International Agreement Report Assessment of RELAP5/MOD2,
by user
Comments
Transcript
International Agreement Report Assessment of RELAP5/MOD2,
NUREG/IA-0037 STUDSVIK/NP-87/63 International Agreement Report Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT Small Break Experiment L3-5 Prepared by J. Eriksson Swedish Nuclear Power Inspectorate S-61182 Nykoping Sweden Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 March 1992 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP) Published by U.S. Nuclear Regulatory Commission NOTICE This report was prepared under an international cooperative agreement for the exchange of technical information.ý Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party Would not infringe privately owned rights. Available from Superintendent of Documents U.S. Government Printing Office P.O. Box 37082 Washington, D.C. 20013-7082 and National Technical Information Service Springfield, VA 22161 NUREG/IA-0037 STUDSVIK/NP-87/63 International Agreement Report Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT Small Break Experiment L3-5 Prepared by J. Eriksson Swedish Nuclear Power Inspectorate S-61182 Nykoping Sweden Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 March 1992 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Application Program (ICAP) Published by U.S. Nuclear Regulatory Commission NOTICE This report documents work performed under the sponsorship of the SKI/STUDSVIK of Sweden. The information in this report has been provided to the USNRC under the terms of an information exchange agreement between the United States and Sweden (Technical Exchange and Cooperation Arrangement Between the United States Nuclear Regulatory Commission and the Swedish Nuclear Power Inspectorate and Studsvik Enerigiteknik AB of Sweden in the field of reactor safety research and development, February 1985). Sweden has consented to the publication of this report as a USNRC document in order that it may receive the widest possible circulation among the reactor safety community. Neither the United States Government nor Sweden or any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, or any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 1987-06-09 SKI Project 85026, John Eriksson 13.3-917/84 Swedish Nuclear Power Inspectorate ICAP ASSESSMENT OF RELAP5/MOD2, Cycle 36.04 AGAINST LOFT SMALL BREAK EXPERIMENT L3-5 ABSTRACT The LOFT small break experiment L3-5 has been analyzed using the RELAP5/MOD2 code. The code version used, Cycle 36.04, is a frozen version of the code. Three calculations were carried out in order to study the sensitivity to changes of steam generator modelling and of core bypass flow. The differences between the calculations and the experiment have been quantified over intervals in real time for a number of variables available from the experiment. Approved by ý-7 CHRi iii K STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 1 1987-06-09 LIST OF CONTENTS Page 3 1 INTRODUCTION 2 FACILITY AND TEST DESCRIPTION 2.1 2.2 2.3 2.4 2.5 Test Facility The Experiment Assessment Parameters Measurement Uncertainty Experimental Data Preparation 4 5 6 7 7 3 CODE AND MODEL DESCRIPTION 8 3.1 3.2 3.2.1 3.2.2. Code Features Input Model Initial System Pressure Primary Fluid Temperature 8 8 9 9 3.2.3. 3.2.4. Core Flow Bypass Environmental Heat Losses 10 11 3.2.5. 3.2.6. 3.2.7. Break Discharge Coefficient Pump Model Steam Generator 11 12 12 4 THE BASE CASE CALCULATION (CASE A) 14 5 SENSITIVITY RESULTS AND DISCUSSION 16 5.1 5.2 Case B Case C 16 17 6 RUN STATISTICS 21 7 CONCLUSIONS 22 REFERENCES 24 TABLES 26 FIGURES 33 APPENDICES A B C D CHRi Input Listing (Case A) Data Comparison Plots Calculation-to-Experiment Data Uncertainties Description of the Accompanying Data Package A.1 B.1 C.1 D.1 STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 3 1987-06-09 1 INTRODUCTION An International Thermal-Hydraulic Code Assessment and Applications Program (ICAP) is at present being conducted by several countries under the auspices of the USNRC (1). The goal of the program is to make quantitative statements regarding the prediction capabilities of current best-estimate thermal-hydraulic computer codes. Such codes have been used for many years as state-of-the-art instruments to study and verify numerical and correlative computational models with experimental results. Some of these codes have reached a high degree of sophistication. They include models for all processes which are essential to thermal-hydraulic scenarios in the nuclear power reactor application. So far, however, these codes have not achieved status as reactor licensing tools, i.e. they do not fulfill the Appendix K rules (2), although they are often applied to other calculations. The present ICAP aims to quantify uncertainties in the codes so that the codes may be used for licensing purposes. Sweden's contributions to ICAP encompass assessment calculations using the two thermal-hydraulic codes TRAC-PFl/MODI (3) and RELAP5/MOD2 (4). The work is conducted by Studsvik Energiteknik AB and is sponsored by the Swedish Nuclear Power Inspectorate. A data package on tape and predicted data has content is described in this tape is submitted ICAP agreement. CHRI containing input files been produced. The Appendix D. A copy of to USNRC as a part of the STUDSVIK ENERGITEKNIK AB 4 STUDSVIN/NP-87/63 2 FACILITY AND TEST DESCRIPTION The LOFT-experiment series L3 was designed to provide large-scale blowdown system data for PWR small break transients. As part of the Swedish ICAP contribution two experiments out of the L3 series in were assigned. this report, In the experiment treated the LOFT L3-5, the main cir- culation pumps were stopped shortly after break was opened. In the other experiment, LOFT L3-6, see operate at normal speed throughout the test (7), the the the pumps were allowed to in order to provide data for analyzing the differences in the two-phase scenarios between the two tests. Apart from the difference tional mode the two experiments were nominally in pump opera- identical. This chapter shall facility, briefly describe the test the L3-5 experiment, the assessment parameters used and some aspects of the measurement uncertainties as well as experimental data preparation. 2.1 Test Facility The objective of the LOFT experiments was to demonstrate thermal-hydraulic -might occur in abnormal situations. phenomena which commercial PWR systems during The facility is performing a variety of operational and LOCAs. capable of transients Brief descriptions of the LOFT are given in a number of experiment reports such as (5). The most thorough description is provided by Reeder (6). Only particular design features and characteristics relevant to the L3-5 experi- ment will be discussed in the following sections. NP114 AW STUDSVIK ENERGITEKNIK AB 5 , STUDSVIK/NP-87/63 1987-06-09 A general view of LOFT is shown in Figure 1. In the L3-5 small break experiment the two isolation valves on the broken loop legs were closed so as to prevent the passage of fluid via the header to the suppression vessel. The break was simulated by a 205.6 mm2 orifice in a T-branch line from the intact loop cold leg near the reactor vessel. The aim of the break configuration was to simulate an equally placed 4-in diameter small break on a four-loop 1000 W (e) PWR. During the L3-5 experiment the only primary coolant injection was carried out by the HPIS into the reactor vessel downcomer. The experiment was terminated before the LPIS pressure set point was reached. 2.2 The Experiment After approximately 45 h of nuclear heating the initial conditions listed in Table I were obtained. The sequence of events which occured during this experiment is listed in Table 2. Main imposed actions during the experiment were: NP114 AW a. At the time of reactor scram (which for safety reasons had to be verified before the break) the steam generator feed water and steam line valves started to close. b. The two main circulation pumps were manually tripped just after the break. Pump coastdown was assumed to end at 750 r/min when the speed control carried out by the motor-generator driving unit was disconnected. STUDSVIK ENERGITEKNIK AB 6 STUDSVIK/NP-87/63 1987-06-09 c. The HPIS injection started at 13.2 MPa. d. The steam generator auxiliary feed was initiated and terminated manually. 2.3 Assessment Parameters The selection of the appropriate assessment parameters for the LOFT L3-5 experiment, 3, Table followed the recommendations of the ICAP Guidelines (1). The selection was made during the input preparation, since a number of ex- panded Edit/Plot variables from RELAP5/MOD2 calculations are not available from the restart file In but must be saved as control variables. some cases liquid level data are compared as pressure differences. For the upper plenum and downcomer levels only bubble plot data shown in (5) were available. These plots were converted into slightly smoothed elevation histories. Due to ambiguous bubble plot data the indicated level behaviour is rather uncertain. The early break flow was not qualified until 40 s after the break, and showed rather large errors during the remainder of the transient. Comparisons of mass inventory obtained through flow integration were therefore not carried out. For the energy balance, the steam generator heat transfer was not known, and could not even be estimated by the steam produced. CIURI STUDSVIK ENERGITEKNIK AB .7 STUDSVIK/NP-87/63 1987-06-09 2.4 Measurement Uncertainty The instrumentation involves a variety of transducers which may have different accuracies for the same kinds of quantities (5,6). Table 4 is a summary of the accuracies of the measured quantities. 2.5 Experimental Data Preparation The preparation of the experimental data for plotting and uncertainty analysis required several steps of manipulation of the information. First of all, the data were copied from the original blocked tape files to the CDC standard display code. A program, LOFTDEC, was developed to sort out the'keyword and channel information to be used in the assessment work. The program also deci- mated the channel data by averaging over time intervals so that information was copied to an intermediate channel information file only every 2nd second up to 200 s after the break, and then every 5th second. A program, R5SILFT, was developed to select data for desired channels from the intermediate data file. These data were transformed into a new file with the same format as a RELAP5 restart file. Experimental and predicted data could later on be similarly used in assessment. NP114 AW plotting and STUDSVIK ENERGITEKNIK AB 8 STUDSVIK/NP-87/63 1987-06-09 3 CODE AND MODEL DESCRIPTION The assessment calculations with RELAP5/MOD2 for the LOFT L3-5 experiment were carried out using the cycle 36.04 code version. implemented in computer. The code was June 1986 on a CDC 170-810 The calculational model was based on available LOFT input files and listings. Some changes in the input model were introduced as a result of findings in 3.1 the L3-5 experiment. Code Features The descriptive document available for the RELAP5/MOD2 code is a rather detailed code manual (4). The main characteristics of the code are summarised in of RELAP5/MOD2 is Table 5. A new feature the cross junction which, according to code manual recommendations, was applied at the steam separator upstream volume and at the hot leg and cold leg vessel junctions. 3.2 Input Model The basis of the input preparation for L3-5 was an existing file which had previously been used for RELAP5/MOD2 fast transient calculations on LOFT. It was necessary to update and expand the input file, listings and several of the available input (7, 8, 9) were used. particular approaches used in The reasons for modelling are presented below. Figure 2 shows the nodalization used. NPl14 AW The input listing is given in Appendix A. STUDSVIK ENERGITEKNIK AB 9 STUDSVIR/NP-87/63 1987-06-09 3.2.1 The Initial System Pressure To avoid an explicit steady-state pressurizer pressure and level control, the surge line junction was modelled as a trip valve which was closed until scram. The pressurizer initial fluid conditions were saturated with correct fluid content and pressure. In the case A calculation no boundary heat structures were involved in keeping the pressurizer state steady. However, for cases B and C pressurizer heat structures were applied with the outer surface at saturation temperature until scram and thereafter at room temperature. A time dependent volume was connected to the pressurizer surge line by a trip to the pressurizer bottom in the initial valve adjacent order to maintain primary pressure constant during the steady state calculation. During steady state the pressurizer was isolated from the surge line. The pressure of the time dependent volume was equal to the pressure in the bottom volume of the pressurizer. At scram time the trip valve closed and the pressurizer isolation ceased. 3.2.2 Primary Fluid Temperatures The bulk heat loss occurred in tor. the steam genera- Effects from structural heat losses, pump power and pump cooling water were relatively small. The base case fluid temperatures hot leg were 576+2 K and in (5). the the cold leg 558+1 K These temperatures satisfy the loop flow heat balance. NP114 AW in STUDSVIK ENERGITEKNIK AB 10 STUDSVIK/IIP-87/63 1987-06-09 It was observed that some of the primary fluid temperature measurements were not consistent with the heat balance. inlet temperature For example, (TE-ILP-001 in the core the experiment) was 3 K higher than the cold leg fluid temperature. Several upper plenum thermocouple measure- ments showed temperatures which were as much as 10 K higher than the measured hot leg fluid temperature. The reason for these inconsis- tencies can not be fully understood although three-dimensional flow might be the main cause. Furthermore, the steam generator inlet to outlet temperature difference was about 4 K lower than it ought to be. The measured temperatures had mostly uncertainties of about 3 K or more 3.2.3 Core Flow Bypass Several core bypass flow paths existed. following two (7) in (5). The were modelled by servo valves order to adjust the flows before scram: The inlet annulus to upper plenum with 6.6 % of the primary loop flow The lower plenum to upper plenum with 3.6 % of the primary loop flow. The reflood assist bypass valve leakage and the broken loop heat up lines were not explicitly modelled since the mass flow rates were quite small. is The reflood assist bypass valve leakage further discussed for the case C calculation (see 5.2 below). CHR1 STUDSVIK ENERGITEKNIK AB 11 STUDSVIK/NP-87/63 1987-06-09 3.2.4 Environmental Heat Losses The exchange of heat with structural material is important in small break analysis. Since the available input had only restricted material included, structures had to be added to the input. The bulk structures of the facilities were modelled to represent the correct structural masses. For RELAP5/MOD2 an overall environmental heat transfer coefficient was determined by test calculations in order to obtain approximately the total heat loss of 250 kW as found in experiment 3.2.5 the (7). Break Discharge Coefficient Test calculations showed a too rapid decrease in pressurizer fluid inventory when the default subcooled discharge coefficient of unity was used. Using a coefficient of .85 the rates of emptying the pressurizer and of the early system depressurization were close to the experiment. The assumption that the pressurizer emptying rate is is an indicator of the break discharge flow only applicable for low pressure drop in the surge line as it occurs in small break experiments. CHRI STUDSVIK ENERGITEKNIK AB 12 STUDSVIK/NP-87/63 1987-06-09 Pump Model 3.2.6 The primary coolant pumps were tripped .8 after the break. s Coast down followed under the influence of the coolant flow inertia and the pump moment of inertia. in Since the primary pumps the experiment have a too small moment of inertia, compared to that of commercial PWRs, their coastdown was simulated by a fluid clutch coupling to a motor-generator driving unit. When the speed reached 12.5 Hz (10) the coupling was disconnected. The combined inertia of the pump and the motorgenerator flywheel was modelled by pump inertia data closely similar to those reported by T R White (11). The inertia polynomial was modified to avoid negative moment of inertia at higher pump speeds. 3.2.7 Steam Generator The steam generator steady state was achieved using auxiliary components. The pressure was maintained by a steam filled control volume connected to the steam generator top. The downcomer level was attained through a flow controlled junction connecting a time dependent volume to the upper part of the downcomer. The main steam valve was modelled as a time dependent junction rather than a motor or servo valve. The main reason for this was to use the steam flow (6) also to facilitate directly as boundary value and modelling of the pressure dependent leakage of the closed valve CHRI (7). STUDSVIK ENERGITEKNIK AB 13 STUDSVIR/NP-87/63 1987-06-09 Closure of the steam valve started from the flow at 5.58 MPa steam experimental initial generator pressure and a 2.0 MPa downstream pressure. After the valve closure had been initiated a secondary pressure of 6.9 MPa was assumed in order to obtain the mass flow from the curve giving the valve characteristic as a function of stem lift The leakage from (6). the closed valve which was .053 (7), kg/s at 4.19 MPa was assumed to be proportional to the the experiment. secondary pressure measured in The feedwater valve was modelled as a time dependent junction which gave the experimental mass flow until closure of the valve. The feedwater valve closure was assumed to be as fast as in the LOFT base input. Test calcula- tions showed that the predicted secondary pressure continued to increase more than in the experiment when the steam valve began to close. Discrepancies in the downcomer level and the pressure behaviour could be suspected to be caused by the fast feedwater valve closure. An example of a different valve closure rate is given in a calculation for the L3-6 experiment carried out by L N Kmetyk (9) who used a rate of 5 %Is similar to the rate of the main steam valve. No feedwater temperature data were found in available reports. Therefore the steam generator operation was achieved by controlling the feedwater internal energy so that the sum of steam generated in each secondary volume was equal to the main steam valve mass flow. This procedure achieves a steam generator steady state irrespective of the tube package heat transfer, the heat exchange with structures. NP114 AW or STUDSVIK ENERGITEKNIK AB 14 STUDSVIK/NP-87/63 1987-06-09 THE BASE CASE CALCULATION 4 The input listing of case A is (CASE A) given in Appendix A. After the depressurization had reached saturation conditions obstinate fluctuations in the calculation time step were observed. This effect was arrested by reducing the maximum time step from 1. s to .4 s. From previous experience, the RELAP5/MOD2 time step control may reduce the time step so much, after preceeding long time that even execution errors might occur. steps, Mid-transient water packing occurred several times due to water plugs in the cold leg passing forth and back at the break line T-junction. The code water packing mitigation scheme dealt correctly with the calculated pressure spikes, and as a result the calculation could be continued. The results of the comparisions are shown in Appendix B. Primary system pressures are shown in Plots B.21, B.43. B22, B.22, B27, B34, B.35 and After the subcooled depressurization, primary system pressure is about 900 s. It is the underpredicted until noted that the experiment depressurizes at an increased rate in the time interval from about 600 s to 1200 s which is reflected in the calculations. temperatures, B.33, Plots B.9, B.41 and B.44, discrepancies. B.17, The primary fluid B.18, B.26, show the corresponding comparisons at the secondary side, CHRI B.20, The pressure and temperature and B.50 respectively, not Plots B.51 are also similar. The STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 15 1987-06-09 decreased depressurization rate after about 1000 s is caused by the increased temperature difference between primary and secondary sides shown in the experiment, but not in the calculations, Plot B.52. A contributory cause for the mid-transient increase of the experimental depressurization rate is the hot leg steam production, Plots B.23 and B.24, which occurs in the time interval from 450 s to 800 s. The case A shows a corresponding density decrease but it is delayed by about 500 s, and the calculated water content is not reduced to the low experimental level. The cold leg densities, Plots B.28 and B.30, show opposite differences - the calculated densities are lower than the experimental densities. The predicted main recirculation flows, Plots B.11, B.25 and B.39, cannot be assessed due to unqualified experimental data (5). The experimental hot leg mass flow, Plot B.25, is qualified for the initial condition only. Condie et al (7), assume that natural circulation continued in the experiment from pump coast down until 750 S. NP114 AW STUDSVIK E14ERGITEKNIK AB 16 STUDSVIK/IIP-87/63 1987-06-09 5 SENSITIVITY CALCULATIONS The case A comparisons, dicussed in Chapter 4, revealed some discrepancies which were studied by two sensitivity calculations, case B and case C. The salient problems concern the fast early phase of the depressurization and the primary fluid temperatures. 5.1 Case B The input changes introduced to the case B calculation were aimed =t improving the predictions early in the transient until 250 s. Two updates were introduced in the steam generator modelling in this sensitivity study. The first update was to change the main steam valve leakage after 68 s. Due to instrument noise the main steam valve started to open at about this time and operated intermittently during a period of 10 s. The unintended valve cycle is evident from the secondary pressure, Plot B.51. The base case calculation had used the valve threshold mass flow, acteristic (6), see valve char- which at the prevailing pres- sure, ought to have been about 5.7 kg/s. ever, the pressure comparison, How- Plot B.51, shows a predicted pressure drop rate starting at 68 s which is about twice that of the experiment. Consequently, the steam mass flow in the case B was halved during the main steam valve open cycle, and a pressure drop rate close to the measured one was calculated. The second update concerned the downcomer liquid level which had shown discrepancies, Plot B.49. Even though a questionably slow closure of CHRi STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 17 1987-06-09 the feed water valve was applied in case A the liquid level was predicted not to start to recover by the auxiliary feed, until about 400 s as compared to about 100 s in the experiment. A contribution to that discrepancy would follow from a predicted excess steam production in the lower part of the riser section. A check-up of the steam generator tube section primary and secondary volumes distribution revealed an inconsistency in the initial, case A, base input used. Due to this error much steam was generated in the lower riser volumes. A more correct tube structure distribution was introduced. However, only a slightly better agreement with the experimental level rise turned out. Some water still remained distributed in the pressurizer after the emptying period, Plot B.54. The reason had been an unjustified application of the junction equal phase velocity between the uppermost pressurizer volumes. A correction was applied even though no apparent effect on the prediction plots could be expected. 5.2 Case C The next calculation, case C, focused on the primary side hydraulic scenario. The loop mass flow rate was not measured during the transient. Moreover, the vessel downcomer and upper plenum water contents measured by conductivity probes, and presented as bubble plots (5), suffered from error margins when converted into level heights, Plots B.15 and B.16. NP114 AW S TUDSVIK ENERGITEKNIK ABSTDV/l-7/31 STUDSVIK/NP-87/63 18 1987-06-09 After disconnection of the flywheels the low internal moment of inertia of the two recirculation pumps will make the speed of the two recirculation pumps sensitive to the loop mass flow. Plot B.37 evidently shows that the intact loop flow of the experiment ceases at about 130 s. The cases A and B show a prolonged and gradual flow decrease. These two calculations had about 20 kg/s primary mass flow at 250 s through the steam generator. about 6 kg/s prevailed in A reverse flow of the vessel inlet annulus to the outlet plenum junction. There was also a 1.5 kg/s reverse core bypass flow. Thus three paths of natural circulation due to the core decay heat have been identified. The modeled flow bypass from the vessel inlet annulus to the upper plenum was insufficient to reduce the intact loop driving pressure difference to stop the main fluid flow in the previous predictions as early as in the experiment. This may have partly been caused by the omission of the reflood assist bypass valve (RABV) in the model. was that the initial The reason for the omission RABV vessel bypass flow was quite low and uncertain. Likewise the broken loop hot leg and cold leg fluid temperatures did not indicate any substantial initial RABV leakage. The previous discussion focused on the natural circulation in the intact loop due to the core decay heat. A flow reduction could result from an increased bypass flow area between the inlet annulas and the upper plenum. for the case C calculation, which terminates the loop CHRi It was intended, to determine an area STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 "19 1987-06-09 circulation at about the same time as in the experiment. To obtain the initial intact loop mass flow a servo valve was used as the junction between the inlet annulus (vol.290) and the downcomer (vol.205). Valve control was applied only through the steady state. Ideally, the flow control ought to have been applied at the inlet nozzle (junction between vols. 185 and 290). A cross junction modelling, however, cannot be applied for a valve component. The leakage from the cold leg inlet annulus to the upper plenum is caused by a flow path in the narrow gap between the vessel filler blocks and the vessel wall. This leakage path has a vertical extension equal to the nozzle diameter. To enhance a reduction of the transient pressure difference over the core, the leakage junction was divided into two junctions at slightly different elevations. One leakage path connected the upper ends of the adjacent volumes below the inlet and the outlet annuli. The other path similarly connects the bottom ends of the volumes above the inlet and the outlet annuli. This higher level leakage will, compared to the previous modelling, promote steam bypass, and thus contribute to a lower pressure difference between vessel outlet and inlet . The split up of the core bypass into two different leakage paths did not reproduce the fast pump coast down at 130 s as seen in -Plot B. 37. However, some improvement was obtained as can be seen from the data uncertainty analysis in Appendix C (experiment code CLAX). In addition the core clad temperatures, Plots B.3 through B.6, obtained in the case C are more similar to the experiment than the two previous cases. This NP114 All STUDSVIK ENERGITEKNIK AB 20 STUDSVIK/NP-87/63 1987-06-09 is more evident from Figure 3 which compares the time derivatives, obtained from Plot B.5, of the predicted and experimental clad temperatures. Evidently, the flow bypass the model change in had a positive impact on the core fluid distribution. Moreover, the case C break fluid density dropped at the same time as in the experiment (at about 130 s), NP114 AW see Plot B.38. STUDSVIK ENERGITEKNIK AB .ý.-21. ' ' STUDSVIK/14P-87/63 1987-06-09 6 RUN STATISTICS The input model for the base case RELAP5/MOD2 calculation for LOFT L3-5 encompassed: volumes junctions 113 120 heat structures 99 The volumes include two pump components, one separator component and nine time dependent volumes of which three were used for the steady state. Among the junctions there are totally five valve components and four time dependent junctions which are connected during steady state. During the transient calculation the following resources were used: Computer time CPU=25778 s Number of time steps DT =12374 Number of volumes C Transient real time RT =2032 s resulting in factor =113 the following code efficiency (1) CPU * 103 = 18.44 C * DT The computer used was a Cyber 170-810. I NP114 AW STUDSVIK ENERGITEKNIK AB 22 STUDSVIK/NP-87/63 1987-06-09 7 CONCLUSIONS The LOFT small break experiment L3-5 has been assessed using the RELAP5/MOD2 code. Three calculations were carried out; one base case calculation and two sensitivity calculations with model changes concerning the steam generator operation and the core bypass mass flow. The transient predictions compare reasonably well with the experiment as regards first-hand parameters such as system pressures and fluid temperatures. Uncertainties, over time inter- vals, of the predicted data compared with the experiment are given in Appendix C. In the calculated steady state, initial the experimental data could be fairly well reproduced. Some experimental fluid temperatures, in the upper part of the vessel, particularly revealed relatively large discrepancies which could not readily be explained. The predicted start of voiding in the intact loop hot leg as well as the cold leg occurred late as compared to the experiment although the predicted system pressure was underestimated. The steam generator liquid level rise, by the auxiliary water feed, in case A. recovered was underpredicted Although the limited steam generator experimental data available do not help to single out any particular detail in the cause, the model as the most probable reason is the underestimation of the water content early in the test. NP114 AW STUDSVIK ENERGITEKNIX AB 23 STUDSVIK/NP-87/63 1987-06-09 In the case B calculation, the steam generator boiling region was remodelled to promote void formation at higher elevations. gained in The improvement the transient downcomer level was rather limited. discrepancy in A contributory cause for the the level could be a significant droplet field initially residing in the space between the primary separator, modelled by the RELAP5 separator component, and the mist extrac- tor adjacent to the steam line nozzle. Imposing a predetermined steady state water content on this space is, however, geometric model is not possible unless the considerably modified. The case C calculation concentrated on the primary mass flow rate. plenum leakage was split The downcomer to upper into one junction promoting the steam bypass and an other one the water bypass in cold leg. the case of voided fluid in The clad temperatures as well as the break fluid density were improved. NP114 AW the STUDSVIK ENERGITEKNIE AB STUDSVIK/NP-87/63 24 1987-06-09 REFERENCES ODAR, F and BESSETTE D E Guidelines and Procedures for the International Thermal-Hydraulic Code Assessment and Applications Program (Draft) U.S. Nuclear Regulatory Commission, 1985 NP114 AW 2 Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled Nuclear Power Reactors, 10 CFR, Part 50 ,(Appendix K), Fed Regist, 39(3). (January 1974) 3 TRAC-PFI/MODI: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis. NUREG/CR-3858 4 RANSOM, V H et al RELAP5/MOD2 Code Manual Volume 1: Code Structure, Systems Models, and Solution Methods Volume 2: Users Guide and Input Requirements (Draft) EG&G Idaho, Inc. NUREG(CR-4312, EGG-2396) (August 1985) 5 DAO, L T L and CARPENTER, J M Experimental Data Report for LOFT Nuclear Small Break Experiment L3-5/L3-5A. NUREG/CR-1695, EGG-2060 (Nov 1980) 6 REEDER D L LOFT System and Test Description (5.5-ft Nuclear Core 1 Loces) NUREG/CR-DR47 TREE-1208 7 CONDIE, K G et al Four-Inch Equivalent Break Loss-of-Coolant Experiments: Posttest Analysis of LOFT Experiments L3-1, L3-5 (Pumps off), and L3-6 (Pump on) EGG-LOFT-8480. 8 GRUSH WM, TANAKA M and MARSILI P Best estimate predictions for the OECD LOFT Project Small Cold Leg Break Experiment LP-SB-3 OECD LOFT-T-3603 (Febr 1984) STUDSVIK ENERGITEKNIK AB STUDSVIK/NP-87/63 25 1987-06-09 NP114 AW 9 KMETYK L N RELAP5 Assessment: LOFT Small Break L3-6/L8-1. NUREG/CR-3163, SAND83-0245 (March 1983) 10 MODRO, S M and CONDIE, K G Best Estimate Prediction for LOFT Nuclear Experiment L3-5/L3-5A (Sept 1980) EGG-LOFT-5240 11 WHITE J R et al Experiment Prediction for LOFT NonNuclear Experiment LI-4. (April 1977) TREE-NUREG-1086 26 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 Table 1 Initial conditions Quantity Case A Predicted Case B Case C 476.4 14.86 558. 576. 478.8 14.86 557.4 576.4 476.4 14.87 559.4 578.4 476.6 14.86 559.9 579.5 49. 49.0 49. 49. 614.6 14.88 1.25 614.7 14.88 1.25 614.7 14.88 1.25 614.7 14.88 1.25 556. 562. 555. 561. 555. 561. 554. 559. 0.19 543. 5.58 26.4 0.19 544. 5.58 26.2 0.19 534. 5.58 26.0 0.19 532. 5.58 26.0 Measured Primary coolant system Mass flow rate Hot leg pressure Cold leg temperature Hot leg temperature Reactor vessel Power level Pressurizer Water temperature Pressure Liquid level (kg/s) (MPa) (K) (K) (MW) (K) (MPa) (m) Broken loop Cold leg temperature Hot leg temperature (K) (K) SC secondary side Water level Water temperature Pressure Mass flow rate (m) (K) (MPa) (kg/s) Table 2 Sequence of events Time (s) Event Reactor scramed LOCA initiated Primary coolant pumps tripped HPIS injection initiated (13.2 MPa) Primary pump coastdown complete (12.5 Hz) Prssurizer emptied Upper plenum reached saturation Intact loop hot leg voiding begin SCS auxiliary feed initiated intact loop cold leg voiding begin End of subcooled break flow SCS pressure exceeds primary pressure Primary fluid mass at minimum SCS auxiliary feed terminated NP114 AW Imposed action System reaction -4.8 0. 0.8 4.0 17.7 22.2 28.4 30. 63. 80. 92.9 745. 1480. 1800. Case A Predicted Case B -4.8 0. 0.9 2.5 20.8 24.4 38.3 42. 63. 138. 140. 1810. not obtnd. 1800. -4.8 0. 0.9 2.6 17.9 23.6 37.3 45. 63. 133. 109. 1490. 1750. 1800. Case C -4.8 0. 0.9 3.3 20.3 24.4 35.7 45. 63. 147. 163. not obtnd. not obtnd. 1800. STUDSVIK ENERGITEKNIK AB 27 NP-87/63 1987-06-09 Table 3 Parameters plotted and used in the assessment comparisons. COMPONENT PREDICTION (MINOR EDIT) EXPERIMENT (IDENTIFIER) CONTINOUS PARAMETER * PLOT IDENTIF. EXP. CALC. PLOT NO. -------------------------------------------------------------------------------------------------------- --------- CORE FLUID DENSITY (INLET) ** CNTRLVAR 901 CI? B. 1 HEATING POWER ** RKTPOW 0 C27 B. 2 TE-2614-011 TE-5G6-011 TE-516-005 CNTRLVAR 903 C 3X C 3? B. 3 VOLUME I (BOTTOM) CLAD TEMPERATURE. - - -VOLUME 2 TE-1 F7-015 TE-1 F7-021 TE-2G08-021 TE-4114-021 TE-5F4-015 TE-516-021 CNTRLVAR 903 C 4X C A? B. 4 - VOLUME 3 TE-I F7-026 TE-1 F7-030 TE-2G14-030 TE-2H02-032 TE-4Ht4-028 TE-4H14-032 TE-SH7-026 CNTRLVAR 905 C 5X C S? a. S VOLUME 4 TE-2608-039 TE-2HOI-037 TE-3C11-039 TE-4114-039 TE-SH6-037 CNTLRVAR 906 C 6X C 6? B. 6 VOLUME 5 TE-2G14-045 TE-4614-045 TE-5F9-045 TE-5G6-045 TE-5H5-049 CNTRLVAR 907 C 7X C 7? B. ? TE-SH7-058 TE-5G6-062 CNTRLVAR 908 C eX C 8? B. 8 TE-IUP-O0t TE-SUP-001 TE-SUP-003 TE-IUP-001 CNTRLVAR 909 C 9X C 9? B. 9 CNTRLVAR 910 C AX C A? 8.10 MFLOWJ 225.01 C B? 8.11 C C? B.12 - - - .VOLUME - (TOP) 6 TEMPERTURE (OUTLET) TEMP. DIFF. (OUTLET-INLET) TE-ILP-0O01 CORE FLOW (INLET) VESSEL CORE INVENTORY PDE-RV-002 aie CNTRLVAR 912 DOWNCOMER MASS INVENTORY PDE-RV-003 S CNTRLVAR 913 V I? 8.13 CNTRLVAR 914 V 2? 6.14 MASS INVENTORY (TOTAL VESSEL) DOWNCOMER LIOUID LEVEL LE-IST-O01 UPPER PLENUM LIOUID LEVEL CNTRLVAR 915 V 3X V 3? 8.15 LE-SUP-aOlt *0 CNTRLVAR 916 V 4X V 4? B.16 DOWNCOMER TEMPERATURE (INLET) TE-IST-O00 TE-2ST-001 TEMPF 205 V"SX V 5? B.17 UPPER PLENUM TEMPERATURE TE-IUP-O01 TE-4UP-OOl TE-SUP-001 TEMPF 240 V 6X V 6? 8.18 SC-5UP-102 CNTRLVAR 919 V 7X V 7? 8.19 8.20 UPPER PLENUM FLUID SUBCOOLING - NOT LEG . ST-1UP-111 TE-IUP-001 LOER PLUWN TEMPERATURE TE-ILP-O01 TEMPF 225 V 8X V 8? UPPER PLENUM PRESSURE PE-IUP-00At P 245 V 9X V 9? B.21 LOWER PLENLUM PRESSURE PE-IST-OOtA PE-2ST-01A P 225 V"AX V A? 8.22 FLUID DENSITY (I.L.) DE-PC-205 DE-PC-O02A DE-PC-0028 DE-PC-O02C RHO 105 HLIX HLI? 8.23 HL2X HL2? 8.24 HL3? 8.25 .9 ** s FLUID DENSITY (B.L.) MASS FLOW RATE DE-BL-0028 RHO 305 FT-P139-27-1 s FT-P139-27-2 ** FT-P139-27-3 ** MFLOWJ TEMPERATURE (I.L.) TE-PC-O02B TEMPF 105 HL4X HL4? 8.26 PRESSURE (I.L.) PE-PC-002 P 105 HLSX HL5? 8.27 110 NP-87/63 STUDSVIK ENERGITEKNIK AB 28 1987-06-09 COLD LEG FLUID DENSITY (I.L) DE-PC-115 DE-PC-OOIA DE-PC-OI DE-PC-O0IC RHO 185 CLIX CLI? B.28 RHO 115.13 CL2X CL2? B.29 RHO 345 CL3X CL3? B.30 LEPDE-PC-028 CNTRLVAR 931 CL4X CL4? B.31 LEPDE-BL-014 CNTRLVAR 932 CLS? B.32 TEMPERATURE (I.L. NEAR VESSEL) TE-PC-004 TEMPF 185 CL6X CL6? B.33 PRESSURE (I.L.) PE-PC-O05 P 120 CL7X CL?? 8.34 PE-BL-0O01 P 345 CL8X CL8? B.35 PDE-PC-001 CNTRLVAR 936 CL9X CL9? B.36 RPE-PC-OO1 PMPVEL 135 CLAX CLA? 8.37 BRIX BRI? B.38 BR2X BR2? B.39 BR3? B.40 FLUID DENSITY (1.L. PUMP SUCTION) DE-PC-305 /DE-PC-O03A/ /DE-PC-0038/ /DE-PC-003C/ FLUID DENSITY (B.L.) LIOUID LEVEL (I.L. - - - DE-BL-105 DE-BL-OO1A DE-BL-001a DE-BL-OOIC LOOP SEAL) (B.L.) - (B.L.) * - PRESS. DIFF. (ACROSS THE PUMPS) PUMP SPEED (PUMP BREAK .. I) *8 ** FLUID DENSITY DE-PC-S02A RHO MASS FLOW RATE FR-PC-SBRK MFLOWJ 805 ENERGY RELEASE CNTRLVAR 940 INLET TEMPERATURE TE-PC-SOlC TEMPF 800 BR4X BR4? B.41 INLET SUBCOOLING ST-PC-SIOl CNTRLVAR 942 BRSX BRS? B.42 - SO PRI. SIDE SIDE TE-PC-SOIC INLET PRESSURE PE-PC-SO) P 800 BR6X BR6? 8.43 TEMPERATURE (INLET) TE-SG-O0 TEMPF 115.03 Spix SPI? 8.44 TEMP. TE-SG-O00 CNTRLVAR 945 SP2X SP2? B.45 CNTRLVAR 946 SP3X SP3? B.46 DIFF. (INLET-OUTLET) - SG SEC. TE-SG-002 PRESSURE DIFF. PDE-PC-002 FLUID DENSITY 88 MASS FLOW RATE SG RHO 515.03 SS1? B.47 MFLOWJ 516 SS2? 8.48 LIOUID LEVEL LD-P004-008B CNTRLVAR 949 SS3X SS3? 8.49 LIOUID TEMPERATURE TE-SG-003 TEMPF 515.03 SS4X SS4? B.50 PRESSURE PE-SGS-001 P 530.01 SSSX SSS? B.51 TE-SG-O00 CNTRLVAR 952 S IX S I? B.52 S 2? B.53 PRIMARY-SECONDARY TEMP.-DIFF. (AT INLET) - TE-SG-003 HEAT TRANSFER RATE PRESSURIZER 00 CNTRLVAR 953 LIOUID LEVEL LT-PI39-006 CNTRLVAR 954 P IX P 1? 8.54 LIOUID TEMPERATURE TE-PI39-020 TEMPF 415.02 P 2X P 2? B.55 STEAM TEMPERATURE TE-P139-019 TEMPG 415.07 P 3X P 3? B.56 PRESSURE PE-PC-004 P 415.08 P 4X P 4? B.57 ECCS HPIS VOLYMETRIC FLOW RATE FT-P128-104 CNTRLVAR 958 ECIX ECI? B.58 SYSTEM MASS BALANCE (INTEG. FROM BREAK NO PLUMPSEAL W.) SYI? 9.59 CNTRLVAR 960 SY2? 9.60 CNTRLVAR 982 SY3? B. 2 CPUTIME 0 R 1? B.61 EMASS 0 R 2? B.62 COOLANT EGY. PRIM. BALANCE (INTEGR.) CNTRLVAR 959 8*l EXTERNALS HEATFLOW *8t RELAPS COMPUTATION CPU TIME 8*l COMPUTATION MASS ERROR THE COMPARISON PARAMETERS ARE THOSE REPORTED AS DIRECTLY MEASURED OR AS COMPUTED RESULTS FROM THE EXPERIMENT 8 .8 NO DATA AVAILABEL 888 DATA OBTAINED FROM BUBBLE PLOT IN EXPERIMENT REPORT / ? / FROM THE EXPERIMENT EXPERIMENT DATA AVAILABLE BUT NOT USED IN COMPARISONS CALCULATION CASE (A. B OR C) STUDSVIK ENERGITEKNIK AB 29 STUDSVIR/NP-87/63 1987-06-09 Table 4 Measurement errors Quality Uncertainty Commen t Pressure 251-282 kPa 120 kPa Primary side Secondary side Fluid temp 2.7-3.1 K .5 K 5.9 K 10.4 K Mostly TE-P139-019, steam TE-SG-001, TE-SG-002 TE-PC-004 Fluid density 78-82 kg/mr3 3 129-131 kg/m Mostly DE-BL-001A, DE-BL-001C DE-PC-002B, DE-PC-002C Clad temp 3.1-3.2 K All Diff pressure .49 k Pa 1. kPa 1.3 kPa 1. 8 kPa PDE-RV-003 PDE-PC-002 PDE-RV-002 PDE-PC-001 Mass flow .02 L/s 6.3 kg/s HPIS I.L. init condition 17 kg/s 25 percent 1 kg/s NP114 AW I.L. hot leg Break, 40-750 's Break, 750-2100 s Liq level .04 m .05 m .099-.137 m Bubble plot Pressurizer SG secondary Cold legs Upper plen, downcomer Speed 1.22 rad/s Main recirc pumps NP-87/63 STUDSVIK ENERGITEKNIK AB 30 1987-06-09 Table 5 RELAP5/MOD2 code features. COMPUTATION PROCESSING FEATURES - Several problem type and execution control options as a. steady state initiallsatlon using fictitious structure heat capacities for faster convergence b. transient calculation c. strip type execution, to select requested parameters from a restart file d. trip system, to decide on actions during calculation due to reaching specified conditions in calculation parameters. e. ability to delete or add hydrodynamic components, structure components and control variables at a restart of calculation. CLASSIFICATION OF HYDRODYNAMIC MODEL - One-dimensionai, with provisions for a. choked flow model b. abrupt area change model c. cross flow junctions. - Two-fluid, six equation, space-time numerical solution scheme. - flow regime oriented field characteristics depending on mass flux and void fraction for a. horizontal flow with bubbly, slug, mist and stratified fields b. vertical flow with bubbly, slug, annular-mist (and stratified) fields c. high mixing flow with bubbly and mist fields (for pumps). STUDSVIK ENERGITEKNIK AB NP-87/63 31 1987-06-09 Table 5 cont'd HYDRODYNAMIC COMPONENENTS (Input systematics) - Volume type components a. single volume b. pipe and annulus, single volumes for condensed input of several similar c. time dependent volume, for defining a boundary source with a time dependent fluid state d. branch, a volume capable of two or more connecting junctions at either end e. pump, characterized by rated values for flow, head, torque, density and moment of inertia. The single phase homologous curve, two-phase'multipliers and phase difference tables to model the dynamic pump behaviour f. - special system components for steam separator, jetmixer, turbine and accumulator. Junction type components a. single Junction b. time dependent Junction, for a time dependent Junction flow whith a time dependent or controlled flow state c. cross-flow Junction, to model a small cross flow, a tee branch or a small leak flow d. valve, various operation characteristics available for check valve, trip valve, inertial valve and relief valve. INTERPHASE CONSTITUTIVE EQUATIONS - Interphase drag a. steady drag due to viscous shear depending on flow regime. Semi-empirical mechanisms to describe flow regime transitions b. dynamic drag due to virtual mass effect. - Interphase mass and heat transfer depending on flow regime and the fluid fields to saturation temperature differenca3 STUDSVIK ENERGITEKNIK AB NP-87/63 32 1987-06-09 Table 5 cont'd FLUID TO WALL CONSTITUTIVE EOUATIONS - Wall friction due to wall shear effects formulated for flow regimes and based on a two-phase multiplier approach. - Wall for heat transfer depending on flow characteristics defined* a. single-phase forced convection (Dittus-Boelter) b. saturated nucleate boiling (Chen) c. subcooled nucleate boiling (modified Chen) d. critical heat flux (Biasi or modified Zuber) e. transition film boiling (Chen) f. film boiling (Bromley-Pomeranz and Dougall-Rohsenow) g. condensation (partly Dittus-Boelter). - Interfacial mass transfer at the wall depending on wall, fluid and saturation temperatures for a. subcooled and saturated boiling b. transition film and film boiling c. condensation. HEAT STRUCTURES These may be rectangular, cylindrical or spherical in shape. The structure position is defined through component numbers of left and right hand side hydraulic components. A structure is physically defined by the geometry and the temperature dependent conductivity and volumetric heat capacity data. The structure model is further specified by the number of internal mesh points in the direction of heat flow. CONTROL COMPONENTS By these new (control) variables are defined from calculated parameters using algebra, standard functions, trip type operands or integrals. STUDSVIK ENERGITEKNIK AB 33 NP-87/63 1987-06-09 Broken loop Intact loop deA, Reactor vessel Figure 1 Downcomer Core Lower plenum NP114 AW LOFT system configuration 1 U) 550 555 530 1-3 M z 560 415 519 517 115 c3 "0 -S C) 0D %D 625 235 226 Figure 2w The nodalization diagram for LOFT L3-5 STUDSVIK ENERGITEKNIK AB NP-87/63 35 1987-06-09 0 0 I UP 4) 0. 14 0* * ASEA 4) P4 is U-' 0 0 250 500 750 16000 TIME Figure 3 1250 1500 (S) Time derivative of the core volume 3 clad temperature 1750 H . :* LOFT (PRII.YSECODRY.KINTCS) *to .3-S so *to AKALYSIS to******,~,tteete•oeo*e••*0*••• 000100 0000101 000 102 * *0000t 04 NEW STDY-ST RUN SI SI *8 r0000329 0000330 0000331 0000332 NOACTION l0O010S40. 60.0 S0000333 0000120 100010000 0.0 0000121 $17010OO0 0.0 TIME ENO MIN STP O3.06-o 4S.2 0000201 WATER WATER AX STP .4 fmO 11502000 RHO 345010000 CNTRLVAR 931 CNTRLVAR 932 TEWPF 185010000 P. 120010000 P 345010000 CKTRLVAR 936 PRIMARY 0000334 SECONDARY 000033S EDT OPT MOR MA.JR RST 8 0000336 8 13S L, OM33. 200 200 5 00001 OREMX .*..*e*.*..*.*.**.*.**S* *********f*8*S******* *** •RK0000330 RHO 18500000 V 0000339 MFLOWJ 805000000 * MINOREDIT VARIABLES FOR THE ICAP ASSES•NT 0000340 CNTRLVAR 940 $ 0000341 TEIPF 800010000 0000342 CNTRLVAR 942 0000343 P 185010000 *CORE 0000344 T'EMPF 115030000 *s 0000301 CNTRLVAR 901 S STE.AMZ GENERATOR 0000302 RKTPOW 0 s 0000303 CNTRLVAR 903 0000341 CRTRLVAR 941 0000304 CNTRLVAR 904 0000346 CNTRLVAR 946 0000305 CNTRLVAR 90S 0000347 FMO 515030000 0000306 CNTRLVAR 906 0000348 M1LOWJ 516000000 0000307 CNTRLVAR 907 0000349 CNTRLVAR 949 0000308 CNTRLVAR 908 0000350 TEWPF 515030000 0000309 CHTRLVAR 909 0000351 P 530010000 0000310 CHTRLVAR 910 0000352 CHTRLVAR 912 0000311 MFLOWJ 225010000 0000353 CNTRLVAR953 0000312 CNTRLVAR 912 *SSS8*8* *VESSEL 0000313 0000314 0000315 0000316 0000317 0000338O SSS****ee*e** 0000319 CNTRLVAR 919 0000320 TEMPF 225010000 0000321 P 245010000 0000322 P 225010000 *. * 8 * 8****8*,,*t*teeete*e~ee,,, e e*t8*8 • HOT LEG 000323 RHO 101010000 31 0000324 RHO 305010000 110010000 MFLOWJ 000032S 0000326 TEJF 105010000 0000327 P 300010000 * COLD LEG O******************************* 000320 ***e* *8 e• CNTRLVAR 9 913 CNTRLVAR 914 CNTRLVAR 911 CNTRLVAR 916 TEMAF 205010000 TE•P.F 240010000 RHO 105010000 eePMPVIE TRIP * 514 ,0000** 0 ECCS 0000358 * ** S*•e*@*et*e*f l 240 EXP. 805 * 661 BREAK HPIS *699 *8*8**8.**tt8t*t******S888*8* 88***8*8888**8**ett*e **eS CPUTIME 0 EIIASS 0 * 530 DIRECTION OF FLOWFROMCORE 50 S 646 CRTRLVAR958 5 TRIP INPUT DATA • So SCRAM * * s* MFLOW *e 641 •00003 59 CNTR R 919 0000360 CNTRLVAR 960 8*.*.8*****•t CKTRLVAR * 8te8*tSe*S**e*888**t*885*t 0000382 902 8 RELAPS 00361 000362 * Sln * 600 s SYSTEM * H E. .805 Sts So 88et rt P. AFTER EXPERIMENT E1D CHTRLVAR954 TE•IF 415020000 TEMPG 415070000 P 415080000 *eo** 1-1 135 165 PUW I PUMP4 2 CLOSE OREAM 535 8 PRESSURIZER 0000314 0D00351 0000356 0000357 H REACTIVITY. GEN. TABLE SS AUX PRESSURIZ. VALVE MAIN STEAMVALVE. CLOSE CLOS FEED WATERVALVE. CLOSE 609 410 550 560 TIME AUX FEED WATER 548 S 508 510 510 512 513 514 515 518 520 521 522 523 *530 *531 535 533 561 562 6OO 660 661 699 *601 *602 *603 TIME 610 611 632 612 -521 611 633 614 615 636 OREM.CFLOWOUALIFIED STOP ADV. OF CALCULATION BREAKOPEN 805 PRESS. VALVEOPEN. AFTER 53 435 INITIATED 640 PLIF COOLANTINJECTION 901 0 TIME 0 TIME 0 TIME 0 TIME 0 P 100010000 P 100010000 TIME 0 VELFJ 240010000 P 530020000 P 530020000 P 530020000 P 530020000 CHTRLVAR 10 CNTRLVAR 10 TIME 0 TIME 0 P 100010000 GT TIME 0 51S S14 AND 513 AND -514 AND 530 OR -531 AND 562 AND MULL0 NULL 0 GE GE GE GE GE LE LE GE GE GT LT GT LT LT GT GE CT GE P TIMEOF 501 TIMEOF S10 HULL 0 HULL 0 MU.1 0 TIMEOF 51t HULL 0 HULL 0 HULL 0 HULL 0 HULL 0 HULL 0 HULL 0 TIMEOF 510 TIMEOF 510 530020000 TIMEOF 660 161 -514 -514 602 601 602 m H OR AND AND 520 -616 610 616 -522 -612' 615 OR AND AND AND 523 613 601 614 N N N N N N N 633 .634 634 533 633 510 AND OR AND -660 I 603 S10 645 510 AND -514 45.2 0.0 a 4.8 .8 10000. 13.2ES 2.I5ES 20. 0.0 5.63E6 5.61E6 5.SSE6 5.53ES 3.10 3.16 50. 63. 0. 1600. L 1. N L N L4 L N N N N N N L N N 1. t-j ,.0 to 00 Z 00i Uo ko N HN N N N L t•I H x< U) 1-3 646 -501 AND *INTACT -Sol N LOOP 1150405 REACTOR VESSEL NOZZLE INTACT LOOP HOT LEO G 1000000 1000001 1000101 1000102 1001101 1002101 RVNILHL 2 0.0634 4.0E-6 295010000 100010000 BRANC4 1.5373 0.0 100000000 105000000 0.0 00 0.0634 0.0 0.0 0.0 0.0 0.1 0.085 0.1 0.085 0102 0100 * PRESSURIZER COINECTIONTEE REACTOR VESSEL SIDE 1050000 1050001 1050101 1050102 1051101 PRCTRVS I 0.0634 4.06-5 105010000 BRANCH t 1.634 0.0 0.0 00 110000000 0.0 S 0.0 0.0 0.0 0.083 0.083 0100 :*STE*A**4GENERA*TOR INLET PIPING 1100000 1100001 1100101 1100102 1101101 SGINLP I 0.0 4.OE-S 110010000 BRANCH 1 1.1303 0.06204 0.0 00 115000000 0.0 S 0.0 0.0 0.0 0.17 0.1? 0100 *STE*A*MGENER*A*TO*R P*LU*S *P*IP*IN*G*********#***** 1150000 1150001 1150101 1150102 1150103 1150104 1150201 1150202 1150203 1150204 1150205 1150301 1150302 1150303 1150304 1150305 1150306 1150307 1150308 1150309 1150310 1150401 1150402 1150403 1150404 SCAPS 13 0.0 0.151 0.0 0.0634 0.0 0.0312 0.0 O.0512 0.0 0.93124 0.708 0.63 1.067 0.45 1.o67 0.63 0.547 0.6e9 0.559 0.05026 0.057 0.223 0.0 PIPE 3 9 12 13 I 2 9 10 12 I 2 3 S 7 9 10 II 12 13 1 2 3 9 # 0 1150406 1150407 115040 1150501 1150601 1150602 1150603 1150701 1150702 1150703 1150704 1150705 1150706 1150707 1150700 1150709 1160710 1150711 1150801 1150802 1150603 1150804 1150805 1150901 1150902 1150903 1150904 1150905 1150906 1150907 1150900 1150909 1151001 1161101 1151102 1151103 1151300 0.223 0.0437 0.0462 0.0 0.0 0.0 90.0 -90.0 0.0 0.246 0.513 1.067 0.286S -0.2865 -1.067 -0.513 -0.498 -0.689 -0.356 4.06-6 4.OE-5 1.06-6 4.06-5 4.0f-5 0.255 0.048 0.0 0.096 0.192 0.096 0.0 0.048 0.096 00 0100 0000 0100 1 10 11 12 13 13 I 6 13 I 2 3 6 6 7 9 10 II 12 13 0.0 0.0102 0.0103 0.0102 0.0 0.255 0.048 0.0 0.095 0.192 0.096 0.0 0.048 0.096 13 3 8 12 N HM 1300102 1350000 1350101 1350102 1350108 1350109 1350301 1350302 1350303 1350308 1350310 2 3 9 10 13 I 2 4 5 6 7 9 It 12 *PUMP *PUMP' SUCTION4TEE 1200000 1200001 1200101 1200102 1201101 1202101 1203101 PSTEE 3 0.0634 4.O-5 115010000 120010000 120010000 BRANCH 1 0.76 0.0 120000000 125000000 155000000 0.0 00 0.0 0.0317 0.0317 0.0 0.0 0.0 0.096 0.2 0.2 0.096 0.2 0.2 0000 0100 0100 * PUMPI SUCTION TEE OUTLET 1250000 1250001 1250101 1250102 1251101 1252101 PISTOL 2 0.0 4.0E-5 125010000 125000000 P...W I INLET.. 130000 1300101 PIINL 0.0 BRANCH I 1.003 0.0613 0.0 00 130000000 0.0 155000000 .029417 0.0 90.0 0.521 0.1 0.0 0.1 0.0 0100 0100 .. SNOLVOL 0.457 4.0E-5 0.0 s PRIMARYCOOLANTPuWP I 0.0109 0.0 90.0 0.45? PC•I' 0.0366 0 130010000 140000000 0 0 369.0 613.6 .212465 0.0 z w• 00 TRIP-511. PUIMP 0.0 0.099 0.0 90.0 0.0 0.0 0 -1 0.889 0.0 0.0 0.0 0.0 O 0.05 -I 511 0.3155 207.4 -25. 0.0 0.0 .OS 0 96.0 0.004 29.5 0100 0100 500.6 19.598 6.29 0.319 1.431 0.0 OUTLETPUMP SIOE 1400000 PIOTLPS 1400101 0.0366 1400102 4.0-5 5 e5 e e55 5*55*55 5 5*ee5 SNOLVOL 0.502 0.0 0.0 0.0 0.0 0.0 00 55555555555555SS5SS5*5*5**S*S**8*S***t•t*S*5 * COOLANT PUMP IJ. (JOINED ONE PUMP) 9010000 9010101 9010200 9010201 9010202 9010203 PCPINJI 910000000 1 -t. 0.0 10000. Th82PJ(N 140000000 699 0.0 .094 .094 9100000 9100101 9100102 9100200 9100201 9100202 PCPRATER 7.E-3 0.0 1 0.0 10000. T"IPVOL 1.0 0.0 0.0 00 305. 305. 0.0 0.0 l.D GO 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 to 0% In 0.0 z *P¶JM'1 OUTLETPIPE TEE SIOE 14S0000 1450001 1450101 1450102 1451101 1452101 POPTS 2 0.0 4.06-6 la0010000 145010000 BRANCH 1 1.4084 0.0633 0.0 00 145000000 0.0 150000000 .035873 GO I-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0100 0100 *PUMP'OUTLET TEE* 1500000 1500001 1500101 1500102 1501101 1502101 POTLTEE BRANCH 2 I 0.0634 0.4966 0.0 4.0F-5 0.0 00 170010000 150000000 .027528 150010000 175000000 0.0 *PA'2SUCTIONTEE OTE 1S50000 1550001 P2STOL I BRANCH 1 H 0.0 0.0 0.0 0.2 0.134 0.2 0.134 0100 0100 rn a ý-3 0.0 1550101 0.0613 1.003 0.0 90.0 H E: 0.521 1s50102 4.0:-S 0.0 00 0100 0.05 0.0S 1551101 155010000 160000000 0.0 6 ***.60*6t6~e,6*66**tt.t**.tt6**ttt,*ttt*t66*t*tttttttt,6**60e***** ti- • PUMP 2 INLET PIPE 1600000 1600101 1600102 P21N?. 0.0 4.06E-5 SNOLVOL 0.457 0.0109 00 0.0 0.0 90.0 0.457 PCP2 0.0366 0 160010000 170000000 135 135 369.0 613.6 .212466 0.0 a PUM S * PUM 0.0 0.099 0.0 90.0 0.0 0.0 135 -1 0.$69 0.0 0.0 0.0 0.0 0.05 sit -1 0.3166 207.4 -25. 0.0 0.0 O.OS 0 96.0 0.004 29.S 0100 0100 P2OUTI 1 0.0365 4.OE-9 145010000 BRANCH I O.514 0.0 0.0 00 170010000 0.009073 500.6 19.596 6.28 1.431 0.0 PTECT 2 0.0634 0.0 0.519 0.613 0.0 0.0 0.0 0.0 4.06-5 0.15 D0 0100 I 0.0 0.0 0.6 0.2 0.2 0100 I 1.461 0.0 290000000 185000000 0.0 00 0.0634 0.0 0.0 0.0 0.0 I. 0.0 1. 0.0 0101 0100 tl1 z 2050000 21050001 2050101 2050102 2051101 "TWPOL I. 0.0 0.0 0.0 0.0 0.0 OOO. t.E5 I .ES `1. `1. • BREAK OUTLET LINE bRKOUTL :000000 a PIPE 2 1 I 2 2 2 2 2 0.0 0.15 2 I 0RANCH •DISCHARGE VOLUME •200000 ORREAKOL 3.SE-3 0200t01 MGM10 :200200 8200201 8200202 COLD LEO PIPE TO ECC CONNECTION TEE 17S0000 1750001 1750101 1750201 1750301 17S0302 1750401 17S0501 1750601 17,0701 1750901 170901 1751001 1751101 1751300 0.0634 4.0E-5 165010000 f0OO10000 2 0.319 2 OUTLET 1700000 1700001 1700101 1700102 1701101 CLPRVS 1650101 1650102 1951101 1652101 1650001 PRIMARY I COOLANTPUMP2 1650000 1650101 1550102 1650106 1650109 1650301 1650302 1650303 1650306 1650310 10OOOO 8000001 0000101 6000 102 2001101 I R 0.0 1. 000906 0.0 00 .E-S 185010000 600000000 0.0 2 1 514 645 0.0 0.0 0.0 .5 .S 0102 010 01s.62 .4 .4 55*¢••*5*5**#0***0*5005#*ee*e.56****5*5*etete00e e**5ee*5*.5*5**e 0RRCOMR PIPE 2100001 4 2100101 2100201 2100301 0.142 0.0 0.956 4 3 4 2100401 2100501 2100601 2100801 2100901 2101001 2101101 2101300 0.0 0.0 -90.0 4.OE.5 0.0 00 0000 I 4 4 4 0.102 0.0 4 3 1600000 1800001 1800101 1800102 1601101 ECTPS 1 0.0634 4.0E-5 175010000 BRANCH 1 .701 0.0 00 0.0 180000000 0.0 6 COLD LEG INLET ANNULUS 0.0 0.0 0.0 0.0664 0.0664 0100 0.0 -0.274 0100 4 3 LP(PVOL 3 0.740 4.0E-S 210010000 215010000 215000000 BRANCH 1 0.360 0.0 2150000 220000000 225000000 4 2900000 2900001 2900101 2900102 2901101 2902101 INAHLCVOI. 2 I 0.0 4.E-5 290010000 200010000 0.0 00 0.0 0.0 0.15 0.0 -90.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 -90.0 -0.370 .30 .172 205000000 290000000 .076 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.0 0.52 2.4 2.4 0100 1. 0.0 1. 0100 0100 0100 • 0WOO 0100 BRANCH 1 0.16 0.178 Sf INLT AN4NULUJS oA fLs*US LOWER* VOLUPOE LONER VOLUIJJ • INLET 0.0465 00 0.0 - SNGLVOL 0.370 0.0 LPLOVOL 0.790 4.0E-S 0.18 90.0 oee seeto•nee•.*s..ss LOWER CORE SUPPORT STRUCTURE 2250000 2250001 2250101 2250102 22SI101 * INLET ANNULUS TOP VOLUMIE IANLTVOL 0 0.0 4.OE-S I C) -. 30 -90. e COLD LEO PIPE FROMECC CONNECTIONTO REACTORVESSEL 2000000 2000001 2000101 2000102 00 -0.360 LOWER PLENUM LOWER VOLUME 2200000 2203101 2200102 BRANCH 00 -j REACTOR VESSEL • SIDE *'90.0 0.0 • LOWER PLENUM UPPER VOLULM • * ECC CONNECTION TEE PUM 0.0 S 2100000 2150000 2150001 2150101 2150102 2151101 2152101 2153101 0.0 S. BRANCH 1 0.274 0.071 0.172 00 210000000 0.0 OWNCOMER • BRANCH 4 BRAKE VALVE LORIFICE) VALVE RKVLV 8050000D 16O010000 620000000 20S.0E-G 8050101 TRVLV 8050300 6050301 0.0 0.0 0.0 IAJALVOL I 0.0 4.06-S 205010000 e LCOSUST I 0.25 4.OE-S 225010000 * VALVE JUNCTION S 2260000 2260101 2260201 2260300 2260301 0AAI4CN I 0.52 0.0 0.095 00 230000000 0.0975 FOR CORE BYPASS FLOW VALVE CBPVLV .015 225010000 235000000 20. 0.0 I SRVVLV 226 • ACTIVE CORE 2300000 2300001 CORE 6 PIPE 0100 t~l t-3 a En 0 2M00101 2300201 2300202 2300203 2300204 2300205 2300301 2300302 2300401 2300501 2300601 2300801 2300901 2300902 2300903 2300904 2300905 2301001 2301101 2301300 0.1705 0.1705 0.1440 0.1705 0.1440 0.1705 0.2?95 0.3775 0.0 0.0 90.0 A.OE-5 0.0 .5 0.0 .5 0.0 00 0100 I 6 1 2 3 * 5 5 6 6 6 6 0.012 0.0 .5 0.0 .S 0.0 6 5 "I- tl H 2461101 240010000 24600000 0.0 6 1 2 3 4 5 295000 RVI)LOUT BRANCH 2950001 2950101 2950102 2951101 2952101 I 2 .20) 4.E-5 295010000 245010000 BYPVOL 3 0.05 0.0 0.559 0.657 0.0 0.0 90.0 4.OE-S 0.0 00 0000 I UCOSST 2 0.297 4.OE-5 230010000 235010000 2960000 2960101 2950201 2960300 2960301 PIPE 0 UPPER CORE SUPPORT 24000 2400001 2400101 2400102 2401101 2402101 0.0 0tOo .30 0.0 250000000 295000000 0.0 00 0.0 0.0 0.0 90. .30 0.0 0.0 0.0 0.0 0100 O)00 t-I 4100101 4100300 4100301 0.93 405010000 415000000 0.0 TRPVLV 501 0.93 w 0100 *S*t*tt*85tS8*5*S*85484*t*ttttt* * VALVE JUNCTION * BYPASS VOLUME 2350000 2350001 2350101 2350201 2350301 2350302 2350401 235050) 2350601 2350801 2350901 2351001 2351101 2351300 0.0 *5******S**4*55S5**S••o•i**4,S•s8*eels4..s**88*e*4a5*a•tSsst,...S * REACTOR VESSEL HOT LEGOUTLET 3 2 2 3 3 3 3 0.003 0.0 3 2 IAUPVLV VALVE .01 200010000 295010000 30. 0.0 1 SRwLV 296 1. 0.0 * PRESSURIZER VESSEL t. 0100 UPPER PLENUIJ LOWER VOLUME 2500000 2500001 2500101 2500102 2501101 2502101 3 2 0 STRUCTURE BRANCH I 1.118 0.145 240000000 240000000 INLET ANN. TO UPPER PLEHUM 0.0 00 0.12 0.0 0.0 90.0 1.118 2.40 1.50 2.40 1.50 0100 O)O UPLLVOL 2 0.288 4.0E-5 295010000 250010000 BRANCH 1 0.704 0.0 250000000 255000000 S 0.0 00 0.0 0.0 0.0 90.0 0.704 0.0 0.0 0.0 0.0 0100 0100 ****488*,•e*'*5*4*5***85,8,**S**e*e548*5*58*,,5*S***45*S8****i**• • UPPER PLENUM UPPER VOLUME3550000 2550101 2550102 UPLUVOL 0.244 4.OE-5 SHGLVOL 0.712 0.0 0.0 00 0.0 90.0 0.712 41S0000 4150001 416010) 4150102 4150103 4160104 4150201 4)50301 4150302 4150303 4150304 4150305 4150401 4150501 4150601 4150801 4151001 4151002 4151101 4151102 4151103 4)51104 4151300 * PRESSV 8 0.362 0.565 0.466 0.13 0.0 0.224 0.403 0.207 O1705 0.118 0.0 0.0 90.0 4.0E-5 D0 01 O100 0000 0020 0120 S PIPE I 5 7 8 7 I 3 5 ? a 8 8 8 0.0 4 8 1 4 5 7 S ý-A ko COl 1 co TOP VOLUME PRESSURIZER S *PRESSURIZER 8 UPPER 2450000 2450001 2450101 2450102 2451101 * FLOWSKIRT REGION UFOSRE I O.1)4 4.OE-S 240010000 BRA24CH I 0.0 0.693 O0 0.131 245000000 0.0 0.0 0.0 90.0 0.693 0.0 0100 e DEAD ENO OF FUEL MOOULES 2460000 2460001 2460101 2460102 FLI6OML I 0.183 4.OE-5 BRANCH 1 0.700 0.214 0.0 00 0.0 90.0 O.700 4200000 4200001 4200101 4200102 4201101 • SURGE LINE P0S SIDE :000000 4000001 4000101 4000102 4001101 4002101 * RANCH 1 3.45 0.0 400000000 405000000 0.0 00 0.0 0.0 0.0 90.0 0.54 0.93 0.93 0.93 0.93 01OO 0000 SURGE LINE PRESSURIZER VESSEL 4050000 4050101 4050102 * SLPCS, 2 0.0014S 4.0E-5 11000000 400010000 SLPRV 0.00145 4.OE-5 SNGLVOL 3.45 0.0 0.0 0O PRESSURIZER SURGE LINE VALVE :100000 SLVALV VALVE S 0.0 90.0 *HEAT * 0Y 0.0 0.0 90.0 0.0 0.236 0120 STRUCTURE INPUT DATA *REACTOR VESSEL HEAT STRUCTURES* *FILLER 0.60 TOPPRE BRANCH 0 I 0.13 0.236 0.0 4.5E-5 0.0 01 4)5010000 420000000 0.0 12000000 12000100 12000101 12000201 12000301 12000401 12000501 12000601 12000701 12000801 TOPVOLUM*E BLOCKSINLET AN4NULUS 1 0 4 4 0.0 565.2 200010000 0 0 0 5 I 0.773 4 4 5 0 0 0.0 .178 2 1 0.508 I 0 0.0 0.0 I I 0.0 0.33 0.33 0.33 1 I LOWER VOLUM.E * FILLER BLOCKSINLET ANNUL.US 1 1 . C 12050000 12050100 12050101 12050201 12050301 12050401 12050501 12050601 12050701 12050801 I 0 4 4 0.0 565.2 205010000 0 0 0 5 I 0.756 4 4 5 0 0 0.0 .172 2 1 0.501 1 0 0.0 0.0 1 1 0.0 0.424 0.424 0.424 I I H 1 1 *FILLER BLOCKS 0OWNCOJR AND LOWER PLENUM 12100000 12100100 12100101 12100201 12100301 12100401 12100501 12100503 12100504 12100505 12100506 12100601 12100602 12100603 12100701 12100801 12100602 12100803 6 0 4 4 0.0 565.2 210010000 210030000 210040000 215010000 220010000 0 0 0 0 0 0 0 5 I 0.736 4 4 5 0 0 0 0 0 0 0 0 0.0 0.102 0.971 1.003 2 I I 1 I I 0 0 0 0.0 0.0 0.0 0.0 1 1 1 I t 1 I 0.0 0.958 0.36 0.37 0.47 0.9s8 0.9Ss 0.958 0.36 0.3? 0.950 0.36 0.37 6 4 5 6 1 3 4 5 6 4 5 6 12250201 12250301 12250401 12250501 12250502 12250503 12250504 12250505 12250506 12250601 12250602 12250603 12250604 12250605 12250606 12250701 12250801 12250802 12250803 12250804 12250805 12250806 4 4 0.0 4 565.2 5 225010000 0 230010000 10000 230060000 0 24001000000 245010000 0 246010000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0. 0 0.012 0 0.012 0 0.145 0 0.131 0 0.214 H 1I1 1 I 1 I t 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 1 I I I 1 I 0.0 0.52 0.2795 0.3775 1.118 0.42 0.35 0.52 0.2795 0.3775 1.115 0.42 0.35 0.52 0.2795 0.3775 1.116 0.42 0.35 10 I 6 7 8 9 10 1 6 7 8 9 10 1 6 7 8 9 10 12010000 12010100 12010101 12010201 12010301 12010401 12010501 12010502 12010503 12010504 12010505 12010506 12010601 12010602 12010603 12010604 12010605 1200•606 12010701 12010801 12010802 12010803 6 0 4 4 0.0 565.2 200010000 205010000 210010000 210020000 210030000 210040000 0 0 0 0 0 0 0 0 0 0 5 I 0.4191 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.178 0.172 0.102 2 1 0.3810 I 1 1 1 I 1 0 0 0 0 0 0 0.0 0.0 0.0 0.0 1 1 I 1 I 1 1 1 1 1 0.0 0.33 0.424 0.958 0.33 0.424 0.958 0.958 0.958 0.958 0.33 0.424 0.958 0.958 0.958 0.956 6 1 2 6 1 0.3 * FLOW SKIRT - CORE FILLER ASSEMBLY 12250000 12250100 12250101 10 0 4 5 1 0.38 2 I 2 3 4 5 6 I 2 3 4 5 6 12300000 12300100 12300101 12300102 12300103 12300201 12300202 12300203 12300301 12300302 12300401 12300402 12300501 12300502 12300601 12300602 12300701 12300702 12300703 12300704 1230070S 12300706 12300901 12300902 6 0 5 1 2 I -2 -3 1.0 0.0 1100. 560. 0 0 230010000 230060000 1000 1000 1000 1000 1000 1000 0 0 I 0 & 4 0.0 665.2 245010000 246010000 0 0 0 12200000 12200100 12200101 12200201 12200301 12200401 12200501 12200601 12200701 12200901 S 9 I 4.647E-3 4.742E-3 5.359E-3 5 6 8 5 8 6 9 0 0 10000 0 0.081 0.282 0.245 0.228 0.146 0.039 0.01250 0.01250 2 1 0.0 I 0 4 4 0.0 565.2 -999 220010000 0 0 S 1 0.092 4 4 8 0 0 0.0 0.0 S 1 I 0.0 3949 1 0.0 0.0 0 0 0.0 0.52 1.68 1.68 I I I 1 0 0 I I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 1 I 0.0 0.0 0.0 0.0 0.0 0.0 0.2795 0.3775 363.35 490.75 363.35 490.75 I 2 3 4 S 6 5 6 I 1 0.0 5 6 5 6 I I 0.0 0.0 0.0 1 1 1.8 1.8 1.8 1.8 1.8 1 I I I I I 0 4 4 0.0 565.2 225010000 0 0 0 8 I 0.3 4 4 5 0 0 0.0 0.0 S 2 I 0.282 I 0 0.0 0.0 1 I 0.0 0.52 0.52 0.52 1 I 12400000 12400100 12400101 12400201 12400301 12400401 12400501 12400601 12400701 12400801 1 0 4 4 0.0 565.2 240010000 0 0 0 5 I 0.31 4 4 5 0 0 0.0 0.145 2 z t 1 )-4 to 00 • UPPER CORESUPPORT STRUCTURE , 5 1 0.01 4 4 5 0 0 0.0 0.131 0.214 • LOWERCORESUPPORT STRUCTURE 12260000 12260100 12260101 12260201 12260301 12260401 12260501 12260601 12260701 12260801 * FUEL MODULES 12460000 12460100 12460101 12460201 12460301 12460401 12460501 12460601 12460701 12460801 12460901 1-3 • REACTORVESSELBOTTOM *5*g555*5*555**55**55t55ei•00eett*55558*5**44S5*StetSe**555555555 * ACTIVE CORE *CORE SUPPORT BARREL H S I 00 -,J 0.282 I kD 1 0 0.0 0.0 1 I 0.0 .559 .559 .559 I I 1 1 0.0 1 1 *UPPER HEAD TOP PLATE 12550000 12550100 12550101 12550201 12550301 12550401 12550501 12550601 12550701 12550801 I 0 4 4 0.0 565.2 255010000 -999 0 0 5 I 0.474 4 4 5 0 0 0.0 0.0 ni z I 3949 0.0 0.0 I I 0.0 0.712 0.712 0.712 1 I • CORESUPPORT BARRELUPPER PLENUMLOWERVOLUME 12500000 12500100 12500101 12500201 12500301 I 0 4 4 0.0 5 I 0.419 4 4 2 I 1 I H x * 0.381 U' In 12500401 12500501 12500601 12500701 12500601 565.2 S 250010000 0 0 0 0 0.0 0.0 0 0 0.0 0.0 0.854 0.854 II 0.0 0.8S4 I I I 0 0 o******•e8**..t.**e.,e••e..**4*48eee•*8**8••,484898e*8e****4**888* * CORE SUPPORT BARREL UPPER PLENIA TOP VOt.UME 12350000 I 5 2 1 0.381 12520100 0 1 12520101 4 0.728 12520201 4 4 12520301 0.0 4 12520401 565.2 5 12520501 255010000 0 1 I 0.712 I 12520601 -999 0 3949 I 0.712 I 12520701 0 0.0 0.0 0.0 I 12520801 0 0.0 0.0 0.712 I *4**4,4*88•*84.•*...*....8**4.8,440***488*888*8**4*****88444•t4*88 * INTERNALS UPPER PLENUM A 12510000 12510100 12510101 12510201 12510301 12510401 12510501 12510502 12510601 12510602 12510701 12510801 12510802 2 0 4 4 0.0 565.2 250010000 255010000 0 0 0 0 0 5 ! 0.005 4 4 5 0 0 0 0 0.0 0.0 0.0 I 1 0.0 1 1 0 0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2 1 2 1 1 I I 0.0 1.0 1.0 1 2 ! 2 S4tttttttitttittttittiilitttititt * BR0(EN HOT LEO 2 0 5 4 0.0 540. 315010000 315020000 -999 -999 13150701 6 I .0705 5 5 6 0 0 0 0 0 0 1 0 S 4 0.0 6 I .1350 5 S 13150801 13150902 I315S000 13151100 13151101 13151201 13151301 0 0 0 0 I 3949 3949 0 0 0 2 0 .4054 .5265 1 . .0515 .4054 .5265 .4054 .5265 2 1 2 .1074 2 2 540. 6 31500000 -999 0 0 0 0 0 0 I 3949 0 0 I 1 0 2.671 2.671 2.671 I I 13152000 13152100 13152101 13152201 13152301 13152401 13152501 13152601 13152701 13152801 1 0 5 4 0.0 540. 315090000 -999 0 0 6 1 .0840 5 5 6 0 0 0 0 2 I .0660 I 3949 0 0 I I 0 1.842 1.842 1.842 1 I 13153000 13153100 13153101 13153201 13153301 13153401 13153501 13153502 13153601 13153602 13153701 13153801 13153802 S 0 5 4 0.0 540. 315030000 315070000 -999 -999 0 0 0 6 I .2285 5 S 6 10000 0 0 0 0 0 0 2 1 .1835 1 I 3949 3949 0 0 0 1 I I I 0 1.699 .362 1.699 .362 1.699 .362 5 4 5 13154000 13154100 13154101 13154201 13154301 13154401 12154501 13154601 13154701 13154901 I 0 5 4 0.0 540. 315100000 -999 0' 0 6 I .1620 5 5 6 0 0 0 0 2 1 .1285 I 3949 0 0 I I 0 .667 .667 .667 I I 13000000 13000100 13000101 13000201 13000301 13000401 13000501 13000502 13000503 13000601 13000602 13000603 13000701 13000801 13000802 13000803 3 0 5 4 0.0 540. 300010000 305010000 310010000 -999 -999 -999 0 0 0 0 6 I .1780 S 5 6 0 0 0 0 0 0 0 0 0 0 2 I .1420 1 1 I 3949 3949 3949 0 0 0 0 1 1 1 1 I I 0 .0760 .6980 1.424 .8760 .6980 1.424 .8760 .6980 1.424 3 I 2 3 2 1 .111 4 • PRIMARY SYSTEM PIPING 13150000 13150100 13150101 13150201 13150301 13150401 13150501 13150502 13150601 13150602 13161401 13151501 13151601 13151701 13151901 l3750201 2 0 5 6 I .1365 4 5 540. 370010000 380010000 -999 -999 0 0 0 6 0 0 0 0 0 0 0 13350000 13350100 13350101 13350201 13350301 13350401 13350501 13350502 13350503 13350601 13350602 13350603 13350701 13350801 13350802 13350803 3 0 5 4 0.0 540. 335010000 340010000 345010000 -999 -999 -999 0 0 0 0 6 1 .1780 5 5 6 0 0 0 0 0 0 0 0 0 0 13501000 13501100 13501101 13501201 13501301 13501401 13501501 13501601 13501701 13501801 1 0 5 4 0.0 540. 350010000 -999 0 0 13750301 * REFLOOASSIST BYPASS 13750000 13750100 13750101 I 1 1 I 4 5 4 5 1 1 1 2 3 2 3 13750401 13750501 13750502 13750601 13750602 13750701 13750801 13750802 0.0 5 I I 3949 3949 0 0 0 I I I I 0 4.415 5.240 2 1 .1420 I I I 3949 3949 3949 0 0 0 0 I I I I 1 1 0 .749S .6980 .9740 .7495 .6980 .9740 .7495 .6980 .9740 3 I 2 3 6 1 .1287 5 5 6 0 0 0 0 2 1 .0803 1 3949 0 0 1 I 0 2.0965 2.0965 2.0965 I 1 6 2 1 .142 1 I 1 1 1 1 1 I I 1 I 1 I I 1 I 1.5273 1.6340 1.1303 .9304 .6890 .5590 .7600 .49G6 .5590 .6130 .7010 1.4610 1.5373 1.6340 4.415 5.240 4.415 5.240 2 I 2 *44•**4SSSSS*S.S.SSSttSSSSS4****SSSSS*S*S444*SSSS*Stttit4titt4t*t * B.L. COLD LEG • . I 2 1 2 I 2 3 I 2 3 CC) W crn 0 CI ko cr% w3 0 1 1 INTACT LOOP PIPING 11001000 11001100 11001101 11001201 11001301 11001401 Il001501 11001502 11001503 11001504 11001505 11001506 11001507 11001509 11001509 11001510 11001511 11001512 11001601 11001602 12 0 5 4 0.0 540. 100010000 105010000 110010000 115010000 115120000 115130000 120010000 150010000 175010000 175020000 180010000 185010000 -999 -999 .178 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 I 1 I 1 I 3949 3949 1 2 3 4 5 6 7 8 9 10 II 12 I 2 :00 H 63 11001603 11001604 11001605 11001606 11001607 1100160s 11001609 11001610 11001611 11001612 11001701 11001801 11001802 11001803 11001804 11001806 11001806 11001807 11001808 11001809 11001810 11001811 11001812 110011000 11002100 11002101 11002201 11002301 11002401 11002501 11002502 11002601 11002602 11002701 11002802 11002801 0 11003000 11003100 11003101 11003201 11003301 11003401 11003501 11003502 11003503 11003504 11003505 11003506 11003507 11003601 11003602 11003603 11003604 11003605 11003606 11003607 11003701 11003001 11003802 11003803 11003804 11003805 11003606 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3946 1 3949 1.1303 .93124 3949 3949 3949 3949 3949 3949 3949 3949 0 0 0 0 0 0 0 0 I 1 I 0 1.5373 1.6340 1.12303 .93124 .6890 .5590 .7600 .6890 .5590 .7600 .4966 .5S90 .6130 .7010 1.461 12 1 2 3 4 5 a 7 0 0 0 0 0 .4968 .5590 .6130 .7010 1.461 8 9 10 II 12 2 0 $ 4 0.0 540. 115020000 115II0000 -999 -999 0 0 0 6 I .2030 5 5 6 0 0 0 0 0 0 0 2 7 0 5 4 0.0 540. 125010000 130010000 140010000 145010000 155010000 160010000 170010000 -999 -999 -999 -999 -999 -999 -999 0 0 0 0 0 0 0 6 I .1365 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 I 1 .162s ti <:j zQ 11003807 0 0 0 .514 7 11004000 2 6 3 1 .6858 1 I I .25 .25 11004100 11004101 11004201 110C04301 11004401 11004501 11004502 11004601 11004602 11004701 11004801 11004802 11004901 8 0 5 4 0.0 540. 115030000 115100000 1 .7747 5 5 6 0 0 -999 -999 0 0 0 0 '-1 '- I 0 0 0 0 0 0 3949 3949 0 0 0 0 I I 0 .630 .630 .630 20100102 20100104 20100105 2 .25 .25 2 I 2 2 I 2 20100103 616.48 868.48 4.6228 3.8803 20100106 1088.71 1366.48 1616.48 2255.37 3088.71 3.1551 2.7130 2.4490 2.3071 2.9942 20100107 20100108 699.82 949.82 4.6332 3.5965 1199.82 1449.82 1699.82 2533.15 2.9838 2.6082 2.3919 2.4334 wR 783.15 1033.15 422.13 3.3576 1283.15 1533.32 1977.59 2810.93 2.8367 2.5217 2.2898 2.6619 373.15 1373.15 2173.15 2773.15 3113.15 2.74846& 3.443868 4.2285E6 6.3210E6 6.8005E6 •4*8*4*81 o VOLYMETRIC HEAT CAPACITY U02 20100151 20100152 20100153 20100154 20100155 20100156 *.STEAM GENERATOR PRI-SEC HEAT STRUCTURES .708 3949 3949 0 0 0 3949 3949 3949 3949 3949 3949 3949 0 0 0 0 0 0 0 0 .708 .541 .547 .708 .547 2 2 .108 0 1 .003 .457 .502 1.4084 1.003 .457 1.003 .457 .502 1.4084 1.003 .457 .514 1.003 .457 .502 1.4084 1.003 .457 .514 7 1 2 3 4 5 *STEAM GENERATOR TUBING 10060000 10060100 10060101 10060201 10060301 10060401 10060601 10060602 10060603 10060604 10060605 10060606 10060501 10060502 10060503 10060504 10060505 10060506 10060701 10060801 10060901 6 0 7 6 0.0 540.0 517010000 517020000 517030000 517030000 517020000 517010000 115040000 115050000 115060000 115070000 115080000 115090000 0 0 0 8 2 I 0.006348984 7 7 8 0 1 I 0 1 1 0 1 I 0 1 1 0 1 1 0 1 1 0 I 1 0 1 0 1 I 0 I 1 0 1 1 0 1 1 0 0 0 0 0 0 1 .204,00 TBL/FCTN TSL/FCTH TB./FCTN I I I I f I I 366.48 7.7796 449.81 20100351 20100352 8 8THERMAAL 6 6 6 20100201 20100202 20100203 20100204 20100205 20100206 273.1S 873.15 1473.15 2073.15 9.5744 17.0079 25.0109 44.0178 255.37 1.9041E6 1248.43 2.3118t6 1077.59 2.312266 2199.82 2.3122E6 ,-J 1185.93 5.7124E6 2, co -J a% CONDUCTIVITYCAP 273.15 590.0 810.0 1090.0 1370.0 3260.0 0 kD 0.14 0.24 0.29 0.36 0.42 0.75 wu S * THERMAL CONDUCTIVITY INCONEL 600 U02 GAP * ZR 8 8 ,--" 6.6297 2.5720E6 3.1387E6 3.7926E6 6.0158E6 6.7133E6 473.18 12.0044 673.15 14.0051 1073.1S 19.0087 1273.15 22.0098 1673.15 30.0127 1873.15 36.0149 2273.15 55.0235 2473.15 68.0283 4*8 88 8 8 8 888888**88**8**88*888*888*88*8 8*8888**8888888e*88***•* * VOLYMETRIC HEAT CAPACITY ZR 1 2 3 4 5 6 I 2 3 4 5 6 20100400 S-STEEL 20100500 C-STEEL 20100600 TgL/FCTN I I * INCONEL600 *.**,.*8...8..88e8,,4*8888*88e*8*8**8•**888**8**8**8*88*88888S8t* • THERV*AL CONDUCTIVITY U02 20100101 323.1J 673.15 1973.15 2673.16 2973.15 THERMAL CONOUCTIVITY ZR 20100301 20100302 20100303 20100304 HEAT STRUCTURE THERM4AL PROPERTY DATA 20100100 20100200 20100300 2.3104E6 2.9207(6 3.5310E6 4.8824E6 6.582568 6.8005(6 0.0051054 * 1624.338 2236.34 943.16 943.16 2236.34 1624.338 1624.338 2236.34 943.16 943.16 2236.34 1624.338 0 0 0 273.15 473.15 1773.15 2373.15 2873.15 4699.82 533.15 20100601 20100602 20100603 20100604 20100605 20100606 20100607 20100608 20100609 366.5 477.6 588.7 700.0 810.9 922.0 1033.2 1144.3 1477.6 13.8S 15.92 18.17 20.42 22.50 24.92 26.83 29.42 36.06 l-i 5.7824 8 VOLI.8dETRIC HEAT CAPACITY CAP 20100251 20100252 273.15 3260.0 5.4 5.4 0 VOLUMETRIC HEAT CAPACIT .*Y 8 60........0'*: "" ........... En 20100451 20100652 20100653 20100654 20100656 20100657 20100656 20100659 366.5 477.6 588.7 700.0 810.9 922.0 1033.2 1477.6 H 3.908E5 4.08465 4.260E5 4.436E5 4.665E5 4.929E5 6.105E5 S.727ES til 1356306 O.0000006E*0 1.403600.*00 ***46888886i86*8666466668686866868668i*8*4*6tt8868ii*6*6888446i6 HEAT STRUCTURE GENERAL TABLES M 20299900 20299901 TEMP 0.0 305. 20294900 20294901 HTC-T 0.0 20. * HEADCURVE NO. 4 6 250 KW 5S SURROUNOINOS HEAT LOSS * POWER I 20290000 20290001 20290002 POWER 0.0 1000.0 0.0 0.0 *PUMP 4 4**66 **4*6646646666 DATA *...8**..*...6...86...***.'0..688848***664"•*46.4666.0..4.1.4 * ..SINGLE PHASE HEAD CURVES *HEAD CURVE NO. 1351100 1351101 1351102 1361103 1351104 135110S 1351105 * I 1 0O.00000E*00 1.906100-01 3.8963O O-01 5.9396006-a1 7.90200E-0o 1.0OO0000000 * I 1.403600E600 1.363600E.00 1.318600aO00 1.23258O.00 1.133600E.00 !.000000EO00 HEAD CURVE NO. 2 6 1351200 1 2 1351201 0.0000006O0 -6.700000E-01 1351202 2.0000OOE-01 -5.O000O0-OI 1351203 4.OOOOOO-01 -2.500000-Ol 1351204 5.7554006-01 0.0000006.00 1351205 7.443200O-01 2.5830OOE-01 1351206 7.734800E-01 3.7780OOE601 1351207 8.6313OOE-OI 6.32600O-o01 1351200 1.000OOOO 400 l.000000[.00 6..6866646*68*8ee8e6*0•40*****88866*6*e0,e,***6446*4*6666666464*** * HEAD*CURVE NO. 3 1361300 1351301 1351302 1351303 1351304 1351305 1 -1.000000E.00 -8.05740O6-Ol -6.069000o-OI -4.068300-01 -2.001710-01 1351401 -1.0OOOOOE*00 4 1351402 1361403 1351404 1351405 1351406 1351407 1351408 -8.2297OOE-01 -6.3332O-01 -4.553400D-01 -2.710900E-01 -:.771600E61 0 -9.073000E-02 0.00OOO00*00 1.996800O400 1.589700E#00 1.327900*00 1.194900.*00 6.06050OE600 1.0156006*00 9.342790E-01 • 6884 **************o**66466 66668 68 66666666648 3 2.472200E.00 2.047400E.00 1.03t0O,0OO 1.624000E00 1.470500E*00 6 2.4722006*00 HEAD CURVE NO. 5 6351600 1 6 1351601 0.00OOO O600 9.342795E-01 1351602 9.10990OE0-2 9.22900OE-0O 1351603 1.865090E-01 8.968000E-O1 1351604 2.717620E-01 8.7500OEO-0l 1351605 4.558720E-01 8.433000E-O0 1351606 5.7440606-01 8.355006E-Ol 1351607 7.405760E-01 8.4660006-01 1351608 7.666190E-01 8.46900OO-01 1351609 8.714710E-01 8.838000E-01 1351610 1.0000 .00O I .00O0E+00 4.*64*6668t**tet6ete*8886**4*4*686*8*86tet*66o*t8888*66t486*464*e6 • HEAD CURVE NO. 7 1 -1.000000*"00-8.0000OOE-01 -6.00OOOOO-01 -4.0OOOOOO-01 -2.0000OOE-01 O.000000[*00 7 -1.000000.E00 -6.3000006-01 -3.0OOOOO-O1 -5.00OOOOE-02 1.SOOOOE-0l 2.5000OOE-01 * HEAD CURVE NO. 6 1351800 1351801 1351802 1351803 1351804 1351805 1351806 I -1.000000EE00 -8.000000E-O -6.OOOO000-01 -4.000000E-01 -2.0OOOOOE-01 0.000000E.00 IRNGLE I PHASE TOR.UE DATA *OOUE CRVE NO. I H * 1351500 I S 1351501 O.OOOOO000 2.50OOOOE-01 1351502 2.OOOOOO-OI 2.800000-O1 t351503 4.0000006-01 3.400O06-01 1351504 4.1180OOE-O 2.768000E-01 4.5840OOE-01 5.976300E-01 1351505 1351506 7.934670E-01 6.992000O-01 1351507 1.0000O00600 I.O000006E*0 ..... 66444***6,.6.*6686686...8.8.*e6.86*e6**4**886*666886..666**44 * HEAD CURVE NO. 6 1351700 1351701 1351702 1351703 1351704 1351705 1351706 z * I 1351400 1351900 1351901 2 0.000000t#00 1 6.032000E-01 1351902 1.930000o-01 6.325000E-01 1351903 3.930000E-01 7.369000E-01 1351904 5.9552OOE-01 6.3310OOO-01 1351905 7.978200E-01 9.2290OOE-01 1351906 1.000000E60 1.000000*EO0 66 668 66*86*666668* 96864*6448686 664 64***46.6*666 .688.. *.4*466646 6 NO. 2 * TOROUE CURVE 1352000 2 2 1352001 0O.000006EO0 -6.0OOOOOE-01 1352002 4.000000E-01 -2.500000E-01 1352003 5.000000E-01 f.SOOO00-Of 1352004 7.372550E-01 S.26586OE-01 1352005 7.680490E-01 6.065940E-01 1352006 8.672300O-01 7.436600E-01 1352007 1.000000E*00 1.000000E+00 6.6888*6688.6.8666s866646486648.6.66....66666..86.6844486684684*8 • TOROUECURVENO. 3 • TOROUECURVENO. 4 13S2200 1352201 13S2202 1352203 1352204 1352205 1352206 13S2207 1352208 *TORQUE 8 -1.000000E#00 -9.700oO-01 -9.500000E-01 -8.800000E-01 -8.0000OOE-01 -6.7000006-01 6 I352100 2 3 1352101 -1.000000E*O0 1.984300E*00 1352102 -8.009600E-Ol 1.394000E*00 1352103 -6.063800E-O1 1.0975006*00 13S2104 -4.068600E-01 8.2200006-01 1352105 -1.992800E-01 6.6480006-01 1352106 0.0000006.00 6.032000E-01 6666*6*6448*8*********4*46866*4*****************************0***4 I3S2300 1352301 1352302 1352303 1352304 6OQUE 1352400 1352401 1352402 1352403 1352404 1352405 1352406 1352407 1352408 I352409 2 -. OOO00EO.00 -8.223400E-01 -6.33710OE-01 -4.5853IOE-OI -2.670230E-01 -7.761070Eo01 -8.931000E-02 O.OOOOOE+00 ý-2 0L -j 4 6.9843006*oo 1.830800E.00 1.682400E+00 1.557000E*00 1.436200E.00 1.387900E#00 1.348100*E00 1.233610E*00 0o CURVE NO. S6 2 O.000)000+00 4.000000-01 5.OOOOOE-Ot 0 t.000000E+00 6 -4.50OOOOE-Ol -2.50OOOO[-OI 0.000000E.00 3.5690OOE-01 t~1 CURVE NO. 66 2 O.OO0OOE*000 9.0643006-02 1.885690E-01 2.7347006-01 4.586690E-01 5.744800-E01 7.3816006-01 7,685200E-01 9.700570E-01 6 1.233610E*00 1.1965006*00 1.1096006E00 1.041600E.00 6.958OO0-Ol 7.807000E-01 6.134000E-01 5.849000E-O0 4.877000E-OI 1352410 •!;:; 1.00000E*o0 3.569000E-Ol ••:;........................... :.;• 6TORQUE CURVENO.7 :0: C Cl) 1352500 1352501 1352502 1352503 1352504 2 -!.00E000 -3.OOOOOOE-0I -I.OOOOOOE-01 O.000000E00 04 *6*6* *00•••••.•••••00 0 $*0*6* 00* 0 0*608*$ 0;0! ....... * FOR TOROUECURVE NO. a I352600 1352601 1352602 1352603 1352604 '-4 7 -I. 0000OOE400 -9.000000E-01 -5.000000-01 -4.O00001r-ol 2 t~1 8000 0• 8 1..000000E400 -2.500000-001 -9.000000-02 0.0000006.00 1. 0000001.00 -9.000006E-01 -8.000000E-Ol -6.700000oE-0 * TW - PHASE IMJLTIPLIER DATA $$0e006000 000•$0 00 g 0e6 000*8*0 0 o0•400000000000000004,0•$0e•0e6e*40$0 0 1354300 I 3 1354301 -1.000000E6O0 -1.1600005*00 1354302 -9.000000E-01 -1.2400006+00 1354303 -8.000000E-Ol -1.770000E.00 1354304 -7.0000001-01 -2.3600006,00 1354305 -8.0000005-01 -2.790000E600 1354306 -S.000000[-01 -2.910000E,00 1354307 -4.000000E-01 -2.670000•400 1354308 -2.500000E-01 -1.690000E+00 1354309 -I.000006E-01 -5.000000[-(.I 1354310 O.000000.E00 0.W000006.E.0 0.oo;.oooset.oe:. ... .8o.,...,..,..,, 0 O.0000005400 2.000000E-02 6.000000E-02 I.0000006-01 2.0000006-01 2.4000OOE-01 3.OOOOOOE-01 4.0OOO006-01 6.0000006-01 8.0000006-01 9.000006E-01 9.600000E-01 1.000000E.00 0.000000E600 2.000000E-02 5.000000E-02 1.000000E-01 4.600000E-01 8.OOOOOOE-O1 9.6000OOO-OI 9.8OOOOE-OI 9.7000006-01 9.0000006-01 8.0000006-01 5.0OOOO -01 O.OOOOOOE00 000000060e009.0001*.e*•te*e•e*00000060.....000000000*0*..00000000 * TOROUECURVE 1353100 1353101 1353102 1353103 1353104 135310S 1353106 1353107 0 0.0000006.00 I.2500OOE-01 1.650000E-01 2.4000006-01 8.00OOOO-01 9.6000006-01 1.000000E+00 .... 0 O.0000001[00 7.OOOOOOE-02 1.250000E-01 5.6000OOE-01 5.600000E-01 4. 500000-01 0.0000006DO0 * * HEADCURVE NO. I 8 1354100 1 I 1354101 0.000000E.00 0.0000006.00 1354102 1.000000E-01 8.3000OOE-01 1354103 2.OOO00-01 1.090000E600 1354104 5.000000E-01 1.0200006.00 1354105 7.000000o-01 1.0f00006.00 1354106 9.000000[-01 9.40000OE-01 1354107 1.000000E6.0 1.0000006.00 0**00000*,0•****0 **•*d*ee*e******00006.o•o.ee.0000 • HEADCURVENO. 2 0 1354200 1354201 I 0.000000E600 2 0.0OOO000.00 t~j z'-4 s HEADCURVENO. 40 1354100 I 1354401 -1.000000M400 1354402 -9.0000E-Ol1 1354403 -8.0000006-01 1354404 -?.OOOOOO-01 1354405 -6.0000006-O 1354406 -5.OO00006-01 1354407 -3.5000006-01 1354408 -2.000000E-01 1354409 -1.000000E-01 1354410 O.OOOOOOE00 1S54500 1354501 1354502 1354503 1354504 1354505 1354506 I 0.0000006E00 2.0000006-01 4.000000E-01 6.0000006-01 8.000000-01 1.000000E+00 86*0 1354600 1354601 1354602 1354603 1354604 1354605 1351606 1354607 1354608 1354609 1354610 I 0.0000006.00 1.000000E-01 2.5000005-01 4.0000005-01 5.000000E-01 8.000000E-01 7.000000E-01 8.000000E-01 9.000000E-01 1.000000E+00 00* ..... ,...,..,......44....00000 4 -1.1600006.00 -7.800000E-01 -5.000000E-Ol -3.100000E-01 -1.7000006-01 -8.0000OOE-02 0.O000OE.OO 5.0000006-02 8.OOOO0OE-02 I.000O -01 1 -1.0000006.00 0.000000.E00 s TORQUECURVENO. I 1354900 2 1354901 0.000000.E00 1354902 1.930000E-01 1354903 3.9300006-01 1354904 5.955200E-01 1354905 7.978200o-01 1354906 I. 000000E00 0TORQUE 1355000 1355001 1355002 1355003 1355004 135500S 1355006 1355007 *00....0 to* ..... I 6.032000o-0l 6.3250001-01 7.369000601 O.331000E-01 9.2290006-01 1.O00000064O 2 0.000000E600 4.000000E-01 5.OOOOOE-01 7.372550E-01 7.6804906-01 8.6723006-01 1.000000E+00 2 -6.700006E-01 -2. 5000006-01 1-.5000005-01 5.2658606-01 6.065940E-01 7.4366006-01 I.0000006400 ý-j 0o . 5 O..000000400 -3.400000E-01 -6.500000E-01 -9.3000005-01 -1.190000E+00 -1.4700005.00 1355100 2 3 1355101 -1.000000E+00 1.9843001400 1355102 -8.009600E-01 1.3940006.00 1355103 -6.063800E-01 1.0975006400 1355104 -4.068600E-01 8.2200006-01 1355105 -1.9928000-01 6.6480006-01 0.000000E60 6.0320OOE-01 o1355106 .•*..,6000e.,..0*eooeO**•••**.,,ose,**o****seesO*eet*********e0 0 TOROUECURVENO. 4 6 1.1000001-01 1.300000E-01 1.500000E-01 1.300000E-01 7.000000E-02 -4. 000000-02 -2.300000E-01 -5.1000006-01 -9.1000006-01 -1.4700OOE400 1355200 2 4 1355201 -1.000000E+00 1.084300E-00 1355202 -8.223400-E01 1.530800C400 1355203 -6.3371006-01 1.6824006.00 1355204 -4.585300E-01 1.5570006400 1355205 -2.670230E-01 1.4362006400 1355206 -3.761070E-01 1.387900O400 1355207 -8.9310006-02 .348100.E00 1355208 0.000000.E00 1.233610E400 0 **.*6006000*s,804.00608000800604*8*. 7 0.OOOOOOE600 0.000000E.00 w ,00,,000 CURVENo. 20 •TORUE CURVENO. 3 HEADCURVENO. 7 1354700 1354701 1354702 CURVENO. 80 1354000 I 8 1354801 -1.000000E#00 0.000000.EO0 1354802 0.000000E+00 0000 * *0 06*00*• *0* ••*0*000*00000e 0.0000006400 SHEADCURVENO. 6 e84000•oo** I-' 0HEAD * HEAD CURVENO. 5S o... b**00000000****5eotoootoooooooeoosoooeooosooeso*ooossoooooo•• SPUMP 2-PHASE DIFFERENCE DATA C) SHEADCURVENO. 3 s HEADCURVE 1353000 1353001 1353002 1353003 1353004 1353005 1353006 1353007 1353008 1353009 1353010 1353011 1353012 1353013 tI' 1354202 .0OOOOOE-01 -4.000000E-02 1351203 2.000000E-01 O.000000.E00 1354204 3.0000005-01 1.0000OOE-01 1354205 4.00-OOO l-01 2.100006E-01 1354206 8.000000E-01 6.7000006-01 135420? 9.000000E-01 8.00OOOOO-01 1354208 1.000000E400 1.0000006400 0000**0001000*******8.**e,,,,8se0*00*080**4*8*8*00*e8000000000080• C)t 2: co W.. * *8*e.**e*.6ee*$0t06800*e*0•t s TORQUECURVENO. 5 1355300 1355301 1355302 1355303 1355304 2 O.000000E00 4. 000000e-01 5.OOOOOOE-0I 1.000000E.00 0 ORUE CRVE NO. 6 1355400 2 1355401 0.0000006.00 1355402 9.064300E-02 1355403 1.885690E-01 1355404 2.734700F-01 0 8 -4.500000E-01 -2.500OOOE-01 0. 000000E00 3.569000E-01 6 1.22336104E00 1.196500*E00 1.1096006400 1.041600E-00 I'd s--3 (ft a 0 <, Sc 1355405 4.$686690-E01 1355406 5. 744800-O01 1355407 7.381600E-0l 1355408 7.68520E-Ol 0 1355409 8.700570E-01 1355410 I. OOO.OOE ... s 5 eec.s *. .eeeet * TOROUE CURVE NO. 7 8.958000E-OI 7.107000E-01 6.134000E-01 58490OOE-01 4.18770OOE-01 .. 3.SE0OOOEOI eetetet;eeOtetseteetsOt tes ees.. 5 etsett 1355500 2 1355501 -: .OOOooOE00 1355502 -3.0OOOOOE-O1 1355503 -I .00000E-Ol 1355504 O.OOOOOE*sOO oansi stetsseseesss *tlee * TOROUE CURVE NO. 8 7 -I .000000E00 -9.0O00OOE-O1 -6. 000000-OE-0 -4.500000E-OI * tens. ctestttssettt z ti30000507 DOPPLER a 30000601 30000602 30000603 30000604 30000606 30000606 30000607 30000608 30000609 30000610 30000611 30000612 5 eteeteeeessststett S REACTOR KINETICS * POINT KINETICS 5 POIN4T 30000001 GAMMA-AC 49.0E6 0. 371.875 stts~lettsssssstleetttssett ensstssssssseeete~etteeeeeeeetee***s*t :*DELAYED NEUTRON CONSTANTS 30000101 30000102 30000103 30000104 30000105 30000106 0.042 0.1150 0.3950 0.1960 0.2190 0.0330 S 3.01 1.14 3.301 0.301 0.305 0.0124 5 stttett~tittt~tttt5 ette Sllt ttttetettthtttes * POWER HISTORY . 5 30000401 26.6E6 9. HR 30000402 49. OE+6 36. HR •*cc ¢ee cese*•eeseesees *ese~e e~eseesee * REACTIVITY CURVE slettee.teste steen.i * M3OERATOR DENSITY REACTIVITY TABLE 0.8125 0.875 0.9376 1.0 I.04602 1.125 REACTIVITY TABLE 255. SOO. 750. 1000. 1250. 1500. 1750. 2000. 2250. 2500. 2750. 3000. C t.5 0.3 -0.7 -1.6 -2.3 -3.0 -3.7 -4.3 -4.9 -5.4 -5.9 -6.3 e TOP OF DOWNCOMER (OUTLET OF PRIMARYSEPARATOR) 6000000 5000001 5000101 5000102 $001101 e~ee~eneeeoeeee*eees -3.4 -9.8 -0.3 1.0 2.2 3.1 SC*R*AM* ROO WORT#H CURVE 20260900 20260901 20260902 20260903 20260904 20260905 20260906 20260907 20260908 20260909 20260910 20260911 20260912 20260913 20260914 20260915 REAC-T 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.8 1000. 5ess 30000706 230060000 tDOPPLER SO5 0.0 -2.1 -4.3 -6.8 -9.2 -11.1 -12.2 -12.9 -13.3 -13.6 -13.7 -13.8 -13.9 -14.0 -14.0 eeeeeeeeeeessssee•teeeeeeseeeesee, 0.0 0.0 FEED INLET VOLUME5 5100000 FEEO-INLET 5100001 2 1 6100101 0.7525 0.518 5100102 4.6-5 0.10796 5101101 so5050000 560000000 5102101 510010000 515000000 S -90.0 0.0 0.0 -0.718 0100 -90.0 -0.718 eteoeeeteeeees......eeoeett .... 5 BRANCH 0.0 D0 0.0 0.0 0.0 -90.0 0.0 0.0 0.0 0.0 0100 0100 0.0 90.0 0.710 -0.518 see eeeteteeeseee,•eee~eot 5eeeetesteeteoete ee*•eeet*eesstsS*55t cn 5 5 tD z ko C) W * SEPARATOR(INSIDE SHROUD.ABOVETUBES) 0 0.21270 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0.0170 0.3639 0.2747 0.2379 0.0976 0.0089 0.0 0.0 0.0 0.0 0.0 0.0 5200000 5200001 5200190 5200102 5201101 5202101 5203101 elteeceee.eesese.etSEAGENERA teeeeCReeet eeeee teeett ttesesst..teteeeteflteeeetet~t~eeeeee*t**eeetotetseesetees*e SEPAR 3 0.27871 4.E-6 520010000 520000000 519010000 SEPARATR I 0.718 0.0 0.0 00 525000000 0.0 505000000 0.0 520000000 0.196 2. S. 0.4 9000 1000 1000 2. 5. 0.4 .6 .J0 to 5BELOWMIST EXTRACTOR, ABOVETOPOP SHROUDIN STEAMDOWE BOTSTMOA BRANCH 1 1 .90 0.762 0.0 0.0 90.0 0.762 4.E-5 0.0 00 525010000 530000000 0.0 0.8 0.8 0100 5250000 5250001 5250101 5250102 5251 101 FEEDBACK 2300001 2300002 2300003 2300004 2300005 2300006 BRANCH I 0.718 0.0 0.7874 00 505000000 0.0 5LOWERSEPARATOR SECTION5 LWR-SEP SNGLVOL 1.273 0.718 0.0 4.E-5 0.7874 00 a 30000801 30000802 30000803 30000804 30000805 30000806 DOWYTOP 1 1.273 4.E-5 500010000 5050000 5050101 5050102 609 eMODOERATOR DENS. FEEDBACK 30000701 230010000"0"0.1""....." 30000701 230010000 0 0.15746 30000702 230020000 0 0.15746 30000703 230030000 0 0.15746 30000704 230040000 0 0.15746 30000705 230050000 0 0.15746 30000011 609 ssssttteeseeeeeeeeeeeeetssssststtteeeeeee~eetess~sesseeeeeeeteetse 30000501 30000502 30000503 30000504 30000505 30000506 0 9-3 5 5 3000000 4.0 30000508 1.25 4.9 .seeesetteeeeeessessseeseeesessesssesSeetessessseeeteeesoeeteeeete 5 1 355600 2 a 1355601 -1. 00000 O0 -. .91:000000 00 1355602 -2.500OOE-01 OOOOOOE-O 1355603 -. 0000OOE-02 -8.000000E-O 1355604 0. 000000600 -6.700006E-01 555 IeQ~l*t 5 *sle eteesssse *eseenes * 5 5555tesesssteeese~eeeeeset*• ,essssssssssseeeseessse*e**oeeeessssssstn~essteneessees,*****ess* * 1.1875 Ito 5 BELOWMIST EXTRACTOR,PRALLEL VOLLME 5260000 BOTSTW4 2 I 5260101 6260102 5261101 5262901 .2148 4.E-5 526010000 526010000 0.762 0.0 525000000 500000000 5260009 ees~ ¢teee STEAM GENERATOR SECONDARY SIDE seeeeetettt..cccssssooeessoe,55555e5*tet*55e5eeeeee5eeete*eefeele N z BRANCH 0.0 00 0.0 0.0 0.0 -90.0 -0.762 0.8 0.0 0.8 0.0 0103 0100 sssete..oeeeetteeeteeeteee4eete*eetese•*ttttteeesseeesteeeeuseeee*e e MIST EXTRACTORANDSTEAMGEN OUTLETPIPE TO SCV 5300000 5300001 5300101 5300102 5300201 5300301 STYMD-PIPE 2 0.799008 I 0.04635 2 0.01365 1 0.762 I PIPE 0 rn CD, tj1 5300302 5300401 5300601 5300602 25.074 0.0 90.0 0.0 5300801 4.E-S 5300901 5301001 5301101 5301300 5301300 2 2 I 2 0.0 0.4 2 1 0.4 00 0100 0 I 2I I-I *5$8S55558.*5S*55555*SSeS 0 pIPE DOWNSTRE.AMOF SCV P 53500OO 5350101 5350102 COHDINL 0.06557 4.E-5 54.44 0.0 SNOLVOL 0.0 00 0.0 0.0 0.0 e * AIR COOLED CONOENSER 5400000 CONOSER 5400101 0.21677 5400102 4.E-5 5400200 2 5400207 0.0 5400208 1000. 17.67 0.02 2.020OE6 2.0200e6 TM0P`VOL 0.0 00 0 .0 5450101 5450102 5450200 5450201 5450202 * FEEOTANK 0.0 1.0 1.0 *8SS*teSoeeeet4S*****e*eee * MAKE UP FEED STORAGE TANK 5450000 0.0 I 519020000 519010000 0 0 0 4 0 3 5 0.0 540.0 510010000 515010000 519010000 517030000 0 0 0 1 1 1 0 0.0 0.0 2 0.772S 1 1 0 0.0 0.0 0 0.7725 0.152 3 3 3 0.6445 0.0 .5 .5 0.0 0.0 0100 S85588S8*S8ee*****8*S*SSS 8*e*S**S588851e88*ee *8eee5 0 0 0 0.0 0.0 4 I 0.6572 3 3 4 0 10000 0 -10000 0 0.0 0.0 I I 1 1 0 0.0 0.0 15050100 15050101 15050201 15050301 15050401 15050501 15050502 15050503 1 15050601 15050602 15050603 15050701 15050801 15050901 S s 0 3 5 0.0 540. 505010000 510010000 515010000 -999 -999 -999 0 0 0 4 2 I .73819 3 3 4 0 0 10000 0 0 0 0.0 0.0 0.0 1 1 1 3949 3949 3949 0.0 0.0 0.0 5 I 1 t I 0.0 0.0 0.0 $.0. SECONOARY OWSC-BOIL-RISR • STEAM GENERATOR HEAT STRUCTURES * SHROLK) SECONDARY SIDE STEAM GENERATOR 3 0 3 5 0.0 540.0 500010000 505010000 510010000 4 I 0.314325 3 3 4 0 0 0 2 I 1 1 ISS8*S8*S*58e55*555858e8* I 1 0.3048 0.7725 0.7725 0.1$2 0 I 2 3 S 0.152 0.7113 0.152 0.7113 4 4 4 I 4 1 A ERP4CMSR 3 0.23226 0.0 0.7102 0.0 -90. -0.7102 4.E-5 0.0 00 0000 I PIPE 3 2 3 3 3 3 0.10796 0.0 3 2 BILSCT 3 2 3 3 3 3 0.0092 0.0 0.0 3 2 3 2 .71 .518 .7102 .718 .518 .7102 5 5 5 1 2 S 1 2 5 • STEAU GENERATOR RISER S 5190000 RISER 5190001 2 5190101 0.27871 2 5190201 0.0 I 5190301 C.O507S 1 5190302 0.718 2 5190401 0.0 2 5190601 1I.0 1 5190602 90.0 2 5190701 0.518 1 519070? 0.718 2 5190801 4.E-5 0.5957 5190802 4.E-5 0.0 5190901 0.0 0.0 5191001 00 2 5191101 0000 I 5191300 0 PIPE 1 2 1 co •J I I 0o -- o -3 I )~ 5160000 5160101 OWN1OIL SNCLJUN 515010000 517000000 0.0 0.0 0.0 O100 * SG BOILING SECTION TO RISER 5180000 5180101 SOILRSR SINOLJUN 517010000 519000000 0.0 0.0 0.0 0000 * PIPE 01 F- 3 2 SSTEAM GENERATOR BOILING SECTION 5170000 3 0.27071 0.0 1.85075 0.0 21.0 0.7102 4.E-5 0.0 0.0 00 0000 0 *StS*SSeeee*ee*t4851*,SS**S•*SSeeeeeege*S8*88*8SS,58*e*e$**e8S*** • SO DOIR4COMERTO BOILING SECTION STEAWGENRATOR DO"CDOMER 5150000 5150001 5150101 5150201 5150301 5150401 5150601 5150701 5150801 5150901 5151001 5151101 5151300 5170001 5170101 5170201 5170301 5170401 5170601 5170701 5170801 5170901 5170902 5171001 5171101 5171300 .7111 STRUCTURE INPUT DATA *S*ee*585588558*5e558555S 1SOOOOO 15000100 15OO0101 15000201 15000301 15000401 15000501 15000502 15000503 1 I I 1 0 0.0 0.0 1-4 z- 2 3 VESSELVALL - SURROUNDINOGS ;SO50000 0.0 FLOW PATH TO THE AIR COOLED CONDENSER *8*hSS*SSe88*****S$*ee*S *HI4EAT 520010000 0 15000602 15000603 15000701 15000801 15000901 15150000 15150100 15150101 15150201 15150301 15150401 15150501 15150502 15150601 15150602 15150701 15150801 15150901 SSO T5DPVOI 29.61 3.048 0.0 0.0 4.E-5 0.0 00 0 0 CHTRLVAR 606 .8540E6 6.0E6 .854066 2.785E6 1.03786E 6.0E6 1.037666 2.785ES 5550000 COACCO SNCL.JUN 5550101 535010000 540000000 0.0 ***88*SSS8**S**S88*848**~eSI*SS888***S8S 15000601 AROKENLOOP H * REACTOR VESSEL BROKEN LOOP HOT LEG 30Ooo0 3000001 3000101 3000102 3001101 3002101 RVOLHL 2 0.0634 4.0E-5 295010000 300010000 ' LEG PIPE BRANCH I 0.876 0.0 300000000 305000000 S x I-, 0.0 00 0.0634 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0102 0000 TO'HOT REFLOOD ASSIST BYPASS TEE Cl) 0 3050000 3050001 3050101 305010? 3051101 4. .•...... * STE.J 3100000 3100001 3100101 3100102 3101101 3102101 HLPRAS I BRNPCH 1 0.0634 0.696 (n H 0.0 0.0 00 4.OE-5 305010000 310000000 0.0 44....•...•.. S.... S*S 4 **11. SGShI BRANCH 2 I 0.0 1.424 0.0668 0.0 0.0 0.0 00 4.OE-S 0.0 370010000 310000000 0.0 0.0 0.0 0100 310010000 315000000 0.0 0.05 0.05 0100 SGPSI PIPE 10 0.00836 2 0.108 7 0.0 8 0.00836 9 0.0525 10 0.0 2 0.0326 6 0.0 7 0.0081 8 0.0 9 0.4054 I 0.5265 2 0.362 3 1.692 4 .1699 5 1.692 6 0.362 7 2.671 8 1.842 9 0.667 10 0.0 7 0.081 8 0.0 10 90. 4 0. 5 -90. 8 90. 9 0. 10. 0.127 I 0.488 2 0.362 3 1.692 4 0.0 5 -1.692 6 -0.362 7 -1.829 8 1.214 9 0.0 10 0.0 3 4.OE-5 0.124 4 4.OE-5 4.OE-5 0.0 5 4.OE-5 0.124 6 4.OE-5 0.0 10 0.1 0.1 I 0.0 0.05 0.05 90•***••4*5 GENERATORSIMULATORINLET m S.C. PIPE AON PUMPSIIMLATOR 3150000 3150001 3150101 3150102 3150103 3150104 3150105 3150201 3150202 3150203 3150204 3150205 3150301 3150302 3150303 3150304 3150305 3150306 3150307 3150308 3150309 3150310 3150401 3150402 3150403 3150601 3150602 3150603 3150604 3150605 3150701 3150702 3150703 3150704 3150705 3150706 3150707 3150708 31S0709 3150710 3150801 3150802 3150803 3150804 3150805 3150901 0.0 0.0 0100 S*4•**•••48**4 3150902 0.1 0.1 3150903 3150904 3150905 3150906 3150907 3151001 3151101 3151300 4 93.9 93.9 93.9 93.9 6 0.0 0.0 7 8 4.1 4.1 9 0.4 0.4 00 tO 0100 9 I 2 til ý-3 m *BRO$KENL00P COLD LEO REACTOR VESSEL NOZZLE 3350000 3350001 3350101 3350102 3351101 3352101 0 9* * 1RANCH I 0.749S 0.0 335000000 340000000 8250000 0.0 00 0.0634 0.0 0.0 0.0 1.0 0.1 1.0 0.1 9002 CTSARV I 0.0634 4.OE-S 340010000 BRANCH 1 0.0 0.698 00 0.0 34500000O0.0 0.0 0.0 0.0 0.1 0.1 0000 BYPASS ASSIST OUTLET ECC TEE COLD LEG 3450000 3450001 3450101 3450102 3451101 3452101 BAOET BRANCH I 2 0.974 0.0 0.0 0.0634 0.0 00 4.OE-5 0.0 380010000 345000000 0.0 345010000 350000000 0.0 0.0 0.0 0.0 0100 0100 • REFLOOD 9 3700000 3700101 3700102 ASSIST HOT LEO • ASSIST BYPASS SINGLE PIPE COLO LEG SIDE REFLOO 3800000 3800101 3800102 RFASCL 0.0388 4.0E-5 SNOLVOL 0.0 0.20353 0.0 D0 **49944*4e*.44.*..*...s....*.*5"4...9.4* CCC SYSTEM 0.0 5.0 1 HIGH PRESSURE INJECTION SYSTEM - 6300OO 6300101 6300200 6300201 6300202 6300203 6300204 6300205 6300206 90.0 HPIS 626000000 1 -1.0 0.0 0.0 .7725E8 8.3597E6 17.243658 TM0PJUN 210000000 651 0.0 0.0 .7568? .75687 .31536 .31536 P 0.0 0.0 0.0 0.0 0.0 0.0 A+B 0.009099 210010000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * ICAP ASSESMNT PARAMETERS * •••••499t94•l******4*****tit*4*****99f**lt.. 0.0 * COREINLET FLUID DENSITY 20550100 DCOREINF MULT I. 20550101 VOIOFJ 225010000 225010000 RHOFJ 20550102 20550200 20550201 20550202 0.0 0.0 90. 90. 0.653 0.653 4.SYSTEM**.4**5**t '.0 ID . . . .99it~*4** 0 4 SHOLVOL ETIVCL 2.0965 0.08311 0.0 4.OE-5 0.0 00 SNGLVOL 0.0 0.1713 00 0.0 T1PVOL 20.44 5.0 0.0 00 0.0 4.0E-S 3 0.0 1.05E 305.0 1000.0 1 .05 305.0 0.0 3500000 3500101 3500102 RFASHL 0.0388 4.0E-5 9 BWTHP[I ý-.A 0.0 * ECC TEE OF BROKEN LOOP * 6250101 6250102 6250200 6250201 6250202 0.0 0102 000 4 49••44 *9***•~et••••4•*•*•••*•4*8*•*••*99 • *999* 5* 99*659**8*95 CONNECTION TEE OF THE BYPASS ASSIST SYSTEJ REACTOR VESSEL SIDE0 3400000 3400001 3400101 3400102 340110t * RVNIL 2 0.0634 4.OE-6 290000000 335010000 4 e ORST HPIS S DCOREINO MWLT I. VOIOO.J 225010000 225010000 RHOWJ 0.0 20550500 20550501 20550502 1. MULT TDINP CNTALVAR 504 IEMPF 230060000 co -3 0L* 0•o to 0.0 20590100 DENSCORIN SUM I. 0.0 CNTRLVAR501 I. 20590101 0.0 CNTRLVAR 502 I. 20590102 SAVE UP * ROOCLADOINOTEMPERATURE 20590300 CLOTESIl MULT I. 0.0 20590301 HTTEMP 230000109 0.0 I. CLDTEMP2MULT 20590400 20590401 HTTEMP 230000209 20590500 CLOTEW•3 MULT I. 0.0 20590501 HTTEMP 230000309 20590600 CLOTEMP4 WLIT I. 0.0 20590601 HTTEMP 230000409 20590700 CLOTEMP5 WILT I. 0.0 20590701 HTTEMP 230000509 0.0 I. 20590800 CLOTEMP6 WULT 20590801 HTTEMP 230000609 AT THE COREOUTLET : FLUID TEMPIERATURE 20560400 FLOWOIR TRIPUNIT I. 20550401 518 z 0.0 t~j z 0 '-4 x ~~4 N) 0.0 En C H 20550600 20550601 FLOW.IRDMTRIPUHIT -518 1. 0.0 20550700 20550701 20550702 TOZiR IULT 1. CNTRLVAR 506 TElWF 240010000 0.0 20590900 20590901 20590902 TCOROVT SLI M . 0. I. CNTRLVAR SOS 1. CNTRLVAR 507 0.0 H 1 : CORETEMPERATUREDIFFERENCE 20591000 CTOIFF SIO 20591001 0. 1. 20591002 -I. I. TEMPF TEMPF 0.0 1 240010000 : PRESS. DIFF. OVER THE CORE 20S91200 COREINV SUM 20S91201 0.0 I. 20591202 -2.26 20591203 -I. 20591204 3.31 I. P RHO P RHO 0.0 226010000 225010000 : PRESS.OIFF. OVER THE D0CKOMER 20591300 D04HINV SWN 1. 20591301 0.0 1. P 20591302 -I. P 20591303 .78 RHO : VESSEL VASS INVENTORY 20551400 VESSMSI SUM 20551401 0.0 .0465 20551402 .078 20551403 .071 20551404 .136036 20551405 .136036 20551406 .136036 20551407 .136036 20551409 .2664 20551409 .2923 20551410 .130 20551411 .04765S 20551412 .047655 205S1413 .047655 20551414 .047655 20551415 .047655 20551416 .064364 20551500 20551501 20551502 20551503 20551504 20551505 20551506 20551507 20551508 20551509 VES9SS2 0.0 20591400 20591401 20591402 VESS4ASS 0.0 I. RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO RHO 225010000 245010000 245010000 0.0 0 185010000 215010000 215010000 0.0 200010000 290010000 205010000 210010000 210020000 210030000 210040000 215010000 220010000 225010000 230010000 230020000 230030000 230040000 230050000 230060000 SUM .008385 .OO395 .00838S .332046 .079002 .1291 .0603 .202752 .173725 I. RHO RHO RHO RHO RHO RHO RHO RHO RHO SIM I. 1. I. 0.0 CNTRLV AR 514 CHIRLt AR 515 : DOSNCOMRLIOUID LEVEL 0.0 235010000 235020000 235030000 240010000 245010000 246010000 295010000 250010000 255010000 20591500 20591501 20591502 20591503 20591504 20591505 20591506 20591507 20591508 20591509 DO-RLEV SI0.0 .1065 .300 .274 .958 .958 .958 .958 .360 .208 I. VOIOF VOIDF VOIDF VOZDF VOIOF VOIOF VOIDF VOIDF VOIOF 0.0 I 200010000 290010000 205010000 210010000 210020000 210030000 210040000 215010000 220010000 * UPPER PLENUMLIOUtD LEVEL 20591600 UPLEV SIM 20591601 0.0 .3084 20591602 .693 20591603 .300 20591604 .3251 1. VOIDF VO OF VOIOF VOIDF 0.0 1 240010000 5* 245010000 295010000 250010000 *5 * UPPER PLENtM SUBCOOLINO 20591900 UPSCOOL SUM 20591901 0.0 I. 20591902 -1. I. 0.0 1 SATTO& 240010000 CNTRLVAR 909 * I.L. LIOUID LEVEL. 20553100 P31A 20553101 0.0 20553102 20553103 20553104 0 20553200 20553201 20553202 P315 0.0 FOR .66 M / LEPDE-PC-28 SIM I. 0.0 I I. P 120010000 -. 183 P 155010000 -. 817 P 160010000 -6.475 RHOG 155010000 SIM I. -I. 9.81 RHOF RHOO 0.0 I 155010000 155010000 20593100 20593101 20593102 LIOLIL DIV 1. 0.0 1 CNTRLVAR 532 CNTRLVAR 531 • 6.L. LIOUID LEVEL. FOR 4.88 M / LEPOE-OL-14 20553300 P32A Stu I. 0.0 I 20553301 0.0 I. P 315080000 20553302 8.97 RHO 315060000 20553303 -I. P 315050000 20553304 -47.87 RHOO 315060000 20553400 20553401 20553402 P328 0.0 20593200 20593201 20593202 LIOL L DIV CKTRLVAR534 CNTRLVAR 533 SIN 5. -I. PPW PRESSUREDIFF. 20593600 DPPIW SIM 20593601 0.0 .5 20593602 .5 20593603 -1. 9.81 RHOF RHOO 0.0 1 315060000 315060000 1. 0.0 I. P P P 0.0 1 150010000 145010000 120010000 * BREAKENERGYRELEASE 20553700 PRESSE WILT I. 20553701 MFLOWJ 805000000 20553702 P 800010000 20553600 PRESSENT DIV I. I 0.0 I 0.0 I ** to t21 ** H- 20553901 20553802 RHO CNTRLVAR 800010000 537 20553900 20553901 20553902 20553903 20553904 0 20S54000 20554001 20554002 20554003 20554004 BRJUFFL UFJ VELFJ VOIOFJ RHOFJ WIT 205.9E-6 805000000 805000000 805000000 805000000 0.0 BRUGFL UGJ VELGJ VOID0J RHOGJ WI.T 205.9E-6 605000000 60500000o 805000000 805000000 0.0 20594000 20594001 20594002 20594003 BRENRELEA SU 0.0 I. I. I. 5. 1 CNTRLVAR CNTRLVAR CNTRLVAR 0.0 539 540 538 1- 5 * • 1 FLUID INNER ENERGY STEAM INNER ENERGY P*V ENTHALPY PART • BREAK INLET FLUID SUCOOL1NO 20594200 BRSUBCOOL 551 I. 20594201 0.0 5. SATTI P 20594202 -I. TEWPF 0.0 I 800010000 800010000 : SO PRIM. 20594500 20594501 20594502 I. TEWF TEMPF 0.0 115030000 115100000 : SO PRIM. PRESSURE DIFF. 20594600 SGPRPRS SUM 20594601 0.0 1. 20594602 -I. 1. P P 0.0 1 115010000 120010000 : SO LIOUID LEVEL 20594900 SCLIOLEV 20594901 -2.946 20594902 20594903 20594904 20594903 20594906 20594907 1. VOIOF VOIOF VOLDF VOIOF VOIOF VOIOF VOIOF 0.0 1 515010000 515020000 515030000 510010000 605010000 500010000 526010000 : SO PRIM. 20595200 20595201 20595202 TEMPERATURE D0FF. SGTEDIFF SUM 0.0 1. -I. SUI .7102 .7102 .7102 ,518 .718 .718 .762 03 I TO SEC. TEMP DIFFERENCE. INLET SGPRSETO SIM 1. 0.0 I 0.0 1. TESWF 115030000 -1. TEMPF 515030000 : SO HEAT TRANSFER RATE 20595300 SGHTTRANS SINM 20595301 0.0 52.1058 2059S302 71.7373 20595303 30.2548 20595304 30.2548 20595305 71.7373 20595306 52.5058 : PRESSURIZER LIOUID 20595400 PRLIOLEV 20595401 0.0 20595402 20595403 2059S404 LEVEL SIU .724 .403 .403 .207 -. HTRNR HTRAHR HTRNR HTRNR HTRNR HTRNR 0.0 006000100 006000200 006000300 006000400 006000500 006000600 I. VOIOF VOIDF VOIDF VOI1F 0.0 415010000 415020000 415030000 415040000 CO -,,. I 0 ko ID A,J 1:r I-' Lo En 20595405 20595406 2059540? 20595408 .20? .170S .1705 .118 6 VOIDF VOIDF VOIOF VOIDF : HPZS VOLYMETRIC FLOWRATE 20595600 HPISVOLF DIV 1000. 20595301 RHO 625010000 MFLOWJ 4110S0000 41SOSO000 415070000 415060000 tiH 0.0 0 630000000 : VASS BALANCE. INTEGRATED FORMBREAKTIME 20555900 TRIPSO TRIPUNIT I. 0.0 20555901 510 20556000 20556001 20556002 20556003 USSALI 0.0 20556100 20556101 20556102 20595900 20595901 SUM 1. -1. 1. En I 1. MFLOWJ MFLOWJ MFLOWJ 0.0 I 630000000 805000000 901000000 1656AL2 MILT CNTRLVAR 559 CNTRLVAR 560 1. 0.0 MASSBAL INTEGRAL CNTRLVAR 561 I. 0.0 I 0 * PRIMARYCOOLANTENERGYBALANCE(P4/ IS CONSERVED) 20556700 HPLSEGY MULT I. 0.0 I 20556201 MFLOWJ 630000000 20556202 UF 625010000 20556300 20556301 20556302 PUMPENGY DIV 2. RHO 135010000 PMPHEAD 135 : COREHEATING OF FLUID 20556400 COREHTFL SIM 20556401 0. 12.23457 20556402 12.23457 20556403 12.23457 20556404 12.23457 20556405 12.23457 20556406 16.52433 1. HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR : PUMPSEAL WATERHEAT FLOW 20556500 PIPS9HF MULT I. 20556501 MFLOWJ 901000000 20556502 UF 910010000 SS65PRESSURE HEAT FLOW 20556600 SSPRHF MULT 1. 20556601 MFLOWJ 435000000 20556602 UF 405010000 20596000 20596001 20596002 20596003 20596004 20596005 20596006 20596007 PRIENMAL 0.0 SLIM -I. -I. !. -I. 1. I. -1. 0.0 1 0.0 1 230000101 230000201 230000301 230000401 230000501 230000601 0.0 0.0 1. 0.0 CNTRLVAR 953 CNTRLVAR 982 CNTRLVAR 562 CNTRLVAR 940 CNTRLVAR 564 CNTRLVAR 565 CNTRLVAR 566 I 1 I 0 So * EXTERNALS 0 HPIS 0 BREAK 6 CORE • PUMP SEAL WATER 6SS PRESSURIZER : PRIMARYHEAT LOSSES TO SURROUNDINGS 20555100 STR-HTLI SUM -1. 0.0 I 20555101 20555102 20555103 20565104 20555105 20555106 20555107 20555108 20555109 20555110 20555111 20555112 20555113 20555114 20555115 20555116 20555117 2055511a 0.0 1.3?16 HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR 1.4579 1.008S .8309 .7229 1.4776 1.4776 .5585 .6147 .4988 .6781 .6806 .3101 .3406 .9557 .6806 .3101 .3488 '0555200 20555201 20555202 20555203 20555204 20555205 20555206 20555207 20555208 20555209 20555210 20555211 20555212 20555213 20555214 20555215 20555216 20555217 20555218 20555219 20555220 STR-HTL2 0.0 20555300 20555301 20555302 20555303 20555304 20555305 20555306 20555307 STR-HTL3 0.0 20596200 20598201 20598202 20598203 STR-HTL 0.0 66*6*666466*6 6 O00100500 * 115.12 100100600 s 115.13 130 140 1 145 155 ¶60 170 / * 14.3231 MSFCV TMDPJUN 0.0 26.00 0.0 5500202 5500203 5500204 5500205 5500206 5500207 5500208 0.0 3. 6.0 9. 13.6 13.6 82.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.00 21.8 14.1 8.7 5.7 .O65 .0065 s FLOW RATE FROW NUREG/CR-024? 0.0 .00 : PRESSURE RISE 5.58 - 6.80 MPA 0.0 6S% CHANGE RATE ASSUMIEO 0.0 0.0 0.0 6 LEAKAGE 0.0 5.7 0.0 S VALVEOPEN AT 78 S HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR 100I0l100 100101200 6 335000100 0 335000200 6 335000300 s 350100100D 375000200 6 315000100 315000200 s 315300100 * 315300200 s 315300300 * 315300400 6 315300500 6 315100100 C 315200100 6 3154001006 ISO 185 335 340 345 350 380 315.1 315 2 315.3 315:4 315.5 315.6 315.7 315.8 315.9 315.10/ 5500213 5500214 5500215 1000. 1500. 2370. 0.0 0.0 0.0 0.0 0.0 0.0 5.7 .0064 .O794 .0654 .0583 .048 0.0 0.0 0.0 0.0 0.0 0.0 • VALVE CLOSE AT 88 S 6 LEAKAGE 6 FRcM EXP. SCONOARY PRESSURE 6 LINEAR P-DEPEHOENCE ASSUMED 6 .053 KG/S AT 4.16 SPA -I. HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR HTRNR 0.0 I 300000100 6 300000200 6 300000300 6 375000100 6 220000101 • 252000100 6 255000100• 300 305 310 370 220 252 255 / 0.0 551 552 553 I 6 21.91 - -9.8506 1 6 T.AREA .46.1242 M2 864* *566666*6e666e.6666.,..6..,, #ee6ee 0 ******to 6666S666666666666666666666666666666666666666666668666666666666 FEED RATER VALVE 5600000 5600101 5600200 5600201 5600202 5600203 5600208 1 * 5500000 0.0025?3 535000000 501 -I. 0.0 I. CNTRLVAR CNTRLVAR CNTRLVAR MAIN STEAM CONTROL VALVE I 6500201 92.8 92.8 500. 0.O 6 BOUNDARY CONDITION CONTROL 6 6 5500200 100300100 s 125 100300200 8 100300300 100300400. 1003005006 100300600 100300700 6 530010000 5S00101 100100700 * 120 82.8 SUM .7816 .6228 1.2705 3.0792 -1.6800 1.7045 .7120 * 115.2 5500210 5500211 5500212 .5469 .6254 1.3035 .6687 .6228 .8690 1.0578 3.6545 .1312 .1704 1.9599 1.9589 1.9589 1.9589 .4174 1.6025 * .7639 .6385 040 S 100400100 6 115.3 1004002006 115.10 100200200 8 115.11 5500209 HTRNR HTRNR HTRNR 6666666666S66SS665666655..666666......... 100200100 150 175.1 IS .2 .4988 SUM I. I. I. til 100100400 * 115.1 100100900 IOO10•990 • IO00OIOO1 O -1. SUM .4431 100100100 6 100 100100200 S 105 100100300 6 110 * * FWVLV 545000000 I -I. 0.0 14. 3000. InDPJUN 510000000 501 26.00 26.00 0.0 0.0 O.05 0.0 0.0 0.0 0.0 0.0 0.0 00. 0.0 ID CO O0 66666SS6686666666666S666666SS6666$6€66666666666666*66666eSSS$6666 6 AUX. FEEDWATER 5540000 5540101 5540200 5540201 * 5460000 5480101 5480200 5480201 5480202 5480203 5480204 5480205 AUXFTANK 3.0 I 0.0 .. J TMDPVOI. 10.0 0.0 315.0 0.0 0.0 T51UXFJUN00PJUN 554000000 510000000 .1 I 510 0.0 -1. 0.0 0.0 62.9 0.0 .50364 0.0 63.0 .50364 0.0 1800. 0.0 0.0 1801.0 0.0 0.0 3.33E-5 1.0 0.0 0.0 0.0 0.0 0.0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 14.8706E6 14.8644E6 14.8425E6 14.8425E6 14.8442E6 14.7673E6 14.7446E6 14.7211E6 14.7045E6 14.6967E6 14.6900E6 14.6825E6 14.6828E6 14.6073E6 14.5992E6 14.5933E6 575.88 576.67 576.66 576.86 576.06 576.62 572.15 567.05 565.07 563.28 559.89 557.68 557.67 557.65 557.64 557.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 LA3 11 1: 6 666*6666666666666666666666*666666666666666 666666666 6 6666 6 6666666 6 SS VOLUME STATES 1000200 1050200 1100200 1151201 1151202 1151203 1151204 1151205 1151206 1151207 1151209 1151209 1151210 1151211 1151212 1l51213 z 0.0 I 0.0 0.0 2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 5 6 7 8 9 10 If 12 13 tIV z 5-i p4 WY) ch 1200200 1250200 1300200 1350200 1400200 1450200 1500200 1550200 1600200 1650200 1700200 1751201 1751202 1800200 1850200 2000200 2050200 2101201 2101202 2101203 2101204 2150200 2200200 2250200 2301201 2301202 2301203 2301204 2301205 2301206 2351201 2351202 2351203 2400200 2450200 2460200 2500200 2550200 2900200 2950200 3000200 3050200 3100200 3151201 3151202 3151203 3151204 3151205 3151206 3151207 3151208 3151209 3151210 3350200 3400200 3450200 3500200 3700200 3800200 4000200 4050200 4151201 4151202 4151203 4151204 14.5899E6 14. 5776E6 14.5563E6 14.7940E6 15.0407E6 15.0459E6 15.0193E6 14.5777E6 14.557066 14.798266 15.0453E6 15.0133ES 15.0067E6 1.0030E6 15.0012E6 14.9994E6 15.0000E6 14.9960E6 15.0040E6 15.0101E6 15.0162E6 IS.024716 15.0274E6 I5.013866 14.984566 14.9797E6 14.9720E6 14.9671E6 14.9593E6 14.9536E6 14.9671E6 14.955866 14.943666 14.9308E6 14.9112E6 14.9260E6 14.9126E6 14.9076E6 14.9999E6 14.9156E6 14.9156E6 14.9156E6 14.9156E6 14.9151E6 14.912866 14.9097E6 14.9021E6 14.895966 14.902166 14.9097E6 14.9177E6 14.9200E6 14.91556E 14.9999E6 14.9999E6 14.9999E6 14.9999E6 14.9180E6 15.0024E6 14.8934E6 14.8894E6 14.8873E6 14.8855E6 14.0931E6 14.8813E6 557.64 557.63 557.62 557.75 557.75 557.76 557.79 557.53 557.62 557.76 557.84 557.78 557.78 557.78 557.77 557.78 557.77 557.7? 557.78 557.78 557.78 557.79 559.89 557.78 559.12 565.19 570.42 575.08 578.07 578.84 557.77 557.77 557.77 578.05 578.04 577.08 576.84 575.70 557.77 576.90 562.00 562.00 562.00 552.00 562.00 562.00 562.00 562.00 562.00 562.00 562.00 562.00 562.00 556.00 556.00 $55.00 556.00 562.00 556.00 577.35 578.87 0.0 0.0 0.0 0.0 <1: ti t-41 ztt 4151205 0.0 0.0 0.0 0.0 I 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 3 4 1 2 3 4 5 6 1 2 3 4151206 4151207 4151208 4200200 5000200 5050200 5100200 5151201 5151202 5151203 5171201 5171202 5171203 5191201 5191202 5200200 5250200 5260200 5301201 5301202 5350200 8000200 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 14.8005E6 14.8803E6 14.8801E6 14.880066 14.0798E6 5.58031E6 5.58223E6 5.58616E5 5.5906566 5.59609E6 5.60153E6 5.60214E6 S.59642E6 5.58794E6 5.5823666 5.58139E6 5.58045E6 5.5801B66 5.58011E6 5.57987E6 5.4529966 2.03101E6 15.0012E6 S * SS JUNCTIONSTATES 1002201 1051201 1101201 1101301 1151302 1151303 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. 0.0 0.0 0.0 0.0 0.0 I 2 3 4 I 2 3 A 5 6 7 8 9 10 1. I. .0164 533.51 533.55 533.60 533.63 .043 .118 .158 .183 .103 .344 1.0 1.0 1.0 1.0 1.0 477.00 ...... * .... at e ... *e... 1001201 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .7019 I. I. I. 4?6.4 476.4 476.4 476.4 476.4 476.4 476.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6S 7 8 1-3 z 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0'n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I 2 oeooeototeetet##tt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1151304 476.4 0.0 1151305 1201201 1202201 1203201 1251201 1252201 1350201 1350202 1451201 1452201 1501201 1502201 1551201 1650201 1650202 1701201 1751301 1901201 1851201 1852201 2051201 2101301 2101302 2151201 2152201 2153201 2251201 476.4 476.4 238.2 238.2 239.2 0.0 1 1 238.2 238.2 238.2 476.4 238.2 1 1 0.0 476.4 475.4 476.4 476.4 444.9 444.9 444.9 444.9 I.E-5 444.9 477.7 0.0 0.0 0.0 0.0 0.0 0.0 238.2 239.2 0.0 0.0 0.0 0.0 0.0 238.2 238.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2301301 2351301 427.7 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H- 1 2 3 42 7 9 12 0.0 0.0 0.0 0.0 2 3 226 CORE BYPASS/ 3.6 X 5 2 2 3 1 2 2401201 2402201 427.7 17.2 2451201 2461201 2501201 2502201 2901201 2902201 2951201 2 0.0 0.0 444.9 I.E-5 0.0 0.0 444.9 31.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 296 INLET ANN. TO UP 2952201 3001201 3002201 3051201 3101201 3102201 3151301 3351201 3352201 3401201 3451201 3452201 4001201 4002201 4100201 4151301 4201201 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 5001201 5101201 0.0 0.0 0.0 96.60 0.0 123.0 0.0 0.0 123.0 0.0 0.0 I 123.0 0.0 0.0 2 I 123.0 0.0 0.0 1.201 1.552 0.0 1 2.210 3.154 0.0 2 0 2.759 3.626 0.0 3.201 3.728 0.0 I 0.0 26.00 0.0 96.60 0.0 0.0 96.60 26.00 0.0 0.0 26.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.0 0.0 I 5102201 5151301 5151302 5160201 5171301 5171302 5180201 5191301 5201201 5202201 5203201 5251201 5261201 5262201 5301301 * 5550201 * * * 8001201 8050201 * w, 6.6 0.0 0.0 0.0 0.0 9 0.0 0.0 0.0 435 SS SYSTEM PRESSURE 0.0 I 0.0 S6390, 0.0 I 0.0 0.0 26.0 0.0 0.0 S • SS CONTROL FOR THE CORE FLOW BYPASS / co .-j I I 00 -j o5 -. 1 I C. •0 a%0 ko 548 550 560 571 591 AUX FEED MAIN 57EAM VALVE 0.0 FEED WATER VALVE SG SS LEVEL SGSS PRESSURE HPIS INJECTION 0.0 901 PUMP COOLANT INJECTION 3.6 % Lrn 20522400 20522401 20522402 COPERR 0. Sum 1. -. 036 !. MFLOWJ MFLOIJ 0.0 226000000 185010000 I 20522500 CBPREO kqULT 1. 0.0 1 En I:,) I.20522501 20522502 CNTRLVAR 224 CHTRLVAR 512 20522600 20522601 CSPV INTEGRAL CNTRLVAR 225 -.10 0 .S 3 .01 .96 0 SS CONTROLFO INLET AtNN. TO UPPER PLENUMFLOW/ 6.5 1 20529400 20529401 20529402 IAUPERR 0 20529500 20529501 20529502 ;0529600 20529601 SLIM 1 I. -. 066 I. MFLOWJ MFLOWJ 0.0 0 0 29600Q0 0 185018000 WLL.T IsAJREa CNTRLVAR 294 CITRLVAR 512 1. 0.0 IAt.PV INTEGRAL CNTRLVAR 295 -. 06 .5 3 .01 .99 553 CONTROLFOR FEED WATERENTHALPHY SPRDERR 0. 20560200 20560201 20560202 20560203 20560204 a SENTHO 0.0 20560300 20560301 20560302 20560303 SSXI SuLT CNTRLVAR 601 CNTRLVAR 602 CNTRLVAR 512 20560400 20560401 SSX2 MFLOWJ 20560500 20560501 SSX3 DIV CNTRLVAR 604 I. 0.0 CNTRLVAR 603 20560600 20560601 FDWENTH INTEGRAL CNTRLVAR 605 .10 * 5900200 5900201 5900202 2 0.0 10000. 5910000 5910101 5910201 5910300 5910301 .1 4.E-5 TMDPVOI. 1.0 0.0 0.0 0.0 0.0 00 5.5SE6 5.5866 I.- 0.0 1. I. SGSSPR.J VALVE 530000000 590000000 0.0 I 0.0 0.0 TRPVLV 646 H,0.0 0.0 0.0 0100 *.SSSStatatataSeaS*SSSSSSSS.S*.a.Sa.*aatatata***S.***aaaatt..***S 20560W00 20560101 20560102 20560103 20560104 20560105 20560106 20560107 20560109 20560109 20560110 20560111 20560112 20560113 20560114 20560115 20560116 20560117 SUM -I. .914014 .914014 .389795 .164951 .164951 .164951 .51823 .515823 .515823 .515823 .200114 .200114 .653900 .163678 .609044 1.16218 1.0 MFLOWJ VAPGEI VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN VAPGEN 0.0 0 560000000 500010000 50510000 510010000 515010000 515020000 515030000 617010000 517020000 617030000 519010000 509020000 520010000 525010000 526010000 530010000 530020000 SUM 1.0 -I. 5. -5. 1.0 U. UF UF UF 0.0 530010000 545010000 610010000 515030000 -I. 0.0 0 1. 1 MULT I. 560000000 SGSSPR 5900101 5900102 0 0 5900000 .9ooE6 SG0STEADY STATE LEVEL HOLDING 3 SOLHOLOV T&4PVOL .1 1. 0.0 4.E-5 0.0 00 2 0 P 4.E6 4.E6 .5 7.E6 7.E6 .5 5710000 5710101 5710200 5710201 5710202 SOLHOLDJ T14PJUN 505010000 570000000 .1 I 0 CNTRLVAR 513 -IO. -10. 0.0 0.0 10. 10. 0.0 0.0 20551100 20551101 SOLEVERI -. 19 SUM 1. 50. 0.0 CNTRLVAR 949 0 20551200 20551201 TRP-S50 -501 TRIPUNIT 1. 0.0 I 205S1300 20551301 20551302 SGLEVER2 MULT CNTRLVAR 511 CNTRLVAR 512 I. 0.0 0 0.0 0.0 0.0 505010000 St~itt*tttttee~tt~*ett~ttttt~ttt4 • I 1. 0 0 570OOO0 5700101 5700102 5700200 5700201 5700202 .700E6 1.1066 SS SYSTEM PRESSURE 4300000 4300101 4300102 4300200 4300201 4300202 PRVOL .362 4.E-5 3 ,IE6 16.E6 43500OO 4350101 435020 4350300 4350301 PRVALVE VALVE 405010000 430000000 0.0 1 0.0 0.0 TRPVLV 646 T6(PVOL .224 0.0 0 .166 16.E6 0.0 0.0 II P 576. 576. 0.0 .224 '-1 co I -J %.0 415010000 .093 0.0 .093 0100 STEAMGENERATORSS PRESSURE *5 END OF FILE z H x• 1987-06-09 Data Comparison Plots O 0 A APPENDIX B.1 NP-87/63 STUDSVIK ENERGITEKNIK AB CORE INLET FLUID DENSITY (CNIRLVAR 901) CORE INLET FLU1| DENSIIT (CNIRLVAR 9O ) CORE INLET FLUID DENSITY ICNTRLVAR 9011 CASE A CASE B CASE C Plot B. 1 S. w 0 0 -250 2S0 Soo 750 1000 T IME 0 REACTOR 0 0A POWER IRKIPOW 0) ItREACTOR (RK TPOW itEAC TOlt POWE PONERR It40KTPOW U. XENL 2000 Plot B. 2250 250( . . 2 CASE A CASE B 8)CS CYLA ETFO . . ... 1750 CASE A PRIM. EXTERNALS M EAI FL OW (Ct4TRLVAR 982) S REAMTO POTERN MRE 0 LOW A A CASE SPRIM. EXTERNALS HEAT FLOW ICNTRLVAR 98?) RM 1500 0 0) CASE CASE C 9 4 S 1250 (S) . . . . .. .. - . 0r t0J -250 0 250 500 750 I000 1250 T IME (S) 1500 1750 2000 2250 2500 APPENDIX B.2 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 0 0 CORE CORE CORE CORE CLAD TEMPERATURE CLAD rIMPERATURE CLAD TEMPERATURE CLAD TEMPERATURE VOL. VOL. VOL. VOL. I I I , (TE-2G14-OI) (CNrRLVAR 903) (CNTRLVAR903) (CNTRLVAR903) EXP. CASE A CASE B CASE C 750 1000 Plot B. 3 w (LJ r Li -250 0 56o 250 1250 1500 1750 2000 2250 25000 T IME (S) D 0 & .+ CORE CLAD TEMPERATURE VOL. CORE CLAD TEMPERATURE VOL. CORE CLAD TEMPERAIURE VOL. CORE CLAD TEMPERATURE VOL. 2 2 2 2 (TE-IF?-OI$.. (CRYRLVAR904) (C.TRLVAR 904) (CNTRLVAR904) .1 EXP. CASE A CASE B CASE C Plot B. 4 Li ir Li 0 ___ 50 20 ___ SO ___ -0 I0 - 25 - 50 15 00 25 5 0 TIME (S) APPENDIX B.3 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 O O A + CORE CLAD TEMIERATURE UE CORE CLAD IERAURE CORE CLAD TEMPERATURE CORE CLAD TEIIPERAIJURE VOL. VOL. VOL. VOL. 3 3 3 3 (TE-itF7-026 ... EP. (CNTRL AR 05) CASE A (CNtRLVAR 90 ) CASE B (CNTRLVAR9.S5 CASE C Plot a. 5 'C X: TI ME 0 0 4. CORE CORE CORE CORE CLAD IEMPERATURE CLAD TEMPERATURE CLAD TEMPERATURE CLAD TEMPERATURE VOL. 4 (TE-2COS-0391 (CWTRLWAR906) VOL.: VOL. 4 ( CTRLVAR 906) VOL.. 4 (CNTRLYAR 906) (S) EXP. CASE A CASE B CASE C Plot B. 6 w cr w 01 -'250 0 250 Soo 730 2000 TIME 1250 (S) 1300 1750 2000 22 50 2 500 NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.4 1987-06-09 O o a CORE CLAD CORE CLAD TEMPERATURE VOL. tEPtPERATURI VOL. 5 5 CORE CLAD IEMPERAIURE VOL. 5 ICWTRLVAR 9071 (CIIRLYAR 9071 CASE A CASE S Plot B. 7 ,CN(RLVAR 90"7 CASE C Li Li 7250 0 250 500 750 1000 T IME O 0 A CORE CLAD TEMPERATURE VOL. 6 (CWTRLVAR908) CORE CLAD TEMPERATURE VOL. CORE CLAD TEIMPEERATURE VOL. 6 6 ICNTRLVAR 909) (C.TRL AR 908) 1250 1500 1750 2000 22'50 250DO (S) CASE A CASE 8 CASE C Plot B. 8 Li -'250 0 250 Soo ?SO 1000 TIME 1250 (S) 150 SO 17.50 2000 2250 25(00 APPENDIX B.5 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 0 0 CORE CORE CORE CORE CUTLETTEMPERATURE (TE-IUP-OOI) EXP. OUTLET IEMPERArURE ICNTRLVAR I 09) CASE A OUTLET TEMPERATURE(CNTRLYAR9091 CASE B OUTLET TEMPERATURE (CNTRLVAR909) CASE C Plot B. 9 w 9L. 1: LI -250 0 250 500 750 1000 TIME 0 0 & + CORE CORE CORE CORE FLUID FLUID FLUID FLUID TEMPERATURE DIFF. IETPERATURE DIFF. TEP1PERATURE0IFF. TEMPERAIURE 01FF. ITE-IUP-O01 - tE-tLP-O01) ICNIRLpAR 910) CASE A ICNIRLVAR .10 CASE B ICNTRLVAR 910 CASE C 1250 1750 2000 2250 EXP. Plot B.1O U. 0 r LI TIME 1500 (S) (S) 250 0O APPENDIX B.6 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 CORE INLEt MASS FLOW (MFLOWJ 2253 CASE A CORE iNLET MASS FLOW (MFLOWJ 2253 C4SE B CORE INLET MASS FLOW (MFLOWJ 225) CASE C 0 A Plot B. 11 w U 0 -J U, 0 "250 ' 250 750 500 1000 TIME 0 0 • CORE MASS INVENTORY COR E MASS INVENTORY (CNTRLVAR (CNTRLVAR 912) 9121 CASE A CASE e CORE MASS INVENTORY (CN'IRi.VAR 912) CASE 1250 1500 1750 2000 2250 250.' (S) Plot 13.12 tJL SO50 250 Soo 750 1000 TIME 1250 (S) 1300 l750 2000 2250 25010 APPENDIX B.7 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 00WNCOMER MASS INWENTORY(CNIRLVAR 9,3; CASE A 0 A 0 (CRIRLVAR 9)3) CASE 8 ICNTRLVAR 913) CASE C DOWNCOMER"IASS INVENTORY DOWNCOMER MASS INVENTORY _______ _______ _______ 0 _______ _______ ________ ________ _______ _______ _______ _______ Plot B.13 _______ _______ C- LA. LA. C 0 _______ _______ U, U, 1.J C- 0 _______ -250 _______ 0 _______ 250 500 730 _______ 1000 TIME 0 0 & _______ 1250 1750 2000 2230 (s) VESSEL TOtAI MASS INVENTORY FCNTRLVAR 9)4) CASE CASE A 914) VESSEL TOTAL "ASS INVENTORY ICNTRLVAR VESSEL TOTAL MASS INVENTORY ICNTRLVAR 914) CASE C Plot B.14 C. TIME 1500 _______ (S) 25~0O NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.8 1987-06-09 0 A 4 OOVNCOMER LOUIO O0WNCOMER LIOU|D O0WWCOMER LIOU1O COWNCOMER LIOUID LEVEL LEVEL LEVEL LEVEL (LE-ST-001) EXP. 2CNTRIIVAR925) CASE A (CRTRLVAR 9152 CASE B (CNTRLVAR9153 CASE C - - Ptot B. 15 data from bubble plot W:/ U2 w -J -250 0 250 500 750 2000 TIME 0 UPPER PLENUML'OUID LEVEL (LE-3UP-00o) EXP. UPPER PLENUMLIQUID LEVEL ICNTRLVAR 9262 CASE A 4 UPPER PLENUMLIOUID LEVEL (CNTRLVAR916) CASE C UPPER PLENUM LIOUID LEVEL ICNTRLVAR 916) 1250 1500 1750 2000 2250 25' O0 (S) Ptot 8.16 CASE B a, data from bubble plot -J wJ :150 0 250 Soo no0 1000 TIME 1250 (S) 1500 1750 2000 2250 2 F( 00 APPENDIX B.9 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 INLET TEMPERATUREITE-IST-001) EXP. DOWNCOMER |NLET TEMIPERATURE(IEMPF 203) CASE A DOOW'COMER DOW'COMERINLET TEMPERATURE(TEMPF 205) CASE B INLEI IEMPERATURE itEMPF 205) CASE C DOWNCOMER a 0 0 _______ 0 _______ Ptot B.17 _______ _______ _______ _______ _______ _______ _______ _______ _______ _______ _______ w C, _______ 0 _______ 0 -250 0 250 500 750 1000 TIME O O A + UPPER UPPER UPPER UPPER 1250 1500 1500 1750 2000 2250 2500 2500 (S) PLENUM TEMPERATUREtTE-IUP-001) EXP. PLENUM TEMPERATURE(TEMPF 240) CASE A PLENUM TEMPERATURE (tEMPF 240) CASE B PLENUM TEMPERATURE ( TETPF 240) CASE C Plbt B.18 10 w w IL. :20 M___ Soo__ 15 00 25 50 75 00 2S 5 •0 TIME (S) NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.10 1987-06-09 UPPER PLENUMSUBCOOLING (ST-1UP-1I1 - TE-IUP-001) UPPER PLENUMSUBCOOLING ICNTRLVAR 919) CASE A UPPER PLENUMSUBCOOLING(CNtRLYAR 919) CASE 8 0 £ 4f UPPER PLENUM SUSCOOLING (CNTRLVAR 919) Soo 730 EXP. Plot B.19 CASE C w L.J w -250 250 0 1000 1250 | S00 1750 2000 2250 25, 00 TIME (S) 0 4• LOWERPLENUM TEMPERATURE(IE-ILP-001) EXP. LOWERPLENUM TEPMPERAIURE(TEMPF 225) CASE A LOWERPLENUM TEIMPERATUREtEMPF 2251 CASE B LOWERPLENUM TEMPERATURE (TEMPF 2253 CASE C Plot B.20 f• w C ________ 'C C - _____ ____ C 0 ___50_ _____TIME_ 00___10 IS 00 25 5 (S) 00 APPENDIX B.11 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 A 4 UPPER UPPER UPPER UPPER PLENUMPRESSURE PLENUMPRESSURE PLENUMPRESSURE PLENUMPRESSURE (PE-IUP-OOlAI) EXP. (P 24S; CASE A (P 245) CASE B (P 2451 CASE C Plot B.21 tws cr -D 0. 2500 TIME 0 4. LOWERPLENUMPRESSURE LOW:R PLENUMPRESSURE LOWERPLENUM PRESSURE LOWERPLENUMPRESSURE (PE-IST-OOIA (P 2251 CASE A (P 2251 CASE B (P 225) CASE C (S) I ESP. Pl.ot 8.22 'C 25 0 0 250 Soo 750 1000 TIME 1250 (S) 1500 17,50 20'00 2250 250•0 NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.12 1987-06-09 0 0 £ 1.3. HOT LEG FLUID DENSITY (DE-PC-2051 ,L. I-L. 3.L, HOT LEC FLUID DENSI T (RHO 1053 HOT LEG FLUID DENSITY (RHO 1053 HOT LEG FLUID DENSITY IRHO 10S) TXP. CASE CASE CASE A e C Plot 6.23 ri S. 2500 TIME 0 0 + 8.3.L OT 8 L- HO 8... L NHO BL. HOT LEC FLUID LEC FLUID LEG FLUID LEC FLUID (S) DENSTIT (0E-BL0028) EXP. DENSITY IRHO 305) CASE A DENSITY (RHO 3053 CASE B DENS1TY (RHO 305) CASE C Ptot B.24 p., 0 TIME (S) NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.13 1987-06-09 M * -3' Lrc MASS ;LOW RA'f N 0,!LEC MASS FLOWRATE N 0t LEG MASS FLOWRAfE POt LEC MASSFLOW RATE frI-PI39-2?-l • I EXP. tMFLOWJ I10) CASE A (MFLOVJ It0! CASE 0 !MFLOWJ110! CASE C PLlot B. 25 0 w S. (5 C -J LI! U! 4 r 0 CC TI ME 0 IL. NOT LEO TEMPERATURE IL. NO,, LEC IEMPERATURE I.L, M1C LEO IEMPERATURE i.L. 01 LEG IEMPERATURE (XC. (ItE-PC-O0?29 (IEMPF 1051 CASE A (TEMPF 1051 CASE B (TEMPF 105! CASE C __ ! __ __ ___ 0'___ Plot 8.26 T I I (S) __ __ __ __ ___ __ w Of 0L Lw Lw -'250 0 250 500 7.50 1000 TIME 1250 (S) 15$00 ! 750 2000 22S0 250 .0 STUDSVIK ENERGITEKNIK AB NP-87/63 APPENDIX B.14 1987-06-09 0 £ A 1.L. I.L. I.L. (OT H.L. LEG NO LEG MOT LEG MOT LEG tPE-PC-002, EXP. (P 05) CASE A (P 105) CASE 8 IP 105) CASE C Plot B.27 I I . PRESSURE PRESSURE PRESSURE PRESSURE _ _ __ __ _ _ _ I _ _ w w (L 25 ?zso2s Soo oo0 _ 50 _ 750 0 10o0 TIME 0 4. Ii.. 1.L. 1.L I.L. COLD LEG COLD LEG COLD LEG COLD LEG FLUID FLUID FLUID FLUID DENSITy DENSITY DENSITY DENSITY 125 1_0 175 200 220 1250 1300 (750 2000 2230 _5 250 0 (S) IDE-PC-IlS) EXP. (RHO 1851 CASE A (RHO 1851 CASE B (RHO 185) CASE C Pl.ot B.28 r w 1000 TIME 1250 (S) 250C APPENDIX B.15 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 O o a COLD LE[ PUMP FLUID DENSITY IRMO 115.02) CASE A COLD LCC PUMPFLUID DENSITY IRMO 115.02) CASE 0 COLD LEG PUMPFLUID DENSITI (RHO 115.02) CASE C Ptot B.29 I-) r (5 2 w 0 TIME (S) c tA !-. CEOLr.FC I LU.Y OFIN51'' :Of-ft-,105 FTP. RP9O 345, CASF A e.. OL.DL.EGILUI DENSi' IR'aO i'51 cS k F e !.. COLD.. EG ,L)J3DDENSi P-. COLD LEC '..U;CVENSil' IRIDO 345) CAS? C Plot B. 30 0 AI us o 0 -250 ____A- - 250 Soo 750 1000 125O TI ME (S) _______ 1500 I750 2000 2250 2500 APPENDIX B.16 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 U 0 IL. I.L. IL. I.L. LOOWSEAL LOOP SEAL LOOP SEAL LOOP SEAL LIQUID LI0U O LIOUIO LIOUID * LEVEL LEVEL LEVEL LEVEL ILEPDE-PC-0281 (CMIRLVAR 931. (CCRRLYAR L 311 (CNTRLVAR9311 _____ ____ (VP. CASE A CASE B CASE C Plot 8.31 1 _____ _____ ___ r w ,.I _ _ _ I _ - a ?2'50 _ 4 4 250 S0o + 4 1000 TIME O a 4 .L. S-L. B.L. B.L. LOOP LOOP LOOP LOOP SEAL SEAL SEAL SEAL LIOUID LIOUID LIaUID LIQUID LEVEL (EPDE-BL-014) LEVEL (CHIRLYAR 9321 LEVEL ICNtRLVAR 932) LEVEL (CNTRLVAR932) _ - 4 1250 - I Nllý I og In T ý 1 .1 - ý, 4-~----+I4---------4 1500 171S 2250 Ptot 8.32 s- w Z.- (S) - 4 2000 (S) EXP. CASE A CASE B CASE C TIME . 2500 APPENDIX B.17 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 a 0 LEG TEPfERATURE (TE-PC-O4) 1.L. COLD 1.LCOLD LEG 1EPERAIURE (TEr0F 1853 COLD LEG TEMPERATURE((EMPF 18S) IL. d..L COLD LEG TEMPERATUREfTEMPF 1$51 EXP. CASE A CASE B CASE C Ptot B.33 0 .4. 4 4 4 + .4-- 7 *---I. I ______ II -- I w WI I vv. 0 2iO 500 750 1000 TIME a .4 I.L. I.L. IL., I.L. COLD LEG COLD LEG COLD LEG COLD LEG PRESSURE PRESSURE PRESSURE PRESSURE I __________ ýýW, I" I -250 ~vAAft\~ I 1500 1250 1*50 2000 2250 2500 (S) (PE-PC-005) EXP. (P 120) CASE A (P 120) CASE B (P 120) CASE C Ptot B.34 0z C! c; :Q. 0? 0251 0 2t U,~~~~~~ o 5 40 ____ ý0 I O 1?O N O 2t 5 I___ ME___ (S)__ 0 APPENDIX B.18 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 a a I.L. 9.L. 9.L. C.L. LEG PRESSURE & COLD W-SL-O01)O EXP. COLDS LEG PRESSIURE(P 345) CASE A COLDLEG PRESSURE (P 345, CASE 8 COLD LEO PRESSURE (P 3451 CASE C Plot 8.35 0. cn In !ýlso 0 250 500 750 1000 TIME a 0 A 4 PRESS.D3FF. PRESS.OIFF. PRE$S.OIFF. PRESS.DIFF. ACROSS ACROSS ACROSS ACROSS PUMPS PUMPS PUMPS PUMPS 1250 1500 1750 2000 2250 (S) IPDE-PrcO0l) EXP. CRIRLVAR :361 CASE A (C IRLYAR 9361 CASE 9 (CHTRLVAR 936) CASE C w aCLi Li. 0 TIME (S) Plot 8.36 25100 APPENDIX B.19 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 a 0 OF OF OF OF SPEED SPEED SPEED SPEED P"OP I IRPE-PC-01)I PUMP I IPUMPvEL 135) PUMP I (PUtPYEL 135) PUtM I (PUMPVEL1335 EXP. CASE A CASE 0 CASE C Ptot 8.37 a~ ____ o 0o a ____ o 0 IL -20 O 20 50 5 DO 20 50 ,0 200 2 0 2( 00 TIME a 4. BREAK FLUID BREAKFLUID OREAK FLUID BREAK FLUID DENSITY DENSIIT DENSITY DENSITY 0 250 (S) (DE-PC-S02A) EXP. (RHO 800) CASE A (RHO 800) CASE B (RHO 800) CASE C Plot 8.38 z w. 0 -250 500 750 1000 TIME 1250 (S) 1500 1,50 2000 2250 250 0 STUDSVIK ENERGITEKNIK AB APPENDIX B.20 NP-87/63 1987-06-09 O A * B:REAK MASS FLOW RATE BREAK IMASSFLOW RATE BREAK "ASS FLOW RATE BREAK MASS FLOW RATE (FR-PCSI2) (IIFLOWJ S0S) (IIFLOWJ 805) (11FLOWJ005) ERR. CASE A CASE B CASE C Plot B.39 C, 0 -j L.. U, r TIME tS) 1 0 A BREAK ENERGYRELEASE (CHTRLVAR240) BREAK ENERCY RELEASE (CNIRLVAR 840) BREAK ENERGY RELEASE (CNTRLVAR9401 CASE A CASE B CASE C Plot 8.40 w w Of w -0 -so 0 20 0 5 250 $00 " 50 Al 10 10;00 TIME 15 120 1250 (S) 1500 1750 2 20b0 2250 25b 10 STUDSVIK ENERGITEKNIK AB NP-87/63 APPENDIX B.21 1987-06-09 f O £ ARCALEWT TEMPfERATURE (TE-PC-SOlC) [IP. CASE A IECERATLRE (T(MPF INLET100) IRCAC BlEAC INLET ITEMPERAIURRE IETPF 800) CASE B BREAK INLEI TEMIPERATURE(TE,'PF 800) CASE C 2 gr cw ti rAK INLET SUBC. 0 BEAK INLET SUBC. a BREAK INLEI SUIC. 4 BOrAK INLET SUBC. (.0 2 -J C 0 w Ed, (ST-PC-SlOI - IE-PC-SOC) (CNTRLVAR942) CASE A ICNItLVAR 842) CASE B (CNTRLVAR942) CASE C EXP. Plot B.42 NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.22 1987-06-09 SBREAK o a 4 ItL[I IREAK INLET BREAK INLET BREAK INLET P"ESSURE PRESSURE PRESSURE PRESSURE (PE-PC-SOI) EXP. (P :00) CASE A (P 00) CASE 0 CASE C (P F00) Plot 8.43 Z w U) cd, IL TIME (S) I a SC SC SC SC Pit. PR). PR!. PR). SIDE SIDE SIDE SIDE INLET INLET INLET INL(t TEMPERATURE ITE-SC-oOt! P.SA TEMPERATURE ITE'PF IS.3I CASE A TEMPERATURE (TEMPF 115.033 CASE O TEMPERATURE(TEEIPF 113.03, CASE C Ptot 8.44 L.a I., 0. L.a 2500 TIME (S) STUDSVIK ENERGITEKNIK AB NP-87/63 APPENDIX B.23 1987-06-09 a 0 5€ SC SC SC PR!. PR!. PRI. PRI. TEIC. TEPP TEWP. TEMP. 01FF. (TE-SC-00I - T1-SC-0021 01FF. (CNTR VAR $45) CASE A DIFF. (CNRLVAR 945) CASE 8 DIFF. (CWRRLVAR945) CASE C EXP. Plot 8.45 LI. LI. C r LIJ TIME a St PRI. SIDE PRESSURE DIFF. 0 & SC PRI. SC PRt. SIDE PRESSURE 01FF. SlOE PRESSURE 01FF. + SC PRI. SIDE PRESSURE DIFF. (S) IPOE-PC-O02) EXP. (CNTRLVAR (CNIRILVAR 946) 346) CASE A CASE B Plot B.46 (CKTRLVAR946) CASE C C- ULI. 0 Li~ In w 0. TIME (S) STUDSVIK ENERGITEKNIK AB NP-87/63 APPENDIX B.24 1987-06-09 00 a SC FLUID ODESITY 0.t40 31S.03) CASE A SC FLU1 DNSI'TS IRMO :siS.03) CASE S SC FLUID OENSIIY IHRO 3)3.031 CASE C Plot B.47 t• r z TIME (S) a A SC KASS FLOW RATE (TFLOW.J SI3) SC MASSFLOW RATE PFVLOWJ 516) SC MASSFLOW RATE (PFLOWJ 516) CASE A CASE S CASE C Plot 8.48 Cd, C, Lid 0 -5 Li. TIME (S) APPENDIX B.25 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 a O A + SC LIOU1L LEVEL ICWTRLYAR (LD-PO04-OOl8) 949) EXP. CASE A $C LIOU1O LEVEL SC LIOUID LEVEL ICN RLVAR 949) CASE S SC LIQUID LEVEL ICATRLVAR 949) CASE C Plot B.49 c; C, w w 0. N£ -J C, -250 0 2S0 500 750 1000 1250 1300 1750 2000 2250 250W TIME (S) . A + (TE-SC-0031 EXP. SC C LIOUIO •EMPERATURE PEPtERATURE (,E?, 3r5.03) CASE A SC LIOUI0 SC LIQUID IEMPERAURC (TEMPF 5s3.03) CASE B Sc LIQUID TEMPERATUREITEMPF515.03) CASE C Plot 8.50 wA -250 0 250 300 750 1000 1250 TI ME (s) 1500 1750 2000 2250 2500 APPENDIX B.26 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 U e a 4 SC SO SO SO PRESSURE PRESSURE PRESSURE PRESSURE [E-SGS-001) EXP. IP 530) CASE A (P 530) CASE 3 (P 530) CASE C Plot B.51 In 'C r- Li) Li) w 0: TIIME a 0 4. Sc PRI.-SEE. ?EI'. SC PAI.-SEC. SC PRI.:SEC. SC PRI.-SEC. TEPC. Dirt. tEp. 01IFF. SEr. D1FF. 01FF. (TdESC-001 -TE-SC-003) (COTRLVAR 952) 52) CCTRLVAR (CMIRLVAR 952) _ (S) EXP. CASE A CASE B CASE C Plot 6.52 I __ 0 Ctr o25 -3-..75 -SO0 a 10 15 TIME __S 200 2S0 2 _S) 10 APPENDIX B.27 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 a o SC HEAT TRANSFER RATE ICMTRLVAR 9S3) SC HEAT TRANSFER RATE ICMTRLVAR"552 $C HEAT TRANSFER RATE fCTRLVAR 153) 3 CASE A CASE 9 CASE C Plot B.53 W w -250 0 250 300 750 - B 4. PRESSURIZER PRESSURIZER PRESSURIZER PRESSURIZER LIOUIO LIOUID LIOUID LIOUID LEVEL LEVEL LEVEL LEVEL (LI-PI39-O06) (C*SRRLVAR134) IC-ITRLVAR 9541 (C"ITRLVAR954) 1000 1250 TIME (S) 1300 1750 EXP. CASE A CASE B CASE C 2000 22S0 250 0 Plot B. 54 r -j w '43 -J 0 0 -J Cu -LU 0 250Q F50 1000 1250 TIME (S) 1500 S150 2000 2250 2500 NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX B.28 1987-06-09 U 4. PRESSURIZER PRESSURIZER PRESSURIZER PRESSURIZER LIOUID LIOU1O LIOUI D LIOUID TiMP. ilt. IE.MP TEMP. ITE-PIR3-020) (TEICE 41D.02) (TEtf 41.02) ITEiPF 415.02) CXP. CASE A CASE B CASE C Plot B.55 LU CL TIME * O PRESSURIZER STEAMTEMP. (TE-PI39O0l9' EXP. tTEMPC 415.0?) CASE A PRESSURIZER STEAM Ilt. & + E. W PRESSURIZER STEAM TI PRESSURIZER STEAM TEMP. IfEMPi 415.07) EMPC 415.07) (S) Plot 9.56 CASE S CASE C LU w. -c !LU TIME (S) STUDSVIK ENERGITEKNIK AB APPENDIX B.29 NP-87/63 1987-06-09 a 0 £ PRESSURIZER PRESSURIZER PRESSURIZER PRESSURIZER PRESSURE PRESSURE PRESSURE PRESSURE (PE-PC-004) EXP. (P 415.081 CASE A (P 41".08" CASE B (P 415.08) CASE C Plot B.57 0; w I) c, (n a. -'250 0 250 500 750 1000 1230 1500 17SO 2000 2250 230 0 TIME (S) a 0 WPIS VOLIMETRIC FLOW RATE ( L#5 VO{TIETR1C FLOW RATE "rPISVOLYTIIETRIC FLOW RATE "PIS VOLIMETRIC FLOW RATE (ft-P12-104) ICNTRLVAR 858) ICNTRLVAR 958) (cNTRLVAR 958) EXP. CASE A CASE 8 CASE C Plot B.58 U, S.. w 0 -5 0e _ _ __ c; "250 0 250 So0 750 1000 TIME 1250 (S) 1500 |7,0 2000 2250 25010 APPENDIX B.30 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 0 SYSTEM MASS BALANCE (CNTRLVAR959) & + STSIEM MASS SALANCE SISTEM MASS BALANCE o - CASE A Plot 8.59 tCNIRLVAR 959) CASE e ICNTRLVAR 959) CASE C -- -I o 0.____ ___ 0 0 S. -20 5 0 5 00 T0E 1 0 00 1 0 00 2 0 2( S 00 0 COOLANT[MERCY BALANCE (CNURLVAR:60) CASE A COOLANTENERGYBAN.ANCEECNTRLVAR140) CASE B A COOLANT ENERGY BALANCE (CNTRLVAR 960) CASE C Plot 8.60 -5 0 w TIME (S) STUDSVIK ENERGITEKNIK AB NP-87/63 APPENDIX B.31 1987-06-09 15 0 A TIME (CPUTIPIE 0) CASE A COMPUTATIONCPU CWMUTATIO CPU I HE (EPUTI _ 0) CASE S COMPUTATION4 CPU TIMPE (CPUTIME 0) CASE C Plot 8.61 0o 0 ____ ____ ___ 0 0 w -20 0. U. 0 20 $0 70 0 10 $ TIME 50 15 00 25 5 (S) 0 a A COMPUTATION O KASS ERROR IEIASS 0) COMPUTATION MASSERROR (EMASS 0) COMPUTAIION MASSERROR (KMASS 0) CASE A CASE S CASE C Plot B.62 0 wI. in In TIME (S) NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX C.1 1987-06-09 Calculation-to-Experiment Data Uncertaintis Case A CALCULATION-TO-EXPERIMENT FIRST LINE SECOND LINE THIRD LINE - - DATA UNCERTAINTY ANALYSI9 FOR NRC/ICAP. DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL MEAN DIFFERENCE OVER THE INTERVAL (ROOT MEAN SOUARE OF THE DIFFERENCE) MEAN 91GM OVER THE INTERVAL --.-- OWE0 - CALC. EXP. 0.0 - 20.00 - 60.00 - 200.0 TIME INTERVAL - - - - 500.0 - 1000. - 2000. -4.66 -5.28 6.36 -8.44 -7.82 7.85 -5.26 6.01 5.08 3.89 4.27 -. 520 3.17 3.41 .820 2.97 3.16 -5.23 -3.25 3.79 -7.30 -6.51 6.*83 1.90 -3.67 4.73 6.16 6.49 5.67 2.42 4.71 4.82 1.44 7 76 9.45 .240 1.73 1.88 -5.45 -3.61 4.05 -7.54 -6.73 6.75 1.69 -3.87 4.89 6.08 6.37 5.56 2.65 4.59 4.70 C 6X 2.35 9.57 10.4 .250 1.83 1.98 -5.22 -3.25 3.73 -7.29. -6.42 6.45 2.17 -3.44 4.56 6.37 5.68 6.85 2.79 4.74 4.85 C SA - C OX -6.25 -3.68 3.83 -3.41 -3.78 4.18 -8.47 -6.64 6.85 -9.88 -9.48 9.49 -. 280 -6.22 6.94 4.00 3.16 3.49 1.06 2.67 2.81 CAA- C AX -. 763 1.49 1.69 3.17 2.11 3.98 -1.78 -. 330 1.30 1.76 .162 1.55 4.93 4.48 4.65 2.91 4.43 4.51 4.32 3.33 3.36 A - V 5X -3.49 -4.60 4.62 2.47 -1.04 1.68 10.4 5.83 9.84 11.9 7.69 8.09 -1.85 6.74 10.2 3.25 2.86 3.27 .600 2.43 2.65 V &A - V OX -6.15 -3.47 3.61 -2.63 -3.90 4.93 -8.47 -6.48 6.74 -9.91 -9.51 9.52 -. 310 -6.26 6.97 3.96 3.12 3.46 1.00 2.61 2.76 V 7A - V 7X 7.87 6.92 6.97 3.75 5.87 6.29 3.03 3.24 3.24 2.59 2.75 2.76 1.77 2.18 2.20 .642 1.17 1.21 V BA - V OX -5.39 -4.96 5.01 -5.80 -6.01 6.02 -6.70 -6.15 6.21 -12.0 -9.68 9.88 -5.54 -10.7 11.0 .940 -1.30 2.56 V 9A - V 9X .119 .366 .386 -. 800E-03 .193 .215 -. 582 -. 388 .432 -. 725 -. 683 .685 .8516-01 -. 377 .461 .288 .308 .318 .392E-01 .175 .190 V M - VAX .167 .394 .412 .737E-01 .256 .271 -. 496 -. 306 .358 -. 653 -. 603 .605 .170 -. 310 .408 .399 .393 .402 .155 .283 .291 HLIA - HL1X 62.0 76.5 77.4 96.0 110. 113. -25.1 -7.81 26.2 -55.9 -79.5 87.9 447. 280. 319. 175. 266. 283. 428. 170. 175. HL2A - HL2X 37.1 40.9 41.4 35.3 34.9 35.0 -56.8 -24.4 42.3 -137. -133. 139.1 374. 216. 268. S. 132. 233. 245. 304. 157. 160. HL3A - HL3X 15.5 12.6 13.1 -14.9 -14.3 18.1 -11.5 -8.28 8.80 -42.3 -31.9 33.1 -46.1 -44.9 45.0 -52.4 -50.5 50.6 -47.1 -52.2 52.2 NL4A - HL4X -1.68 .139 .799 -4.86 -2.90 3.44 -7.19 -6.40 6.44 -4.09 -4.73 4.97 -10.8 -6.82 7.20 -18.7 -14.4 14.5 -. 817 -. 425 .464 -. 749 -. 716 .717 .797E-01 -. 402 .483 C 3A - C 3X -6.46 -6.15 6.22 -5.64 -6.80 6.84 C 4A - C 4X 3.71 11.4 12.2 C SA- C 5X C 6A- V .710 .330 1.81 -. 519E-01 .144 .172 .510 - 1500. -. 129 .743E-01 .338 -4.41 -. 721 1.39 .281 .299 .311 .720E-01 .189 .201 HLSA - HL$X .770E-01 .328 .349 CLIA - CLIX 69.7 76.2 76.3 68.0 72.4 72.4 318. 229. 242. -186. -34.6 210. 20.4 -65.8 95.6 -40.0 -28.7 41.4 -82.3 -66.2 67.6 CL3A - CL3X 28.1 20.9 2f.8 67.3 40.0 41.4 -429. -130. 210. -256. -321. 329. -. 790 -117. 140. -160. -96.5 107. -133. -144. 144. CL4A - CLAX .049E-01 .192 .217 .22K6-01 .248E-01 .291E-01 -1.10 -1.18 1.19 -. 558E-02 .657E-02 .187E-01 -. 636E-02 -. 106E-01 .129E-01 -. 158E-0l -. 150E-01 .192E-01 -. 442E-01 -. 346E-01 .355E-01 -. 401 -. 861E-01 .109 -1.03 -1.05 1.05 -. 536 -. 799 .816 -. 21S -.355 .378 .520E-01 -. 970E-01 .131 -. 290E-02 .912E-01 .962E-01 -. 770 -1.18 1.16 -3.63 -2.44 2.62 -7.14 -6.34 6.76 .980 -4.74 5.52 -. 680 3.48 3.94 -4.22 -2.05 4.05 .165 .318 .326 CLSA - CLSX -1.59 - 1.90 1.92 CL6A - CLOX -1.66 -2.05 2.10 CL7A - CL7X .223 .458 .473 .992E-01 .298 .312 -. 452 -. 273 .329 -. 602 -. 563 .565 .228 -. 251 .367 .42e .444 .452 CLSA - CLSX .316 .557 .570 .205 .387 .397 -. 363 -. 180 .259 -. 506 -. 468 .470 .332 -. 148 .308 .547 .556 .552 CLSA - CL9X 2.48 6.57 8.20 -9.86 -8.68 8.99 -10.3 -10.4 10.4 -10.9 -10.3 10.3 -11.9 -11.2 11.2 -11.9 -12.0 12.0 -6.23 -10.9 11.0 CLAA - CLAX 228. 147. 151. -14.4 4.97 66.2 95.7 68.5 81.5 -. 443E-02 26.4 39.6 .124 -. 192 .882 .693 -1.49 2.20 -1.02 -. 698 1.32 .315 439 .445 .. APPENDIX C.2 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 - CODES - - - - CALC. EXP. 0.0 - 20.00 BRIA - BRIX 1.00 20.0 22.0 - $0.00 -21.1 -10.8 12.0 1.55 - - TILE INTERVAL - - - 200.0 800.0 461. 20.7 204. 279. 123. 239. - 1000. 147. 104. 127. - - 2000. 1500. 32.9 85.9 112. 16.0 23.9 37.9 8.55 2.89 3.32 .227 .734 .870 -1.83 -1.19 1.73 -. 387E-01 -. 932 1.16 R4X -1.99 -1.10 2.83 -1.03 -2.06 2.46 -4.72 -3.42 3.65 -8.65 -6.33 6.66 2.73 -2.90 4.19 9.18 3.93 4.56 -6.09 -4.60 11.2 MBA - BRSX 4.04 2.42 4.98 5.19 .798 1.21 1.41 .947 1.29 2.05 1.13 1.25 1.34 -1.43 3.38 4.33 10.2 10.9 14.8 .149 .331 .340 -. 365 -. 221 .288 -. 502 -. 479 .481 .307 -. 148 .302 .481 .509 .514 .218 .356 .365 -2.13 -3.40 4.02 -6.21 -5.18 5.29 -e.12 -7.62 7.63 -4.95 -6.33 6.48 -12.7 -8.47 8.73 2.29 1.55 1.90 2.62 2.31 2.33 3.29 3.65 3.74 -. 465 .241 1.17 2.32 1.17 1.56 -10.1 -11.0 11.1 -34. -:40" -6.59 -9.12 9.17 -4.16 -6.17 6.21 -. 346 -. 305 .307 -. OR2A - 8R2X BR4A - 7.15 8.49 4.54 5.54 BRA - MSRX .276 .511 .528 SPIA - SPIX -8.49 -7.45 7.47 -. 281 -. 948E-01 .567 --. 352 -. 125 .236 -19.1 -15.2 15.3 SP2A - SP2X -5.41 -2.32 2.62 .113 -. 888 1.91 SP3A - -2.66 5.65 10.7 -11.9 -10.7 10.9 -13.7 -12.9 12.9 -. 309 -. 129 -. 175 .180 -. 123 -. 8796-01 .953E-01 -. 441 -. 301 .323 -10.0 -6.12 6.70 -10.1 -10.3 10.3 -1.94 -7.56 7.98 7.83 4.40 5.39 2.01 6.35 6.67 -. 527. -. 369 .386 -. 609 -. 603 .604 -. 319 -. 414 .426 -. 849 -. 514 .539 -1.12 -1.10 1.11 3.83 .936 1.99 1.62 2.67 2.74 -3.34 1.27 1.87 -20.6 -12.7 13.8 -20.9 -21.6 21.6 .679E-02 .881E-02 .897E-02 .4866-02 .589E-02 .592E-02 SS3A - SP3X S$3X -. 243 .293 SS4A - SSOX 12.6 5.22 6.99 SSSA - s55X S IA - S IX -. 1556-01 -. 179 .192 -. 8696-01 .879E-01 .104 -21.0 -3.28 -8.52 10.4 -12.7 13.7 P IA - P lX P 2A - P 2X P 3A - P 3X P 4A - P 4X ECIA - ECIX 1.14 5.04 6.47 .821E-01 .602E-01 .649E-01 -21.2 .126E-01 .284E-01 .376E-01 . -10.3 -10.9 11.0 .405 .371E-02 .474E-02 .474E-02 .368E-02 .391E-02 .392E-02 403 -. 358 .360 .314E-02 .315E-02 .3166-02 -12.3 13.4 -2.93 -12.6 15.5 -14.7 -9.35 9.92 -40.0 -28.1 29.0 -55.5 -49.6 49.8 -70.7 -61.8 61.9 -89.7 -80.2 80.4 -20.9 -13.5 14.2 -4.50 -13.1 15.3 -18.7 -12.3 12.9 -45.3 -33.1 34.0 -60.0 -54.3 54.5 -75.8 -66.6 66.8 -94.8 -85.5 85.7 -. 547 -. 357 .402 -. 695 -. 649 .650 .116 -. 343 .434 .210E-01 .185 .191 .1156-01 .210 .228 .310E-01 -. 300E-01 .168 -. 161E-0t -. 144E-01 .266E-01 .488E-01 .291E-01 .341E-01 .238E-01 .367E-01 .401E-01 .917E-02 .261E-01 .282E-01 .342 .350 .359 -. 109E-02 .670E-03 .453E-02 .796E-01 .220 .231 .222E-01 .158E-01 .1816-01 APPENDIX C.5 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 Case C CALCULATION-TO-EXPERIMENT DATA LJNCERTAINIY ANALYSIS FOR NRC/ICAP. FIRST LINE : DIFFERENCE BETWEEN CALCULATED AND (AVERAOED) EXPERIMENTAL DATA AT END OF THE INTERVAL MEAN DIFFERENCE OVER THE INTERVAL SECOND LINE (ROOT MAN SOUARE OF THE DIFFERENCE) UMAN SIWAA OVER THE INTERVAL THIRD LINE - - C0OES CALC. EXP. C X - C 3X 0.0 - 20.00 - 80.00 - TIME INTERVAL --- --- - 200.0 - 800.0 - 1000. - 1500. -3.53 -4.19 4.43 -2.81 -4.21 4.26 -. 960 -. 829 .958 -6.12 -3.43 3.85 -4.88 -6.64 6.71 -1.28 -2.70 2.90 C 4X 6.07 12.9 14.7 1.01 4.29 4.62 .440 1.17 1.32 -6.02 -2.13 2.76 -3.87 -5.45 5.52 -. 600E-01 -1.42 1.84 C SO - C 5X 2.S8 8.84 10.3 1.29 3.01 3.19 .250 .825 .962 -5.24 -2.35 2.93 -4.06 -5.66 5.72 -. 130 -1.54 1.94 C 6C - C6X 3.63 10.4 12.0 1.27 3.06 3.27 .480 1.17 1.29 -4.97. -2.04 2.69 -3.58 -5.23 5.30 .160 -1.23 1.68 C 9C - C 9X -4.20 -1.74 2.49 -2.17 -2.52 2.78 -2.76 -2.17 2.21 -7.51 -5.07 6.34 -6.04 -8.00 8.05 -2.23 -3.77 3.96 C AC - C AX -2.03 1.09 1.88 .928 .487 2.69 1.08 .356 .771 1.64 2.02 2.09 2.28 2.31 2.33 V 5C - V SX -. 580 -1.65 1.68 4.98 1.79 2.16 15.9 10.3 12.7 14.3 12.2 12.5 -7.56 4.98 10.6 -1.25 -4.00 4.25 V sc - V 6X -4.37 -1.29 2.23 -1.64 -2.59 3.47 -2.74 -2.02 2.08 -7.54 -5.09 6.36 -6.07 -8.03 0.08 -2.28 -3.82 4.01 V 7C - V 7X 7.67 6.40 6.49 3.57 5.60 6.06 3.04 3.24 3.25 2.58 2.75 2.76 1.77 2.17 2.19 .642 1.17 1.22 V aC - VoX -2.35 -2.38 2.43 -2.57 -3.08 3.11 -1.75 -1.93 2.00 -8.92 -5.45 5.93 -8.01 -10.1 10.1 -4.66 -6.13 6.22 V 9C - V 9X .385 .602 .619 .114 .314 .353 -. 740E-02 .716E-01 .924E-01 -. 511 -. 258 .309 -.350 -. 513 .621 -. 9716-01 -. 172 .189 V AC - V AX .412 .628 .645 .188 .377 .408 .784E-01 .153 .162 -. 439 -. 178 .249 -. 266 -. 446 .455 .142E-01 -. 864E-01 .123 HLIC - HL.IX 59.5 72.5 73.3 107. 103. 106. 63.6 70.8 71.9 213. 116. 120. 651. 527. 548. 692. 684. 684. HL2C - HL2X 39.3 43.1 43.5 37.3 37.0 37.1 120. 85.2 92.4 207. 104. 108. 405. 427. 439. 409. 430. 430. HL3C - HL3X 14.6 11.7 12.2 -14.0 -13.2 17.1 -21.1 -15.9 16.0 -42.0 -38.3 38.7 -46.7 -44.3 44.3 -54.1 -50.7 50.8 HL4C - HL4X -. 220 2.29 2.78 -4.56 -1.77 2.58 -9.58 -6.27 6.38 -16.9 -13.6 13.9 HLSC - HLSX .322 .562 .583 -. 421E-01 .342E-01 .637E-01 -. 536 -. 291 .337 -. 356 -. 538 .546 -. 105 -. 181 .200 CLIC - CLIX 64.9 71.2 71.4 63.4 67.2 67.2 -172. 37.0 162. -266. -274. 277. -126. -181. 189. -74.1 -98.6 101. CL3C - CL3X 30.3 23.1 23.9 69.4 42.1 43.5 -431. -362. 404. -384. -405. 406. -181. -261. 269. -155. -163. 163. CLAC - CL4X .8776-01 .233 .266 .227E-01 .3136-01 .370E-01 -. 2766-01 -. 123E-01 .1489-01 -. 5266-01 -. 257E-01 .2756-01 -. 666E-01 -.S1SE-01 .633E-01 C 4C- 1.71 1.29 1.92 .629E-01 .266 .310 -. 991 -. 914E-01 .838 .910 1.55 1.63 .362E-02 .105E-01 .141E-01 CLSC - CLSX -1.58 -- 1.90 1.91 -1.10 -1.18 1.19 -1.02 -1.04 1.04 -. 472 -. 760 .773 -. 171 -. 299 .317 .1706-02 -. 862E-01 .103 CL6C - CLGX 1.20 .830 .857 1.60 1.68 1.56 1.56 1.86 1.89 -6.21 -5.40 6.86 -8.61 -11.0 11.6 -2.07 -9.47 10.3 CL7C - CLX .469 .690 .705 .214 .419 .448 .122 .187 .195 -. 389 -. 139 .219 -. 208 -. 388 .399 .434E-01 -. 360E-01 .895E-01 CLSC - CLOX .562 .793 .807 .320 .508 .532 .211 .280 .285 -. 291 -. 432E-01 .172 -. 103 -. 284 .300 .163 .768E-01 .114 CL9C - CL9X 2.22 10.4 14.6 -9.70 -8.33 8.94 -10.1 -9.95 9.95 -9.56 -9.67 9.67 -10.4 -10.1 10.1 -11.1 -10.7 10.7 CLAC - CLAX 227. 156. 160. -8.94 16.1 75.4 63.7 40.6 55.4 -. 65SE-03 9.91 19.3 .124 -. 184 .884 .267 -1.64 2.21 . APPENDIX C.6 NP-87/63 STUDSVIK ENERGITEKNIK AB 1987-06-09 -. -CODES 0.0- 20.00 - 60.00 -. - 200.0 TIME INTERVAL - - - 600.0 - - -1000. - 1500. CALC. EXP. BRIC - BRIX -4.07 33.9 45.9 -25.7 -16.9 17.5 568.0 23.6 94.4 -68.3 -79.1 99.6 -36.6 -3.06 39.6 22.4 17.4 28.9 MR2C - BR2X 7.07 5.46 6.70 1.40 2.98 3.31 -1.72 .273 1.62 -1.65 -1.91 1.94 -. 317 -. 995 1.12 -. 804 -. 498 .637 .660 -11.3 17.7 1.37 1.20 1.23 .930 .842 .974 -4.65 -1.78 2.53 -3.69 -4.90 5.23 -5.65 -1.98 5.40 BRSC - BRSX 2.99 16.7 22.1 1.12 2.72 2.90 .774 1.32 1.38 1.19 1.04 1.06 1.19 1.28 2.04 7.22 2.25 5.69 - BR6X CR6O .523 ,532 .861 .267 .452 .476 .175 .225 .233 SPIC - SPIX -7.34 -5.28 8.39 -1.10 -2.13 2.72 SP2C - SP2X -7.09 -2.98 3.51 SP3C - SP3X 533C - SS3X BAC4 - SS4C - AR4X SS4X -. 150 -. 297 .312 -. 470 -. 709 .802 -5.73 -3.20 3.63 -10.7 -8.13 8.19 -18.9 -15.4 15.6 -1.55 -2.02 2.60 2.08 .960 1.32 2.66 2.28 2.30 3.35 3.64 3.73 -. 373 .312 1.19 -2.77 7.81 13.2 -11.9 -10.4 10.7 -12.5 -13.1 13.1 -9.92 -10.5 10.5 -9.19 -10.4 10.4 -7.73 -8.69 8.71 -. 418 -. 364 .422 -. 368 -. 381 .381 -. 340 -. 326 .330 -. 278 -. 315 .315 -. 255 -. 291 .292 -. 241 -. 249 .249 13.3 8.:3 9.53 -. 670 5.43 6.85 -7.12 -4.16 4.64 -6.24 -6.91 6.93 -3.27 -5.49 5.67 1.26 -. 884 1.70 .223 .270 .271 .142 .208 .212 -. 358 -. 106 .195 .-. 744 -. 538 .547 -1.26 -. 993 1.00 -. 427 -7.66 9.45 6.66 3.44 4.19 .176 3.71 4.33 -7.80 -2.60 3.48 -20.2 -14.4 14.9 SSSC - SSSX .267 -. 5486-02 .102 S Ic - -20.6 -14.1 14.8 S IX P IC - P IX .114 .2416-01 .803E-01 -. 309 -. 656E-01 .178 .820E-01 .617E-01 .65S6-01 .120E-02 .206E-01 .3596-01 -. 556E-03 .104E-03 .535E-03 -. 398E-03 -. 269E-03 .3306-03 -. 476E-03 .6926-04 .227E-03 .4936-03 .197E-03 .265E-03 P 2C - P 2X -19.7 -11.9 12.8 -1.88 -11.8 14.4 -8.96 -4.87 5.28 -37.6 -23.6 25.2 -61.3 -51.4 51.8 -76.9 -68.7 68.9 P 30 - P 3X -19.3 -12.6 13.4 -1.23 -11.6 14.1 1.47 .274 1.02 -11.4 -4.29 6.02 -21.8 -17.5 17.7 -29.7 -25.3 25.4 P 4C - P 4X .249 .302 .311 .126 .330 .361 .2926-01 .103 .116 -. 481 -. 224 .279 -. 318 -. 478 .487 -. 443E-01 -. 130 .154 ECIC - ECIX .3106-01 -. 564E-01 .198 -. 2266-01 -. 178E-01 .297E-01 .1526-01 .237E-02 .987E-02 .112E-01 .119E-01 .154E-01 .349E-01 .342E-01 .355E-01 .215E-01 .287E-01 .289E-01 NP-87/63 STUDSVIK ENERGITEKNIK AB APPENDIX D.3 1987-06-09 Description of the Accompanying Data Package STUDSVIK THIS TAPE CONTAINS DATA FROM THE ICAP PREDICTION CALCULATION WITH THE RELAP5/MOD2/36.04 FOR THE LOFT EXPERIMENT NO. L3-5. CONTENTS, FILE 1. 2. "3 4. -"- 5. DATA, 6. 7. 8. I. II. THIS DESCRIPTIVE TEXT CASE A, STATE INPUT B, STEADY "- -"-"-"- , , , C, COMPUTER NAME WORD SIZE CYBER 170-810 60 TAPE FORMAT NUMBER OF TRACKS PACKING DENSITY RECORD SIZE BLOCKING FACTOR CODED CONTROL WORDS 9 1600 BPI 80 64 EBCDIC NO III. DATA FORMAT, -"- EXPERIMENT CASE A CASE B CASE C FOR EACH OF THE FILES 5 THROUGH 8 TITLE RECORD(S), (FORMAT I5,A75) FIELD 1, THE NUMBER OF DATA CHANNELS ON THE FILE FIELD 2, PROBLEM IDENTIFICATION UP TO FIVE ADDITIONAL IDENTIFICATION RECORDS MAY BE ADDED BY 'C' IN COLUMN 1 OF FIELD 1 DATA SET RECORD 1, (FORMAT 215,A60) FIELD 1, NUMBER OF DATA POINTS FIELD 2, THE ENGINEERING UNIT CODE (EUC) VARIABLE FIELD 3, IDENTIFYING TEXT OF THE DATA REMAINING DATA SET RECORDS FORMAT 5(E16.9) FOR THE EACH DATA CHANNEL SUBMITTED IS GIVEN THROUGH TWO DATA SETS, THE FIRST OF WHICH IS THE TIME DATA SET. THE TWO SETS HAVE THE SAME NUMBER OF DATA POINTS. THE TIME DATA SET IS IDENTIFIED BY EUC=77 (FIELD AND THE IDENTIFYING TEXT 'TIME' (FIELD 3). 2) U.S. NUCLEAR REGULATORY COMMISSION NRC FORM 335 (2-89) NRCM 1102, 1. REPORT NUMBER (fAWned by NRC. Add Vol., Supp., Rev., ind Addendum Numbes, If any.) NUREG/IA-0n37 BIBLIOGRAPHIC DATA SHEET 3201.3202 STUDSV I K/NP-87/63 (See instructions on the reverse) 2.TITLE AND SUBTITLE Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT Small Break Experiment L3-5 3. DATE REPORT PUBLISHED YEAR MONTH 1992 March 4. FIN OR GRANT NUMBER A4682 6. TYPE OF REPORT 5. AUTHOR(S) J. Eriksson 7. PERIOD COVERED (Inclusive Dares) B. PERFORMING ORGANIZATION name and mailing address.) NAME AND ADDRESS WfNRC. provide Division, Office or Region, U.S. Nuclear Regulatory Commission, andmailing address. if contractor, provide Swedish Nuclear Power Inspectorate S-61182 Nykoping Sweden 9.SPONSOR ING ORGANIZATION - NAME AND ADDA ESS (II NRC. type .,~ as above if contractor. provide NRC Division. Office or Region. U.S. Nuclear Regulatory Commission. 9. SPO NSO R ING OR GAN IZATI ON - NAM E AN D ADD RESS (if NRC, typ "San as above" if contrator,provide NRC Divisin, Offie or Region, U.S Nuclear Regulatory Commission, and mailing address.) Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 10. SUPPLEMENTARY NOTES 11. ABSTRACT 120 words or le•) An independent assessment of the RELAP5/MOD2 code was conducted by Studsvik Energiteknik AB. The LOFT small break experiment L3-5 was assessed using the RELAP5/MOD2 code. Three calculations were carried out; one base case calculation and two sensitivity calculations with model changes. The transient predictions compare reasonably well with the experiment as regards firsthand parameters such as system pressures and fluid temperatures. Variations are enumerated and discussed. 12. KEY WORDS/DESCR!PTORS (List words or phrases that will assist researchersin locating the report.) ICAP Program RELAP5/MOD2 Computer Code Small Break Experiment 13. AVAILABILITY STATEMENT Unlimited 14. SECURITY CLASSIFICATION Paw) 'rhis Unclassified 1This Report) Uncl assified 15. NUMBER OF PAGES 16. PRICE NRC FORM 335 (2-89) THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER SPECIAL FOURTH-CLASS RATE POSTAGE Et FEES PAID USNRC UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555 PERMIT No. G-67 OFFICIlL BUSINESS PENALTY FOR PRIVATE USE, $300 -c-n-6-35-7 _2 uis NRC..FTE~s rnIV OF CHS BPANCH FPJI ,NL/N-35 3 ýIASHJNGTON Nac RESEARCH jDC 20555