 0
HULL 0
HULL 0
HULL 0
HULL 0
TIMEOF 510
TIMEOF 510
530020000
TIMEOF 660
161
-514
-514
602
601
602
m
H
OR
AND
AND
520
-616
610
616
-522
-612'
615
OR
AND
AND
AND
523
613
601
614
N
N
N
N
N
N
N
633
.634
634
533
633
510
AND
OR
AND
-660 I
603
S10
645
510
AND
-514
45.2
0.0
a
4.8
.8
10000.
13.2ES
2.I5ES
20.
0.0
5.63E6
5.61E6
5.SSE6
5.53ES
3.10
3.16
50.
63.
0.
1600.
L
1.
N
L
N
L4
L
N
N
N
N
N
N
L
N
N
1.
t-j
,.0
to
00
Z
00i
Uo
ko
N
HN
N
N
N
L
t•I
H
x<
U)
1-3
646
-501
AND
*INTACT
-Sol
N
LOOP
1150405
REACTOR VESSEL NOZZLE INTACT LOOP HOT LEO
G
1000000
1000001
1000101
1000102
1001101
1002101
RVNILHL
2
0.0634
4.0E-6
295010000
100010000
BRANC4
1.5373
0.0
100000000
105000000
0.0
00
0.0634
0.0
0.0
0.0
0.0
0.1
0.085
0.1
0.085
0102
0100
* PRESSURIZER COINECTIONTEE REACTOR VESSEL SIDE
1050000
1050001
1050101
1050102
1051101
PRCTRVS
I
0.0634
4.06-5
105010000
BRANCH
t
1.634
0.0
0.0
00
110000000 0.0
S
0.0
0.0
0.0
0.083
0.083
0100
:*STE*A**4GENERA*TOR
INLET PIPING
1100000
1100001
1100101
1100102
1101101
SGINLP
I
0.0
4.OE-S
110010000
BRANCH
1
1.1303
0.06204
0.0
00
115000000 0.0
S
0.0
0.0
0.0
0.17
0.1?
0100
*STE*A*MGENER*A*TO*R
P*LU*S
*P*IP*IN*G*********#*****
1150000
1150001
1150101
1150102
1150103
1150104
1150201
1150202
1150203
1150204
1150205
1150301
1150302
1150303
1150304
1150305
1150306
1150307
1150308
1150309
1150310
1150401
1150402
1150403
1150404
SCAPS
13
0.0
0.151
0.0
0.0634
0.0
0.0312
0.0
O.0512
0.0
0.93124
0.708
0.63
1.067
0.45
1.o67
0.63
0.547
0.6e9
0.559
0.05026
0.057
0.223
0.0
PIPE
3
9
12
13
I
2
9
10
12
I
2
3
S
7
9
10
II
12
13
1
2
3
9
# 0
1150406
1150407
115040
1150501
1150601
1150602
1150603
1150701
1150702
1150703
1150704
1150705
1150706
1150707
1150700
1150709
1160710
1150711
1150801
1150802
1150603
1150804
1150805
1150901
1150902
1150903
1150904
1150905
1150906
1150907
1150900
1150909
1151001
1161101
1151102
1151103
1151300
0.223
0.0437
0.0462
0.0
0.0
0.0
90.0
-90.0
0.0
0.246
0.513
1.067
0.286S
-0.2865
-1.067
-0.513
-0.498
-0.689
-0.356
4.06-6
4.OE-5
1.06-6
4.06-5
4.0f-5
0.255
0.048
0.0
0.096
0.192
0.096
0.0
0.048
0.096
00
0100
0000
0100
1
10
11
12
13
13
I
6
13
I
2
3
6
6
7
9
10
II
12
13
0.0
0.0102
0.0103
0.0102
0.0
0.255
0.048
0.0
0.095
0.192
0.096
0.0
0.048
0.096
13
3
8
12
N
HM
1300102
1350000
1350101
1350102
1350108
1350109
1350301
1350302
1350303
1350308
1350310
2
3
9
10
13
I
2
4
5
6
7
9
It
12
*PUMP
*PUMP' SUCTION4TEE
1200000
1200001
1200101
1200102
1201101
1202101
1203101
PSTEE
3
0.0634
4.O-5
115010000
120010000
120010000
BRANCH
1
0.76
0.0
120000000
125000000
155000000
0.0
00
0.0
0.0317
0.0317
0.0
0.0
0.0
0.096
0.2
0.2
0.096
0.2
0.2
0000
0100
0100
* PUMPI SUCTION TEE OUTLET
1250000
1250001
1250101
1250102
1251101
1252101
PISTOL
2
0.0
4.0E-5
125010000
125000000
P...W I INLET..
130000
1300101
PIINL
0.0
BRANCH
I
1.003
0.0613
0.0
00
130000000 0.0
155000000
.029417
0.0
90.0
0.521
0.1
0.0
0.1
0.0
0100
0100
..
SNOLVOL
0.457
4.0E-5
0.0
s PRIMARYCOOLANTPuWP I
0.0109
0.0
90.0
0.45?
PC•I'
0.0366
0
130010000
140000000
0
0
369.0
613.6
.212465
0.0
z
w•
00
TRIP-511.
PUIMP
0.0
0.099
0.0
90.0
0.0
0.0
0
-1
0.889
0.0
0.0
0.0
0.0
O
0.05
-I
511
0.3155
207.4
-25.
0.0
0.0
.OS
0
96.0
0.004
29.5
0100
0100
500.6
19.598
6.29
0.319
1.431
0.0
OUTLETPUMP SIOE
1400000
PIOTLPS
1400101
0.0366
1400102
4.0-5
5 e5 e e55 5*55*55 5 5*ee5
SNOLVOL
0.502
0.0
0.0
0.0
0.0
0.0
00
55555555555555SS5SS5*5*5**S*S**8*S***t•t*S*5
* COOLANT PUMP IJ.
(JOINED ONE PUMP)
9010000
9010101
9010200
9010201
9010202
9010203
PCPINJI
910000000
1
-t.
0.0
10000.
Th82PJ(N
140000000
699
0.0
.094
.094
9100000
9100101
9100102
9100200
9100201
9100202
PCPRATER
7.E-3
0.0
1
0.0
10000.
T"IPVOL
1.0
0.0
0.0
00
305.
305.
0.0
0.0
l.D
GO
0.0
0.0
0.0
0.0
00
0.0
0.0
0.0
0.0
0.0
to
0%
In
0.0
z
*P¶JM'1 OUTLETPIPE TEE SIOE
14S0000
1450001
1450101
1450102
1451101
1452101
POPTS
2
0.0
4.06-6
la0010000
145010000
BRANCH
1
1.4084
0.0633
0.0
00
145000000 0.0
150000000 .035873
GO
I-4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0100
0100
*PUMP'OUTLET TEE*
1500000
1500001
1500101
1500102
1501101
1502101
POTLTEE
BRANCH
2
I
0.0634
0.4966
0.0
4.0F-5
0.0
00
170010000 150000000
.027528
150010000 175000000 0.0
*PA'2SUCTIONTEE OTE
1S50000
1550001
P2STOL
I
BRANCH
1
H
0.0
0.0
0.0
0.2
0.134
0.2
0.134
0100
0100
rn
a
ý-3
0.0
1550101
0.0613
1.003
0.0
90.0
H
E:
0.521
1s50102
4.0:-S
0.0
00
0100
0.05
0.0S
1551101
155010000 160000000 0.0
6
***.60*6t6~e,6*66**tt.t**.tt6**ttt,*ttt*t66*t*tttttttt,6**60e*****
ti-
• PUMP 2 INLET PIPE
1600000
1600101
1600102
P21N?.
0.0
4.06E-5
SNOLVOL
0.457
0.0109
00
0.0
0.0
90.0
0.457
PCP2
0.0366
0
160010000
170000000
135 135
369.0
613.6
.212466
0.0
a PUM
S
*
PUM
0.0
0.099
0.0
90.0
0.0
0.0
135 -1
0.$69
0.0
0.0
0.0
0.0
0.05
sit
-1
0.3166
207.4
-25.
0.0
0.0
O.OS
0
96.0
0.004
29.S
0100
0100
P2OUTI
1
0.0365
4.OE-9
145010000
BRANCH
I
O.514
0.0
0.0
00
170010000 0.009073
500.6
19.596
6.28
1.431
0.0
PTECT
2
0.0634
0.0
0.519
0.613
0.0
0.0
0.0
0.0
4.06-5
0.15
D0
0100
I
0.0
0.0
0.6
0.2
0.2
0100
I
1.461
0.0
290000000
185000000
0.0
00
0.0634
0.0
0.0
0.0
0.0
I.
0.0
1.
0.0
0101
0100
tl1
z
2050000
21050001
2050101
2050102
2051101
"TWPOL
I.
0.0
0.0
0.0
0.0
0.0
OOO.
t.E5
I .ES
`1.
`1.
• BREAK OUTLET LINE
bRKOUTL
:000000
a
PIPE
2
1
I
2
2
2
2
2
0.0
0.15
2
I
0RANCH
•DISCHARGE VOLUME
•200000
ORREAKOL
3.SE-3
0200t01
MGM10
:200200
8200201
8200202
COLD LEO PIPE TO ECC CONNECTION TEE
17S0000
1750001
1750101
1750201
1750301
17S0302
1750401
17S0501
1750601
17,0701
1750901
170901
1751001
1751101
1751300
0.0634
4.0E-5
165010000
f0OO10000
2
0.319
2 OUTLET
1700000
1700001
1700101
1700102
1701101
CLPRVS
1650101
1650102
1951101
1652101
1650001
PRIMARY
I
COOLANTPUMP2
1650000
1650101
1550102
1650106
1650109
1650301
1650302
1650303
1650306
1650310
10OOOO
8000001
0000101
6000 102
2001101
I
R
0.0
1.
000906
0.0
00
.E-S
185010000 600000000 0.0
2
1
514
645
0.0
0.0
0.0
.5
.S
0102
010
01s.62
.4
.4
55*¢••*5*5**#0***0*5005#*ee*e.56****5*5*etete00e
e**5ee*5*.5*5**e
0RRCOMR PIPE
2100001
4
2100101
2100201
2100301
0.142
0.0
0.956
4
3
4
2100401
2100501
2100601
2100801
2100901
2101001
2101101
2101300
0.0
0.0
-90.0
4.OE.5
0.0
00
0000
I
4
4
4
0.102
0.0
4
3
1600000
1800001
1800101
1800102
1601101
ECTPS
1
0.0634
4.0E-5
175010000
BRANCH
1
.701
0.0
00
0.0
180000000 0.0
6 COLD LEG INLET ANNULUS
0.0
0.0
0.0
0.0664
0.0664
0100
0.0
-0.274
0100
4
3
LP(PVOL
3
0.740
4.0E-S
210010000
215010000
215000000
BRANCH
1
0.360
0.0
2150000
220000000
225000000
4
2900000
2900001
2900101
2900102
2901101
2902101
INAHLCVOI.
2
I
0.0
4.E-5
290010000
200010000
0.0
00
0.0
0.0
0.15
0.0
-90.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
00
0.0
-90.0
-0.370
.30
.172
205000000
290000000
.076
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
90.0
0.52
2.4
2.4
0100
1.
0.0
1.
0100
0100
0100
•
0WOO
0100
BRANCH
1
0.16
0.178
Sf
INLT AN4NULUJS
oA fLs*US
LOWER*
VOLUPOE
LONER VOLUIJJ
• INLET
0.0465
00
0.0
-
SNGLVOL
0.370
0.0
LPLOVOL
0.790
4.0E-S
0.18
90.0
oee seeto•nee•.*s..ss
LOWER CORE SUPPORT STRUCTURE
2250000
2250001
2250101
2250102
22SI101
* INLET ANNULUS TOP VOLUMIE
IANLTVOL
0
0.0
4.OE-S
I
C)
-. 30
-90.
e COLD LEO PIPE FROMECC CONNECTIONTO REACTORVESSEL
2000000
2000001
2000101
2000102
00
-0.360
LOWER PLENUM LOWER VOLUME
2200000
2203101
2200102
BRANCH
00
-j
REACTOR VESSEL
•
SIDE
*'90.0
0.0
• LOWER PLENUM UPPER VOLULM
•
* ECC CONNECTION TEE PUM
0.0
S
2100000
2150000
2150001
2150101
2150102
2151101
2152101
2153101
0.0
S.
BRANCH
1
0.274
0.071
0.172
00
210000000 0.0
OWNCOMER
•
BRANCH
4 BRAKE VALVE LORIFICE)
VALVE
RKVLV
8050000D
16O010000 620000000 20S.0E-G
8050101
TRVLV
8050300
6050301
0.0
0.0
0.0
IAJALVOL
I
0.0
4.06-S
205010000
e
LCOSUST
I
0.25
4.OE-S
225010000
* VALVE JUNCTION
S
2260000
2260101
2260201
2260300
2260301
0AAI4CN
I
0.52
0.0
0.095
00
230000000 0.0975
FOR CORE BYPASS FLOW
VALVE
CBPVLV
.015
225010000 235000000
20.
0.0
I
SRVVLV
226
• ACTIVE CORE
2300000
2300001
CORE
6
PIPE
0100
t~l
t-3
a
En
0
2M00101
2300201
2300202
2300203
2300204
2300205
2300301
2300302
2300401
2300501
2300601
2300801
2300901
2300902
2300903
2300904
2300905
2301001
2301101
2301300
0.1705
0.1705
0.1440
0.1705
0.1440
0.1705
0.2?95
0.3775
0.0
0.0
90.0
A.OE-5
0.0
.5
0.0
.5
0.0
00
0100
I
6
1
2
3
*
5
5
6
6
6
6
0.012
0.0
.5
0.0
.S
0.0
6
5
"I-
tl
H
2461101
240010000 24600000 0.0
6
1
2
3
4
5
295000
RVI)LOUT BRANCH
2950001
2950101
2950102
2951101
2952101
I
2
.20)
4.E-5
295010000
245010000
BYPVOL
3
0.05
0.0
0.559
0.657
0.0
0.0
90.0
4.OE-S
0.0
00
0000
I
UCOSST
2
0.297
4.OE-5
230010000
235010000
2960000
2960101
2950201
2960300
2960301
PIPE
0 UPPER CORE SUPPORT
24000
2400001
2400101
2400102
2401101
2402101
0.0
0tOo
.30
0.0
250000000
295000000
0.0
00
0.0
0.0
0.0
90.
.30
0.0
0.0
0.0
0.0
0100
O)00
t-I
4100101
4100300
4100301
0.93
405010000 415000000 0.0
TRPVLV
501
0.93
w
0100
*S*t*tt*85tS8*5*S*85484*t*ttttt*
* VALVE JUNCTION
* BYPASS VOLUME
2350000
2350001
2350101
2350201
2350301
2350302
2350401
235050)
2350601
2350801
2350901
2351001
2351101
2351300
0.0
*5******S**4*55S5**S••o•i**4,S•s8*eels4..s**88*e*4a5*a•tSsst,...S
* REACTOR VESSEL HOT LEGOUTLET
3
2
2
3
3
3
3
0.003
0.0
3
2
IAUPVLV
VALVE
.01
200010000 295010000
30.
0.0
1
SRwLV
296
1.
0.0
* PRESSURIZER VESSEL
t.
0100
UPPER PLENUIJ LOWER VOLUME
2500000
2500001
2500101
2500102
2501101
2502101
3
2
0
STRUCTURE
BRANCH
I
1.118
0.145
240000000
240000000
INLET ANN. TO UPPER PLEHUM
0.0
00
0.12
0.0
0.0
90.0
1.118
2.40
1.50
2.40
1.50
0100
O)O
UPLLVOL
2
0.288
4.0E-5
295010000
250010000
BRANCH
1
0.704
0.0
250000000
255000000
S
0.0
00
0.0
0.0
0.0
90.0
0.704
0.0
0.0
0.0
0.0
0100
0100
****488*,•e*'*5*4*5***85,8,**S**e*e548*5*58*,,5*S***45*S8****i**•
• UPPER PLENUM UPPER VOLUME3550000
2550101
2550102
UPLUVOL
0.244
4.OE-5
SHGLVOL
0.712
0.0
0.0
00
0.0
90.0
0.712
41S0000
4150001
416010)
4150102
4150103
4160104
4150201
4)50301
4150302
4150303
4150304
4150305
4150401
4150501
4150601
4150801
4151001
4151002
4151101
4151102
4151103
4)51104
4151300
*
PRESSV
8
0.362
0.565
0.466
0.13
0.0
0.224
0.403
0.207
O1705
0.118
0.0
0.0
90.0
4.0E-5
D0
01
O100
0000
0020
0120
S
PIPE
I
5
7
8
7
I
3
5
?
a
8
8
8
0.0
4
8
1
4
5
7
S
ý-A
ko
COl
1
co
TOP VOLUME PRESSURIZER
S
*PRESSURIZER
8 UPPER
2450000
2450001
2450101
2450102
2451101
*
FLOWSKIRT REGION
UFOSRE
I
O.1)4
4.OE-S
240010000
BRA24CH
I
0.0
0.693
O0
0.131
245000000 0.0
0.0
0.0
90.0
0.693
0.0
0100
e DEAD ENO OF FUEL MOOULES
2460000
2460001
2460101
2460102
FLI6OML
I
0.183
4.OE-5
BRANCH
1
0.700
0.214
0.0
00
0.0
90.0
O.700
4200000
4200001
4200101
4200102
4201101
• SURGE LINE P0S SIDE
:000000
4000001
4000101
4000102
4001101
4002101
*
RANCH
1
3.45
0.0
400000000
405000000
0.0
00
0.0
0.0
0.0
90.0
0.54
0.93
0.93
0.93
0.93
01OO
0000
SURGE LINE PRESSURIZER VESSEL
4050000
4050101
4050102
*
SLPCS,
2
0.0014S
4.0E-5
11000000
400010000
SLPRV
0.00145
4.OE-5
SNGLVOL
3.45
0.0
0.0
0O
PRESSURIZER SURGE LINE VALVE
:100000
SLVALV
VALVE
S
0.0
90.0
*HEAT
*
0Y
0.0
0.0
90.0
0.0
0.236
0120
STRUCTURE INPUT DATA
*REACTOR VESSEL HEAT STRUCTURES*
*FILLER
0.60
TOPPRE
BRANCH
0
I
0.13
0.236
0.0
4.5E-5
0.0
01
4)5010000 420000000 0.0
12000000
12000100
12000101
12000201
12000301
12000401
12000501
12000601
12000701
12000801
TOPVOLUM*E
BLOCKSINLET AN4NULUS
1
0
4
4
0.0
565.2
200010000
0
0
0
5
I
0.773
4
4
5
0
0
0.0
.178
2
1
0.508
I
0
0.0
0.0
I
I
0.0
0.33
0.33
0.33
1
I
LOWER
VOLUM.E
* FILLER BLOCKSINLET ANNUL.US
1
1
.
C
12050000
12050100
12050101
12050201
12050301
12050401
12050501
12050601
12050701
12050801
I
0
4
4
0.0
565.2
205010000
0
0
0
5
I
0.756
4
4
5
0
0
0.0
.172
2
1
0.501
1
0
0.0
0.0
1
1
0.0
0.424
0.424
0.424
I
I
H
1
1
*FILLER BLOCKS 0OWNCOJR AND LOWER PLENUM
12100000
12100100
12100101
12100201
12100301
12100401
12100501
12100503
12100504
12100505
12100506
12100601
12100602
12100603
12100701
12100801
12100602
12100803
6
0
4
4
0.0
565.2
210010000
210030000
210040000
215010000
220010000
0
0
0
0
0
0
0
5
I
0.736
4
4
5
0
0
0
0
0
0
0
0
0.0
0.102
0.971
1.003
2
I
I
1
I
I
0
0
0
0.0
0.0
0.0
0.0
1
1
1
I
t
1
I
0.0
0.958
0.36
0.37
0.47
0.9s8
0.9Ss
0.958
0.36
0.3?
0.950
0.36
0.37
6
4
5
6
1
3
4
5
6
4
5
6
12250201
12250301
12250401
12250501
12250502
12250503
12250504
12250505
12250506
12250601
12250602
12250603
12250604
12250605
12250606
12250701
12250801
12250802
12250803
12250804
12250805
12250806
4
4
0.0
4
565.2
5
225010000 0
230010000 10000
230060000 0
24001000000
245010000 0
246010000 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0
0.
0
0.012
0
0.012
0
0.145
0
0.131
0
0.214
H
1I1
1
I
1
I
t
0
0
0
0
0
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
1
I
I
I
1
I
0.0
0.52
0.2795
0.3775
1.118
0.42
0.35
0.52
0.2795
0.3775
1.115
0.42
0.35
0.52
0.2795
0.3775
1.116
0.42
0.35
10
I
6
7
8
9
10
1
6
7
8
9
10
1
6
7
8
9
10
12010000
12010100
12010101
12010201
12010301
12010401
12010501
12010502
12010503
12010504
12010505
12010506
12010601
12010602
12010603
12010604
12010605
1200•606
12010701
12010801
12010802
12010803
6
0
4
4
0.0
565.2
200010000
205010000
210010000
210020000
210030000
210040000
0
0
0
0
0
0
0
0
0
0
5
I
0.4191
4
4
5
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.178
0.172
0.102
2
1
0.3810
I
1
1
1
I
1
0
0
0
0
0
0
0.0
0.0
0.0
0.0
1
1
I
1
I
1
1
1
1
1
0.0
0.33
0.424
0.958
0.33
0.424
0.958
0.958
0.958
0.958
0.33
0.424
0.958
0.958
0.958
0.956
6
1
2
6
1
0.3
* FLOW SKIRT - CORE FILLER ASSEMBLY
12250000
12250100
12250101
10
0
4
5
1
0.38
2
I
2
3
4
5
6
I
2
3
4
5
6
12300000
12300100
12300101
12300102
12300103
12300201
12300202
12300203
12300301
12300302
12300401
12300402
12300501
12300502
12300601
12300602
12300701
12300702
12300703
12300704
1230070S
12300706
12300901
12300902
6
0
5
1
2
I
-2
-3
1.0
0.0
1100.
560.
0
0
230010000
230060000
1000
1000
1000
1000
1000
1000
0
0
I
0
&
4
0.0
665.2
245010000
246010000
0
0
0
12200000
12200100
12200101
12200201
12200301
12200401
12200501
12200601
12200701
12200901
S
9
I
4.647E-3
4.742E-3
5.359E-3
5
6
8
5
8
6
9
0
0
10000
0
0.081
0.282
0.245
0.228
0.146
0.039
0.01250
0.01250
2
1
0.0
I
0
4
4
0.0
565.2
-999
220010000
0
0
S
1
0.092
4
4
8
0
0
0.0
0.0
S
1
I
0.0
3949
1
0.0
0.0
0
0
0.0
0.52
1.68
1.68
I
I
I
1
0
0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
1
1
I
0.0
0.0
0.0
0.0
0.0
0.0
0.2795
0.3775
363.35
490.75
363.35
490.75
I
2
3
4
S
6
5
6
I
1
0.0
5
6
5
6
I
I
0.0
0.0
0.0
1
1
1.8
1.8
1.8
1.8
1.8
1
I
I
I
I
I
0
4
4
0.0
565.2
225010000
0
0
0
8
I
0.3
4
4
5
0
0
0.0
0.0
S
2
I
0.282
I
0
0.0
0.0
1
I
0.0
0.52
0.52
0.52
1
I
12400000
12400100
12400101
12400201
12400301
12400401
12400501
12400601
12400701
12400801
1
0
4
4
0.0
565.2
240010000
0
0
0
5
I
0.31
4
4
5
0
0
0.0
0.145
2
z
t
1
)-4
to
00
• UPPER CORESUPPORT STRUCTURE
,
5
1
0.01
4
4
5
0
0
0.0
0.131
0.214
• LOWERCORESUPPORT STRUCTURE
12260000
12260100
12260101
12260201
12260301
12260401
12260501
12260601
12260701
12260801
* FUEL MODULES
12460000
12460100
12460101
12460201
12460301
12460401
12460501
12460601
12460701
12460801
12460901
1-3
• REACTORVESSELBOTTOM
*5*g555*5*555**55**55t55ei•00eett*55558*5**44S5*StetSe**555555555
* ACTIVE CORE
*CORE SUPPORT
BARREL
H
S
I
00
-,J
0.282
I
kD
1
0
0.0
0.0
1
I
0.0
.559
.559
.559
I
I
1
1
0.0
1
1
*UPPER HEAD TOP PLATE
12550000
12550100
12550101
12550201
12550301
12550401
12550501
12550601
12550701
12550801
I
0
4
4
0.0
565.2
255010000
-999
0
0
5
I
0.474
4
4
5
0
0
0.0
0.0
ni
z
I
3949
0.0
0.0
I
I
0.0
0.712
0.712
0.712
1
I
• CORESUPPORT BARRELUPPER PLENUMLOWERVOLUME
12500000
12500100
12500101
12500201
12500301
I
0
4
4
0.0
5
I
0.419
4
4
2
I
1
I
H
x
*
0.381
U'
In
12500401
12500501
12500601
12500701
12500601
565.2
S
250010000 0
0
0
0
0.0
0.0
0
0
0.0
0.0
0.854
0.854
II
0.0
0.8S4
I
I
I
0
0
o******•e8**..t.**e.,e••e..**4*48eee•*8**8••,484898e*8e****4**888*
* CORE SUPPORT BARREL UPPER PLENIA TOP VOt.UME
12350000
I
5
2
1
0.381
12520100 0
1
12520101
4
0.728
12520201
4
4
12520301
0.0
4
12520401
565.2
5
12520501
255010000 0
1
I
0.712
I
12520601
-999
0
3949
I
0.712
I
12520701
0
0.0
0.0
0.0
I
12520801
0
0.0
0.0
0.712
I
*4**4,4*88•*84.•*...*....8**4.8,440***488*888*8**4*****88444•t4*88
*
INTERNALS UPPER PLENUM
A
12510000
12510100
12510101
12510201
12510301
12510401
12510501
12510502
12510601
12510602
12510701
12510801
12510802
2
0
4
4
0.0
565.2
250010000
255010000
0
0
0
0
0
5
!
0.005
4
4
5
0
0
0
0
0.0
0.0
0.0
I
1
0.0
1
1
0
0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
2
1
2
1
1
I
I
0.0
1.0
1.0
1
2
!
2
S4tttttttitttittttittiilitttititt
* BR0(EN HOT LEO
2
0
5
4
0.0
540.
315010000
315020000
-999
-999
13150701
6
I
.0705
5
5
6
0
0
0
0
0
0
1
0
S
4
0.0
6
I
.1350
5
S
13150801
13150902
I315S000
13151100
13151101
13151201
13151301
0
0
0
0
I
3949
3949
0
0
0
2
0
.4054
.5265
1
.
.0515
.4054
.5265
.4054
.5265
2
1
2
.1074
2
2
540.
6
31500000
-999
0
0
0
0
0
0
I
3949
0
0
I
1
0
2.671
2.671
2.671
I
I
13152000
13152100
13152101
13152201
13152301
13152401
13152501
13152601
13152701
13152801
1
0
5
4
0.0
540.
315090000
-999
0
0
6
1
.0840
5
5
6
0
0
0
0
2
I
.0660
I
3949
0
0
I
I
0
1.842
1.842
1.842
1
I
13153000
13153100
13153101
13153201
13153301
13153401
13153501
13153502
13153601
13153602
13153701
13153801
13153802
S
0
5
4
0.0
540.
315030000
315070000
-999
-999
0
0
0
6
I
.2285
5
S
6
10000
0
0
0
0
0
0
2
1
.1835
1
I
3949
3949
0
0
0
1
I
I
I
0
1.699
.362
1.699
.362
1.699
.362
5
4
5
13154000
13154100
13154101
13154201
13154301
13154401
12154501
13154601
13154701
13154901
I
0
5
4
0.0
540.
315100000
-999
0'
0
6
I
.1620
5
5
6
0
0
0
0
2
1
.1285
I
3949
0
0
I
I
0
.667
.667
.667
I
I
13000000
13000100
13000101
13000201
13000301
13000401
13000501
13000502
13000503
13000601
13000602
13000603
13000701
13000801
13000802
13000803
3
0
5
4
0.0
540.
300010000
305010000
310010000
-999
-999
-999
0
0
0
0
6
I
.1780
S
5
6
0
0
0
0
0
0
0
0
0
0
2
I
.1420
1
1
I
3949
3949
3949
0
0
0
0
1
1
1
1
I
I
0
.0760
.6980
1.424
.8760
.6980
1.424
.8760
.6980
1.424
3
I
2
3
2
1
.111
4
• PRIMARY SYSTEM PIPING
13150000
13150100
13150101
13150201
13150301
13150401
13150501
13150502
13150601
13150602
13161401
13151501
13151601
13151701
13151901
l3750201
2
0
5
6
I
.1365
4
5
540.
370010000
380010000
-999
-999
0
0
0
6
0
0
0
0
0
0
0
13350000
13350100
13350101
13350201
13350301
13350401
13350501
13350502
13350503
13350601
13350602
13350603
13350701
13350801
13350802
13350803
3
0
5
4
0.0
540.
335010000
340010000
345010000
-999
-999
-999
0
0
0
0
6
1
.1780
5
5
6
0
0
0
0
0
0
0
0
0
0
13501000
13501100
13501101
13501201
13501301
13501401
13501501
13501601
13501701
13501801
1
0
5
4
0.0
540.
350010000
-999
0
0
13750301
* REFLOOASSIST BYPASS
13750000
13750100
13750101
I
1
1
I
4
5
4
5
1
1
1
2
3
2
3
13750401
13750501
13750502
13750601
13750602
13750701
13750801
13750802
0.0
5
I
I
3949
3949
0
0
0
I
I
I
I
0
4.415
5.240
2
1
.1420
I
I
I
3949
3949
3949
0
0
0
0
I
I
I
I
1
1
0
.749S
.6980
.9740
.7495
.6980
.9740
.7495
.6980
.9740
3
I
2
3
6
1
.1287
5
5
6
0
0
0
0
2
1
.0803
1
3949
0
0
1
I
0
2.0965
2.0965
2.0965
I
1
6
2
1
.142
1
I
1
1
1
1
1
I
I
1
I
1
I
I
1
I
1.5273
1.6340
1.1303
.9304
.6890
.5590
.7600
.49G6
.5590
.6130
.7010
1.4610
1.5373
1.6340
4.415
5.240
4.415
5.240
2
I
2
*44•**4SSSSS*S.S.SSSttSSSSS4****SSSSS*S*S444*SSSS*Stttit4titt4t*t
* B.L. COLD LEG
•
.
I
2
1
2
I
2
3
I
2
3
CC)
W
crn
0
CI
ko
cr%
w3
0
1
1
INTACT LOOP PIPING
11001000
11001100
11001101
11001201
11001301
11001401
Il001501
11001502
11001503
11001504
11001505
11001506
11001507
11001509
11001509
11001510
11001511
11001512
11001601
11001602
12
0
5
4
0.0
540.
100010000
105010000
110010000
115010000
115120000
115130000
120010000
150010000
175010000
175020000
180010000
185010000
-999
-999
.178
5
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
1
I
1
I
1
I
3949
3949
1
2
3
4
5
6
7
8
9
10
II
12
I
2
:00
H
63
11001603
11001604
11001605
11001606
11001607
1100160s
11001609
11001610
11001611
11001612
11001701
11001801
11001802
11001803
11001804
11001806
11001806
11001807
11001808
11001809
11001810
11001811
11001812
110011000
11002100
11002101
11002201
11002301
11002401
11002501
11002502
11002601
11002602
11002701
11002802
11002801
0
11003000
11003100
11003101
11003201
11003301
11003401
11003501
11003502
11003503
11003504
11003505
11003506
11003507
11003601
11003602
11003603
11003604
11003605
11003606
11003607
11003701
11003001
11003802
11003803
11003804
11003805
11003606
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3946
1
3949
1.1303
.93124
3949
3949
3949
3949
3949
3949
3949
3949
0
0
0
0
0
0
0
0
I
1
I
0
1.5373
1.6340
1.12303
.93124
.6890
.5590
.7600
.6890
.5590
.7600
.4966
.5S90
.6130
.7010
1.461
12
1
2
3
4
5
a
7
0
0
0
0
0
.4968
.5590
.6130
.7010
1.461
8
9
10
II
12
2
0
$
4
0.0
540.
115020000
115II0000
-999
-999
0
0
0
6
I
.2030
5
5
6
0
0
0
0
0
0
0
2
7
0
5
4
0.0
540.
125010000
130010000
140010000
145010000
155010000
160010000
170010000
-999
-999
-999
-999
-999
-999
-999
0
0
0
0
0
0
0
6
I
.1365
5
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
1
I
1
.162s
ti
<:j
zQ
11003807
0
0
0
.514
7
11004000
2
6
3
1
.6858
1
I
I
.25
.25
11004100
11004101
11004201
110C04301
11004401
11004501
11004502
11004601
11004602
11004701
11004801
11004802
11004901
8
0
5
4
0.0
540.
115030000
115100000
1
.7747
5
5
6
0
0
-999
-999
0
0
0
0
'-1
'-
I
0
0
0
0
0
0
3949
3949
0
0
0
0
I
I
0
.630
.630
.630
20100102
20100104
20100105
2
.25
.25
2
I
2
2
I
2
20100103
616.48
868.48
4.6228
3.8803
20100106
1088.71
1366.48
1616.48
2255.37
3088.71
3.1551
2.7130
2.4490
2.3071
2.9942
20100107
20100108
699.82
949.82
4.6332
3.5965
1199.82
1449.82
1699.82
2533.15
2.9838
2.6082
2.3919
2.4334
wR
783.15
1033.15 422.13
3.3576
1283.15
1533.32
1977.59
2810.93
2.8367
2.5217
2.2898
2.6619
373.15
1373.15
2173.15
2773.15
3113.15
2.74846&
3.443868
4.2285E6
6.3210E6
6.8005E6
•4*8*4*81
o VOLYMETRIC HEAT CAPACITY U02
20100151
20100152
20100153
20100154
20100155
20100156
*.STEAM GENERATOR
PRI-SEC HEAT STRUCTURES
.708
3949
3949
0
0
0
3949
3949
3949
3949
3949
3949
3949
0
0
0
0
0
0
0
0
.708
.541
.547
.708
.547
2
2
.108
0
1 .003
.457
.502
1.4084
1.003
.457
1.003
.457
.502
1.4084
1.003
.457
.514
1.003
.457
.502
1.4084
1.003
.457
.514
7
1
2
3
4
5
*STEAM GENERATOR
TUBING
10060000
10060100
10060101
10060201
10060301
10060401
10060601
10060602
10060603
10060604
10060605
10060606
10060501
10060502
10060503
10060504
10060505
10060506
10060701
10060801
10060901
6
0
7
6
0.0
540.0
517010000
517020000
517030000
517030000
517020000
517010000
115040000
115050000
115060000
115070000
115080000
115090000
0
0
0
8
2
I
0.006348984
7
7
8
0
1 I
0
1 1
0
1 I
0
1 1
0
1 1
0
1 1
0
I 1
0
1
0
1 I
0
I 1
0
1 1
0
1 1
0
0
0
0
0
0
1
.204,00
TBL/FCTN
TSL/FCTH
TB./FCTN
I
I
I
I
f
I
I
366.48
7.7796
449.81
20100351
20100352
8
8THERMAAL
6
6
6
20100201
20100202
20100203
20100204
20100205
20100206
273.1S
873.15
1473.15
2073.15
9.5744
17.0079
25.0109
44.0178
255.37
1.9041E6
1248.43 2.3118t6
1077.59 2.312266
2199.82 2.3122E6
,-J
1185.93 5.7124E6
2,
co
-J
a%
CONDUCTIVITYCAP
273.15
590.0
810.0
1090.0
1370.0
3260.0
0
kD
0.14
0.24
0.29
0.36
0.42
0.75
wu
S
* THERMAL CONDUCTIVITY INCONEL 600
U02
GAP
* ZR
8
8
,--"
6.6297
2.5720E6
3.1387E6
3.7926E6
6.0158E6
6.7133E6
473.18
12.0044
673.15
14.0051
1073.1S 19.0087
1273.15 22.0098
1673.15 30.0127
1873.15 36.0149
2273.15 55.0235
2473.15 68.0283
4*8 88 8 8 8 888888**88**8**88*888*888*88*8 8*8888**8888888e*88***•*
* VOLYMETRIC HEAT CAPACITY ZR
1
2
3
4
5
6
I
2
3
4
5
6
20100400 S-STEEL
20100500 C-STEEL
20100600
TgL/FCTN I
I
* INCONEL600
*.**,.*8...8..88e8,,4*8888*88e*8*8**8•**888**8**8**8*88*88888S8t*
• THERV*AL
CONDUCTIVITY U02
20100101
323.1J
673.15
1973.15
2673.16
2973.15
THERMAL CONOUCTIVITY ZR
20100301
20100302
20100303
20100304
HEAT STRUCTURE
THERM4AL
PROPERTY DATA
20100100
20100200
20100300
2.3104E6
2.9207(6
3.5310E6
4.8824E6
6.582568
6.8005(6
0.0051054
*
1624.338
2236.34
943.16
943.16
2236.34
1624.338
1624.338
2236.34
943.16
943.16
2236.34
1624.338
0
0
0
273.15
473.15
1773.15
2373.15
2873.15
4699.82
533.15
20100601
20100602
20100603
20100604
20100605
20100606
20100607
20100608
20100609
366.5
477.6
588.7
700.0
810.9
922.0
1033.2
1144.3
1477.6
13.8S
15.92
18.17
20.42
22.50
24.92
26.83
29.42
36.06
l-i
5.7824
8
VOLI.8dETRIC
HEAT CAPACITY CAP
20100251
20100252
273.15
3260.0
5.4
5.4
0 VOLUMETRIC HEAT CAPACIT
.*Y 8
60........0'*:
""
...........
En
20100451
20100652
20100653
20100654
20100656
20100657
20100656
20100659
366.5
477.6
588.7
700.0
810.9
922.0
1033.2
1477.6
H
3.908E5
4.08465
4.260E5
4.436E5
4.665E5
4.929E5
6.105E5
S.727ES
til
1356306
O.0000006E*0
1.403600.*00
***46888886i86*8666466668686866868668i*8*4*6tt8868ii*6*6888446i6
HEAT STRUCTURE GENERAL TABLES
M
20299900
20299901
TEMP
0.0
305.
20294900
20294901
HTC-T
0.0
20.
* HEADCURVE NO. 4
6
250 KW 5S SURROUNOINOS HEAT LOSS
* POWER
I
20290000
20290001
20290002
POWER
0.0
1000.0
0.0
0.0
*PUMP
4
4**66
**4*6646646666
DATA
*...8**..*...6...86...***.'0..688848***664"•*46.4666.0..4.1.4
* ..SINGLE
PHASE HEAD CURVES
*HEAD
CURVE NO.
1351100
1351101
1351102
1361103
1351104
135110S
1351105
*
I
1
0O.00000E*00
1.906100-01
3.8963O O-01
5.9396006-a1
7.90200E-0o
1.0OO0000000
*
I
1.403600E600
1.363600E.00
1.318600aO00
1.23258O.00
1.133600E.00
!.000000EO00
HEAD CURVE NO. 2
6
1351200
1
2
1351201
0.0000006O0
-6.700000E-01
1351202
2.0000OOE-01
-5.O000O0-OI
1351203
4.OOOOOO-01
-2.500000-Ol
1351204
5.7554006-01
0.0000006.00
1351205
7.443200O-01
2.5830OOE-01
1351206
7.734800E-01
3.7780OOE601
1351207
8.6313OOE-OI
6.32600O-o01
1351200
1.000OOOO 400
l.000000[.00
6..6866646*68*8ee8e6*0•40*****88866*6*e0,e,***6446*4*6666666464***
* HEAD*CURVE NO. 3
1361300
1351301
1351302
1351303
1351304
1351305
1
-1.000000E.00
-8.05740O6-Ol
-6.069000o-OI
-4.068300-01
-2.001710-01
1351401
-1.0OOOOOE*00
4
1351402
1361403
1351404
1351405
1351406
1351407
1351408
-8.2297OOE-01
-6.3332O-01
-4.553400D-01
-2.710900E-01
-:.771600E61 0
-9.073000E-02
0.00OOO00*00
1.996800O400
1.589700E#00
1.327900*00
1.194900.*00
6.06050OE600
1.0156006*00
9.342790E-01
•
6884
**************o**66466
66668
68 66666666648
3
2.472200E.00
2.047400E.00
1.03t0O,0OO
1.624000E00
1.470500E*00
6
2.4722006*00
HEAD CURVE NO. 5
6351600
1
6
1351601
0.00OOO
O600
9.342795E-01
1351602
9.10990OE0-2
9.22900OE-0O
1351603
1.865090E-01
8.968000E-O1
1351604
2.717620E-01
8.7500OEO-0l
1351605
4.558720E-01
8.433000E-O0
1351606
5.7440606-01
8.355006E-Ol
1351607
7.405760E-01
8.4660006-01
1351608
7.666190E-01
8.46900OO-01
1351609
8.714710E-01
8.838000E-01
1351610
1.0000
.00O
I .00O0E+00
4.*64*6668t**tet6ete*8886**4*4*686*8*86tet*66o*t8888*66t486*464*e6
• HEAD CURVE NO. 7
1
-1.000000*"00-8.0000OOE-01
-6.00OOOOO-01
-4.0OOOOOO-01
-2.0000OOE-01
O.000000[*00
7
-1.000000.E00
-6.3000006-01
-3.0OOOOO-O1
-5.00OOOOE-02
1.SOOOOE-0l
2.5000OOE-01
* HEAD CURVE NO. 6
1351800
1351801
1351802
1351803
1351804
1351805
1351806
I
-1.000000EE00
-8.000000E-O
-6.OOOO000-01
-4.000000E-01
-2.0OOOOOE-01
0.000000E.00
IRNGLE
I
PHASE TOR.UE DATA
*OOUE CRVE NO. I
H
*
1351500
I
S
1351501
O.OOOOO000
2.50OOOOE-01
1351502
2.OOOOOO-OI
2.800000-O1
t351503
4.0000006-01
3.400O06-01
1351504
4.1180OOE-O
2.768000E-01
4.5840OOE-01
5.976300E-01
1351505
1351506
7.934670E-01
6.992000O-01
1351507
1.0000O00600
I.O000006E*0
..... 66444***6,.6.*6686686...8.8.*e6.86*e6**4**886*666886..666**44
* HEAD CURVE NO. 6
1351700
1351701
1351702
1351703
1351704
1351705
1351706
z
*
I
1351400
1351900
1351901
2
0.000000t#00
1
6.032000E-01
1351902
1.930000o-01
6.325000E-01
1351903
3.930000E-01
7.369000E-01
1351904
5.9552OOE-01
6.3310OOO-01
1351905
7.978200E-01
9.2290OOE-01
1351906
1.000000E60
1.000000*EO0
66 668 66*86*666668* 96864*6448686 664 64***46.6*666 .688.. *.4*466646
6
NO.
2
* TOROUE CURVE
1352000
2
2
1352001
0O.000006EO0
-6.0OOOOOE-01
1352002
4.000000E-01
-2.500000E-01
1352003
5.000000E-01
f.SOOO00-Of
1352004
7.372550E-01
S.26586OE-01
1352005
7.680490E-01
6.065940E-01
1352006
8.672300O-01
7.436600E-01
1352007
1.000000E*00
1.000000E+00
6.6888*6688.6.8666s866646486648.6.66....66666..86.6844486684684*8
• TOROUECURVENO. 3
• TOROUECURVENO. 4
13S2200
1352201
13S2202
1352203
1352204
1352205
1352206
13S2207
1352208
*TORQUE
8
-1.000000E#00
-9.700oO-01
-9.500000E-01
-8.800000E-01
-8.0000OOE-01
-6.7000006-01
6
I352100
2
3
1352101
-1.000000E*O0
1.984300E*00
1352102
-8.009600E-Ol
1.394000E*00
1352103
-6.063800E-O1
1.0975006*00
13S2104
-4.068600E-01
8.2200006-01
1352105
-1.992800E-01
6.6480006-01
1352106
0.0000006.00
6.032000E-01
6666*6*6448*8*********4*46866*4*****************************0***4
I3S2300
1352301
1352302
1352303
1352304
6OQUE
1352400
1352401
1352402
1352403
1352404
1352405
1352406
1352407
1352408
I352409
2
-. OOO00EO.00
-8.223400E-01
-6.33710OE-01
-4.5853IOE-OI
-2.670230E-01
-7.761070Eo01
-8.931000E-02
O.OOOOOE+00
ý-2
0L
-j
4
6.9843006*oo
1.830800E.00
1.682400E+00
1.557000E*00
1.436200E.00
1.387900E#00
1.348100*E00
1.233610E*00
0o
CURVE NO. S6
2
O.000)000+00
4.000000-01
5.OOOOOE-Ot
0
t.000000E+00
6
-4.50OOOOE-Ol
-2.50OOOO[-OI
0.000000E.00
3.5690OOE-01
t~1
CURVE NO. 66
2
O.OO0OOE*000
9.0643006-02
1.885690E-01
2.7347006-01
4.586690E-01
5.744800-E01
7.3816006-01
7,685200E-01
9.700570E-01
6
1.233610E*00
1.1965006*00
1.1096006E00
1.041600E.00
6.958OO0-Ol
7.807000E-01
6.134000E-01
5.849000E-O0
4.877000E-OI
1352410 •!;:;
1.00000E*o0
3.569000E-Ol
••:;...........................
:.;•
6TORQUE
CURVENO.7
:0:
C
Cl)
1352500
1352501
1352502
1352503
1352504
2
-!.00E000
-3.OOOOOOE-0I
-I.OOOOOOE-01
O.000000E00
04 *6*6* *00•••••.•••••00
0
$*0*6*
00* 0
0*608*$ 0;0! .......
* FOR TOROUECURVE NO. a
I352600
1352601
1352602
1352603
1352604
'-4
7
-I. 0000OOE400
-9.000000E-01
-5.000000-01
-4.O00001r-ol
2
t~1
8000
0•
8
1..000000E400
-2.500000-001
-9.000000-02
0.0000006.00
1. 0000001.00
-9.000006E-01
-8.000000E-Ol
-6.700000oE-0
* TW - PHASE IMJLTIPLIER DATA
$$0e006000 000•$0
00
g
0e6
000*8*0
0
o0•400000000000000004,0•$0e•0e6e*40$0
0
1354300
I
3
1354301
-1.000000E6O0
-1.1600005*00
1354302
-9.000000E-01
-1.2400006+00
1354303
-8.000000E-Ol
-1.770000E.00
1354304
-7.0000001-01
-2.3600006,00
1354305
-8.0000005-01
-2.790000E600
1354306
-S.000000[-01
-2.910000E,00
1354307
-4.000000E-01
-2.670000•400
1354308
-2.500000E-01
-1.690000E+00
1354309
-I.000006E-01
-5.000000[-(.I
1354310
O.000000.E00
0.W000006.E.0
0.oo;.oooset.oe:. ... .8o.,...,..,..,,
0
O.0000005400
2.000000E-02
6.000000E-02
I.0000006-01
2.0000006-01
2.4000OOE-01
3.OOOOOOE-01
4.0OOO006-01
6.0000006-01
8.0000006-01
9.000006E-01
9.600000E-01
1.000000E.00
0.000000E600
2.000000E-02
5.000000E-02
1.000000E-01
4.600000E-01
8.OOOOOOE-O1
9.6000OOO-OI
9.8OOOOE-OI
9.7000006-01
9.0000006-01
8.0000006-01
5.0OOOO -01
O.OOOOOOE00
000000060e009.0001*.e*•te*e•e*00000060.....000000000*0*..00000000
* TOROUECURVE
1353100
1353101
1353102
1353103
1353104
135310S
1353106
1353107
0
0.0000006.00
I.2500OOE-01
1.650000E-01
2.4000006-01
8.00OOOO-01
9.6000006-01
1.000000E+00
....
0
O.0000001[00
7.OOOOOOE-02
1.250000E-01
5.6000OOE-01
5.600000E-01
4. 500000-01
0.0000006DO0
*
* HEADCURVE NO. I
8
1354100
1
I
1354101
0.000000E.00
0.0000006.00
1354102
1.000000E-01
8.3000OOE-01
1354103
2.OOO00-01
1.090000E600
1354104
5.000000E-01
1.0200006.00
1354105
7.000000o-01
1.0f00006.00
1354106
9.000000[-01
9.40000OE-01
1354107
1.000000E6.0
1.0000006.00
0**00000*,0•****0
**•*d*ee*e******00006.o•o.ee.0000
• HEADCURVENO. 2
0
1354200
1354201
I
0.000000E600
2
0.0OOO000.00
t~j
z'-4
s HEADCURVENO. 40
1354100
I
1354401
-1.000000M400
1354402
-9.0000E-Ol1
1354403
-8.0000006-01
1354404
-?.OOOOOO-01
1354405
-6.0000006-O
1354406
-5.OO00006-01
1354407
-3.5000006-01
1354408
-2.000000E-01
1354409
-1.000000E-01
1354410
O.OOOOOOE00
1S54500
1354501
1354502
1354503
1354504
1354505
1354506
I
0.0000006E00
2.0000006-01
4.000000E-01
6.0000006-01
8.000000-01
1.000000E+00
86*0
1354600
1354601
1354602
1354603
1354604
1354605
1351606
1354607
1354608
1354609
1354610
I
0.0000006.00
1.000000E-01
2.5000005-01
4.0000005-01
5.000000E-01
8.000000E-01
7.000000E-01
8.000000E-01
9.000000E-01
1.000000E+00
00*
.....
,...,..,......44....00000
4
-1.1600006.00
-7.800000E-01
-5.000000E-Ol
-3.100000E-01
-1.7000006-01
-8.0000OOE-02
0.O000OE.OO
5.0000006-02
8.OOOO0OE-02
I.000O
-01
1
-1.0000006.00
0.000000.E00
s TORQUECURVENO. I
1354900
2
1354901
0.000000.E00
1354902
1.930000E-01
1354903
3.9300006-01
1354904
5.955200E-01
1354905
7.978200o-01
1354906
I. 000000E00
0TORQUE
1355000
1355001
1355002
1355003
1355004
135500S
1355006
1355007
*00....0
to* .....
I
6.032000o-0l
6.3250001-01
7.369000601
O.331000E-01
9.2290006-01
1.O00000064O
2
0.000000E600
4.000000E-01
5.OOOOOE-01
7.372550E-01
7.6804906-01
8.6723006-01
1.000000E+00
2
-6.700006E-01
-2. 5000006-01
1-.5000005-01
5.2658606-01
6.065940E-01
7.4366006-01
I.0000006400
ý-j
0o
.
5
O..000000400
-3.400000E-01
-6.500000E-01
-9.3000005-01
-1.190000E+00
-1.4700005.00
1355100
2
3
1355101
-1.000000E+00
1.9843001400
1355102
-8.009600E-01
1.3940006.00
1355103
-6.063800E-01
1.0975006400
1355104
-4.068600E-01
8.2200006-01
1355105
-1.9928000-01
6.6480006-01
0.000000E60
6.0320OOE-01
o1355106
.•*..,6000e.,..0*eooeO**•••**.,,ose,**o****seesO*eet*********e0
0 TOROUECURVENO. 4
6
1.1000001-01
1.300000E-01
1.500000E-01
1.300000E-01
7.000000E-02
-4. 000000-02
-2.300000E-01
-5.1000006-01
-9.1000006-01
-1.4700OOE400
1355200
2
4
1355201
-1.000000E+00
1.084300E-00
1355202
-8.223400-E01
1.530800C400
1355203
-6.3371006-01
1.6824006.00
1355204
-4.585300E-01
1.5570006400
1355205
-2.670230E-01
1.4362006400
1355206
-3.761070E-01
1.387900O400
1355207
-8.9310006-02
.348100.E00
1355208
0.000000.E00
1.233610E400
0 **.*6006000*s,804.00608000800604*8*.
7
0.OOOOOOE600
0.000000E.00
w
,00,,000
CURVENo. 20
•TORUE CURVENO. 3
HEADCURVENO. 7
1354700
1354701
1354702
CURVENO. 80
1354000
I
8
1354801
-1.000000E#00
0.000000.EO0
1354802
0.000000E+00
0000
* *0 06*00*•
*0* ••*0*000*00000e 0.0000006400
SHEADCURVENO. 6
e84000•oo**
I-'
0HEAD
* HEAD CURVENO. 5S
o... b**00000000****5eotoootoooooooeoosoooeooosooeso*ooossoooooo••
SPUMP 2-PHASE DIFFERENCE DATA
C)
SHEADCURVENO. 3
s HEADCURVE
1353000
1353001
1353002
1353003
1353004
1353005
1353006
1353007
1353008
1353009
1353010
1353011
1353012
1353013
tI'
1354202
.0OOOOOE-01
-4.000000E-02
1351203
2.000000E-01
O.000000.E00
1354204
3.0000005-01
1.0000OOE-01
1354205
4.00-OOO l-01
2.100006E-01
1354206
8.000000E-01
6.7000006-01
135420?
9.000000E-01
8.00OOOOO-01
1354208
1.000000E400
1.0000006400
0000**0001000*******8.**e,,,,8se0*00*080**4*8*8*00*e8000000000080•
C)t
2:
co
W..
*
*8*e.**e*.6ee*$0t06800*e*0•t
s TORQUECURVENO. 5
1355300
1355301
1355302
1355303
1355304
2
O.000000E00
4. 000000e-01
5.OOOOOOE-0I
1.000000E.00
0 ORUE CRVE NO. 6
1355400
2
1355401
0.0000006.00
1355402
9.064300E-02
1355403
1.885690E-01
1355404
2.734700F-01
0
8
-4.500000E-01
-2.500OOOE-01
0. 000000E00
3.569000E-01
6
1.22336104E00
1.196500*E00
1.1096006400
1.041600E-00
I'd
s--3
(ft
a
0
<,
Sc
1355405
4.$686690-E01
1355406
5. 744800-O01
1355407
7.381600E-0l
1355408
7.68520E-Ol
0
1355409
8.700570E-01
1355410
I. OOO.OOE
... s 5 eec.s *.
.eeeet
* TOROUE CURVE NO. 7
8.958000E-OI
7.107000E-01
6.134000E-01
58490OOE-01
4.18770OOE-01
.. 3.SE0OOOEOI
eetetet;eeOtetseteetsOt
tes ees.. 5 etsett
1355500
2
1355501
-: .OOOooOE00
1355502
-3.0OOOOOE-O1
1355503
-I .00000E-Ol
1355504
O.OOOOOE*sOO
oansi stetsseseesss *tlee
* TOROUE CURVE NO. 8
7
-I .000000E00
-9.0O00OOE-O1
-6. 000000-OE-0
-4.500000E-OI
* tens.
ctestttssettt
z
ti30000507
DOPPLER
a
30000601
30000602
30000603
30000604
30000606
30000606
30000607
30000608
30000609
30000610
30000611
30000612
5
eteeteeeessststett
S
REACTOR KINETICS
* POINT KINETICS
5
POIN4T
30000001
GAMMA-AC 49.0E6
0.
371.875
stts~lettsssssstleetttssett
ensstssssssseeete~etteeeeeeeetee***s*t
:*DELAYED NEUTRON CONSTANTS
30000101
30000102
30000103
30000104
30000105
30000106
0.042
0.1150
0.3950
0.1960
0.2190
0.0330
S
3.01
1.14
3.301
0.301
0.305
0.0124
5 stttett~tittt~tttt5
ette
Sllt ttttetettthtttes
* POWER HISTORY .
5
30000401
26.6E6
9.
HR
30000402 49. OE+6
36.
HR
•*cc
¢ee cese*•eeseesees *ese~e e~eseesee
* REACTIVITY CURVE
slettee.teste
steen.i
* M3OERATOR DENSITY REACTIVITY TABLE
0.8125
0.875
0.9376
1.0
I.04602
1.125
REACTIVITY TABLE
255.
SOO.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
C
t.5
0.3
-0.7
-1.6
-2.3
-3.0
-3.7
-4.3
-4.9
-5.4
-5.9
-6.3
e TOP OF DOWNCOMER
(OUTLET OF PRIMARYSEPARATOR)
6000000
5000001
5000101
5000102
$001101
e~ee~eneeeoeeee*eees
-3.4
-9.8
-0.3
1.0
2.2
3.1
SC*R*AM*
ROO WORT#H
CURVE
20260900
20260901
20260902
20260903
20260904
20260905
20260906
20260907
20260908
20260909
20260910
20260911
20260912
20260913
20260914
20260915
REAC-T
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.8
1000.
5ess
30000706
230060000
tDOPPLER
SO5
0.0
-2.1
-4.3
-6.8
-9.2
-11.1
-12.2
-12.9
-13.3
-13.6
-13.7
-13.8
-13.9
-14.0
-14.0
eeeeeeeeeeessssee•teeeeeeseeeesee,
0.0
0.0
FEED INLET VOLUME5
5100000
FEEO-INLET
5100001
2
1
6100101
0.7525
0.518
5100102
4.6-5
0.10796
5101101
so5050000 560000000
5102101
510010000 515000000
S
-90.0
0.0
0.0
-0.718
0100
-90.0
-0.718
eteoeeeteeeees......eeoeett
....
5
BRANCH
0.0
D0
0.0
0.0
0.0
-90.0
0.0
0.0
0.0
0.0
0100
0100
0.0
90.0
0.710
-0.518
see eeeteteeeseee,•eee~eot
5eeeetesteeteoete ee*•eeet*eesstsS*55t cn 5 5
tD
z
ko
C)
W
* SEPARATOR(INSIDE SHROUD.ABOVETUBES)
0
0.21270
0.0
0.0
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0.0170
0.3639
0.2747
0.2379
0.0976
0.0089
0.0
0.0
0.0
0.0
0.0
0.0
5200000
5200001
5200190
5200102
5201101
5202101
5203101
elteeceee.eesese.etSEAGENERA
teeeeCReeet eeeee
teeett
ttesesst..teteeeteflteeeetet~t~eeeeee*t**eeetotetseesetees*e
SEPAR
3
0.27871
4.E-6
520010000
520000000
519010000
SEPARATR
I
0.718
0.0
0.0
00
525000000 0.0
505000000 0.0
520000000 0.196
2.
S.
0.4
9000
1000
1000
2.
5.
0.4
.6
.J0
to
5BELOWMIST EXTRACTOR,
ABOVETOPOP SHROUDIN STEAMDOWE
BOTSTMOA
BRANCH
1
1
.90
0.762
0.0
0.0
90.0
0.762
4.E-5
0.0
00
525010000 530000000 0.0
0.8
0.8
0100
5250000
5250001
5250101
5250102
5251 101
FEEDBACK
2300001
2300002
2300003
2300004
2300005
2300006
BRANCH
I
0.718
0.0
0.7874
00
505000000 0.0
5LOWERSEPARATOR
SECTION5
LWR-SEP
SNGLVOL
1.273
0.718
0.0
4.E-5
0.7874
00
a
30000801
30000802
30000803
30000804
30000805
30000806
DOWYTOP
1
1.273
4.E-5
500010000
5050000
5050101
5050102
609
eMODOERATOR DENS. FEEDBACK
30000701
230010000"0"0.1""....."
30000701
230010000
0
0.15746
30000702
230020000
0
0.15746
30000703
230030000
0
0.15746
30000704
230040000
0
0.15746
30000705
230050000
0
0.15746
30000011
609
ssssttteeseeeeeeeeeeeeetssssststtteeeeeee~eetess~sesseeeeeeeteetse
30000501
30000502
30000503
30000504
30000505
30000506
0
9-3
5
5
3000000
4.0
30000508
1.25
4.9
.seeesetteeeeeessessseeseeesessesssesSeetessessseeeteeesoeeteeeete
5
1 355600
2
a
1355601
-1. 00000
O0
-. .91:000000 00
1355602
-2.500OOE-01
OOOOOOE-O
1355603
-. 0000OOE-02
-8.000000E-O
1355604
0. 000000600
-6.700006E-01
555 IeQ~l*t
5
*sle eteesssse *eseenes
*
5 5555tesesssteeese~eeeeeset*•
,essssssssssseeeseessse*e**oeeeessssssstn~essteneessees,*****ess*
*
1.1875
Ito
5 BELOWMIST EXTRACTOR,PRALLEL VOLLME
5260000
BOTSTW4
2
I
5260101
6260102
5261101
5262901
.2148
4.E-5
526010000
526010000
0.762
0.0
525000000
500000000
5260009
ees~
¢teee
STEAM GENERATOR SECONDARY SIDE
seeeeetettt..cccssssooeessoe,55555e5*tet*55e5eeeeee5eeete*eefeele
N
z
BRANCH
0.0
00
0.0
0.0
0.0
-90.0
-0.762
0.8
0.0
0.8
0.0
0103
0100
sssete..oeeeetteeeteeeteee4eete*eetese•*ttttteeesseeesteeeeuseeee*e
e MIST EXTRACTORANDSTEAMGEN OUTLETPIPE TO SCV
5300000
5300001
5300101
5300102
5300201
5300301
STYMD-PIPE
2
0.799008
I
0.04635
2
0.01365
1
0.762
I
PIPE
0
rn
CD,
tj1
5300302
5300401
5300601
5300602
25.074
0.0
90.0
0.0
5300801
4.E-S
5300901
5301001
5301101
5301300
5301300
2
2
I
2
0.0
0.4
2
1
0.4
00
0100
0
I
2I
I-I
*5$8S55558.*5S*55555*SSeS
0
pIPE DOWNSTRE.AMOF SCV
P
53500OO
5350101
5350102
COHDINL
0.06557
4.E-5
54.44
0.0
SNOLVOL
0.0
00
0.0
0.0
0.0
e
* AIR COOLED CONOENSER
5400000
CONOSER
5400101
0.21677
5400102
4.E-5
5400200
2
5400207
0.0
5400208 1000.
17.67
0.02
2.020OE6
2.0200e6
TM0P`VOL
0.0
00
0 .0
5450101
5450102
5450200
5450201
5450202
*
FEEOTANK
0.0
1.0
1.0
*8SS*teSoeeeet4S*****e*eee
* MAKE UP FEED STORAGE TANK
5450000
0.0
I
519020000
519010000
0
0
0
4
0
3
5
0.0
540.0
510010000
515010000
519010000
517030000
0
0
0
1
1
1
0
0.0
0.0
2
0.772S
1
1
0
0.0
0.0
0
0.7725
0.152
3
3
3
0.6445
0.0
.5
.5
0.0
0.0
0100
S85588S8*S8ee*****8*S*SSS
8*e*S**S588851e88*ee
*8eee5
0
0
0
0.0
0.0
4
I
0.6572
3
3
4
0
10000
0
-10000
0
0.0
0.0
I
I
1
1
0
0.0
0.0
15050100
15050101
15050201
15050301
15050401
15050501
15050502
15050503
1
15050601
15050602
15050603
15050701
15050801
15050901
S
s
0
3
5
0.0
540.
505010000
510010000
515010000
-999
-999
-999
0
0
0
4
2
I
.73819
3
3
4
0
0
10000
0
0
0
0.0
0.0
0.0
1
1
1
3949
3949
3949
0.0
0.0
0.0
5
I
1
t
I
0.0
0.0
0.0
$.0. SECONOARY OWSC-BOIL-RISR
• STEAM GENERATOR HEAT STRUCTURES
* SHROLK) SECONDARY SIDE STEAM GENERATOR
3
0
3
5
0.0
540.0
500010000
505010000
510010000
4
I
0.314325
3
3
4
0
0
0
2
I
1
1
ISS8*S8*S*58e55*555858e8*
I
1
0.3048
0.7725
0.7725
0.1$2
0
I
2
3
S
0.152
0.7113
0.152
0.7113
4
4
4
I
4
1
A
ERP4CMSR
3
0.23226
0.0
0.7102
0.0
-90.
-0.7102
4.E-5
0.0
00
0000
I
PIPE
3
2
3
3
3
3
0.10796
0.0
3
2
BILSCT
3
2
3
3
3
3
0.0092
0.0
0.0
3
2
3
2
.71
.518
.7102
.718
.518
.7102
5
5
5
1
2
S
1
2
5
• STEAU GENERATOR RISER
S
5190000
RISER
5190001
2
5190101
0.27871
2
5190201
0.0
I
5190301
C.O507S
1
5190302
0.718
2
5190401
0.0
2
5190601
1I.0
1
5190602
90.0
2
5190701
0.518
1
519070?
0.718
2
5190801
4.E-5
0.5957
5190802
4.E-5
0.0
5190901
0.0
0.0
5191001
00
2
5191101
0000
I
5191300
0
PIPE
1
2
1
co
•J
I
I
0o
--
o
-3
I )~
5160000
5160101
OWN1OIL
SNCLJUN
515010000 517000000 0.0
0.0
0.0
O100
* SG BOILING SECTION TO RISER
5180000
5180101
SOILRSR
SINOLJUN
517010000 519000000 0.0
0.0
0.0
0000
*
PIPE
01
F-
3
2
SSTEAM GENERATOR BOILING SECTION
5170000
3
0.27071
0.0
1.85075
0.0
21.0
0.7102
4.E-5
0.0
0.0
00
0000
0
*StS*SSeeee*ee*t4851*,SS**S•*SSeeeeeege*S8*88*8SS,58*e*e$**e8S***
• SO DOIR4COMERTO BOILING SECTION
STEAWGENRATOR
DO"CDOMER
5150000
5150001
5150101
5150201
5150301
5150401
5150601
5150701
5150801
5150901
5151001
5151101
5151300
5170001
5170101
5170201
5170301
5170401
5170601
5170701
5170801
5170901
5170902
5171001
5171101
5171300
.7111
STRUCTURE INPUT DATA
*S*ee*585588558*5e558555S
1SOOOOO
15000100
15OO0101
15000201
15000301
15000401
15000501
15000502
15000503
1
I
I
1
0
0.0
0.0
1-4
z-
2
3
VESSELVALL - SURROUNDINOGS
;SO50000
0.0
FLOW PATH TO THE AIR COOLED CONDENSER *8*hSS*SSe88*****S$*ee*S
*HI4EAT
520010000 0
15000602
15000603
15000701
15000801
15000901
15150000
15150100
15150101
15150201
15150301
15150401
15150501
15150502
15150601
15150602
15150701
15150801
15150901
SSO
T5DPVOI
29.61
3.048
0.0
0.0
4.E-5
0.0
00
0
0
CHTRLVAR
606
.8540E6
6.0E6
.854066
2.785E6
1.03786E
6.0E6
1.037666
2.785ES
5550000
COACCO
SNCL.JUN
5550101
535010000 540000000 0.0
***88*SSS8**S**S88*848**~eSI*SS888***S8S
15000601
AROKENLOOP
H
* REACTOR VESSEL BROKEN LOOP HOT LEG
30Ooo0
3000001
3000101
3000102
3001101
3002101
RVOLHL
2
0.0634
4.0E-5
295010000
300010000
' LEG PIPE
BRANCH
I
0.876
0.0
300000000
305000000
S
x
I-,
0.0
00
0.0634
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0102
0000
TO'HOT
REFLOOD ASSIST BYPASS TEE
Cl)
0
3050000
3050001
3050101
305010?
3051101
4. .•......
* STE.J
3100000
3100001
3100101
3100102
3101101
3102101
HLPRAS
I
BRNPCH
1
0.0634
0.696
(n
H
0.0
0.0
00
4.OE-5
305010000 310000000 0.0
44....•...•..
S....
S*S
4
**11.
SGShI
BRANCH
2
I
0.0 1.424 0.0668 0.0 0.0 0.0
00
4.OE-S 0.0
370010000 310000000 0.0 0.0 0.0 0100
310010000 315000000 0.0 0.05 0.05 0100
SGPSI
PIPE
10
0.00836 2
0.108
7
0.0
8
0.00836 9
0.0525
10
0.0
2
0.0326
6
0.0
7
0.0081
8
0.0
9
0.4054
I
0.5265
2
0.362 3
1.692 4
.1699 5
1.692 6
0.362 7
2.671 8
1.842 9
0.667 10
0.0
7
0.081
8
0.0
10
90.
4
0.
5
-90.
8
90.
9
0.
10.
0.127
I
0.488
2
0.362
3
1.692
4
0.0
5
-1.692 6
-0.362
7
-1.829
8
1.214
9
0.0
10
0.0 3
4.OE-5
0.124 4
4.OE-5
4.OE-5
0.0
5
4.OE-5
0.124 6
4.OE-5
0.0 10
0.1 0.1 I
0.0
0.05
0.05
90•***••4*5
GENERATORSIMULATORINLET
m S.C. PIPE AON PUMPSIIMLATOR
3150000
3150001
3150101
3150102
3150103
3150104
3150105
3150201
3150202
3150203
3150204
3150205
3150301
3150302
3150303
3150304
3150305
3150306
3150307
3150308
3150309
3150310
3150401
3150402
3150403
3150601
3150602
3150603
3150604
3150605
3150701
3150702
3150703
3150704
3150705
3150706
3150707
3150708
31S0709
3150710
3150801
3150802
3150803
3150804
3150805
3150901
0.0
0.0
0100
S*4•**•••48**4
3150902
0.1 0.1
3150903
3150904
3150905
3150906
3150907
3151001
3151101
3151300
4
93.9 93.9
93.9 93.9 6
0.0 0.0 7
8
4.1
4.1
9
0.4 0.4
00 tO
0100 9
I
2
til
ý-3
m
*BRO$KENL00P COLD LEO REACTOR VESSEL NOZZLE
3350000
3350001
3350101
3350102
3351101
3352101
0
9*
*
1RANCH
I
0.749S
0.0
335000000
340000000
8250000
0.0
00
0.0634
0.0
0.0
0.0
1.0
0.1
1.0
0.1
9002
CTSARV
I
0.0634
4.OE-S
340010000
BRANCH
1
0.0
0.698
00
0.0
34500000O0.0
0.0
0.0
0.0
0.1
0.1
0000
BYPASS ASSIST OUTLET ECC TEE COLD LEG
3450000
3450001
3450101
3450102
3451101
3452101
BAOET
BRANCH
I
2
0.974
0.0 0.0
0.0634
0.0
00
4.OE-5
0.0
380010000 345000000
0.0
345010000 350000000
0.0
0.0
0.0
0.0
0100
0100
• REFLOOD
9
3700000
3700101
3700102
ASSIST HOT LEO
•
ASSIST BYPASS SINGLE PIPE COLO LEG SIDE
REFLOO
3800000
3800101
3800102
RFASCL
0.0388
4.0E-5
SNOLVOL
0.0
0.20353
0.0
D0
**49944*4e*.44.*..*...s....*.*5"4...9.4*
CCC SYSTEM
0.0
5.0
1
HIGH PRESSURE INJECTION SYSTEM -
6300OO
6300101
6300200
6300201
6300202
6300203
6300204
6300205
6300206
90.0
HPIS
626000000
1
-1.0
0.0
0.0
.7725E8
8.3597E6
17.243658
TM0PJUN
210000000
651
0.0
0.0
.7568?
.75687
.31536
.31536
P
0.0
0.0
0.0
0.0
0.0
0.0
A+B
0.009099
210010000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
*
ICAP ASSESMNT PARAMETERS
*
•••••499t94•l******4*****tit*4*****99f**lt..
0.0
* COREINLET FLUID DENSITY
20550100
DCOREINF MULT
I.
20550101
VOIOFJ
225010000
225010000
RHOFJ
20550102
20550200
20550201
20550202
0.0
0.0
90.
90.
0.653
0.653
4.SYSTEM**.4**5**t
'.0
ID
.
.
.
.99it~*4**
0
4
SHOLVOL
ETIVCL
2.0965
0.08311
0.0
4.OE-5
0.0
00
SNGLVOL
0.0
0.1713
00
0.0
T1PVOL
20.44
5.0
0.0
00
0.0
4.0E-S
3
0.0 1.05E 305.0
1000.0 1 .05 305.0
0.0
3500000
3500101
3500102
RFASHL
0.0388
4.0E-5
9
BWTHP[I
ý-.A
0.0
* ECC TEE OF BROKEN LOOP
*
6250101
6250102
6250200
6250201
6250202
0.0
0102
000
4 49••44
*9***•~et••••4•*•*•••*•4*8*•*••*99
•
*999* 5* 99*659**8*95
CONNECTION TEE OF THE BYPASS ASSIST SYSTEJ REACTOR VESSEL SIDE0
3400000
3400001
3400101
3400102
340110t
*
RVNIL
2
0.0634
4.OE-6
290000000
335010000
4
e ORST HPIS
S
DCOREINO MWLT
I.
VOIOO.J 225010000
225010000
RHOWJ
0.0
20550500
20550501
20550502
1.
MULT
TDINP
CNTALVAR 504
IEMPF
230060000
co
-3
0L*
0•o
to
0.0
20590100
DENSCORIN SUM
I.
0.0
CNTRLVAR501
I.
20590101
0.0
CNTRLVAR 502
I.
20590102
SAVE UP
* ROOCLADOINOTEMPERATURE
20590300
CLOTESIl MULT
I.
0.0
20590301
HTTEMP
230000109
0.0
I.
CLDTEMP2MULT
20590400
20590401
HTTEMP
230000209
20590500
CLOTEW•3 MULT
I.
0.0
20590501
HTTEMP
230000309
20590600
CLOTEMP4 WLIT
I.
0.0
20590601
HTTEMP
230000409
20590700
CLOTEMP5 WILT
I.
0.0
20590701
HTTEMP
230000509
0.0
I.
20590800
CLOTEMP6 WULT
20590801
HTTEMP
230000609
AT THE COREOUTLET
: FLUID TEMPIERATURE
20560400
FLOWOIR TRIPUNIT I.
20550401
518
z
0.0
t~j
z
0
'-4
x
~~4
N)
0.0
En
C
H
20550600
20550601
FLOW.IRDMTRIPUHIT
-518
1.
0.0
20550700
20550701
20550702
TOZiR
IULT
1.
CNTRLVAR 506
TElWF
240010000
0.0
20590900
20590901
20590902
TCOROVT SLI
M
.
0.
I. CNTRLVAR SOS
1. CNTRLVAR 507
0.0
H
1
: CORETEMPERATUREDIFFERENCE
20591000
CTOIFF
SIO
20591001
0.
1.
20591002
-I.
I.
TEMPF
TEMPF
0.0
1
240010000
: PRESS. DIFF. OVER THE CORE
20S91200
COREINV
SUM
20S91201
0.0
I.
20591202
-2.26
20591203
-I.
20591204
3.31
I.
P
RHO
P
RHO
0.0
226010000
225010000
: PRESS.OIFF. OVER THE D0CKOMER
20591300
D04HINV
SWN
1.
20591301
0.0
1.
P
20591302
-I.
P
20591303
.78
RHO
: VESSEL VASS INVENTORY
20551400
VESSMSI SUM
20551401
0.0
.0465
20551402
.078
20551403
.071
20551404
.136036
20551405
.136036
20551406
.136036
20551407
.136036
20551409
.2664
20551409
.2923
20551410
.130
20551411
.04765S
20551412
.047655
205S1413
.047655
20551414
.047655
20551415
.047655
20551416
.064364
20551500
20551501
20551502
20551503
20551504
20551505
20551506
20551507
20551508
20551509
VES9SS2
0.0
20591400
20591401
20591402
VESS4ASS
0.0
I.
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
225010000
245010000
245010000
0.0
0
185010000
215010000
215010000
0.0
200010000
290010000
205010000
210010000
210020000
210030000
210040000
215010000
220010000
225010000
230010000
230020000
230030000
230040000
230050000
230060000
SUM
.008385
.OO395
.00838S
.332046
.079002
.1291
.0603
.202752
.173725
I.
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
SIM
I.
1.
I.
0.0
CNTRLV
AR 514
CHIRLt AR 515
: DOSNCOMRLIOUID LEVEL
0.0
235010000
235020000
235030000
240010000
245010000
246010000
295010000
250010000
255010000
20591500
20591501
20591502
20591503
20591504
20591505
20591506
20591507
20591508
20591509
DO-RLEV SI0.0
.1065
.300
.274
.958
.958
.958
.958
.360
.208
I.
VOIOF
VOIDF
VOIDF
VOZDF
VOIOF
VOIOF
VOIDF
VOIDF
VOIOF
0.0
I
200010000
290010000
205010000
210010000
210020000
210030000
210040000
215010000
220010000
* UPPER PLENUMLIOUtD LEVEL
20591600
UPLEV
SIM
20591601
0.0
.3084
20591602
.693
20591603
.300
20591604
.3251
1.
VOIDF
VO OF
VOIOF
VOIDF
0.0
1
240010000
5*
245010000
295010000
250010000
*5
* UPPER PLENtM SUBCOOLINO
20591900
UPSCOOL
SUM
20591901
0.0
I.
20591902
-1.
I.
0.0
1
SATTO&
240010000
CNTRLVAR 909
* I.L. LIOUID LEVEL.
20553100
P31A
20553101
0.0
20553102
20553103
20553104
0
20553200
20553201
20553202
P315
0.0
FOR .66 M / LEPDE-PC-28
SIM
I.
0.0
I
I.
P
120010000
-. 183
P
155010000
-. 817
P
160010000
-6.475
RHOG
155010000
SIM
I.
-I.
9.81
RHOF
RHOO
0.0
I
155010000
155010000
20593100
20593101
20593102
LIOLIL
DIV
1.
0.0
1
CNTRLVAR 532
CNTRLVAR 531
• 6.L. LIOUID LEVEL. FOR 4.88 M / LEPOE-OL-14
20553300
P32A
Stu
I.
0.0
I
20553301
0.0
I.
P
315080000
20553302
8.97
RHO
315060000
20553303
-I.
P
315050000
20553304
-47.87
RHOO
315060000
20553400
20553401
20553402
P328
0.0
20593200
20593201
20593202
LIOL L
DIV
CKTRLVAR534
CNTRLVAR 533
SIN
5.
-I.
PPW PRESSUREDIFF.
20593600
DPPIW
SIM
20593601
0.0
.5
20593602
.5
20593603
-1.
9.81
RHOF
RHOO
0.0
1
315060000
315060000
1.
0.0
I.
P
P
P
0.0
1
150010000
145010000
120010000
* BREAKENERGYRELEASE
20553700
PRESSE
WILT
I.
20553701
MFLOWJ 805000000
20553702
P
800010000
20553600
PRESSENT
DIV
I.
I
0.0
I
0.0
I
**
to
t21
**
H-
20553901
20553802
RHO
CNTRLVAR
800010000
537
20553900
20553901
20553902
20553903
20553904
0
20S54000
20554001
20554002
20554003
20554004
BRJUFFL
UFJ
VELFJ
VOIOFJ
RHOFJ
WIT
205.9E-6
805000000
805000000
805000000
805000000
0.0
BRUGFL
UGJ
VELGJ
VOID0J
RHOGJ
WI.T
205.9E-6
605000000
60500000o
805000000
805000000
0.0
20594000
20594001
20594002
20594003
BRENRELEA SU
0.0
I.
I.
I.
5.
1
CNTRLVAR
CNTRLVAR
CNTRLVAR
0.0
539
540
538
1-
5
*
•
1
FLUID INNER ENERGY
STEAM INNER ENERGY
P*V ENTHALPY PART
• BREAK INLET FLUID SUCOOL1NO
20594200
BRSUBCOOL 551
I.
20594201
0.0
5.
SATTI P
20594202
-I.
TEWPF
0.0
I
800010000
800010000
: SO PRIM.
20594500
20594501
20594502
I.
TEWF
TEMPF
0.0
115030000
115100000
: SO PRIM. PRESSURE DIFF.
20594600
SGPRPRS
SUM
20594601
0.0
1.
20594602
-I.
1.
P
P
0.0
1
115010000
120010000
: SO LIOUID LEVEL
20594900
SCLIOLEV
20594901
-2.946
20594902
20594903
20594904
20594903
20594906
20594907
1.
VOIOF
VOIOF
VOLDF
VOIOF
VOIOF
VOIOF
VOIOF
0.0
1
515010000
515020000
515030000
510010000
605010000
500010000
526010000
: SO PRIM.
20595200
20595201
20595202
TEMPERATURE D0FF.
SGTEDIFF SUM
0.0
1.
-I.
SUI
.7102
.7102
.7102
,518
.718
.718
.762
03
I
TO SEC. TEMP DIFFERENCE. INLET
SGPRSETO
SIM
1.
0.0
I
0.0
1.
TESWF
115030000
-1.
TEMPF
515030000
: SO HEAT TRANSFER RATE
20595300
SGHTTRANS SINM
20595301
0.0
52.1058
2059S302
71.7373
20595303
30.2548
20595304
30.2548
20595305
71.7373
20595306
52.5058
: PRESSURIZER LIOUID
20595400
PRLIOLEV
20595401
0.0
20595402
20595403
2059S404
LEVEL
SIU
.724
.403
.403
.207
-.
HTRNR
HTRAHR
HTRNR
HTRNR
HTRNR
HTRNR
0.0
006000100
006000200
006000300
006000400
006000500
006000600
I.
VOIOF
VOIDF
VOIDF
VOI1F
0.0
415010000
415020000
415030000
415040000
CO
-,,.
I
0
ko
ID
A,J
1:r
I-'
Lo
En
20595405
20595406
2059540?
20595408
.20?
.170S
.1705
.118
6
VOIDF
VOIDF
VOIOF
VOIDF
: HPZS VOLYMETRIC FLOWRATE
20595600
HPISVOLF DIV
1000.
20595301
RHO
625010000 MFLOWJ
4110S0000
41SOSO000
415070000
415060000
tiH
0.0
0
630000000
: VASS BALANCE. INTEGRATED FORMBREAKTIME
20555900
TRIPSO
TRIPUNIT I.
0.0
20555901
510
20556000
20556001
20556002
20556003
USSALI
0.0
20556100
20556101
20556102
20595900
20595901
SUM
1.
-1.
1.
En
I
1.
MFLOWJ
MFLOWJ
MFLOWJ
0.0
I
630000000
805000000
901000000
1656AL2
MILT
CNTRLVAR 559
CNTRLVAR 560
1.
0.0
MASSBAL INTEGRAL
CNTRLVAR 561
I.
0.0
I
0
* PRIMARYCOOLANTENERGYBALANCE(P4/ IS CONSERVED)
20556700
HPLSEGY
MULT
I.
0.0
I
20556201
MFLOWJ
630000000
20556202
UF
625010000
20556300
20556301
20556302
PUMPENGY DIV
2.
RHO
135010000
PMPHEAD 135
: COREHEATING OF FLUID
20556400
COREHTFL SIM
20556401
0.
12.23457
20556402
12.23457
20556403
12.23457
20556404
12.23457
20556405
12.23457
20556406
16.52433
1.
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
: PUMPSEAL WATERHEAT FLOW
20556500
PIPS9HF
MULT
I.
20556501
MFLOWJ 901000000
20556502
UF
910010000
SS65PRESSURE HEAT FLOW
20556600
SSPRHF
MULT
1.
20556601
MFLOWJ
435000000
20556602
UF
405010000
20596000
20596001
20596002
20596003
20596004
20596005
20596006
20596007
PRIENMAL
0.0
SLIM
-I.
-I.
!.
-I.
1.
I.
-1.
0.0
1
0.0
1
230000101
230000201
230000301
230000401
230000501
230000601
0.0
0.0
1.
0.0
CNTRLVAR 953
CNTRLVAR 982
CNTRLVAR 562
CNTRLVAR 940
CNTRLVAR 564
CNTRLVAR 565
CNTRLVAR 566
I
1
I
0 So
* EXTERNALS
0 HPIS
0 BREAK
6 CORE
• PUMP SEAL WATER
6SS PRESSURIZER
: PRIMARYHEAT LOSSES TO SURROUNDINGS
20555100
STR-HTLI
SUM
-1.
0.0
I
20555101
20555102
20555103
20565104
20555105
20555106
20555107
20555108
20555109
20555110
20555111
20555112
20555113
20555114
20555115
20555116
20555117
2055511a
0.0
1.3?16
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
1.4579
1.008S
.8309
.7229
1.4776
1.4776
.5585
.6147
.4988
.6781
.6806
.3101
.3406
.9557
.6806
.3101
.3488
'0555200
20555201
20555202
20555203
20555204
20555205
20555206
20555207
20555208
20555209
20555210
20555211
20555212
20555213
20555214
20555215
20555216
20555217
20555218
20555219
20555220
STR-HTL2
0.0
20555300
20555301
20555302
20555303
20555304
20555305
20555306
20555307
STR-HTL3
0.0
20596200
20598201
20598202
20598203
STR-HTL
0.0
66*6*666466*6
6
O00100500 * 115.12
100100600 s 115.13
130
140
1
145
155
¶60
170 /
*
14.3231
MSFCV
TMDPJUN
0.0
26.00
0.0
5500202
5500203
5500204
5500205
5500206
5500207
5500208
0.0
3.
6.0
9.
13.6
13.6
82.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
26.00
21.8
14.1
8.7
5.7
.O65
.0065
s FLOW RATE FROW NUREG/CR-024?
0.0
.00 : PRESSURE RISE 5.58 - 6.80 MPA
0.0
6S% CHANGE RATE ASSUMIEO
0.0
0.0
0.0 6 LEAKAGE
0.0
5.7
0.0
S VALVEOPEN AT 78 S
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
100I0l100
100101200 6
335000100 0
335000200 6
335000300 s
350100100D
375000200 6
315000100
315000200 s
315300100 *
315300200 s
315300300 *
315300400 6
315300500 6
315100100
C
315200100 6
3154001006
ISO
185
335
340
345
350
380
315.1
315 2
315.3
315:4
315.5
315.6
315.7
315.8
315.9
315.10/
5500213
5500214
5500215
1000.
1500.
2370.
0.0
0.0
0.0
0.0
0.0
0.0
5.7
.0064
.O794
.0654
.0583
.048
0.0
0.0
0.0
0.0
0.0
0.0
• VALVE CLOSE AT 88 S
6
LEAKAGE
6 FRcM EXP. SCONOARY PRESSURE
6 LINEAR P-DEPEHOENCE ASSUMED
6
.053 KG/S AT 4.16 SPA
-I.
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
0.0
I
300000100 6
300000200 6
300000300 6
375000100 6
220000101 •
252000100 6
255000100•
300
305
310
370
220
252
255 /
0.0
551
552
553
I
6
21.91
-
-9.8506 1
6 T.AREA .46.1242 M2
864* *566666*6e666e.6666.,..6..,,
#ee6ee
0
******to
6666S666666666666666666666666666666666666666666668666666666666
FEED RATER VALVE
5600000
5600101
5600200
5600201
5600202
5600203
5600208
1
*
5500000
0.0025?3
535000000
501
-I.
0.0
I.
CNTRLVAR
CNTRLVAR
CNTRLVAR
MAIN STEAM CONTROL VALVE
I
6500201
92.8
92.8
500.
0.O
6
BOUNDARY
CONDITION CONTROL
6
6
5500200
100300100 s 125
100300200 8
100300300
100300400.
1003005006
100300600
100300700 6
530010000
5S00101
100100700 * 120
82.8
SUM
.7816
.6228
1.2705
3.0792
-1.6800
1.7045
.7120
*
115.2
5500210
5500211
5500212
.5469
.6254
1.3035
.6687
.6228
.8690
1.0578
3.6545
.1312
.1704
1.9599
1.9589
1.9589
1.9589
.4174
1.6025
* .7639
.6385
040
S
100400100 6 115.3
1004002006 115.10
100200200 8 115.11
5500209
HTRNR
HTRNR
HTRNR
6666666666S66SS665666655..666666.........
100200100
150
175.1
IS
.2
.4988
SUM
I.
I.
I.
til
100100400 * 115.1
100100900
IOO10•990
•
IO00OIOO1
O
-1.
SUM
.4431
100100100 6 100
100100200 S 105
100100300 6 110
*
*
FWVLV
545000000
I
-I.
0.0
14.
3000.
InDPJUN
510000000
501
26.00
26.00
0.0
0.0
O.05
0.0
0.0
0.0
0.0
0.0
0.0
00.
0.0
ID
CO
O0
66666SS6686666666666S666666SS6666$6€66666666666666*66666eSSS$6666
6 AUX. FEEDWATER
5540000
5540101
5540200
5540201
*
5460000
5480101
5480200
5480201
5480202
5480203
5480204
5480205
AUXFTANK
3.0
I
0.0
.. J
TMDPVOI.
10.0
0.0
315.0
0.0
0.0
T51UXFJUN00PJUN
554000000 510000000 .1
I
510
0.0
-1.
0.0
0.0
62.9
0.0
.50364
0.0
63.0
.50364
0.0
1800.
0.0
0.0
1801.0
0.0
0.0
3.33E-5
1.0
0.0
0.0
0.0
0.0
0.0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
14.8706E6
14.8644E6
14.8425E6
14.8425E6
14.8442E6
14.7673E6
14.7446E6
14.7211E6
14.7045E6
14.6967E6
14.6900E6
14.6825E6
14.6828E6
14.6073E6
14.5992E6
14.5933E6
575.88
576.67
576.66
576.86
576.06
576.62
572.15
567.05
565.07
563.28
559.89
557.68
557.67
557.65
557.64
557.64
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
LA3
11
1:
6 666*6666666666666666666666*666666666666666 666666666 6 6666 6 6666666
6 SS VOLUME STATES
1000200
1050200
1100200
1151201
1151202
1151203
1151204
1151205
1151206
1151207
1151209
1151209
1151210
1151211
1151212
1l51213
z
0.0
I
0.0
0.0
2
3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4
5
6
7
8
9
10
If
12
13
tIV
z
5-i
p4
WY)
ch
1200200
1250200
1300200
1350200
1400200
1450200
1500200
1550200
1600200
1650200
1700200
1751201
1751202
1800200
1850200
2000200
2050200
2101201
2101202
2101203
2101204
2150200
2200200
2250200
2301201
2301202
2301203
2301204
2301205
2301206
2351201
2351202
2351203
2400200
2450200
2460200
2500200
2550200
2900200
2950200
3000200
3050200
3100200
3151201
3151202
3151203
3151204
3151205
3151206
3151207
3151208
3151209
3151210
3350200
3400200
3450200
3500200
3700200
3800200
4000200
4050200
4151201
4151202
4151203
4151204
14.5899E6
14. 5776E6
14.5563E6
14.7940E6
15.0407E6
15.0459E6
15.0193E6
14.5777E6
14.557066
14.798266
15.0453E6
15.0133ES
15.0067E6
1.0030E6
15.0012E6
14.9994E6
15.0000E6
14.9960E6
15.0040E6
15.0101E6
15.0162E6
IS.024716
15.0274E6
I5.013866
14.984566
14.9797E6
14.9720E6
14.9671E6
14.9593E6
14.9536E6
14.9671E6
14.955866
14.943666
14.9308E6
14.9112E6
14.9260E6
14.9126E6
14.9076E6
14.9999E6
14.9156E6
14.9156E6
14.9156E6
14.9156E6
14.9151E6
14.912866
14.9097E6
14.9021E6
14.895966
14.902166
14.9097E6
14.9177E6
14.9200E6
14.91556E
14.9999E6
14.9999E6
14.9999E6
14.9999E6
14.9180E6
15.0024E6
14.8934E6
14.8894E6
14.8873E6
14.8855E6
14.0931E6
14.8813E6
557.64
557.63
557.62
557.75
557.75
557.76
557.79
557.53
557.62
557.76
557.84
557.78
557.78
557.78
557.77
557.78
557.77
557.7?
557.78
557.78
557.78
557.79
559.89
557.78
559.12
565.19
570.42
575.08
578.07
578.84
557.77
557.77
557.77
578.05
578.04
577.08
576.84
575.70
557.77
576.90
562.00
562.00
562.00
552.00
562.00
562.00
562.00
562.00
562.00
562.00
562.00
562.00
562.00
556.00
556.00
$55.00
556.00
562.00
556.00
577.35
578.87
0.0
0.0
0.0
0.0
<1:
ti
t-41
ztt
4151205
0.0
0.0
0.0
0.0
I
2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
3
4
1
2
3
4
5
6
1
2
3
4151206
4151207
4151208
4200200
5000200
5050200
5100200
5151201
5151202
5151203
5171201
5171202
5171203
5191201
5191202
5200200
5250200
5260200
5301201
5301202
5350200
8000200
2
2
2
2
2
2
2
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
3
14.8005E6
14.8803E6
14.8801E6
14.880066
14.0798E6
5.58031E6
5.58223E6
5.58616E5
5.5906566
5.59609E6
5.60153E6
5.60214E6
S.59642E6
5.58794E6
5.5823666
5.58139E6
5.58045E6
5.5801B66
5.58011E6
5.57987E6
5.4529966
2.03101E6
15.0012E6
S
* SS JUNCTIONSTATES
1002201
1051201
1101201
1101301
1151302
1151303
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0.
0.0
0.0
0.0
0.0
0.0
I
2
3
4
I
2
3
A
5
6
7
8
9
10
1.
I.
.0164
533.51
533.55
533.60
533.63
.043
.118
.158
.183
.103
.344
1.0
1.0
1.0
1.0
1.0
477.00
...... * .... at
e ... *e...
1001201
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.7019
I.
I.
I.
4?6.4
476.4
476.4
476.4
476.4
476.4
476.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6S
7
8
1-3
z
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0'n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
2
oeooeototeetet##tt
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1151304
476.4
0.0
1151305
1201201
1202201
1203201
1251201
1252201
1350201
1350202
1451201
1452201
1501201
1502201
1551201
1650201
1650202
1701201
1751301
1901201
1851201
1852201
2051201
2101301
2101302
2151201
2152201
2153201
2251201
476.4
476.4
238.2
238.2
239.2
0.0
1
1
238.2
238.2
238.2
476.4
238.2
1
1
0.0
476.4
475.4
476.4
476.4
444.9
444.9
444.9
444.9
I.E-5
444.9
477.7
0.0
0.0
0.0
0.0
0.0
0.0
238.2
239.2
0.0
0.0
0.0
0.0
0.0
238.2
238.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2301301
2351301
427.7
17.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
H-
1
2
3
42
7
9
12
0.0
0.0
0.0
0.0
2
3
226 CORE BYPASS/ 3.6 X
5
2
2
3
1
2
2401201
2402201
427.7
17.2
2451201
2461201
2501201
2502201
2901201
2902201
2951201
2
0.0
0.0
444.9
I.E-5
0.0
0.0
444.9
31.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
296 INLET ANN. TO UP
2952201
3001201
3002201
3051201
3101201
3102201
3151301
3351201
3352201
3401201
3451201
3452201
4001201
4002201
4100201
4151301
4201201
1
0.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 0.0 0.0
0.0 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 0.0 0.0
0.0
0.0 0.0
1 0.0 0.0 0.0
0.0
0.0 0.0
7
0.0
0.0 0.0
5001201
5101201
0.0
0.0 0.0
96.60
0.0
123.0
0.0
0.0
123.0
0.0
0.0 I
123.0
0.0
0.0 2
I 123.0
0.0
0.0
1.201
1.552
0.0 1
2.210
3.154
0.0
2
0
2.759
3.626
0.0
3.201
3.728
0.0
I
0.0
26.00
0.0
96.60
0.0
0.0
96.60
26.00
0.0
0.0
26.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
26.0
0.0 I
5102201
5151301
5151302
5160201
5171301
5171302
5180201
5191301
5201201
5202201
5203201
5251201
5261201
5262201
5301301
*
5550201
*
*
*
8001201
8050201
*
w,
6.6
0.0
0.0
0.0
0.0
9
0.0
0.0
0.0
435
SS SYSTEM PRESSURE
0.0
I
0.0
S6390,
0.0
I
0.0
0.0
26.0
0.0
0.0
S
• SS CONTROL FOR THE CORE FLOW BYPASS /
co
.-j
I
I
00
-j
o5
-. 1
I
C.
•0
a%0
ko
548
550
560
571
591
AUX FEED
MAIN 57EAM VALVE
0.0
FEED WATER VALVE
SG SS LEVEL
SGSS PRESSURE
HPIS INJECTION
0.0
901 PUMP COOLANT INJECTION
3.6 %
Lrn
20522400
20522401
20522402
COPERR
0.
Sum
1.
-. 036
!.
MFLOWJ
MFLOIJ
0.0
226000000
185010000
I
20522500
CBPREO
kqULT
1.
0.0
1
En
I:,)
I.20522501
20522502
CNTRLVAR 224
CHTRLVAR 512
20522600
20522601
CSPV
INTEGRAL
CNTRLVAR 225
-.10
0
.S
3
.01
.96
0 SS CONTROLFO INLET AtNN. TO UPPER PLENUMFLOW/ 6.5 1
20529400
20529401
20529402
IAUPERR
0
20529500
20529501
20529502
;0529600
20529601
SLIM
1
I.
-. 066
I.
MFLOWJ
MFLOWJ
0.0
0
0
29600Q0 0
185018000
WLL.T
IsAJREa
CNTRLVAR 294
CITRLVAR 512
1.
0.0
IAt.PV
INTEGRAL
CNTRLVAR 295
-. 06
.5
3
.01
.99
553 CONTROLFOR FEED WATERENTHALPHY
SPRDERR
0.
20560200
20560201
20560202
20560203
20560204
a
SENTHO
0.0
20560300
20560301
20560302
20560303
SSXI
SuLT
CNTRLVAR 601
CNTRLVAR 602
CNTRLVAR 512
20560400
20560401
SSX2
MFLOWJ
20560500
20560501
SSX3
DIV
CNTRLVAR 604
I.
0.0
CNTRLVAR 603
20560600
20560601
FDWENTH INTEGRAL
CNTRLVAR 605
.10
*
5900200
5900201
5900202
2
0.0
10000.
5910000
5910101
5910201
5910300
5910301
.1
4.E-5
TMDPVOI.
1.0 0.0
0.0
0.0 0.0
00
5.5SE6
5.5866
I.-
0.0
1.
I.
SGSSPR.J
VALVE
530000000 590000000 0.0
I
0.0
0.0
TRPVLV
646
H,0.0
0.0
0.0
0100
*.SSSStatatataSeaS*SSSSSSSS.S*.a.Sa.*aatatata***S.***aaaatt..***S
20560W00
20560101
20560102
20560103
20560104
20560105
20560106
20560107
20560109
20560109
20560110
20560111
20560112
20560113
20560114
20560115
20560116
20560117
SUM
-I.
.914014
.914014
.389795
.164951
.164951
.164951
.51823
.515823
.515823
.515823
.200114
.200114
.653900
.163678
.609044
1.16218
1.0
MFLOWJ
VAPGEI
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
0.0
0
560000000
500010000
50510000
510010000
515010000
515020000
515030000
617010000
517020000
617030000
519010000
509020000
520010000
525010000
526010000
530010000
530020000
SUM
1.0
-I.
5.
-5.
1.0
U.
UF
UF
UF
0.0
530010000
545010000
610010000
515030000
-I.
0.0
0
1.
1
MULT
I.
560000000
SGSSPR
5900101
5900102
0
0
5900000
.9ooE6
SG0STEADY STATE LEVEL HOLDING
3
SOLHOLOV T&4PVOL
.1
1.
0.0
4.E-5
0.0
00
2
0
P
4.E6
4.E6
.5
7.E6
7.E6
.5
5710000
5710101
5710200
5710201
5710202
SOLHOLDJ T14PJUN
505010000 570000000
.1
I
0
CNTRLVAR 513
-IO.
-10.
0.0
0.0
10.
10.
0.0
0.0
20551100
20551101
SOLEVERI
-. 19
SUM
1.
50.
0.0
CNTRLVAR 949
0
20551200
20551201
TRP-S50
-501
TRIPUNIT
1.
0.0
I
205S1300
20551301
20551302
SGLEVER2 MULT
CNTRLVAR 511
CNTRLVAR 512
I.
0.0
0
0.0
0.0
0.0
505010000
St~itt*tttttee~tt~*ett~ttttt~ttt4
•
I
1.
0
0
570OOO0
5700101
5700102
5700200
5700201
5700202
.700E6
1.1066
SS SYSTEM PRESSURE
4300000
4300101
4300102
4300200
4300201
4300202
PRVOL
.362
4.E-5
3
,IE6
16.E6
43500OO
4350101
435020
4350300
4350301
PRVALVE
VALVE
405010000 430000000 0.0
1
0.0
0.0
TRPVLV
646
T6(PVOL
.224
0.0
0
.166
16.E6
0.0 0.0
II
P
576.
576.
0.0
.224
'-1
co
I
-J
%.0
415010000
.093
0.0
.093
0100
STEAMGENERATORSS PRESSURE
*5 END OF FILE
z
H
x•
1987-06-09
Data Comparison Plots
O
0
A
APPENDIX B.1
NP-87/63
STUDSVIK ENERGITEKNIK AB
CORE INLET FLUID DENSITY (CNIRLVAR 901)
CORE INLET FLU1| DENSIIT (CNIRLVAR 9O )
CORE INLET FLUID DENSITY ICNTRLVAR 9011
CASE A
CASE B
CASE C
Plot B.
1
S.
w
0
0
-250
2S0
Soo
750
1000
T IME
0
REACTOR
0 0A
POWER IRKIPOW 0)
ItREACTOR
(RK TPOW
itEAC TOlt POWE
PONERR
It40KTPOW
U.
XENL
2000
Plot B.
2250
250(
.
.
2
CASE A
CASE B
8)CS
CYLA
ETFO
.
. ...
1750
CASE A
PRIM. EXTERNALS M EAI FL OW (Ct4TRLVAR 982)
S
REAMTO POTERN MRE
0
LOW
A A
CASE
SPRIM. EXTERNALS HEAT FLOW ICNTRLVAR 98?)
RM
1500
0
0) CASE
CASE C
9
4
S
1250
(S)
.
.
.
. ..
..
-
.
0r
t0J
-250
0
250
500
750
I000
1250
T IME (S)
1500
1750
2000
2250
2500
APPENDIX B.2
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
0
0
CORE
CORE
CORE
CORE
CLAD TEMPERATURE
CLAD rIMPERATURE
CLAD TEMPERATURE
CLAD TEMPERATURE
VOL.
VOL.
VOL.
VOL.
I
I
I
,
(TE-2G14-OI)
(CNrRLVAR 903)
(CNTRLVAR903)
(CNTRLVAR903)
EXP.
CASE A
CASE B
CASE C
750
1000
Plot B.
3
w
(LJ
r
Li
-250
0
56o
250
1250
1500
1750
2000
2250
25000
T IME (S)
D
0
&
.+
CORE CLAD TEMPERATURE VOL.
CORE CLAD TEMPERATURE VOL.
CORE CLAD TEMPERAIURE VOL.
CORE CLAD TEMPERATURE
VOL.
2
2
2
2
(TE-IF?-OI$..
(CRYRLVAR904)
(C.TRLVAR 904)
(CNTRLVAR904)
.1 EXP.
CASE A
CASE B
CASE C
Plot B.
4
Li
ir
Li
0
___
50
20
___
SO
___
-0
I0
-
25
-
50
15
00
25
5
0
TIME
(S)
APPENDIX B.3
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
O
O
A
+
CORE CLAD TEMIERATURE
UE
CORE CLAD IERAURE
CORE CLAD TEMPERATURE
CORE CLAD TEIIPERAIJURE
VOL.
VOL.
VOL.
VOL.
3
3
3
3
(TE-itF7-026 ...
EP.
(CNTRL AR 05) CASE A
(CNtRLVAR 90 ) CASE B
(CNTRLVAR9.S5 CASE C
Plot a.
5
'C
X:
TI ME
0
0
4.
CORE
CORE
CORE
CORE
CLAD IEMPERATURE
CLAD TEMPERATURE
CLAD TEMPERATURE
CLAD TEMPERATURE
VOL. 4 (TE-2COS-0391
(CWTRLWAR906)
VOL.:
VOL. 4 ( CTRLVAR 906)
VOL.. 4 (CNTRLYAR 906)
(S)
EXP.
CASE A
CASE B
CASE C
Plot B.
6
w
cr
w
01
-'250
0
250
Soo
730
2000
TIME
1250
(S)
1300
1750
2000
22 50
2 500
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.4
1987-06-09
O
o
a
CORE CLAD
CORE CLAD
TEMPERATURE VOL.
tEPtPERATURI VOL.
5
5
CORE CLAD IEMPERAIURE VOL. 5
ICWTRLVAR 9071
(CIIRLYAR 9071
CASE A
CASE S
Plot B. 7
,CN(RLVAR 90"7 CASE C
Li
Li
7250
0
250
500
750
1000
T IME
O
0
A
CORE CLAD TEMPERATURE VOL. 6 (CWTRLVAR908)
CORE CLAD TEMPERATURE VOL.
CORE CLAD TEIMPEERATURE
VOL.
6
6
ICNTRLVAR 909)
(C.TRL AR 908)
1250
1500
1750
2000
22'50
250DO
(S)
CASE A
CASE 8
CASE C
Plot B.
8
Li
-'250
0
250
Soo
?SO
1000
TIME
1250
(S)
150
SO
17.50
2000
2250
25(00
APPENDIX B.5
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
0
0
CORE
CORE
CORE
CORE
CUTLETTEMPERATURE (TE-IUP-OOI) EXP.
OUTLET
IEMPERArURE ICNTRLVAR
I
09) CASE A
OUTLET TEMPERATURE(CNTRLYAR9091 CASE B
OUTLET TEMPERATURE (CNTRLVAR909) CASE C
Plot B.
9
w
9L.
1:
LI
-250
0
250
500
750
1000
TIME
0
0
&
+
CORE
CORE
CORE
CORE
FLUID
FLUID
FLUID
FLUID
TEMPERATURE DIFF.
IETPERATURE DIFF.
TEP1PERATURE0IFF.
TEMPERAIURE 01FF.
ITE-IUP-O01 - tE-tLP-O01)
ICNIRLpAR 910) CASE A
ICNIRLVAR .10 CASE B
ICNTRLVAR 910 CASE C
1250
1750
2000
2250
EXP.
Plot B.1O
U.
0
r
LI
TIME
1500
(S)
(S)
250 0O
APPENDIX B.6
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
CORE INLEt MASS FLOW (MFLOWJ 2253 CASE A
CORE iNLET MASS FLOW (MFLOWJ 2253 C4SE B
CORE INLET MASS FLOW (MFLOWJ 225) CASE C
0
A
Plot B. 11
w
U
0
-J
U,
0
"250 '
250
750
500
1000
TIME
0
0
•
CORE MASS INVENTORY
COR E MASS INVENTORY
(CNTRLVAR
(CNTRLVAR
912)
9121
CASE A
CASE e
CORE MASS INVENTORY
(CN'IRi.VAR
912)
CASE
1250
1500
1750
2000
2250
250.'
(S)
Plot 13.12
tJL
SO50
250
Soo
750
1000
TIME
1250
(S)
1300
l750
2000
2250
25010
APPENDIX B.7
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
00WNCOMER MASS INWENTORY(CNIRLVAR 9,3; CASE A
0
A
0
(CRIRLVAR 9)3) CASE 8
ICNTRLVAR 913) CASE C
DOWNCOMER"IASS INVENTORY
DOWNCOMER MASS INVENTORY
_______
_______
_______
0
_______
_______
________
________
_______
_______
_______
_______
Plot B.13
_______
_______
C-
LA.
LA.
C
0
_______
_______
U,
U,
1.J
C-
0
_______
-250
_______
0
_______
250
500
730
_______
1000
TIME
0
0
&
_______
1250
1750
2000
2230
(s)
VESSEL TOtAI MASS INVENTORY
FCNTRLVAR
9)4) CASE
CASE A
914)
VESSEL TOTAL "ASS INVENTORY ICNTRLVAR
VESSEL TOTAL MASS INVENTORY ICNTRLVAR 914) CASE C
Plot B.14
C.
TIME
1500
_______
(S)
25~0O
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.8
1987-06-09
0
A
4
OOVNCOMER LOUIO
O0WNCOMER
LIOU|D
O0WWCOMER
LIOU1O
COWNCOMER
LIOUID
LEVEL
LEVEL
LEVEL
LEVEL
(LE-ST-001) EXP.
2CNTRIIVAR925) CASE A
(CRTRLVAR 9152 CASE B
(CNTRLVAR9153 CASE C
-
-
Ptot B. 15
data from
bubble plot
W:/
U2
w
-J
-250
0
250
500
750
2000
TIME
0
UPPER PLENUML'OUID LEVEL (LE-3UP-00o)
EXP.
UPPER PLENUMLIQUID LEVEL ICNTRLVAR 9262 CASE A
4
UPPER PLENUMLIOUID LEVEL (CNTRLVAR916) CASE C
UPPER PLENUM LIOUID LEVEL
ICNTRLVAR 916)
1250
1500
1750
2000
2250
25' O0
(S)
Ptot 8.16
CASE B
a,
data from
bubble plot
-J
wJ
:150
0
250
Soo
no0
1000
TIME
1250
(S)
1500
1750
2000
2250
2 F(
00
APPENDIX B.9
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
INLET TEMPERATUREITE-IST-001) EXP.
DOWNCOMER
|NLET TEMIPERATURE(IEMPF 203) CASE A
DOOW'COMER
DOW'COMERINLET TEMPERATURE(TEMPF 205) CASE B
INLEI IEMPERATURE itEMPF 205) CASE C
DOWNCOMER
a
0
0
_______
0
_______
Ptot B.17
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
w
C,
_______
0
_______
0
-250
0
250
500
750
1000
TIME
O
O
A
+
UPPER
UPPER
UPPER
UPPER
1250
1500
1500
1750
2000
2250
2500
2500
(S)
PLENUM TEMPERATUREtTE-IUP-001) EXP.
PLENUM TEMPERATURE(TEMPF 240) CASE A
PLENUM TEMPERATURE (tEMPF 240) CASE B
PLENUM TEMPERATURE ( TETPF 240) CASE C
Plbt B.18
10
w
w
IL.
:20
M___
Soo__
15
00
25
50
75
00
2S
5
•0
TIME (S)
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.10
1987-06-09
UPPER PLENUMSUBCOOLING (ST-1UP-1I1
- TE-IUP-001)
UPPER PLENUMSUBCOOLING ICNTRLVAR 919) CASE A
UPPER PLENUMSUBCOOLING(CNtRLYAR 919) CASE 8
0
£
4f
UPPER PLENUM SUSCOOLING
(CNTRLVAR
919)
Soo
730
EXP.
Plot B.19
CASE C
w
L.J
w
-250
250
0
1000
1250
| S00
1750
2000
2250
25,
00
TIME (S)
0
4•
LOWERPLENUM TEMPERATURE(IE-ILP-001) EXP.
LOWERPLENUM TEPMPERAIURE(TEMPF 225) CASE A
LOWERPLENUM TEIMPERATUREtEMPF 2251 CASE B
LOWERPLENUM TEMPERATURE (TEMPF 2253 CASE C
Plot B.20
f•
w
C
________
'C C
-
_____
____
C
0
___50_
_____TIME_
00___10
IS
00
25
5
(S)
00
APPENDIX B.11
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
A
4
UPPER
UPPER
UPPER
UPPER
PLENUMPRESSURE
PLENUMPRESSURE
PLENUMPRESSURE
PLENUMPRESSURE
(PE-IUP-OOlAI) EXP.
(P 24S; CASE A
(P 245) CASE B
(P 2451 CASE C
Plot B.21
tws
cr
-D
0.
2500
TIME
0
4.
LOWERPLENUMPRESSURE
LOW:R PLENUMPRESSURE
LOWERPLENUM PRESSURE
LOWERPLENUMPRESSURE
(PE-IST-OOIA
(P 2251 CASE A
(P 2251 CASE B
(P 225) CASE C
(S)
I ESP.
Pl.ot 8.22
'C
25 0
0
250
Soo
750
1000
TIME
1250
(S)
1500
17,50
20'00
2250
250•0
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.12
1987-06-09
0
0
£
1.3. HOT LEG FLUID DENSITY (DE-PC-2051
,L.
I-L.
3.L,
HOT LEC FLUID DENSI T (RHO 1053
HOT LEG FLUID DENSITY (RHO 1053
HOT LEG FLUID DENSITY IRHO 10S)
TXP.
CASE
CASE
CASE
A
e
C
Plot 6.23
ri
S.
2500
TIME
0
0
+
8.3.L OT
8 L- HO
8...
L NHO
BL. HOT
LEC FLUID
LEC FLUID
LEG FLUID
LEC FLUID
(S)
DENSTIT (0E-BL0028) EXP.
DENSITY IRHO 305) CASE A
DENSITY (RHO 3053 CASE B
DENS1TY (RHO 305) CASE C
Ptot B.24
p.,
0
TIME
(S)
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.13
1987-06-09
M
*
-3' Lrc MASS ;LOW RA'f
N 0,!LEC MASS FLOWRATE
N 0t LEG MASS FLOWRAfE
POt LEC MASSFLOW RATE
frI-PI39-2?-l • I EXP.
tMFLOWJ I10) CASE A
(MFLOVJ It0! CASE 0
!MFLOWJ110! CASE C
PLlot B. 25
0
w
S.
(5
C
-J
LI!
U!
4
r
0
CC
TI ME
0
IL.
NOT LEO TEMPERATURE
IL. NO,, LEC IEMPERATURE
I.L, M1C LEO IEMPERATURE
i.L.
01 LEG IEMPERATURE
(XC.
(ItE-PC-O0?29
(IEMPF 1051 CASE A
(TEMPF 1051 CASE B
(TEMPF 105! CASE C
__
!
__
__
___
0'___
Plot 8.26
T
I
I
(S)
__
__
__
__
___
__
w
Of
0L
Lw
Lw
-'250
0
250
500
7.50
1000
TIME
1250
(S)
15$00
! 750
2000
22S0
250
.0
STUDSVIK ENERGITEKNIK AB
NP-87/63
APPENDIX B.14
1987-06-09
0
£
A
1.L.
I.L.
I.L.
(OT
H.L.
LEG
NO LEG
MOT LEG
MOT LEG
tPE-PC-002, EXP.
(P 05) CASE A
(P 105) CASE 8
IP 105) CASE C
Plot B.27
I
I
.
PRESSURE
PRESSURE
PRESSURE
PRESSURE
_
_ __
__
_
_
_
I
_ _
w
w
(L
25
?zso2s
Soo
oo0
_
50
_
750
0
10o0
TIME
0
4.
Ii..
1.L.
1.L
I.L.
COLD LEG
COLD LEG
COLD LEG
COLD LEG
FLUID
FLUID
FLUID
FLUID
DENSITy
DENSITY
DENSITY
DENSITY
125
1_0
175
200
220
1250
1300
(750
2000
2230
_5
250
0
(S)
IDE-PC-IlS) EXP.
(RHO 1851 CASE A
(RHO 1851 CASE B
(RHO 185) CASE C
Pl.ot B.28
r
w
1000
TIME
1250
(S)
250C
APPENDIX B.15
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
O
o
a
COLD LE[ PUMP FLUID DENSITY IRMO 115.02) CASE A
COLD LCC PUMPFLUID DENSITY IRMO 115.02) CASE 0
COLD LEG PUMPFLUID DENSITI (RHO 115.02) CASE C
Ptot B.29
I-)
r
(5
2
w
0
TIME (S)
c
tA
!-. CEOLr.FC I LU.Y OFIN51'' :Of-ft-,105
FTP.
RP9O 345, CASF A
e..
OL.DL.EGILUI DENSi'
IR'aO i'51 cS
k F e
!.. COLD..
EG ,L)J3DDENSi
P-. COLD LEC '..U;CVENSil' IRIDO 345) CAS? C
Plot B. 30
0
AI
us
o
0
-250
____A-
-
250
Soo
750
1000
125O
TI ME (S)
_______
1500
I750
2000
2250
2500
APPENDIX B.16
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
U
0
IL.
I.L.
IL.
I.L.
LOOWSEAL
LOOP SEAL
LOOP SEAL
LOOP SEAL
LIQUID
LI0U O
LIOUIO
LIOUID
*
LEVEL
LEVEL
LEVEL
LEVEL
ILEPDE-PC-0281
(CMIRLVAR 931.
(CCRRLYAR
L
311
(CNTRLVAR9311
_____
____
(VP.
CASE A
CASE B
CASE C
Plot 8.31
1
_____
_____
___
r
w
,.I
_
_
_
I
_
-
a
?2'50
_
4
4
250
S0o
+
4
1000
TIME
O
a
4
.L.
S-L.
B.L.
B.L.
LOOP
LOOP
LOOP
LOOP
SEAL
SEAL
SEAL
SEAL
LIOUID
LIOUID
LIaUID
LIQUID
LEVEL (EPDE-BL-014)
LEVEL (CHIRLYAR 9321
LEVEL ICNtRLVAR 932)
LEVEL (CNTRLVAR932)
_
-
4
1250
-
I
Nllý
I
og
In
T
ý 1 .1 -
ý,
4-~----+I4---------4
1500
171S
2250
Ptot 8.32
s-
w
Z.-
(S)
-
4
2000
(S)
EXP.
CASE A
CASE B
CASE C
TIME
.
2500
APPENDIX B.17
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
a
0
LEG TEPfERATURE (TE-PC-O4)
1.L. COLD
1.LCOLD LEG 1EPERAIURE (TEr0F 1853
COLD LEG TEMPERATURE((EMPF 18S)
IL.
d..L COLD LEG TEMPERATUREfTEMPF 1$51
EXP.
CASE A
CASE B
CASE C
Ptot B.33
0
.4.
4
4
4
+
.4--
7
*---I.
I
______
II
-- I
w
WI
I vv.
0
2iO
500
750
1000
TIME
a
.4
I.L.
I.L.
IL.,
I.L.
COLD LEG
COLD LEG
COLD LEG
COLD LEG
PRESSURE
PRESSURE
PRESSURE
PRESSURE
I
__________
ýýW,
I"
I
-250
~vAAft\~
I
1500
1250
1*50
2000
2250
2500
(S)
(PE-PC-005) EXP.
(P 120) CASE A
(P 120) CASE B
(P 120) CASE C
Ptot B.34
0z
C!
c;
:Q.
0?
0251
0
2t
U,~~~~~~
o
5
40
____
ý0
I
O
1?O
N
O
2t
5
I___
ME___ (S)__
0
APPENDIX B.18
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
a
a
I.L.
9.L.
9.L.
C.L. LEG PRESSURE &
COLD
W-SL-O01)O
EXP.
COLDS
LEG PRESSIURE(P 345) CASE A
COLDLEG PRESSURE (P 345, CASE 8
COLD LEO PRESSURE (P 3451 CASE C
Plot 8.35
0.
cn
In
!ýlso
0
250
500
750
1000
TIME
a
0
A
4
PRESS.D3FF.
PRESS.OIFF.
PRE$S.OIFF.
PRESS.DIFF.
ACROSS
ACROSS
ACROSS
ACROSS
PUMPS
PUMPS
PUMPS
PUMPS
1250
1500
1750
2000
2250
(S)
IPDE-PrcO0l) EXP.
CRIRLVAR :361 CASE A
(C IRLYAR 9361 CASE 9
(CHTRLVAR 936) CASE C
w
aCLi
Li.
0
TIME (S)
Plot 8.36
25100
APPENDIX B.19
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
a
0
OF
OF
OF
OF
SPEED
SPEED
SPEED
SPEED
P"OP I IRPE-PC-01)I
PUMP I IPUMPvEL 135)
PUMP I (PUtPYEL 135)
PUtM I (PUMPVEL1335
EXP.
CASE A
CASE 0
CASE C
Ptot 8.37
a~
____
o
0o
a
____
o
0
IL
-20
O
20
50
5
DO
20
50
,0
200
2
0
2(
00
TIME
a
4.
BREAK FLUID
BREAKFLUID
OREAK FLUID
BREAK FLUID
DENSITY
DENSIIT
DENSITY
DENSITY
0
250
(S)
(DE-PC-S02A) EXP.
(RHO 800) CASE A
(RHO 800) CASE B
(RHO 800) CASE C
Plot 8.38
z
w.
0
-250
500
750
1000
TIME
1250
(S)
1500
1,50
2000
2250
250 0
STUDSVIK ENERGITEKNIK AB
APPENDIX B.20
NP-87/63
1987-06-09
O
A
*
B:REAK MASS FLOW RATE
BREAK IMASSFLOW RATE
BREAK "ASS FLOW RATE
BREAK MASS FLOW RATE
(FR-PCSI2)
(IIFLOWJ S0S)
(IIFLOWJ 805)
(11FLOWJ005)
ERR.
CASE A
CASE B
CASE C
Plot B.39
C,
0
-j
L..
U,
r
TIME tS)
1
0
A
BREAK ENERGYRELEASE (CHTRLVAR240)
BREAK ENERCY RELEASE (CNIRLVAR 840)
BREAK ENERGY RELEASE (CNTRLVAR9401
CASE A
CASE B
CASE C
Plot 8.40
w
w
Of
w
-0
-so
0
20
0
5
250
$00
" 50
Al
10
10;00
TIME
15
120
1250
(S)
1500
1750
2
20b0
2250
25b
10
STUDSVIK ENERGITEKNIK AB
NP-87/63
APPENDIX B.21
1987-06-09
f
O
£
ARCALEWT TEMPfERATURE (TE-PC-SOlC)
[IP.
CASE A
IECERATLRE (T(MPF
INLET100)
IRCAC
BlEAC INLET ITEMPERAIURRE
IETPF 800) CASE B
BREAK INLEI TEMIPERATURE(TE,'PF 800) CASE C
2
gr
cw
ti
rAK INLET SUBC.
0
BEAK INLET SUBC.
a
BREAK INLEI SUIC.
4
BOrAK INLET SUBC.
(.0
2
-J
C
0
w
Ed,
(ST-PC-SlOI - IE-PC-SOC)
(CNTRLVAR942) CASE A
ICNItLVAR 842) CASE B
(CNTRLVAR942) CASE C
EXP.
Plot B.42
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.22
1987-06-09
SBREAK
o
a
4
ItL[I
IREAK INLET
BREAK INLET
BREAK INLET
P"ESSURE
PRESSURE
PRESSURE
PRESSURE
(PE-PC-SOI) EXP.
(P :00) CASE A
(P 00) CASE 0
CASE C
(P
F00)
Plot 8.43
Z
w
U)
cd,
IL
TIME (S)
I
a
SC
SC
SC
SC
Pit.
PR).
PR!.
PR).
SIDE
SIDE
SIDE
SIDE
INLET
INLET
INLET
INL(t
TEMPERATURE ITE-SC-oOt!
P.SA
TEMPERATURE ITE'PF IS.3I CASE A
TEMPERATURE (TEMPF 115.033 CASE O
TEMPERATURE(TEEIPF 113.03, CASE C
Ptot 8.44
L.a
I.,
0.
L.a
2500
TIME (S)
STUDSVIK ENERGITEKNIK AB
NP-87/63
APPENDIX B.23
1987-06-09
a
0
5€
SC
SC
SC
PR!.
PR!.
PRI.
PRI.
TEIC.
TEPP
TEWP.
TEMP.
01FF. (TE-SC-00I - T1-SC-0021
01FF. (CNTR VAR $45) CASE A
DIFF. (CNRLVAR 945) CASE 8
DIFF. (CWRRLVAR945) CASE C
EXP.
Plot 8.45
LI.
LI.
C
r
LIJ
TIME
a
St PRI.
SIDE PRESSURE DIFF.
0
&
SC PRI.
SC PRt.
SIDE PRESSURE 01FF.
SlOE PRESSURE 01FF.
+
SC PRI.
SIDE PRESSURE DIFF.
(S)
IPOE-PC-O02) EXP.
(CNTRLVAR
(CNIRILVAR
946)
346)
CASE A
CASE B
Plot B.46
(CKTRLVAR946) CASE C
C-
ULI.
0
Li~
In
w
0.
TIME
(S)
STUDSVIK ENERGITEKNIK AB
NP-87/63
APPENDIX B.24
1987-06-09
00
a
SC FLUID ODESITY 0.t40 31S.03) CASE A
SC FLU1 DNSI'TS IRMO :siS.03) CASE S
SC FLUID OENSIIY IHRO 3)3.031 CASE C
Plot B.47
t•
r
z
TIME (S)
a
A
SC KASS FLOW RATE (TFLOW.J SI3)
SC MASSFLOW RATE PFVLOWJ
516)
SC MASSFLOW RATE (PFLOWJ 516)
CASE A
CASE S
CASE C
Plot 8.48
Cd,
C,
Lid
0
-5
Li.
TIME
(S)
APPENDIX B.25
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
a
O
A
+
SC LIOU1L
LEVEL ICWTRLYAR
(LD-PO04-OOl8)
949) EXP.
CASE A
$C
LIOU1O LEVEL
SC LIOUID LEVEL ICN RLVAR 949) CASE S
SC LIQUID LEVEL ICATRLVAR 949) CASE C
Plot B.49
c;
C,
w
w
0.
N£
-J
C,
-250
0
2S0
500
750
1000
1250
1300
1750
2000
2250
250W
TIME (S)
.
A
+
(TE-SC-0031 EXP.
SC
C LIOUIO
•EMPERATURE
PEPtERATURE
(,E?, 3r5.03) CASE A
SC LIOUI0
SC LIQUID IEMPERAURC (TEMPF 5s3.03) CASE B
Sc LIQUID TEMPERATUREITEMPF515.03) CASE C
Plot 8.50
wA
-250
0
250
300
750
1000
1250
TI ME (s)
1500
1750
2000
2250
2500
APPENDIX B.26
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
U
e
a
4
SC
SO
SO
SO
PRESSURE
PRESSURE
PRESSURE
PRESSURE
[E-SGS-001) EXP.
IP 530) CASE A
(P 530) CASE 3
(P 530) CASE C
Plot B.51
In
'C
r-
Li)
Li)
w
0:
TIIME
a
0
4.
Sc PRI.-SEE.
?EI'.
SC PAI.-SEC.
SC PRI.:SEC.
SC PRI.-SEC.
TEPC. Dirt.
tEp. 01IFF.
SEr. D1FF.
01FF.
(TdESC-001 -TE-SC-003)
(COTRLVAR 952)
52)
CCTRLVAR
(CMIRLVAR 952)
_
(S)
EXP.
CASE A
CASE B
CASE C
Plot 6.52
I
__
0
Ctr
o25 -3-..75
-SO0
a
10
15
TIME
__S
200
2S0
2
_S)
10
APPENDIX B.27
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
a
o
SC HEAT TRANSFER RATE
ICMTRLVAR 9S3)
SC HEAT TRANSFER RATE ICMTRLVAR"552
$C HEAT TRANSFER RATE fCTRLVAR 153)
3
CASE A
CASE 9
CASE C
Plot B.53
W
w
-250
0
250
300
750
-
B
4.
PRESSURIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
LIOUIO
LIOUID
LIOUID
LIOUID
LEVEL
LEVEL
LEVEL
LEVEL
(LI-PI39-O06)
(C*SRRLVAR134)
IC-ITRLVAR 9541
(C"ITRLVAR954)
1000
1250
TIME (S)
1300
1750
EXP.
CASE A
CASE B
CASE C
2000
22S0
250
0
Plot B. 54
r
-j
w
'43
-J
0
0
-J
Cu
-LU
0
250Q
F50
1000
1250
TIME (S)
1500
S150
2000
2250
2500
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX B.28
1987-06-09
U
4.
PRESSURIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
LIOUID
LIOU1O
LIOUI D
LIOUID
TiMP.
ilt.
IE.MP
TEMP.
ITE-PIR3-020)
(TEICE 41D.02)
(TEtf 41.02)
ITEiPF 415.02)
CXP.
CASE A
CASE B
CASE C
Plot B.55
LU
CL
TIME
*
O
PRESSURIZER STEAMTEMP. (TE-PI39O0l9' EXP.
tTEMPC 415.0?) CASE A
PRESSURIZER STEAM Ilt.
&
+
E.
W
PRESSURIZER STEAM TI
PRESSURIZER STEAM TEMP.
IfEMPi
415.07)
EMPC 415.07)
(S)
Plot 9.56
CASE S
CASE C
LU
w.
-c
!LU
TIME (S)
STUDSVIK ENERGITEKNIK AB
APPENDIX B.29
NP-87/63
1987-06-09
a
0
£
PRESSURIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
PRESSURE
PRESSURE
PRESSURE
PRESSURE
(PE-PC-004) EXP.
(P 415.081 CASE A
(P 41".08" CASE B
(P 415.08) CASE C
Plot B.57
0;
w
I)
c,
(n
a.
-'250
0
250
500
750
1000
1230
1500
17SO
2000
2250
230 0
TIME (S)
a
0
WPIS VOLIMETRIC FLOW RATE
(
L#5
VO{TIETR1C FLOW RATE
"rPISVOLYTIIETRIC
FLOW RATE
"PIS VOLIMETRIC FLOW RATE
(ft-P12-104)
ICNTRLVAR 858)
ICNTRLVAR 958)
(cNTRLVAR 958)
EXP.
CASE A
CASE 8
CASE C
Plot B.58
U,
S..
w
0
-5
0e
_
_
__
c;
"250
0
250
So0
750
1000
TIME
1250
(S)
1500
|7,0
2000
2250
25010
APPENDIX B.30
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
0
SYSTEM MASS BALANCE (CNTRLVAR959)
&
+
STSIEM MASS SALANCE
SISTEM MASS BALANCE
o
-
CASE A
Plot 8.59
tCNIRLVAR 959) CASE e
ICNTRLVAR
959) CASE C
--
-I
o
0.____
___
0
0
S.
-20
5
0
5
00
T0E
1
0
00
1
0
00
2
0
2(
S
00
0
COOLANT[MERCY BALANCE (CNURLVAR:60) CASE A
COOLANTENERGYBAN.ANCEECNTRLVAR140) CASE B
A
COOLANT ENERGY BALANCE
(CNTRLVAR
960)
CASE C
Plot 8.60
-5
0
w
TIME (S)
STUDSVIK ENERGITEKNIK AB
NP-87/63
APPENDIX B.31
1987-06-09
15
0
A
TIME (CPUTIPIE 0) CASE A
COMPUTATIONCPU
CWMUTATIO
CPU I HE (EPUTI _ 0) CASE S
COMPUTATION4 CPU TIMPE (CPUTIME 0) CASE C
Plot 8.61
0o
0
____
____
___
0
0
w
-20
0.
U.
0
20
$0
70
0
10
$
TIME
50
15
00
25
5
(S)
0
a
A
COMPUTATION
O
KASS ERROR IEIASS 0)
COMPUTATION MASSERROR (EMASS 0)
COMPUTAIION MASSERROR (KMASS 0)
CASE A
CASE S
CASE C
Plot B.62
0
wI.
in
In
TIME (S)
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX C.1
1987-06-09
Calculation-to-Experiment Data Uncertaintis
Case A
CALCULATION-TO-EXPERIMENT
FIRST LINE
SECOND LINE
THIRD LINE
-
-
DATA UNCERTAINTY ANALYSI9 FOR NRC/ICAP.
DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL
MEAN DIFFERENCE OVER THE INTERVAL
(ROOT MEAN SOUARE OF THE DIFFERENCE)
MEAN 91GM OVER THE INTERVAL
--.--
OWE0 -
CALC.
EXP.
0.0 - 20.00
- 60.00
- 200.0
TIME INTERVAL - - - - 500.0
- 1000.
- 2000.
-4.66
-5.28
6.36
-8.44
-7.82
7.85
-5.26
6.01
5.08
3.89
4.27
-. 520
3.17
3.41
.820
2.97
3.16
-5.23
-3.25
3.79
-7.30
-6.51
6.*83
1.90
-3.67
4.73
6.16
6.49
5.67
2.42
4.71
4.82
1.44
7 76
9.45
.240
1.73
1.88
-5.45
-3.61
4.05
-7.54
-6.73
6.75
1.69
-3.87
4.89
6.08
6.37
5.56
2.65
4.59
4.70
C 6X
2.35
9.57
10.4
.250
1.83
1.98
-5.22
-3.25
3.73
-7.29.
-6.42
6.45
2.17
-3.44
4.56
6.37
5.68
6.85
2.79
4.74
4.85
C SA - C OX
-6.25
-3.68
3.83
-3.41
-3.78
4.18
-8.47
-6.64
6.85
-9.88
-9.48
9.49
-. 280
-6.22
6.94
4.00
3.16
3.49
1.06
2.67
2.81
CAA-
C AX
-. 763
1.49
1.69
3.17
2.11
3.98
-1.78
-. 330
1.30
1.76
.162
1.55
4.93
4.48
4.65
2.91
4.43
4.51
4.32
3.33
3.36
A - V 5X
-3.49
-4.60
4.62
2.47
-1.04
1.68
10.4
5.83
9.84
11.9
7.69
8.09
-1.85
6.74
10.2
3.25
2.86
3.27
.600
2.43
2.65
V &A - V OX
-6.15
-3.47
3.61
-2.63
-3.90
4.93
-8.47
-6.48
6.74
-9.91
-9.51
9.52
-. 310
-6.26
6.97
3.96
3.12
3.46
1.00
2.61
2.76
V 7A - V 7X
7.87
6.92
6.97
3.75
5.87
6.29
3.03
3.24
3.24
2.59
2.75
2.76
1.77
2.18
2.20
.642
1.17
1.21
V BA - V OX
-5.39
-4.96
5.01
-5.80
-6.01
6.02
-6.70
-6.15
6.21
-12.0
-9.68
9.88
-5.54
-10.7
11.0
.940
-1.30
2.56
V 9A - V 9X
.119
.366
.386
-. 800E-03
.193
.215
-. 582
-. 388
.432
-. 725
-. 683
.685
.8516-01
-. 377
.461
.288
.308
.318
.392E-01
.175
.190
V M - VAX
.167
.394
.412
.737E-01
.256
.271
-. 496
-. 306
.358
-. 653
-. 603
.605
.170
-. 310
.408
.399
.393
.402
.155
.283
.291
HLIA - HL1X
62.0
76.5
77.4
96.0
110.
113.
-25.1
-7.81
26.2
-55.9
-79.5
87.9
447.
280.
319.
175.
266.
283.
428.
170.
175.
HL2A - HL2X
37.1
40.9
41.4
35.3
34.9
35.0
-56.8
-24.4
42.3
-137.
-133.
139.1
374.
216.
268. S.
132.
233.
245.
304.
157.
160.
HL3A - HL3X
15.5
12.6
13.1
-14.9
-14.3
18.1
-11.5
-8.28
8.80
-42.3
-31.9
33.1
-46.1
-44.9
45.0
-52.4
-50.5
50.6
-47.1
-52.2
52.2
NL4A - HL4X
-1.68
.139
.799
-4.86
-2.90
3.44
-7.19
-6.40
6.44
-4.09
-4.73
4.97
-10.8
-6.82
7.20
-18.7
-14.4
14.5
-. 817
-. 425
.464
-. 749
-. 716
.717
.797E-01
-. 402
.483
C 3A - C 3X
-6.46
-6.15
6.22
-5.64
-6.80
6.84
C 4A - C 4X
3.71
11.4
12.2
C SA-
C 5X
C 6A-
V
.710
.330
1.81
-. 519E-01
.144
.172
.510
- 1500.
-. 129
.743E-01
.338
-4.41
-. 721
1.39
.281
.299
.311
.720E-01
.189
.201
HLSA - HL$X
.770E-01
.328
.349
CLIA - CLIX
69.7
76.2
76.3
68.0
72.4
72.4
318.
229.
242.
-186.
-34.6
210.
20.4
-65.8
95.6
-40.0
-28.7
41.4
-82.3
-66.2
67.6
CL3A - CL3X
28.1
20.9
2f.8
67.3
40.0
41.4
-429.
-130.
210.
-256.
-321.
329.
-. 790
-117.
140.
-160.
-96.5
107.
-133.
-144.
144.
CL4A - CLAX
.049E-01
.192
.217
.22K6-01
.248E-01
.291E-01
-1.10
-1.18
1.19
-. 558E-02
.657E-02
.187E-01
-. 636E-02
-. 106E-01
.129E-01
-. 158E-0l
-. 150E-01
.192E-01
-. 442E-01
-. 346E-01
.355E-01
-. 401
-. 861E-01
.109
-1.03
-1.05
1.05
-. 536
-. 799
.816
-. 21S
-.355
.378
.520E-01
-. 970E-01
.131
-. 290E-02
.912E-01
.962E-01
-. 770
-1.18
1.16
-3.63
-2.44
2.62
-7.14
-6.34
6.76
.980
-4.74
5.52
-. 680
3.48
3.94
-4.22
-2.05
4.05
.165
.318
.326
CLSA - CLSX
-1.59
-
1.90
1.92
CL6A - CLOX
-1.66
-2.05
2.10
CL7A - CL7X
.223
.458
.473
.992E-01
.298
.312
-. 452
-. 273
.329
-. 602
-. 563
.565
.228
-. 251
.367
.42e
.444
.452
CLSA - CLSX
.316
.557
.570
.205
.387
.397
-. 363
-. 180
.259
-. 506
-. 468
.470
.332
-. 148
.308
.547
.556
.552
CLSA - CL9X
2.48
6.57
8.20
-9.86
-8.68
8.99
-10.3
-10.4
10.4
-10.9
-10.3
10.3
-11.9
-11.2
11.2
-11.9
-12.0
12.0
-6.23
-10.9
11.0
CLAA - CLAX
228.
147.
151.
-14.4
4.97
66.2
95.7
68.5
81.5
-. 443E-02
26.4
39.6
.124
-. 192
.882
.693
-1.49
2.20
-1.02
-. 698
1.32
.315
439
.445
..
APPENDIX C.2
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
- CODES -
- - -
CALC.
EXP.
0.0 - 20.00
BRIA -
BRIX
1.00
20.0
22.0
- $0.00
-21.1
-10.8
12.0
1.55
-
- TILE INTERVAL - - -
200.0
800.0
461.
20.7
204.
279.
123.
239.
-
1000.
147.
104.
127.
-
- 2000.
1500.
32.9
85.9
112.
16.0
23.9
37.9
8.55
2.89
3.32
.227
.734
.870
-1.83
-1.19
1.73
-. 387E-01
-. 932
1.16
R4X
-1.99
-1.10
2.83
-1.03
-2.06
2.46
-4.72
-3.42
3.65
-8.65
-6.33
6.66
2.73
-2.90
4.19
9.18
3.93
4.56
-6.09
-4.60
11.2
MBA - BRSX
4.04
2.42
4.98
5.19
.798
1.21
1.41
.947
1.29
2.05
1.13
1.25
1.34
-1.43
3.38
4.33
10.2
10.9
14.8
.149
.331
.340
-. 365
-. 221
.288
-. 502
-. 479
.481
.307
-. 148
.302
.481
.509
.514
.218
.356
.365
-2.13
-3.40
4.02
-6.21
-5.18
5.29
-e.12
-7.62
7.63
-4.95
-6.33
6.48
-12.7
-8.47
8.73
2.29
1.55
1.90
2.62
2.31
2.33
3.29
3.65
3.74
-. 465
.241
1.17
2.32
1.17
1.56
-10.1
-11.0
11.1
-34.
-:40"
-6.59
-9.12
9.17
-4.16
-6.17
6.21
-. 346
-. 305
.307
-.
OR2A - 8R2X
BR4A -
7.15
8.49
4.54
5.54
BRA -
MSRX
.276
.511
.528
SPIA - SPIX
-8.49
-7.45
7.47
-. 281
-. 948E-01
.567
--. 352
-. 125
.236
-19.1
-15.2
15.3
SP2A - SP2X
-5.41
-2.32
2.62
.113
-. 888
1.91
SP3A -
-2.66
5.65
10.7
-11.9
-10.7
10.9
-13.7
-12.9
12.9
-. 309
-. 129
-. 175
.180
-. 123
-. 8796-01
.953E-01
-. 441
-. 301
.323
-10.0
-6.12
6.70
-10.1
-10.3
10.3
-1.94
-7.56
7.98
7.83
4.40
5.39
2.01
6.35
6.67
-. 527.
-. 369
.386
-. 609
-. 603
.604
-. 319
-. 414
.426
-. 849
-. 514
.539
-1.12
-1.10
1.11
3.83
.936
1.99
1.62
2.67
2.74
-3.34
1.27
1.87
-20.6
-12.7
13.8
-20.9
-21.6
21.6
.679E-02
.881E-02
.897E-02
.4866-02
.589E-02
.592E-02
SS3A -
SP3X
S$3X
-. 243
.293
SS4A - SSOX
12.6
5.22
6.99
SSSA -
s55X
S IA - S IX
-. 1556-01
-. 179
.192
-. 8696-01
.879E-01
.104
-21.0
-3.28
-8.52
10.4
-12.7
13.7
P IA - P lX
P 2A - P 2X
P 3A - P 3X
P 4A - P 4X
ECIA -
ECIX
1.14
5.04
6.47
.821E-01
.602E-01
.649E-01
-21.2
.126E-01
.284E-01
.376E-01
.
-10.3
-10.9
11.0
.405
.371E-02
.474E-02
.474E-02
.368E-02
.391E-02
.392E-02
403
-. 358
.360
.314E-02
.315E-02
.3166-02
-12.3
13.4
-2.93
-12.6
15.5
-14.7
-9.35
9.92
-40.0
-28.1
29.0
-55.5
-49.6
49.8
-70.7
-61.8
61.9
-89.7
-80.2
80.4
-20.9
-13.5
14.2
-4.50
-13.1
15.3
-18.7
-12.3
12.9
-45.3
-33.1
34.0
-60.0
-54.3
54.5
-75.8
-66.6
66.8
-94.8
-85.5
85.7
-. 547
-. 357
.402
-. 695
-. 649
.650
.116
-. 343
.434
.210E-01
.185
.191
.1156-01
.210
.228
.310E-01
-. 300E-01
.168
-. 161E-0t
-. 144E-01
.266E-01
.488E-01
.291E-01
.341E-01
.238E-01
.367E-01
.401E-01
.917E-02
.261E-01
.282E-01
.342
.350
.359
-. 109E-02
.670E-03
.453E-02
.796E-01
.220
.231
.222E-01
.158E-01
.1816-01
APPENDIX C.5
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
Case C
CALCULATION-TO-EXPERIMENT
DATA LJNCERTAINIY ANALYSIS FOR NRC/ICAP.
FIRST LINE : DIFFERENCE BETWEEN CALCULATED AND (AVERAOED) EXPERIMENTAL DATA AT END OF THE INTERVAL
MEAN DIFFERENCE OVER THE INTERVAL
SECOND LINE
(ROOT MAN SOUARE OF THE DIFFERENCE)
UMAN SIWAA OVER THE INTERVAL
THIRD LINE
-
- C0OES CALC.
EXP.
C X - C 3X
0.0 - 20.00
-
80.00
-
TIME INTERVAL ---
---
- 200.0
-
800.0
- 1000.
-
1500.
-3.53
-4.19
4.43
-2.81
-4.21
4.26
-. 960
-. 829
.958
-6.12
-3.43
3.85
-4.88
-6.64
6.71
-1.28
-2.70
2.90
C 4X
6.07
12.9
14.7
1.01
4.29
4.62
.440
1.17
1.32
-6.02
-2.13
2.76
-3.87
-5.45
5.52
-. 600E-01
-1.42
1.84
C SO - C 5X
2.S8
8.84
10.3
1.29
3.01
3.19
.250
.825
.962
-5.24
-2.35
2.93
-4.06
-5.66
5.72
-. 130
-1.54
1.94
C 6C - C6X
3.63
10.4
12.0
1.27
3.06
3.27
.480
1.17
1.29
-4.97.
-2.04
2.69
-3.58
-5.23
5.30
.160
-1.23
1.68
C 9C - C 9X
-4.20
-1.74
2.49
-2.17
-2.52
2.78
-2.76
-2.17
2.21
-7.51
-5.07
6.34
-6.04
-8.00
8.05
-2.23
-3.77
3.96
C AC - C AX
-2.03
1.09
1.88
.928
.487
2.69
1.08
.356
.771
1.64
2.02
2.09
2.28
2.31
2.33
V 5C - V SX
-. 580
-1.65
1.68
4.98
1.79
2.16
15.9
10.3
12.7
14.3
12.2
12.5
-7.56
4.98
10.6
-1.25
-4.00
4.25
V sc - V 6X
-4.37
-1.29
2.23
-1.64
-2.59
3.47
-2.74
-2.02
2.08
-7.54
-5.09
6.36
-6.07
-8.03
0.08
-2.28
-3.82
4.01
V 7C - V 7X
7.67
6.40
6.49
3.57
5.60
6.06
3.04
3.24
3.25
2.58
2.75
2.76
1.77
2.17
2.19
.642
1.17
1.22
V aC - VoX
-2.35
-2.38
2.43
-2.57
-3.08
3.11
-1.75
-1.93
2.00
-8.92
-5.45
5.93
-8.01
-10.1
10.1
-4.66
-6.13
6.22
V 9C - V 9X
.385
.602
.619
.114
.314
.353
-. 740E-02
.716E-01
.924E-01
-. 511
-. 258
.309
-.350
-. 513
.621
-. 9716-01
-. 172
.189
V AC - V AX
.412
.628
.645
.188
.377
.408
.784E-01
.153
.162
-. 439
-. 178
.249
-. 266
-. 446
.455
.142E-01
-. 864E-01
.123
HLIC - HL.IX
59.5
72.5
73.3
107.
103.
106.
63.6
70.8
71.9
213.
116.
120.
651.
527.
548.
692.
684.
684.
HL2C - HL2X
39.3
43.1
43.5
37.3
37.0
37.1
120.
85.2
92.4
207.
104.
108.
405.
427.
439.
409.
430.
430.
HL3C - HL3X
14.6
11.7
12.2
-14.0
-13.2
17.1
-21.1
-15.9
16.0
-42.0
-38.3
38.7
-46.7
-44.3
44.3
-54.1
-50.7
50.8
HL4C - HL4X
-. 220
2.29
2.78
-4.56
-1.77
2.58
-9.58
-6.27
6.38
-16.9
-13.6
13.9
HLSC - HLSX
.322
.562
.583
-. 421E-01
.342E-01
.637E-01
-. 536
-. 291
.337
-. 356
-. 538
.546
-. 105
-. 181
.200
CLIC - CLIX
64.9
71.2
71.4
63.4
67.2
67.2
-172.
37.0
162.
-266.
-274.
277.
-126.
-181.
189.
-74.1
-98.6
101.
CL3C - CL3X
30.3
23.1
23.9
69.4
42.1
43.5
-431.
-362.
404.
-384.
-405.
406.
-181.
-261.
269.
-155.
-163.
163.
CLAC - CL4X
.8776-01
.233
.266
.227E-01
.3136-01
.370E-01
-. 2766-01
-. 123E-01
.1489-01
-. 5266-01
-. 257E-01
.2756-01
-. 666E-01
-.S1SE-01
.633E-01
C 4C-
1.71
1.29
1.92
.629E-01
.266
.310
-. 991
-. 914E-01
.838
.910
1.55
1.63
.362E-02
.105E-01
.141E-01
CLSC - CLSX
-1.58
-- 1.90
1.91
-1.10
-1.18
1.19
-1.02
-1.04
1.04
-. 472
-. 760
.773
-. 171
-. 299
.317
.1706-02
-. 862E-01
.103
CL6C - CLGX
1.20
.830
.857
1.60
1.68
1.56
1.56
1.86
1.89
-6.21
-5.40
6.86
-8.61
-11.0
11.6
-2.07
-9.47
10.3
CL7C - CLX
.469
.690
.705
.214
.419
.448
.122
.187
.195
-. 389
-. 139
.219
-. 208
-. 388
.399
.434E-01
-. 360E-01
.895E-01
CLSC - CLOX
.562
.793
.807
.320
.508
.532
.211
.280
.285
-. 291
-. 432E-01
.172
-. 103
-. 284
.300
.163
.768E-01
.114
CL9C - CL9X
2.22
10.4
14.6
-9.70
-8.33
8.94
-10.1
-9.95
9.95
-9.56
-9.67
9.67
-10.4
-10.1
10.1
-11.1
-10.7
10.7
CLAC - CLAX
227.
156.
160.
-8.94
16.1
75.4
63.7
40.6
55.4
-. 65SE-03
9.91
19.3
.124
-. 184
.884
.267
-1.64
2.21
.
APPENDIX C.6
NP-87/63
STUDSVIK ENERGITEKNIK AB
1987-06-09
-.
-CODES
0.0-
20.00
- 60.00
-.
- 200.0
TIME INTERVAL - -
- 600.0
-
-
-1000.
- 1500.
CALC.
EXP.
BRIC -
BRIX
-4.07
33.9
45.9
-25.7
-16.9
17.5
568.0
23.6
94.4
-68.3
-79.1
99.6
-36.6
-3.06
39.6
22.4
17.4
28.9
MR2C -
BR2X
7.07
5.46
6.70
1.40
2.98
3.31
-1.72
.273
1.62
-1.65
-1.91
1.94
-. 317
-. 995
1.12
-. 804
-. 498
.637
.660
-11.3
17.7
1.37
1.20
1.23
.930
.842
.974
-4.65
-1.78
2.53
-3.69
-4.90
5.23
-5.65
-1.98
5.40
BRSC - BRSX
2.99
16.7
22.1
1.12
2.72
2.90
.774
1.32
1.38
1.19
1.04
1.06
1.19
1.28
2.04
7.22
2.25
5.69
- BR6X
CR6O
.523
,532
.861
.267
.452
.476
.175
.225
.233
SPIC - SPIX
-7.34
-5.28
8.39
-1.10
-2.13
2.72
SP2C -
SP2X
-7.09
-2.98
3.51
SP3C -
SP3X
533C - SS3X
BAC4 -
SS4C -
AR4X
SS4X
-. 150
-. 297
.312
-. 470
-. 709
.802
-5.73
-3.20
3.63
-10.7
-8.13
8.19
-18.9
-15.4
15.6
-1.55
-2.02
2.60
2.08
.960
1.32
2.66
2.28
2.30
3.35
3.64
3.73
-. 373
.312
1.19
-2.77
7.81
13.2
-11.9
-10.4
10.7
-12.5
-13.1
13.1
-9.92
-10.5
10.5
-9.19
-10.4
10.4
-7.73
-8.69
8.71
-. 418
-. 364
.422
-. 368
-. 381
.381
-. 340
-. 326
.330
-. 278
-. 315
.315
-. 255
-. 291
.292
-. 241
-. 249
.249
13.3
8.:3
9.53
-. 670
5.43
6.85
-7.12
-4.16
4.64
-6.24
-6.91
6.93
-3.27
-5.49
5.67
1.26
-. 884
1.70
.223
.270
.271
.142
.208
.212
-. 358
-. 106
.195
.-. 744
-. 538
.547
-1.26
-. 993
1.00
-. 427
-7.66
9.45
6.66
3.44
4.19
.176
3.71
4.33
-7.80
-2.60
3.48
-20.2
-14.4
14.9
SSSC - SSSX
.267
-. 5486-02
.102
S Ic -
-20.6
-14.1
14.8
S IX
P IC - P IX
.114
.2416-01
.803E-01
-. 309
-. 656E-01
.178
.820E-01
.617E-01
.65S6-01
.120E-02
.206E-01
.3596-01
-. 556E-03
.104E-03
.535E-03
-. 398E-03
-. 269E-03
.3306-03
-. 476E-03
.6926-04
.227E-03
.4936-03
.197E-03
.265E-03
P 2C -
P 2X
-19.7
-11.9
12.8
-1.88
-11.8
14.4
-8.96
-4.87
5.28
-37.6
-23.6
25.2
-61.3
-51.4
51.8
-76.9
-68.7
68.9
P 30 -
P 3X
-19.3
-12.6
13.4
-1.23
-11.6
14.1
1.47
.274
1.02
-11.4
-4.29
6.02
-21.8
-17.5
17.7
-29.7
-25.3
25.4
P 4C - P 4X
.249
.302
.311
.126
.330
.361
.2926-01
.103
.116
-. 481
-. 224
.279
-. 318
-. 478
.487
-. 443E-01
-. 130
.154
ECIC - ECIX
.3106-01
-. 564E-01
.198
-. 2266-01
-. 178E-01
.297E-01
.1526-01
.237E-02
.987E-02
.112E-01
.119E-01
.154E-01
.349E-01
.342E-01
.355E-01
.215E-01
.287E-01
.289E-01
NP-87/63
STUDSVIK ENERGITEKNIK AB
APPENDIX D.3
1987-06-09
Description of the Accompanying Data Package
STUDSVIK
THIS TAPE CONTAINS DATA FROM THE ICAP PREDICTION CALCULATION
WITH THE RELAP5/MOD2/36.04 FOR THE LOFT EXPERIMENT NO. L3-5.
CONTENTS,
FILE
1.
2.
"3
4.
-"-
5.
DATA,
6.
7.
8.
I.
II.
THIS DESCRIPTIVE TEXT
CASE
A,
STATE
INPUT
B, STEADY
"-
-"-"-"-
,
,
,
C,
COMPUTER
NAME
WORD SIZE
CYBER 170-810
60
TAPE FORMAT
NUMBER OF TRACKS
PACKING DENSITY
RECORD SIZE
BLOCKING FACTOR
CODED
CONTROL WORDS
9
1600 BPI
80
64
EBCDIC
NO
III. DATA FORMAT,
-"-
EXPERIMENT
CASE A
CASE B
CASE C
FOR EACH OF THE FILES 5 THROUGH 8
TITLE RECORD(S), (FORMAT I5,A75)
FIELD 1, THE NUMBER OF DATA CHANNELS ON THE FILE
FIELD 2, PROBLEM IDENTIFICATION
UP TO FIVE ADDITIONAL IDENTIFICATION RECORDS
MAY BE ADDED BY 'C' IN COLUMN 1 OF FIELD 1
DATA SET RECORD 1, (FORMAT 215,A60)
FIELD 1, NUMBER OF DATA POINTS
FIELD 2, THE ENGINEERING UNIT CODE (EUC)
VARIABLE
FIELD 3, IDENTIFYING TEXT OF THE DATA
REMAINING DATA SET RECORDS FORMAT 5(E16.9)
FOR THE
EACH DATA CHANNEL SUBMITTED IS GIVEN THROUGH TWO DATA
SETS, THE FIRST OF WHICH IS THE TIME DATA SET.
THE TWO SETS HAVE THE SAME NUMBER OF DATA POINTS.
THE TIME DATA SET IS
IDENTIFIED BY EUC=77 (FIELD
AND THE IDENTIFYING TEXT 'TIME'
(FIELD
3).
2)
U.S. NUCLEAR REGULATORY COMMISSION
NRC FORM 335
(2-89)
NRCM 1102,
1. REPORT NUMBER
(fAWned by NRC. Add Vol., Supp., Rev.,
ind Addendum Numbes, If any.)
NUREG/IA-0n37
BIBLIOGRAPHIC DATA SHEET
3201.3202
STUDSV I K/NP-87/63
(See instructions on the reverse)
2.TITLE AND SUBTITLE
Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT
Small Break Experiment L3-5
3.
DATE REPORT PUBLISHED
YEAR
MONTH
1992
March
4. FIN OR GRANT NUMBER
A4682
6. TYPE OF REPORT
5. AUTHOR(S)
J. Eriksson
7. PERIOD COVERED (Inclusive Dares)
B. PERFORMING ORGANIZATION name and mailing address.)
NAME AND ADDRESS WfNRC. provide Division, Office or Region, U.S. Nuclear Regulatory Commission, andmailing address. if contractor, provide
Swedish Nuclear Power Inspectorate
S-61182 Nykoping
Sweden
9.SPONSOR ING ORGANIZATION - NAME AND ADDA ESS (II NRC. type .,~ as above if contractor. provide NRC Division. Office or Region. U.S. Nuclear Regulatory Commission.
9. SPO NSO R ING OR GAN IZATI ON - NAM E AN D ADD RESS (if NRC, typ "San as above" if contrator,provide NRC Divisin, Offie or Region, U.S Nuclear Regulatory Commission,
and mailing address.)
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
10. SUPPLEMENTARY NOTES
11. ABSTRACT 120 words or le•)
An independent assessment of the RELAP5/MOD2 code was conducted by Studsvik
Energiteknik AB. The LOFT small break experiment L3-5 was assessed using the
RELAP5/MOD2 code. Three calculations were carried out; one base case calculation
and two sensitivity calculations with model changes. The transient predictions
compare reasonably well with the experiment as regards firsthand parameters such as
system pressures and fluid temperatures. Variations are enumerated and discussed.
12. KEY WORDS/DESCR!PTORS
(List words or phrases that will assist researchersin locating the report.)
ICAP Program
RELAP5/MOD2 Computer Code
Small Break Experiment
13. AVAILABILITY STATEMENT
Unlimited
14. SECURITY CLASSIFICATION
Paw)
'rhis
Unclassified
1This Report)
Uncl assified
15. NUMBER OF PAGES
16. PRICE
NRC FORM 335 (2-89)
THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER
SPECIAL FOURTH-CLASS RATE
POSTAGE Et FEES PAID
USNRC
UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20555
PERMIT No. G-67
OFFICIlL BUSINESS
PENALTY FOR PRIVATE USE, $300
-c-n-6-35-7 _2
uis NRC..FTE~s
rnIV OF CHS
BPANCH
FPJI
,NL/N-35
3
ýIASHJNGTON
Nac
RESEARCH
jDC
20555
Fly UP