Comments
Description
Transcript
C H A P T E R 5
C H A P T E R 5 Analytic Trigonometry Section 5.1 Using Fundamental Identities . . . . . . . . . . . . . . . 438 Section 5.2 Verifying Trigonometric Identities . . . . . . . . . . . . . 450 Section 5.3 Solving Trigonometric Equations Section 5.4 Sum and Difference Formulas . . . . . . . . . . . . . . . 471 Section 5.5 Multiple-Angle and Product-to-Sum Formulas . . . . . . . . . . . . . 458 . . . . . . 490 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 C H A P T E R 5 Analytic Trigonometry Section 5.1 ■ Using Fundamental Identities You should know the fundamental trigonometric identities. (a) Reciprocal Identities sin u 1 csc u csc u 1 sin u cos u 1 sec u sec u 1 cos u tan u 1 sin u cot u cos u cot u 1 cos u tan u sin u (b) Pythagorean Identities sin2 u cos2 u 1 1 tan2 u sec2 u 1 cot2 u csc2 u (c) Cofunction Identities sin 2 u cos u tan 2 u cot u sec 2 u csc u cos cot 2 u sin u 2 u tan u csc 2 u sec u (d) EvenOdd Identities sinx sin x cscx csc x cosx cos x secx sec x tanx tan x cotx cot x ■ You should be able to use these fundamental identities to find function values. ■ You should be able to convert trigonometric expressions to equivalent forms by using the fundamental identities. Vocabulary Check 1. tan u 2. cos u 3. cot u 4. csc u 5. cot2 u 6. sec2 u 7. cos u 8. csc u 9. cos u 10. tan u 438 Section 5.1 1. sin x tan x 3 2 , cos x 1 ⇒ x is in Quadrant II. 2 32 sin x 3 cos x 12 cot x 3 1 1 tan x 3 3 sec x 1 1 2 cos x 12 csc x 1 2 23 1 sin x 32 3 3 3. sec 2, sin cos 2 2 ⇒ is in Quadrant IV. 2 1 1 tan 1 2 csc sin 5. tan x 5 13 , sec x ⇒ x is in 12 12 12 1 sec x 13 sin x 1 cos2 x 3 , cos x 3 2 x is in Quadrant III. 1 23 sin x 2 csc x 1 2 sin x sec x 2 1 23 3 cos x 3 cot x 3 1 3 tan x 3 14 21 5 3 4. csc , tan 3 4 sin 1 3 csc 5 cos sin 3 tan 5 sec 1 5 cos 4 cot 1 4 tan 3 4 4 35 10 6. cot 3, sin 10 is in Quadrant II. Quadrant III. cos x 3 is in Quadrant I. 1 1 sec 2 2 sin 22 1 tan 22 cos cot 2. tan x Using Fundamental Identities cos cot sin 144 5 1 169 13 tan 1 1 cot 3 310 10 cot x 12 1 tan x 5 csc 1 10 sin csc x 13 1 sin x 5 sec 10 1 10 cos 3 10 3 3 35 7. sec , csc ⇒ is in Quadrant IV. 2 5 8. cos 2 x 5, cos x 5, x is in Quadrant I. 3 4 sin 5 1 1 csc 355 3 sin x 1 45 cos 2 1 1 sec 32 3 tan x sin x 3 cos x 5 tan 5 sin 53 cos 23 2 csc x 1 5 sin x 3 cot 1 1 25 2 tan 52 5 5 sec x 1 5 cos x 4 cot x 1 4 tan x 3 2 5 3 5 3 44 439 440 Chapter 5 9. sin x Analytic Trigonometry 2 1 1 ⇒ sin x , tan x ⇒ x is 3 3 4 10. sec x 4, sin x > 0 x is in Quadrant I. in Quadrant II. cos x 1 sin2 x 1 1 22 9 3 cos x 1 1 sec x 4 cot x 1 1 22 tan x 24 sin x 1 14 sec x 1 1 32 cos x 223 4 tan x 15 sin x cos x 4 csc x 1 1 3 sin x 13 csc x 1 4 415 sin x 15 15 cot x 15 1 1 tan x 15 15 11. tan 2, sin < 0 ⇒ is in Quadrant III. sec tan2 1 4 1 5 cos 5 1 1 5 sec 5 5 1 sin 2 1 1 cot tan 2 csc 13. sin 1, cot 0 ⇒ 3 2 cos 1 sin2 0 sec is undefined. 4 1 15 1 1 csc 5 1 51 2 26 5 sin 1 cos 5 sec 1 5 56 cos 12 26 cot 1 12 26 tan 6 6 5 12 26 14. tan is undefined, sin > 0. 2 sin is undefined ⇒ cos 0 cos sin 1 02 1 csc 1 15. sec x cos x sec x 4 tan tan tan is undefined. 15 is in Quadrant III. cos 1 51 25 2 5 5 12. csc 5, cos < 0 sin sin 1 cos2 2 1 1 sec x The expression is matched with (d). 17. cot2 x csc2 x cot2 x 1 cot2 x 1 The expression is matched with (b). csc 1 1 sin sec 1 is undefined. cos cot cos 0 0 sin 1 16. tan x csc x sin x cos x 1 1 sin x cos x sec x Matches (a). 18. 1 cos2 xcsc x sin2 x Matches f . 1 sin x sin x Section 5.1 19. sin x sinx tan x cosx cos x 20. sin2 x cos x cot x cos2 x sin x 21. sin x sec x sin x 22. cos2 xsec2 x 1 cos2 xtan2 x 1 tan x cos x 23. sec4 x tan4 x sec2 x tan2 xsec2 x tan2 x sec2 x tan2 x1 sec2 x tan2 x cos x sin2 x 2 The expression is matched with f . sin2 x Matches (c). 24. cot x sec x cos x sin x 1 1 cos x sin x csc x 25. Matches (a). 26. sin2 x sec2 x 1 tan2 x 2 2 sin x sin x cos2 x 1 sin2 x sec2 x The expression is matched with (e). sin2 x sin x cos22 x sin x tan x sin x cos x cos x cos x 27. cot sec cos sin 1 1 cos sin csc Matches (d). 28. cos tan cos sin sin cos 29. sin csc sin sin 1 sin2 sin 1 sin2 cos2 30. sec2 x1 sin2 x sec2 x sec2 x sin2 x sec2 x 1 cos2 x sec2 x sin2 x cos2 x 31. cos xsin x cot x csc x 1sin x sin2 x cos x sin x sin x 1 cos x sec2 x tan2 x 1 32. csc 1sin cos cot sec 1cos sin 33. 1 sin2 x cos2 x sin2 x cos2 x tan2 x cos2 x 2 2 2 csc x 1 cot x cos x sin2 x 34. 1 1 1 cos2 x tan2 x 1 sec2 x 1cos2 x 35. sec sin 1 sin cot tan cos 36. tan2 sin2 2 sec cos2 sin2 cos2 1 sec2 1 1cos2 441 The expression is matched with (b). Matches (c). The expression is matched with (e). cos 2 x Using Fundamental Identities 37. cos sin2 cos2 sin2 cos2 1 cos sin 1 cos sin 2 x sec x sin xsec x sin x cos x cos x tan x 1 sin x 442 Chapter 5 Analytic Trigonometry 38. cot 2 x cos x tan x cos x cos x cos x sin x sin x 39. cos2 y 1 sin2 y 1 sin y 1 sin y 40. cos t1 tan2 t cos tsec2 t 41. sin tan cos sin 1 sin y1 sin y 1 sin y 1 sin y 1 cos t sec t cos2 t cos t sin cos cos 42. csc tan sec 1 sin sin cos sec sin2 cos2 cos cos sin2 cos2 cos 2 sec 1 cos 1 sec cos sec 43. cot u sin u tan u cos u cos u sin u sin u cos u sin u cos u 44. sin sec cos csc cos u sin u sin cos cos sin sin2 cos2 cos sin 1 cos sin sec csc 45. tan2 x tan2 x sin2 x tan2 x1 sin2 x 46. sin2 x csc2 x sin2 x sin2 xcsc2 x 1 sin2 x cot2 x tan2 x cos2 x sin2 x cos2 x sin2 x cos2 x cos2 x sin2 x 47. sin2 x sec2 x sin2 x sin2 xsec2 x 1 cos2 x sin2 x 48. cos2 x cos2 x tan2 x cos2 x1 tan2 x cos2 xsec2 x sin2 x tan2 x cos2 x cos1 x 2 1 49. sec2 x 1 sec x 1sec x 1 sec x 1 sec x 1 50. cos2 x 4 cos x 2cos x 2 cos x 2 cos x 2 sec x 1 cos x 2 51. tan4 x 2 tan2 x 1 tan2 x 12 52. 1 2 cos2 x cos4 x 1 cos2 x2 sec2 x2 sec4 x sin2 x2 sin4 x Section 5.1 53. sin4 x cos4 x sin2 x cos2 xsin2 x cos2 x Using Fundamental Identities 54. sec4 x tan4 x sec2 x tan2 xsec2 x tan2 x 1sin2 x cos2 x sec2 x tan2 x1 sin2 x cos2 x sec2 x tan2 x 55. csc3 x csc2 x csc x 1 csc2 xcsc x 1 1csc x 1 csc2 x 1csc x 1 cot2 xcsc x 1 56. sec3 x sec2 x sec x 1 sec2 xsec x 1 sec x 1 sec2 x 1sec x 1 tan2 xsec x 1 57. sin x cos x2 sin2 x 2 sin x cos x cos2 x 58. cot x csc xcot x csc x cot2 x csc2 x 1 sin2 x cos2 x 2 sin x cos x 1 2 sin x cos x 59. 2 csc x 22 csc x 2 4 csc2 x 4 61. 60. 3 3 sin x3 3 sin x 9 9 sin2 x 4csc2 x 1 91 sin2 x 4 cot2 x 9 cos2 x 1 1 1 cos x 1 cos x 1 cos x 1 cos x 1 cos x1 cos x 62. 1 1 sec x 1 sec x 1 sec x 1 sec x 1 sec x 1sec x 1 2 1 cos2 x sec x 1 sec x 1 sec2 x 1 2 sin2 x 2 tan2 x 2 csc2 x 2 tan x 1 2 2 cot2 x 63. 1 sin x cos2 x 1 sin x2 cos2 x 1 2 sin x sin2 x cos x 1 sin x cos x cos x1 sin x cos x1 sin x 2 2 sin x cos x1 sin x 21 sin x cos x1 sin x 2 cos x 2 sec x 64. tan x sec2 x tan2 x sec2 x tan x tan x 1 cot x tan x 65. 1 cos2 y sin2 y 1 cos y 1 cos y 1 cos y1 cos y 1 cos y 1 cos y 443 444 66. Chapter 5 5 tan x sec x Analytic Trigonometry tan x sec x 5tan x sec x tan2 x sec2 x 5tan x sec x 1 tan x sec x 67. 3 sec x tan x sec x tan x 3sec x tan x sec2 x tan2 x 3sec x tan x 1 sec x tan x 3sec x tan x 5sec x tan x 68. csc x 1 tan2 x csc x 1 69. y1 cos csc x 1 2 x, y 2 tan2 xcsc x 1 tan2 xcsc x 1 tan2 xcsc x 1 tan2 x tan4 xcsc x 1 2 csc x 1 cot2 x sin x 1 x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y1 0.1987 0.3894 0.5646 0.7174 0.8415 0.9320 0.9854 0 y2 0.1987 0.3894 0.5646 0.7174 0.8415 0.9320 0.9854 Conclusion: y1 y2 2 0 70. y1 sec x cos x, y2 sin x tan x 6 x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y1 0.0403 0.1646 0.3863 0.7386 1.3105 2.3973 5.7135 2 0 0 y2 0.0403 71. y1 0.1646 0.3863 0.7386 1.3105 2.3973 5.7135 It appears that y1 y2. cos x 1 sin x , y 1 sin x 2 cos x 12 x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y1 1.2230 1.5085 1.8958 2.4650 3.4082 5.3319 11.6814 y2 1.2230 1.5085 1.8958 2.4650 3.4082 5.3319 11.6814 2 0 72. y1 sec4 x sec2 x, y2 tan2 x tan4 x Conclusion: y1 y2 1200 x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y1 0.0428 0.2107 0.6871 2.1841 8.3087 50.3869 1163.6143 y2 1 2 0 0.0428 0.2107 0.6871 2.1841 8.3087 50.3869 0 1163.6143 It appears that y1 y2. 73. y1 cos x cot x sin x csc x cos x cot x sin x cos x x sin x cos sin x cos2 x sin2 x sin x sin x cos2 x sin2 x 1 csc x sin x sin x 4 −2 2 −4 Section 5.1 Using Fundamental Identities 74. y1 sec x csc x tan x cot x sec x csc x tan x 75. y1 1 cos x 1 6 sin x sin x cos x 1 sin2 x cos x sin x cos x sin x 1 sin2 x cos x sin x cos2 x cos x cot x cos x sin x sin x − 2 −6 1 1 cos x tan x sin x cos x 5 1 1 1 cos x cos x sin x cos x sin x cos x sin x 76. y1 − 2 sin2 x sin x 1 cos2 x tan x sin x cos x sin x cos x cos x 1 1 sin cos 2 cos 1 sin 4 1 1 2 sin sin2 cos2 2 cos 1 sin 1 1 2 sin 1 2 cos 1 sin 1 2 2 sin 2 cos 1 sin 1 1 sin sec cos 1 sin cos 2 −5 cos 1 1 sin 1 sin 1 1 sin cos cos 2 cos 1 sin 2 cos 1 sin cos 1 sin 2 − 2 2 −4 77. Let x 3 cos , then 9 x2 9 3 cos 2 9 9 cos2 91 cos2 9 sin2 3 sin . 78. Let x 2 cos . 64 16x2 64 162 cos 2 79. Let x 3 sec , then x2 9 3 sec 2 9 641 cos2 9 sec2 9 64 sin2 9sec2 1 8 sin 9 tan2 3 tan . 445 446 Chapter 5 Analytic Trigonometry 80. Let x 2 sec . 81. Let x 5 tan , then x 4 2 sec 4 x2 25 5 tan 2 25 4sec2 1 25 tan2 25 4 tan2 25tan2 1 2 tan 25 sec2 2 2 5 sec . 82. Let x 10 tan . 83. Let x 3 sin , then 9 x2 3 becomes x2 100 10 tan 2 100 9 3 sin 2 3 100tan2 1 9 9 sin2 3 100 sec2 91 sin2 3 10 sec 9 cos2 3 3 cos 3 cos 1 sin 1 cos2 1 12 0. 84. x 6 sin 85. Let x 2 cos , then 16 4x2 22 becomes 16 42 cos 2 22 3 36 x2 36 6 sin 2 16 16 cos2 22 361 sin2 161 cos2 22 36 cos2 16 sin2 22 6 cos cos 4 sin 22 3 1 6 2 sin ± 1 sin cos2 1 12 3 ± 4 ± ± 86. 2 2 cos 1 sin2 1 21 1 2 2 3 2 x 10 cos 2 2 . 87. sin 1 cos2 53 100 x2 Let y1 sin x and y2 1 cos2 x, 0 ≤ x ≤ 2. 100 10 cos 2 y1 y2 for 0 ≤ x ≤ , so we have 1001 cos2 sin 1 cos2 for 0 ≤ ≤ . 100 sin2 2 10 sin y2 3 53 sin 10 2 cos 1 sin 2 2 0 y1 1 2 3 2 −2 1 2 Section 5.1 Using Fundamental Identities 89. sec 1 tan2 88. cos 1 sin2 2 Let y1 1 and y2 1 tan2 x, 0 ≤ x ≤ 2. cos x 2 0 447 y1 y2 for 0 ≤ x < 3 and < x ≤ 2, so we have 2 2 −2 sec 1 tan2 for 0 ≤ < 3 ≤ ≤ 2 2 3 and < < 2. 2 2 4 y2 2 0 y1 −4 90. csc 1 cot2 91. ln cos x ln sin x ln 2 0 < < cos x lncot x sin x 2 0 −2 92. ln sec x ln sin x ln sec x sin x 1 ln cos x 93. ln cot t ln1 tan2 t ln cot t 1 tan2 t sin x ln tan x 94. lncos2 t ln1 tan2 t lncos2 t1 tan2 t lncos2 t sec2 t ln cos2 t 1 cos2 t 96. tan2 1 sec2 (b) csc2 97. cos 346 ln 1 ln csc t sec t sin t cos t 1 sec 346 cos 346 (b) 2 2 sin 80 cos90 80 sin 80 1.0622 tan 3.12 1 1.00173 sec 3.12 0.9848 0.9848 0.8 (b) 3.1 cos 3.1 1 cos 2 1.00173 cos2 t 2 2 cot2 1.6360 0.6360 1 7 7 (a) tan 346 1 1.0622 1 cos t sin t 95. (a) csc2 132 cot2 132 1.8107 0.8107 1 2 2 ln ln1 0 (a) ln cot t sec2 t 2 0.8 sin 0.8 0.7174 0.7174 448 Chapter 5 Analytic Trigonometry 98. sin sin 99. W cos W sin 250 (a) sin250 0.9397 W sin tan W cos sin 250 0.9397 (b) 1 2 2 0.4794 sin sin 1 1 0.4794 2 100. csc x cot x cos x 1 cos x cos x sin x sin x cos x cos x sin2 x cos x sin2 x cos x sin2 x cos x1 sin2 x sin2 x cos x cos2 x cos x cot2 x sin2 x 102. False. A cofunction identity can be used to transform a tangent function so that it can be represented by a cotangent function. 104. As x → 0, cos x → 1 and sec x 106. As x → , sin x → 0 and csc x 1 → 1. cos x 1 → . sin x 101. True. For example, sinx sin x means that the graph of sin x is symmetric about the origin. 103. As x → , sin x → 1 and csc x → 1. 2 105. As x → , tan x → and cot x → 0. 2 107. cos 1 sin2 is not an identity. cos2 sin2 1 ⇒ cos ± 1 sin2 108. The equation is not an identity. 109. cot ± csc2 1 sin k tan k cos k 111. sin csc 1 is an identity. 110. The equation is not an identity. 1 1 1 1 sec 5 sec 5 cos 5 cos 5 112. The equation is not an identity. The angles are not the same. sin csc sin sin k tan is not an identity. cos k 1 sin sin sin 1, in general sin 1 sin 1, provided sin 0. Section 5.1 113. Let x, y be any point on the terminal side of . yr xr 2 449 114. Divide both sides of sin2 cos2 1 by cos2 : Then, r x2 y2 and sin2 cos2 Using Fundamental Identities sin 2 cos 2 1 2 cos cos 2 cos 2 2 tan2 1 sec2 Divide both sides of sin2 cos2 1 by sin2 : y2 x2 r2 sin 2 cos 2 1 sin 2 sin 2 sin 2 r2 r2 1 cot2 csc2 1. Discussion for remembering identities will vary, but one key is first to learn the identities that concern the sine and cosine functions thoroughly, and then to use these as a basis to establish the other identities when necessary. 115. x 5x 5 x 52 x 25 116. 2z 32 2z 22z 3 32 2 2 4z 12z 9 117. 1 x x 8 xx 5 x5 x8 x 5x 8 119. 118. x2 6x 8 x 5x 8 2x 7 2xx 4 7x2 4 x2 4 x 4 x2 4x 4 121. f x 120. x2 6x 3 x4 32x 1 x4 x x2x 5 x2 x 25 x 5 x 5x 5 x 5x 5 2x2 8x 7x2 28 x2 4x 4 x x3 5x2 x 5x 5 5x2 8x 28 x2 4x 4 x1 x2 5x x 5x 5 xx2 5x 1 x2 25 1 sinx 2 122. f x 2 tan y 2x y 3 2 Amplitude: 2 1 Amplitude: 2 1 2 Period: 2 x 1 −1 3 Period: 2 2 1 1 3 1 0, 0, , , 1, 0, , , 2, 0 2 2 2 2 −3 Two consecutive vertical asymptotes: x 1, x 1 −2 Key points: 6x 3 6x 3 x4 4x x4 x4 Key points: 21, 2, 0, 0, 12, 2 −1 x 1 −1 −2 −3 3 450 Chapter 5 123. f x Analytic Trigonometry 1 sec x 2 4 y 4 3 1 cos x first. 2 4 Sketch the graph of y 2 1 π 2 −2 1 2 Amplitude: 3π 2π 2 x −3 Period: 2 −4 One cycle: x 0 ⇒ x 4 4 x 7 2 ⇒ x 4 4 The x-intercepts of y x 1 1 cos x correspond to the vertical asymptotes of f x sec x . 2 4 2 4 5 ,x , . . . 4 4 124. f x 3 cosx 3 2 Using y a cos bx, a b 1 so the period is y 5 4 3 3 so the amplitude is . 2 2 3 1 2 2. 1 −π π 2π x −2 x shifts the graph right by and 3 shifts the graph upward by 3. Section 5.2 −1 −3 Verifying Trigonometric Identities ■ You should know the difference between an expression, a conditional equation, and an identity. ■ You should be able to solve trigonometric identities, using the following techniques. (a) Work with one side at a time. Do not “cross” the equal sign. (b) Use algebraic techniques such as combining fractions, factoring expressions, rationalizing denominators, and squaring binomials. (c) Use the fundamental identities. (d) Convert all the terms into sines and cosines. Vocabulary Check 1. identity 2. conditional equation 3. tan u 4. cot u 5. cos2 u 6. sin u 7. csc u 8. sec u 1. sin t csc t sin t sin t 1 1 3. 1 sin 1 sin 1 sin2 cos2 2. sec y cos y cos1 y cos y 1 4. cot2 ysec2 y 1 cot2 y tan2 y 1 Section 5.2 5. cos2 sin2 1 sin2 sin2 Verifying Trigonometric Identities 6. cos2 sin2 cos2 1 cos2 1 2 sin2 2 cos2 1 7. sin2 sin4 sin2 1 sin2 8. cos x sin x tan x cos x sin x 1 cos2 cos2 cos2 cos4 cos x cos2 x sin2 x cos x 1 cos x sec x 9. csc2 1 csc2 cot cot 10. cot3 t cot t cot2 t csc t csc t csc2 tan sin sin1 cos sin1 cos1 2 cot tcsc2 t 1 csc t cos t csc2 t 1 sin t 1 sin t csc sec cos t sin t csc2 t 1 sin t cos tcsc2 t 1 11. cot2 t cos2 t csc t sin2 t sin t 12. cos2 t sin t 1 sin2 t 1 sin2 t sin t sin t sin t 1 1 tan2 tan tan tan sec2 tan csc t sin t 13. sin12 x cos x sin52 x cos x sin12 x cos x1 sin2 x sin12 x cos x cos2 x cos3 xsin x 14. sec6 xsec x tan x sec4 xsec x tan x sec4 xsec x tan xsec2 x 1 sec4 xsec x tan x tan2 x sec5 x tan3 x 15. 1 cos x cos x cot x cos x sec x tan x sin x cos2 x sin x 1 sin2 x sin x 1 sin x sin x csc x sin x 16. sec 1 sec 1 1 cos 1 1sec sec sec sec sec 1 sec 1 sec sin x 451 452 Chapter 5 17. csc x sin x Analytic Trigonometry 1 sin2 x sin x sin x 18. sec x cos x 1 sin2 x sin x 1 cos2 x cos x cos2 x sin x sin2 x cos x cos x 1 cos x sin x sin x cos x cot x 19. 20. 1 1 csc x sin x sin x csc x sin x csc x cot x tan x 1 tan x cot x csc x sin x 1 csc x sin x cos cot cos cot 1 sin 1 1 sin 1 sin cos cos 1 sin sin 1 sin 22. 1 sin cos 1 sin 2 cos2 cos 1 sin cos 1 sin sin sin cos2 sin sin2 sin 1 sin 1 sin sin 1 sin sin x cos x sin x tan x 1 1 cot x tan x tan x cot x tan x cot x 21. 1 cos x cos x 1 sin 1 2 sin sin2 cos2 cos 1 sin 2 2 sin cos 1 sin 21 sin cos 1 sin 2 cos 2 sec csc 23. 1 1 csc x 1 sin x 1 sin x 1 csc x 1 sin x 1csc x 1 24. cos x cos x1 tan x cos x cos x 1 tan x 1 tan x sin x csc x 2 sin x csc x sin x csc x 1 cos x tan x 1 tan x sin x csc x 2 1 sin x csc x 1 cos xsin xcos x 1 sin xcos x sin x csc x 2 sin x csc x 2 sin x cos x cos x sin x sin x cos x sin x cos x 1 25. tan 2 tan cot tan tan1 tan 1 26. cos2 x sin x tan x sin2 x cos x 27. cos x cos x cscx 1sinx secx 1cosx cosx sinx cos x sin x cot x Section 5.2 28. 1 sin y1 siny 1 sin y1 sin y 29. Verifying Trigonometric Identities tan x cot x 1 sec x cos x cos x 1 sin2 y cos2 y tan x tan y 30. 1 tan x tan y 32. 1 1 cot x cot y 1 1 1 cot x cot y cot x cot y cot x cot y 1 1 cot x tan y tan x cot y 31. tan x cot y 1 1 cot x tan y cot y cot x cot x cot y 1 cot x tan y cot x tan y tan y cot x sin x sin y cos x cos y cos x cos ycos x cos y sin x sin ysin x sin y sin x sin y cos x cos y sin x sin ycos x cos y cos2 x cos2 y sin2 x sin2 y sin x sin ycos x cos y cos2 x sin2 x cos2 y sin2 y sin x sin ycos x cos y 0 33. 1 sin 1 sin 11 sin sin 1 sin 1 sin 35. cos2 cos2 37. sin t csc 34. 1 cos 1 cos 11 cos cos 1 cos 1 cos 11 sin sin 11 cos cos 1 cossin 1 sincos 1 sin cos 1 cos sin 2 2 2 2 2 cos 2 sin2 1 2 t sin t sec t sin t cos1 t −5 38. sec2 (b) 5 −5 2 2sin x2 sin x2 cos x2 2 cos x cos x2 and y2 1. Let y1 Identity —CONTINUED— 2 2 2 y sec 2 2 x 1 csc sin t tan t cos t 5 39. (a) 36. sec2 y cot2 2 2 Identity 2 y tan2 y 1 x 1 cot2 x 453 454 Chapter 5 Analytic Trigonometry 39. —CONTINUED— (c) 2 sec2 x 2 sec2 x sin2 x sin2 x cos2 x 2 sec2 x1 sin2 x sin2 x cos2 x 2 sec2 xcos2 x 1 2 1 cos2 x cos2 x 1 21 1 40. (a) (b) 3 −2 2 −1 Identity Identity (c) csc xcsc x sin x sin x cos x cos x cot x csc2 x csc x sin x 1 cot x sin x sin x csc2 x 1 1 cot x cot x csc2 x 41. (a) (b) 5 y2 y1 −2 2 −1 Not an identity (c) 2 cos2 x 3 cos4 x 1 cos2 x2 3 cos2 x Let y1 2 cos x2 3cos x4 and sin2 x2 3 cos2 x y2 sin x23 2cos x2. sin2 x3 2 cos2 x Not an identity 42. (a) (b) 5 − −5 Not an identity Not an identity (c) tan4 x tan2 x 3 sin4 x sin2 x 3 4 cos x cos2 x sin4 x 1 sin2 x 3 2 cos x cos2 x 1 sin4 x sin2 x cos2 x 3 cos2 x cos2 x 1 sin2 x sin2 x cos2 x 3 2 cos x cos2 x 1 sin2 x cos2 x cos2 x 1 3 sec2 x tan2 x 3 sec2 x 4 tan2 x 3 Section 5.2 43. (a) 44. (a) 5 Verifying Trigonometric Identities 1 −2 −2 455 2 2 −1 −1 Let y1 1 2 1 1 and y2 . sin x4 sin x2 tan x4 Identity (b) Identity (b) Identity (c) sin4 2 sin2 1 cos sin2 12 cos Identity cos2 2 cos (c) csc4 x 2 csc2 x 1 csc2 x 12 cot2 45. (a) x 2 cot4 cos5 x 46. (a) 3 −2 y2 y1 −2 2 −3 Let y1 3 2 −5 cos x 1 sin x . and y2 1 sin x cos x Not an identity (b) Not an identity (b) Not an identity (c) Not an identity (c) cos x cos x 1 sin x 1 sin x 1 sin x 1 sin x cos x1 sin x 1 sin2 x cos x1 sin x 1 sin x cos2 x cos x 47. tan3 x sec2 x tan3 x tan3 x sec2 x 1 tan3 x tan5 x cot csc 1 . is the reciprocal of csc 1 cot They will only be equivalent at isolated points in their respective domains. Hence, not an identity. 48. tan2 x tan4 x sec 2 x tan2 x sin x sin x 1 cos x cos x cos x 2 4 2 4 2 1 sin4 x sin2 x 4 cos x cos2 x 1 sin2 x cos2 x sin4 x 4 cos x cos2 x 1 sin2 xcos2 x sin2 x 4 cos x cos2 x sin2 x 1 4 cos x cos2 x 1 sec4 x tan2 x 456 Chapter 5 Analytic Trigonometry 49. sin2 x sin4 x cos x sin2 x 1 sin2 x cos x 50. sin4 x cos4 x sin2 x sin2 x cos 4 x sin2 x cos2 x cos x 1 cos2 x 1 cos2 x cos 4 x sin2 x cos3 x 1 2 cos2 x cos4 x cos 4 x 1 2 cos2 x 2 cos4 x 51. sin2 25 sin2 65 sin2 25 cos290 65 52. cos2 55 cos2 35 cos2 55 sin290 35 sin2 25 cos2 25 cos2 55 sin2 55 1 1 53. cos2 20 cos2 52 cos2 38 cos2 70 cos2 20 cos2 52 sin290 38 sin290 70 cos2 20 cos2 52 sin2 52 sin2 20 cos2 20 sin2 20 cos2 52 sin2 52 11 2 54. sin2 12 sin2 40 sin2 50 sin2 78 sin2 12 sin2 78 sin2 40 sin2 50 cos290 12 sin2 78 cos290 40 sin2 50 cos2 78 sin2 78 cos2 50 sin2 50 112 55. cos x csc x cot x cos x 1 cos x sin x sin x cos x 1 1 sin2 x cos x1 csc2 x cos xcsc2 x 1 cos x cot2 x 56. (a) (b) h sin90 h cos h cot sin sin (c) Greatest: 10 , Least: 90 (d) Noon 10 20 30 40 50 60 70 80 90 s 28.36 13.74 8.66 5.96 4.20 2.89 1.82 0.88 0 57. False. For the equation to be an identity, it must be true for all values of in the domain. 58. True. An identity is an equation that is true for all real values in the domain of the variable. 59. Since sin2 1 cos2 , then sin ± 1 cos2 ; 60. tan sec2 1 sin 1 cos2 if lies in Quadrant III or IV. One 7 such angle is . 4 True identity: tan ± sec2 1 tan sec2 1 is not true for 2 < < or 32 < < 2. Thus, the equation is not true for 34. Section 5.2 61. 2 3i 26 2 3i 26i Verifying Trigonometric Identities 62. 2 5i2 2 5i2 5i 2 3 26 i 4 20i 25i2 4 20i 25 21 20i 63. 16 1 4 4i1 2i 64. 3 2i3 3 2i3 2i3 2i 4i 8i2 9 12i 4i23 2i 4i 8 5 12i3 2i 8 4i 15 10i 36i 24i2 9 46i 65. x2 6x 12 0 a 1, b 6, c 12 66. x2 5x 7 0 a 1, b 5, c 7 6 ± 62 4112 21 x 5 ± 52 417 21 6 ± 36 48 2 x 5 ± 53 2 6 ± 84 2 6 ± 221 2 x 3 ± 21 67. 3x2 6x 12 0 3x2 2x 4 0 x2 2x 4 0 a 1, b 2, c 4 x 2 ± 22 414 21 68. 8x2 4x 3 0 a 8, b 4, c 3 x 4 ± 42 483 28 4 ± 112 16 2 ± 4 16 2 x 4 ± 47 16 2 ± 20 2 x 1 1 ± 7 4 2 ± 25 2 1 ± 5 457 458 Chapter 5 Analytic Trigonometry Section 5.3 Solving Trigonometric Equations ■ You should be able to identify and solve trigonometric equations. ■ A trigonometric equation is a conditional equation. It is true for a specific set of values. ■ To solve trigonometric equations, use algebraic techniques such as collecting like terms, extracting square roots, factoring, squaring, converting to quadratic type, using formulas, and using inverse functions. Study the examples in this section. Vocabulary Check 1. general 2. quadratic 3. extraneous 2. sec x 2 0 1. 2 cos x 1 0 (a) 2 cos 1 12 10 3 2 (b) 2 cos 1 5 12 10 3 2 3 (a) x sec 1 2 2 3 cos3 (b) x sec 1 2220 12 5 3 5 1 2 2 3 cos53 4. 2 cos2 4x 1 0 3. 3 tan2 2x 1 0 (a) 3 tan 2 12 2 1 6 1 3 tan2 1 1 3 3 2 (a) x 16 161 2 cos 2 cos2 4 0 5 (b) 3 tan 2 12 2 1 2220 12 5 1 3 tan2 1 6 3 0 1 3 1 2 (b) x 2 1 4 2 2 2 2 2 1 1 1 0 2 1 1 3 16 3 16 1 2 cos 2 cos2 4 2 2 2 3 1 4 2 2 2 1 2 1 0 1 Section 5.3 sin 1 212 1 1 2 2 (a) x 0 (b) 2 sin2 459 6. csc4 x 4 csc2 x 0 5. 2 sin2 x sin x 1 0 (a) 2 sin2 Solving Trigonometric Equations csc4 7 7 1 sin 12 6 6 2 2 1 2 1 6 4 1 4 csc2 4 6 6 sin 6 sin26 1 1 1 2 2 1 4 124 122 16 16 0 0 (b) x csc4 5 6 5 4 5 1 4 csc 4 6 6 sin 56 sin256 1 4 124 122 16 16 0 7. 2 cos x 1 0 2 cos x 1 cos x sin x 1 2 x x 2 2n 3 or x 4 2n 3 3 csc x 2 1 2 csc x 7 2n 6 x 11 or x 2n 6 or x 11. 3 sec2 x 4 0 10. tan x 3 0 tan x 3 x 9. 3 csc x 2 0 8. 2 sin x 1 0 sec2 x 2 n 3 cot2 x cot x ± n 6 5 or x n 6 sin x 0 x n or 2 2n 3 1 3 2 3 x 13. sin xsin x 1 0 2n 3 12. 3 cot2 x 1 0 4 3 sec x ± 2 3 x or x 1 3 n 3 2 n 3 14. 3 tan2 x 1tan2 x 3 0 sin x 1 x 3 2n 2 3 tan2 x 1 0 tan x ± or 1 3 x n 6 5 or x n 6 tan2 x 3 0 tan x ± 3 x or x n 3 2 n 3 460 Chapter 5 Analytic Trigonometry 15. 4 cos 2 x 1 0 cos2 x sin2 x 31 sin2 x 0 1 4 cos2 x ± 4 sin2 x 3 1 2 sin x ± x n or 3 2 x n 3 17. 2 sin2 2x 1 sin 2x ± x 3 2 n or 3 x 2 n 3 18. tan2 3x 3 1 2 ± 2 tan 3x ± 3 2 3 2x 2n, 2x 2n, 4 4 3x n n ⇒ x 3 9 3 3x 2 2 n n ⇒ x 3 9 3 or 5 7 2x 2n, 2x 2n 4 4 Thus, x sin2 x 3 cos2 x 16. 3 5 7 n , n, n, n. 8 8 8 8 We can combine these as follows: x n 3 n ,x 8 2 8 2 19. tan 3xtan x 1 0 tan 3x 0 or 20. cos 2x2 cos x 1 0 tan x 1 0 3x n cos 2x 0 tan x 1 n x 3 x n 4 2 cos x 1 0 or 2x n 2 cos x x n 4 2 x or cos3 x cos x 21. 22. sec2 x 1 0 cos3 x cos x 0 sec2 x 1 cos xcos x 1 0 2 cos x 0, 3 or cos2 x 1 0 3 or 2 1cos x ± 1 x , 2 2 cos x 0, 3 or cos2 1x 0, 23. 3 tan3 x tan x 0 tan x3 tan2 x 1 0 tan x 0, or 3 tan2 x 1 0 3 tan x 0, or 32 1tan x ± 3 tan x 0, or 32 1tan x 5 7 11 , , , 6 6 6 6 sec x ± 1 x 0 or x 1 2 2 2n 3 x 4 2n 3 Section 5.3 2 sin2 x 2 cos x 24. 25. 2 2 cos2 x 2 cos x sec x 2 0 cos x2 cos x 1 0 2 cos x 1 0 or 3 x , 2 2 x 2 cos x 1 cos x x sec x csc x 2 csc x x sin2 x 5 , 3 3 sec x tan x 1 29. 1 ⇒ No solution 2 2 cos2 x cos x 1 0 2 cos x 1cos x 1 0 1 sin x 1 cos x cos x 2 cos x 1 0 1 sin x cos x cos x 1 sin x2 cos2 x 1 2 sin x sin2 x cos2 x 1 2 sin x 1 0 sin x 2 sin2 x 1 0 sec x 2 0 sec x 2 sin2 x 27. 2 sin x csc x 0 csc xsec x 2 0 28. 5 , 3 3 2 4 , 3 3 2 sin x No solution sec x 1 1 2 sec x csc x 2 csc x 0 or or sec x 1 0 sec x 2 cos x 0 csc x 0 sec2 x sec x 2 0 sec x 2sec x 1 0 2 cos2 x cos x 0 26. Solving Trigonometric Equations x1 x sin2 x or cos x 1 0 1 2 cos x 1 5 , 3 3 x 2 sin2 x 2 sin x 0 2 sin xsin x 1 0 sin x 0 or sin x 1 0 x 0, sin x 1 is extraneous. x 3 2 32 is extraneous. x 0 is the only solution. 30. 2 sin2 x 3 sin x 1 0 31. 2 sin x 1sin x 1 0 2 sin x 1 0 sin x x or 1 2 7 11 , 6 6 2 sec2 x tan2 x 3 0 2tan2 x 1 tan2 x 3 0 sin x 1 0 sin x 1 x 3 2 3 tan2 x 1 0 tan x ± x 3 3 5 7 11 , , , 6 6 6 6 461 462 32. Chapter 5 Analytic Trigonometry cos x sin x tan x 2 cos x sin x csc x cot x 1 33. csc x cot x2 12 cos x 2 sin x csc2 x 2 csc x cot x cot2 x 1 cos2 x sin2 x 2 cos x cot2 x 1 2 csc x cot x cot2 x 1 2 cot2 x 2 csc x cot x 0 1 2 cos x cos x 2 cot xcot x csc x 0 1 2 2 cot x 0 x 5 x , 3 3 or cot x csc x 0 3 , 2 2 cos x 1 sin x sin x cos x 1 x By checking in the original equation, we find that x and x 32 are extraneous. The only solution to the equation in the interval 0, 2 is x 2. 34. sin x 2 cos x 2 35. cos 2x sin x cos x 2x sin x 1 cos x x tan x 1 1 2 5 2n or 2x 2n 3 3 n 6 x 5 n 6 x tan1 1 x 36. sin 2x 2x 5 , 4 4 3 37. tan 3x 1 2 4 2n 3 or 2x 5 2n 3 5 n x 6 2 x n 3 3x 2n 4 x 2n 12 3 or These can be combined as x 38. sec 4x 2 4x 2n 3 x n 12 2 39. cos or 5 4x 2n 3 x 5 n 12 2 2x 5 2n 4 x 5 2n 12 3 n . 12 3 2 2 x 2n 2 4 x 3x 4n 2 or x 7 2n 2 4 x 7 4n 2 Section 5.3 40. sin 3 x 2 2 x 1 2 From the graph in the textbook we see that the curve has x-intercepts at x 1 and at x 3. 41. y sin x 4 2n 2 3 x Solving Trigonometric Equations or 5 x 2n 2 3 8 4n 3 x 10 4n 3 In general, we have: sin 2x 1 x 3 2n 2 2 x 3 4n y sin x cos x 42. sin x cos x 0 sin x cos x x n 4 43. y tan2 x 63 From the graph in the textbook we see that the curve has x-intercepts at x ± 2. In general, we have: tan2 1 x n 4 tan 6x 3 6x ± 3 x ± n 6 3 1 3 7 11 For 1 < x < 3 the intercepts are , , , . 4 4 4 4 x ± 2 6n y sec4 44. sec4 8x 4 45. Graph y1 2 sin x cos x. 4 x 40 8 sec4 2 0 x 4 8 x sec ± 2 8 x n 8 4 2 −4 The x-intercepts occur at x 2.678 and x 5.820. x 2 4n For 3 < x < 3 the intercepts are 2 and 2. 46. 4 sin3 x 2 sin2 x 2 sin x 1 0 47. Graph y1 1 sin x cos x 4. cos x 1 sin x 4 10 0 2 −2 x 0.785, 2.356, 3.665, 3.927, 5.498, 5.760 0 2 − 10 The x-intercepts occur at 5 x 1.047 and x 5.236. 3 3 463 464 Chapter 5 48. cos x cot x 3 1 sin x y1 Analytic Trigonometry 49. x tan x 1 0 4 cos x tan x 1 sin x Graph y1 x tan x 1. 2 0 3 The x-intercepts occur at x 0.860 and x 3.426. −6 x 0.524, 2.618 50. x cos x 1 0 4 0 2 −4 51. sec2 x 0.5 tan x 1 0 5 x 4.917 2 0 Graph y1 1 0.5 tan x 1. cos x2 The x-intercepts occur at −5 10 x 0, x 2.678, x 3.142, and 0 x 5.820. 53. Graph y1 2 tan2 x 7 tan x 15. 52. csc2 x 0.5 cot x 5 0 y1 2 −2 sin x 1 2 1 5 2 tan x 10 2 0 x 0.515, 2.726, 3.657, 5.868 5 − 30 The x-intercepts occur at x 0.983, x 1.768, x 4.124 and x 4.910. 2 0 −5 54. 6 sin2 x 7 sin x 2 0 2 x 0.524, 0.730, 2.412, 2.618 2 0 −2 55. 12 sin2 x 13 sin x 3 0 sin x sin x 1 3 or x 0.3398, 2.8018 Graph y1 12 sin2 x 13 sin x 3. 13 ± 132 4123 212 13 ± 5 24 sin x 30 0 3 4 x 0.8481, 2.2935 2 − 10 The x-intercepts occur at x 0.3398, x 0.8481, x 2.2935, and x 2.8018. Section 5.3 Solving Trigonometric Equations 56. 3 tan2 x 4 tan x 4 0 tan x 465 50 4 ± 42 434 4 ± 64 2 2, 23 6 3 tan x 2 tan x x arctan2 n −10 x arctan 1.1071 n 2 0 2 3 23 n 0.5880 n The values of x in 0, 2 are 0.5880, 3.7296, 2.0344, 5.1760. Graph y1 tan2 x 3 tan x 1. 57. tan2 x 3 tan x 1 0 tan x tan x 3 5 2 3 ± 32 411 3 ± 5 21 2 tan x or x 1.9357, 5.0773 3 5 2 4 ± 42 441 24 1 2 2 cos x 1 2 2 2 Solutions in 0, 2 are arccos 2 arccos −3 2 > 1 1 2 2 and 1 2 2: 1.7794, 4.5038. 7 0 1 2 2 No solution 1 2 1.7794 The x-intercepts occur at x 1.9357, x 2.7767, x 5.0773, and x 5.9183. 59. 4 ± 32 1 ± 2 8 2 x arccos −5 x 2.7767, 5.9183 cos x 2 0 58. 4 cos2 x 4 cos x 1 0 cos x 10 tan2 x 6 tan x 5 0 tan x 1tan x 5 0 tan x 1 0 or tan x 5 0 tan x 1 tan x 5 x 5 , 4 4 x arctan 5, arctan 5 466 60. Chapter 5 Analytic Trigonometry sec2 x tan x 3 0 1 tan2 x tan x 3 0 tan2 x tan x 2 0 tan x 2tan x 1 0 tan x 2 0 tan x 1 0 tan x 2 tan x 1 x arctan2 n x arctan1 n 1.1071 n n 4 5 Solutions in 0, 2 are arctan2 , arctan2 2, , . 4 4 61. 2 cos2 x 5 cos x 2 0 62. 2 sin2 x 7 sin x 3 0 2 cos x 1cos x 2 0 sin x 32 sin x 1 0 2 cos x 1 0 or cos x 2 0 sin x 3 0 1 cos x 2 cos x 2 x 5 , 3 3 No solution No solution 2 sin x 1 0 sin x x 1 2 5 , 6 6 5 Solutions in 0, 2 are , . 6 6 63. (a) f x sin x cos x 3 Maximum: 4 , 2 Minimum: 4 , 2 0 2 5 −3 (b) cos x sin x 0 cos x sin x 1 sin x cos x tan x 1 x 5 , 4 4 f 4 sin 4 cos 4 f 4 sin 5 2 2 2 2 2 2 2 5 5 cos sin cos 2 4 4 4 4 2 2 Therefore, the maximum point in the interval 0, 2 is 4, 2 and the minimum point is 54, 2 . Section 5.3 64. (a) f x 2 sin x cos 2x Solving Trigonometric Equations 3 max: 0.5240, 1.5 min: 1.5708, 1.0 max: 2.6180, 1.5 min: 4.7124, 3.0 2 0 −3 (b) 2 cos x 4 sin x cos x 0 2 cos x1 2 sin x 0 2 cos x 0 x 1 2 sin x 0 3 , 2 2 sin x 1.5708, 4.7124 x 1 2 5 , 6 6 0.5240, 2.6180 x 4 Since tan 4 1, x 1 is the smallest nonnegative fixed point. 65. f x tan 66. Graph y cos x and y x on the same set of axes. Their point of intersection gives the value of c such that f c c ⇒ cos c c. 2 −3 (0.739, 0.739) 3 −2 c 0.739 1 x (a) The domain of f x is all real numbers x except x 0. 67. f x cos (b) The graph has y-axis symmetry and a horizontal asymptote at y 1. (c) As x → 0, f x oscillates between 1 and 1. (d) There are infinitely many solutions in the interval 1, 1. They occur at x 2 where n is any integer. 2n 1 (e) The greatest solution appears to occur at x 0.6366. sin x x (a) Domain: all real numbers except x 0. 68. f x (b) The graph has y-axis symmetry. (c) As x → 0, f x → 1. (d) sin x 0 has four solutions in the interval 8, 8. x sin x x 0 1 sin x 0 x 2, , , 2 69. y 1 cos 8t 3 sin 8t 12 1 cos 8t 3 sin 8t 0 12 cos 8t 3 sin 8t 1 tan 8t 3 8t 0.32175 n t 0.04 n 8 In the interval 0 ≤ t ≤ 1, t 0.04, 0.43, and 0.83. 467 468 Chapter 5 Analytic Trigonometry 70. y1 1.56e0.22t cos 4.9t 4 Right-most point of intersection: 1.96, 1 10 0 The displacement does not exceed one foot from equilibrium after t 1.96 seconds. 71. S 74.50 43.75 sin −4 t 6 t 1 2 3 4 5 6 7 8 9 10 11 12 S 96.4 112.4 118.3 112.4 96.4 74.5 52.6 36.6 30.8 36.6 52.6 74.5 Sales exceed 100,000 units during February, March, and April. 6t S y2 75. Left point of intersection: 1.95, 75 Right point of intersection: 10.05, 75 So, sales exceed 7500 in January, November, and December. Monthly sales (in thousands of dollars) 72. Graph y1 58.3 32 cos 100 75 50 25 x 2 4 6 8 10 12 Month (1 ↔ January) Range 300 feet 73. 74. Range 1000 yards 3000 feet v0 100 feet per second v0 1200 feet per second 1 r 32 v02 sin 2 1 2 32 100 1 f 32 v02 sin 2 sin 2 300 1 3000 32 12002 sin 2 sin 2 0.96 sin 2 0.066667 2 arcsin0.96 73.74 2 3.8 36.9 1.9 or 2 180 arcsin0.96 106.26 53.1 75. ht 53 50 sin 16 t 2 (a) ht 53 when 50 sin t 0 16 2 16 t 2 0. or t 16 2 t 16 2 3 t 16 2 t8 t 24 The Ferris wheel will be 53 feet above ground at 8 seconds and at 24 seconds. —CONTINUED— Section 5.3 Solving Trigonometric Equations 75. —CONTINUED— (b) The person will be at the top of the Ferris wheel when sin 16 t 2 1 t 16 2 2 t 16 t 16. 2 32. During 16 160 seconds, 5 cycles will take place and the person will be at the top of the ride 5 times, spaced 32 seconds apart. The times are: 16 seconds, 48 seconds, 80 seconds, 112 seconds, and 144 seconds. The first time this occurs is after 16 seconds. The period of this function is 76. (a) 77. A 2x cos x , 0 < x < Unemployment rate y 8 (a) 2 2 6 4 2 0 2 −2 t 2 4 6 8 10 12 14 Year (0 ↔ 1990) (b) By graphing the curves, we see that 1 r 1.24 sin0.47t 0.40 5.45 best fits the data. The maximum area of A 1.12 occurs when x 0.86. (b) A ≥ 1 for 0.6 < x < 1.1 (c) The constant term gives the average unemployment rate of 5.45%. (d) Period: 2 13.4 years 0.47 (e) r 5 when t 20 which corresponds to the year 2010. 78. f x 3 sin0.6x 2 (b) gx 0.45x2 5.52x 13.70 (a) Zero: sin0.6x 2 0 0.6x 2 0 4 0.6x 2 0 2 10 x 0.6 3 (c) 0.45x2 5.52x 13.70 0 x 5.52 ± 5.522 40.4513.70 20.45 6 f g −4 For 3.5 ≤ x ≤ 6 the approximation appears to be good. x 3.46, 8.81 The zero of g on 0, 6 is 3.46. The zero is close to the zero 10 3 3.33 of f. and the period of 2 sin t 1 is 2. 2 In the interval 0, 2 the first equation has four cycles whereas the second equation has only one cycle, thus the first equation has four times the x-intercepts (solutions) as the second equation. 79. True. The period of 2 sin 4t 1 is 469 470 Chapter 5 Analytic Trigonometry 81. y1 2 sin x 80. False. sin x 3.4 has no solution since 3.4 is outside the range of sin. Also, 3.4 is outside the domain of arcsin, so x arcsin3.4 is an invalid equation. C 90 66 24 83. cos 66 y2 3x 1 From the graph we see that there is only one point of intersection. 84. Given: A 90, B 71, b 14.6 B 22.3 a 82. By inspecting the graphs of y1 and y2, it appears they intersect at three points. 22.3 66° A a b C 90 71 19 C sin 71 a cos 66 22.3 b 22.3 tan 71 b 22.3 tan 66 50.1 c 85. 390, 390 360 30, is in Quadrant I. sin 390 sin 30 cos 390 cos 30 71° A C 14.6 14.6 c 14.6 5.0 tan 71 86. 600 600 360 240, Quadrant III 1 2 Reference angle: 60 3 tan 390 tan 30 B 14.6 a 15.4 sin 71 22.3 a 54.8 cos 66 tan 66 14.6 a sin 600 sin 60 2 3 1 3 3 3 2 cos 600 cos 60 1 2 tan 600 tan 60 3 87. 1845, 45, is in Quadrant IV. sin1845 sin 45 cos1845 cos 45 88. 1410 1410 4360 30, 2 2 sin1410 sin 30 2 cos1410 cos 30 tan1410 tan 30 250 feet 1 mile 0.02367 2 miles 5280 feet 90. θ 3 2 3 3 hyx h tan 39.75 1.36 1 2 2 tan1845 tan 45 1 89. tan Quadrant I y 100 y x 100 tan 39.75 y θ 250 ft 2 mi Not drawn to scale tan 28 x 100 28˚ 39˚45' 100 ft 100 tan 28 x h 100 tan 39.75 100 tan 28 h 30 feet 91. Answers will vary. Section 5.4 Section 5.4 ■ Sum and Difference Formulas 471 Sum and Difference Formulas You should know the sum and difference formulas. sinu ± v sin u cos v ± cos u sin v cosu ± v cos u cos v sin u sin v tan u ± tan v 1 tan u tan v You should be able to use these formulas to find the values of the trigonometric functions of angles whose sums or differences are special angles. tanu ± v ■ ■ You should be able to use these formulas to solve trigonometric equations. Vocabulary Check 1. sin u cos v cos u sin v 3. 2. cos u cos v sin u sin v tan u tan v 1 tan u tan v 4. sin u cos v cos u sin v 5. cos u cos v sin u sin v 6. 1. (a) cos120 45 cos 120 cos 45 sin 120 sin 45 2 6 4 1 2 1 2 (b) cos 120 cos 45 2 2 2 3. (a) cos (b) cos 5. (a) sin (b) sin 4 3 cos 4 cos 3 sin 4 sin 3 2 2 1 2 2 2 7 4. (a) sin (b) sin 6 2 4 2 2 3 2 2 3 2 5 3 5 3 5 sin cos cos sin 6 4 6 4 6 22 23 22 12 4 7 1 3 1 3 sin 6 3 2 2 2 2 6 3 4 2 5 1 sin sin 3 6 6 2 22 23 22 12 (b) sin 135 cos 30 3 2 1 2 1 cos 4 3 2 2 2 6 2. (a) sin135 30 sin 135 cos 30 cos 135 sin 30 21 22 23 22 tan u tan v 1 tan u tan v 6 2 4 5 2 1 2 1 3 sin 4 6 2 2 2 6. (a) sin315 60 sin 315 cos 60 cos 315 sin 60 2 2 (b) sin 315 sin 60 2 4 1 2 2 2 3 2 6 4 2 3 2 3 2 2 2 472 Chapter 5 Analytic Trigonometry 7. sin 105 sin60 45 8. 165 135 30 sin 60 cos 45 cos 60 sin 45 3 2 2 4 2 2 1 2 sin 135 cos 30 sin 30 cos 135 2 sin 45 cos 30 sin 30 cos 45 2 3 1 cos 105 cos60 45 cos 60 cos 45 sin 60 sin 45 1 2 2 2 2 4 3 2 2 1 3 2 4 3 2 1 2 2 2 3 1 cos 165 cos135 30 tan 60 tan 45 1 tan 60 tan 45 2 cos 45 cos 30 sin 45 sin 30 1 3 3 1 2 cos 135 cos 30 sin 135 sin 30 2 tan 105 tan60 45 sin 165 sin135 30 3 1 1 3 1 3 1 3 4 23 2 3 2 2 2 2 4 3 2 2 1 2 2 3 1 tan 165 tan135 30 tan 135 tan 30 1 tan 135 tan 30 tan 45 tan 30 1 tan 45 tan 30 1 1 3 3 3 3 2 3 tan 195 tan225 30 9. sin 195 sin225 30 sin 225 cos 30 cos 225 sin 30 sin 45 cos 30 cos 45 sin 30 2 2 2 4 3 2 2 2 1 2 cos 45 cos 30 sin 45 sin 30 2 2 4 3 2 tan 45 tan 30 1 tan 45 tan 30 3 3 3 3 3 1 3 2 3 1 cos 225 cos 30 sin 225 sin 30 2 tan 225 tan 30 1 tan 225 tan 30 1 1 3 cos 195 cos225 30 2 1 2 3 3 12 63 2 3 6 3 3 3 3 Section 5.4 10. 255 300 45 11. sin sin 255 sin300 45 sin 60 cos 45 sin 45 cos 60 2 2 4 2 2 3 1 2 2 1 2 cos cos 255 cos300 45 11 3 sin 12 4 6 sin sin 300 cos 45 sin 45 cos 300 3 Sum and Difference Formulas cos 300 cos 45 sin 300 sin 45 1 2 2 2 2 4 3 2 2 tan tan 300 tan 45 1 tan 300 tan 45 tan 60 tan 45 1 tan 60 tan 45 7 12 3 4 sin cos 2 2 4 2 2 1 2 2 4 2 1 2 cos sin sin 3 4 3 4 2 2 2 2 3 2 11 3 tan 4 4 6 3 2 1 3 2 2 1 2 3 2 2 3 1 1 3 3 3 3 3 3 12 63 2 3 6 7 tan 12 3 4 3 3 3 3 tan 3 4 1 tan tan 3 4 3 1 1 3 2 3 3 1 7 cos 12 3 4 cos 2 3 3 cos sin sin 4 6 4 6 tan cos sin cos 3 4 4 3 3 3 1 1 tan 7 sin 12 3 4 2 tan 3 1 2 3 1 3 sin 2 2 1 3 tan 4 6 3 1 tan tan 4 6 tan 255 tan300 45 12. 2 2 1 3 3 11 3 cos 12 4 6 cos 2 2 cos 60 cos 45 sin 60 sin 45 3 3 cos cos sin 4 6 4 6 2 4 473 2 4 3 1 474 Chapter 5 13. sin 17 9 5 sin 12 4 6 sin 2 4 cos 2 1 3 4 1 2 cos sin cos 6 4 4 6 2 2 2 1 33 3 2 2 4 2 2 12 63 2 3 6 3 3 3 3 3 3 1 1 3 3 2 3 15. 285 225 60 sin 285 sin225 60 sin 225 cos 60 cos 225 sin 60 2 1 2 2 2 42 2 3 2 3 1 cos 285 cos225 60 cos 225 cos 60 sin 225 sin 60 2 2 2 2 1 2 2 1 2 3 1 3 2 4 3 1 tan 285 tan225 60 tan 225 tan 60 1 3 1 tan 225 tan 60 1 3 1 3 4 23 2 3 2 3 2 1 3 3 2 tan 12 6 4 tan 6 4 1 tan tan 6 4 1 33 3 3 3 3 2 cos sin sin 6 4 6 4 tan 2 cos tan 1 3 4 tan94 tan56 1 tan94 tan56 cos 12 6 4 3 2 1 2 2 2 2 2 sin 12 6 4 sin 9 5 9 5 cos sin sin 4 6 4 6 17 9 5 tan 12 4 6 sin 3 1 12 6 4 17 9 5 cos 12 4 6 14. 23 22 12 2 cos tan 5 9 5 9 cos cos sin 4 6 4 6 2 cos Analytic Trigonometry 2 2 Section 5.4 17. 165 120 45 16. 105 30 135 sin165 sin 120 45 sin30 135 sin 30 cos 135 cos 30 sin 135 sin120 45 sin 30cos 45 cos 30 sin 45 2 2 2 2 2 1 2 4 3 sin 120 cos 45 cos 120 sin 45 2 1 3 cos30 135 cos 30 cos 135 sin 30 sin 135 23 22 12 22 2 4 1 2 4 tan 30 tan 45 1 tan 30tan 45 3 2 2 1 2 2 2 1 2 2 4 2 2 3 2 2 2 1 3 tan 120 tan 45 1 tan 120 tan 45 3 1 1 3 1 1 3 1 3 4 23 2 1 3 3 1 2 3 18. 15 45 30 sin 15 sin45 30 sin 45 cos 30 cos 45 sin 30 22 23 22 12 2 3 1 4 23 1 4 cos 15 cos45 30 cos 45 cos 30 sin 45 sin 30 tan 15 tan45 30 22 23 22 12 2 3 1 4 23 1 4 tan 45 tan 30 1 tan 45 tan 30 3 1 3 3 1 1 3 3 1 tan120 tan 45 2 3 tan165 tan 120 45 1 33 1 2 cos 120 cos 45 sin 120 sin 45 1 3 3 3 cos120 45 tan 30 tan 135 tan30 135 1 tan 30 tan 135 cos165 cos 120 45 cos 30cos 45 sin 30 sin 45 Sum and Difference Formulas 3 3 3 3 3 3 3 3 3 3 3 3 3 3 12 63 2 3 6 475 476 Chapter 5 19. 13 3 12 4 3 sin 2 2 2 4 1 3 13 3 cos 12 4 3 1 2 2 2 2 3 2 2 4 1 3 7 12 3 4 sin 7 sin sin cos cos sin 12 3 4 3 4 3 4 cos 3 2 22 12 22 42 12 22 23 22 3 1 2 4 1 3 3 tan4 1 tan tan 3 4 7 tan tan 12 3 4 7 cos cos cos sin sin 12 3 4 3 4 3 4 1 3 1 13 1 3 1 3 4 23 2 2 3 3 3 cos sin sin 4 3 4 3 2 tan 22 23 1 2 13 3 tan 12 4 3 34 tan3 3 1 tan tan 4 3 3 3 cos cos sin 4 3 4 3 cos 20. tan 13 3 sin 12 4 3 sin cos Analytic Trigonometry tan 3 1 2 3 1 3 1 1 3 1 3 Section 5.4 21. 3 13 12 4 3 3 4 sin 3 3 sin 4 3 4 cos 3 3 4 tan 3 3 3 3 2 4 3 1 3 3 cos sin sin 4 3 4 3 2 2 2 4 2 1 2 2 3 3 tan 4 tan 3 1 3 1 3 2 3 1 3 tan 4 3 1 tan 22. 2 1 3 cos 4 cos 2 2 2 2 4 2 1 2 3 3 3 cos cos sin 4 3 4 3 sin 3 tan 4 3 1 3 1 3 1 3 1 3 4 23 2 3 2 5 12 4 6 sin cos 4 6 sin 4 cos 6 cos 4 sin 6 22 23 22 12 2 4 3 1 4 6 cos 4 cos 6 sin 4 sin 6 tan 4 6 22 23 22 12 2 3 tan 1 4 6 3 3 1 tan tan 1 1 4 6 3 4 3 1 tan 3 2 23. cos 25 cos 15 sin 25 sin 15 cos25 15 cos 40 24. sin 140 cos 50 cos 140 sin 50 sin140 50 sin 190 Sum and Difference Formulas 477 478 25. Chapter 5 Analytic Trigonometry tan 325 tan 86 tan325 86 tan 239 1 tan 325 tan 86 26. 27. sin 3 cos 1.2 cos 3 sin 1.2 sin3 1.2 sin 1.8 tan 140 tan 60 tan140 60 tan 80 1 tan 140 tan 60 28. cos cos sin sin cos 7 5 7 5 7 5 cos 29. tan 2x tan x tan2x x tan 3x 1 tan 2x tan x 32. cos 15 cos 60 sin 15 sin 60 cos15 60 sin 300 33. sin 2 cos45 3 cos cos sin sin 12 4 12 4 12 4 sin 12 35 30. cos 3x cos 2y sin 3x sin 2y cos3x 2y 31. sin 330 cos 30 cos 330 sin 30 sin330 30 34. cos 3 3 3 cos sin sin cos 16 16 16 16 16 16 3 cos 2 4 2 3 2 54 tan12 5 tan 36. 5 4 12 1 tan tan 4 12 tan tan 25 tan 110 tan25 110 35. 1 tan 25 tan 110 tan 135 1 tan 76 tan 6 For Exercises 37– 44, we have: 5 5 sin u 13 , u in Quadrant II ⇒ cos u 12 13 , tan u 12 cos v 35, v in Quadrant II ⇒ sin v 45, tan v 43, y y (−3, 4) (−12, 5) 5 13 u x v x Figures for Exercises 37– 44 3 3 2 2 Section 5.4 37. sinu v sin u cos v cos u sin v 38. cosu v cos u cos v sin u sin v 13 5 135 5 3 12 4 63 65 39. cosu v cos u cos v sin u sin v 41. tanu v 12 13 5 4 16 65 1 tan u tan v 5 4 12 3 1 5 12 43 21 12 1 59 42. cscu v 7 4 43. secv u 9 63 4 16 1 1 cosv u cos v cos u sin v sin u 1 4 5 35 12 13 5 13 53 135 45 36 20 56 65 65 65 12 45 13 53135 tan u tan v 12 13 40. sinv u sin v cos u cos v sin u 5 135 3 Sum and Difference Formulas 44. tanu v 1 1 20 56 36 65 65 65 65 56 cotu v 33 48 15 65 65 65 1 1 sinu v sinv u 1 65 33 33 65 125 43 tan u tan v 5 1 tan u tan v 1 12 43 74 4 9 63 16 1 1 16 tanu v 63 63 16 For Exercises 45–50, we have: 7 7 sin u 25 , u in Quadrant III ⇒ cos u 24 25 , tan u 24 cos v 45, v in Quadrant III ⇒ sin v 35, tan v 34 y y v u x x 25 5 (−24, −7) (− 4, −3) Figures for Exercises 45– 50 45. cosu v cos u cos v sin u sin v 46. sinu v sin u cos v cos u sin v 4 7 3 24 25 5 25 5 7 25 45 2425 35 3 5 28 72 4 125 125 100 125 5 479 480 Chapter 5 47. tanu v Analytic Trigonometry tan u tan v 1 tan u tan v 7 24 34 1 7 24 11 3 4 34 247 tan v tan u 7 1 tan v tan u 1 34 24 48. tanv u 24 39 32 44 117 11 24 39 32 1 1 5 3 cosu v 3 5 Use Exercise 45 for cosu v. 50. cosu v cos u cos v sin u sin v 24 25 54 257 53 21 117 96 125 125 125 51. sinarcsin x arccos x sinarcsin x cosarccos x sinarccos x cosarcsin x x x 1 x2 1 x2 x2 1 x2 1 1 1 x θ x θ = arcsin x θ = arccos x 52. Let u arctan 2x and v arccos x tan u 2x cos v x. 4x 2 + 1 1 2x u 1 − x2 v x 1 sinarctan 2x arccos x sinu v sin u cos v cos u sin v 1 − x2 θ 1 − x2 2x 4x2 1 x 2x2 1 x2 4x2 1 1 4x2 1 1 x2 44 117 1 1 117 44 tanv u 117 44 cotv u 49. secu v Section 5.4 Sum and Difference Formulas 53. cosarccos x arcsin x cosarccos x cosarcsin x sinarccos x sinarcsin x x 1 x2 1 x2 x 0 (Use the triangles in Exercise 51.) 54. Let u arccos x v arctan x and cos u x tan v x. 1 1 + x2 1 − x2 x u v x 1 cosarcos x arctan x cosu v cos u cos v sin u sin v x 1 1 x 1 x 1 x x 2 2 2 x x1 x2 1 x2 55. sin3 x sin 3 cos x sin x cos 3 56. sin 0cos x 1sin x 1cos x sin x0 sin x 57. sin cos x 6 x sin 6 cos x cos 6 sin x 58. cos 5 4 x cos 1 cos x 3 sin x 2 59. cos sin 2 cos cos sin sin sin 2 cos cos 2 sin 1cos 0sin 1cos sin 0 cos cos 0 60. tan 4 tan 4 1 tan 1 tan 1 tan tan 4 tan 2 x sin 2 cos x sin x cos 2 5 5 cos x sin sin x 4 4 2 2 cos x sin x 481 482 Chapter 5 Analytic Trigonometry 61. cosx y cosx y cos x cos y sin x sin ycos x cos y sin x sin y cos2 x cos2 y sin2 x sin2 y cos2 x1 sin2 y sin2 x sin2 y cos2 x cos2 x sin2 y sin2 x sin2 y cos2 x sin2 ycos2 x sin2 x cos2 x sin2 y 62. sinx y sinx y sin x cos y sin y cos xsin x cos y sin y cos x sin2 x cos2 y sin2 y cos2 x sin2 x1 sin2 y sin2 y cos2 x sin2 x sin2 x sin2 y sin2 y cos2 x sin2 x sin2 ysin2 x cos2 x sin2 x sin2 y 63. sinx y sinx y sin x cos y cos x sin y sin x cos y cos x sin y 2 sin x cos y 64. cosx y cosx y cos x cos y sin x sin y cos x cos y sin x sin y 2 cos x cos y 65. cos 3 2 x cos 3 3 cos x sin sin x 2 2 66. cos x cos cos x sin sin x 1 cos x 0 sin x 0cos x 1sin x cos x sin x 2 2 − 2 2 −6 −2 −2 67. sin 3 2 6 sin 3 3 cos cos sin 2 2 68. tan 1cos 0sin cos tan tan 1 tan tan 0 tan 1 0 tan tan 2 3 − 2 2 −6 6 −2 −3 Section 5.4 sin x 69. sin x cos sin x 1 3 3 cos x sin sin x cos cos x sin 1 3 3 3 3 2 sin x0.5 1 sin x 1 x sin x 70. sin x cos 2 1 sin x 6 6 2 1 cos x sin sin x cos cos x sin 6 6 6 6 2 2 cos x0.5 1 2 cos x 1 2 x cos x 71. cos x cos 5 , 3 3 cos x 1 4 4 sin x sin cos x cos sin x sin 1 4 4 4 4 22 1 2 sin x 2 sin x 1 sin x sin x x 1 2 2 2 5 7 , 4 4 Sum and Difference Formulas 483 484 Chapter 5 Analytic Trigonometry tanx 2 sinx 0 72. tan x tan 2sin x cos cos x sin 0 1 tan x tan tan x 0 2sin x1 cos x0 0 1 tan x0 tan x 2 sin x 0 1 sin x 2 sin x cos x sin x 2 sin x cos x sin x1 2 cos x 0 sin x 0 cos x or x 0, Analytically: cos x 73. cos x cos x 1 2 5 , 3 3 cos x 1 4 4 sin x sin cos x cos sin x sin 1 4 4 4 4 22 1 2 cos x 2 cos x 1 1 cos x 2 2 cos x 2 7 , 4 4 x 2 Graphically: Graph y1 cos x cos x 4 4 The points of intersection occur at x 74. tanx cos x and y 2 1. 0 7 and x . 4 4 0 2 Answers: 0, 0, 3.14, 0 ⇒ x 0, −2 4 0 −4 2 2 Section 5.4 75. y 1 1 sin 2t cos 2t 3 4 1 1 (a) a , b , B 2 3 4 C arctan 76. Sum and Difference Formulas 3 b arctan 0.6435 a 4 y 13 14 sin2t 0.6435 y 5 sin2t 0.6435 12 2 (b) Amplitude: 5 feet 12 (c) Frequency: 1 B 2 1 cycle per second period 2 2 2 y1 A cos 2 y2 A cos 2 y1 y2 A cos 2 t x t x T cos 2 y1 y2 A cos 2 2A cos 2 t x t x x t x t t x t x cos 2 sin 2 sin 2 A cos 2 cos 2 sin 2 sin 2 t x cos 2 78. False. 77. False. cosu ± v cos u cos v sin u sin v sinu ± v sin u cos v ± cos u sin v 79. False. cos x cos x cos sin x sin 2 2 2 80. True. cos x0 sin x1 sin x sin x 81. cosn cos n cos sin n sin x cos x sin 2 2 1 cos 0sin 0cos sin 1n 1ncos , where n is an integer. 1n sin , where n is an integer. b b a ⇒ sin C , cos C a2 b2 a2 b2 a a2 b2 sinB C a2 b2 sin B 84. C arctan 82. sinn sin n cos sin cos n n 83. C arctan a2 b2 a2 b2 cos B a sin B b cos B a b a a b ⇒ sin C , cos C a2 b2 a2 b2 b a2 b2 cosB C a2 b2 cos B a2 b2 sin B a2 b2 b cos B a sin B a sin B b cos B b a 485 486 Chapter 5 Analytic Trigonometry 85. sin cos 86. 3 sin 2 4 cos 2 a 1, b 1, B 1 (a) C arctan a 3, b 4, B 2 b arctan 1 a 4 (a) C arctan sin cos a2 b2 sinB C 4 2 sin b 4 arctan 0.9273 a 3 3 sin 2 4 cos 2 a2 b2 sinB C 5 sin2 0.9273 a 3 arctan 0.6435 b 4 (b) C arctan a (b) C arctan arctan 1 b 4 3 sin 2 4 cos 2 a2 b2 cosB C sin cos a2 b2 cosB C 2 cos 4 88. sin 2 cos 2 87. 12 sin 3 5 cos 3 a 1, b 1, B 2 a 12, b 5, B 3 (a) C arctan 5 cos2 0.6435 b 5 arctan 0.3948 a 12 12 sin 3 5 cos 3 a2 b2 sinB C (a) C arctan sin 2 cos 2 a2 b2 sinB C 13 sin3 0.3948 (b) C arctan a 12 arctan 1.1760 b 5 12 sin 3 5 cos 3 a2 b2 cosB C 13 cos3 1.1760 b arctan1 a 4 2 sin 2 (b) C arctan sin 2 cos 2 a2 b2 cosB C b ⇒ a0 a 2 a2 b2 2 ⇒ b 2 B1 2 sin 91. 0sin 2cos 2 cos 2 cosx h cos x cos x cos h sin x sin h cos x h h cos x cos h cos x sin x sin h h cos xcos h 1 sin x sin h h cos xcos h 1 sin x sin h h h a arctan1 b 4 2 cos 2 89. C arctan 4 90. C arctan 4 a 3 ⇒ a b, a < 0, b < 0 b 4 a2 b2 5 ⇒ a b 52 2 B1 5 cos 3 52 52 sin cos 4 2 2 Section 5.4 92. (a) The domains of f and g are the sets of real numbers, h 0. (b) Sum and Difference Formulas (c) The graphs are the same. 2 h 0.01 0.02 0.05 0.1 0.2 0.5 f h 0.504 0.509 0.521 0.542 0.583 0.691 g h 0.504 0.509 0.521 0.542 0.583 0.691 −3 3 −2 (d) As h → 0, f h approaches 0.5. As h → 0, gh approaches 0.5. y 93. m1 tan and m2 tan 90 ⇒ 90 y 1 = m 1x + b 1 θ 90 ⇒ 90 90 ⇒ δ Therefore, arctan m2 arctan m1. β α x For y x and y 3x we have m1 1 and m2 3. y 2 = m 2x + b2 arctan3 arctan 1 60 45 15 94. For m2 > m1 > 0, the angle between the lines is: arctan m2 m1 1 m m 1 2 m2 1 m1 1 3 arctan 95. 1 1 1 3 1 3 arctan2 3 15 3 −2 2 Conjecture: sin2 sin2 1 4 4 −3 sin2 sin2 sin cos cos sin 4 4 4 4 2 2 sin2 cos2 sin2 cos2 sin cos sin cos 2 2 2 2 sin cos 2 2 sin cos 4 cos sin 4 sin2 cos2 1 2 sin cos 2 2 2 487 488 Chapter 5 Analytic Trigonometry 96. (a) To prove the identity for sinu v we first need to prove the identityfor cosu v. Assume 0 < v < u < 2 and locate u, v, and u v on the unit circle. y C u−v 1 B D u −1 A v O x 1 1 The coordinates of the points on the circle are: A 1, 0, B cos v, sin v, C cosu v, sinu v, and D cos u, sin u. Since DOB COA, chords AC and BD are equal. By the distance formula we have: cosu v 12 sinu v 02 cos u cos v2 sin u sin v2 cos2u v 2 cosu v 1 sin2u v cos2 u 2 cos u cos v cos2 v sin2 u 2 sin u sin v sin2 v cos2u v sin2u v 1 2 cosu v cos2 u sin2 u cos2 v sin2 v 2 cos u cos v 2 sin u sin v 2 2 cosu v 2 2 cos u cos v 2 sin u sin v 2 cosu v 2cos u cos v sin u sin v cosu v cos u cos v sin u sin v Now, to prove the identity for sinu v, use cofunction identities. 2 u v cos 2 u v sinu v cos cos 2 u cos v sin2 u sin v sin u cos v cos u sin v (b) First, prove cosu v cos u cos v sin u sin v using the figure containing points y 1 A1, 0 u−v D C Bcosu v, sinu v u B u−v 1 v A Ccos v, sin v −1 Dcos u, sin u on the unit circle. −1 Since chords AB and CD are each subtended by angle u v, their lengths are equal. Equating dA, B2 dC, D2 we have cosu v 12 sin2u v cos u cos v2 sin u sin v2. Simplifying and solving for cosu v, we have cosu v cos u cos v sin u sin v. Using sin cos 2 we have 2 u v cos 2 u v sinu v cos cos 2 u cosv sin2 u sinv sin u cos v cos u sin v. x Section 5.4 97. f x 5x 3 7x 8 7x y 8 8y 7 x f x 98. y 5x 3 y x3 5 x 7 8y ⇒ f 1x 8x 7 y 3x 5 7 f1x 8 7 8x 7 8 x f f 1x x 3y 5 f 1x x 15 5 f f 1x f Sum and Difference Formulas x 15 x 15 5 3 5 5 f 1 f x 8 7 8 x 7 x x 15 5 53 5 x 15 15 x f 1 f x f 15x 3 5x 15 15 5 5x 5 5x 3 15 5 x 99. f x x2 8 f is not one-to-one so 100. f 1 does not exist. f x x 16, x ≥ 16 y x 16 y 2 x 16 x y 2 16 ⇒ f 1x x2 16, x ≥ 0 f f 1x x2 16 16 x f 1 f x x 16 16 x 2 101. log3 34x3 4x 3 102. log8 83x 3x2 103. eln6x3 6x 3 104. 12x eln xx2 12x xx 2 2 12x x2 2x x2 10x 489 490 Chapter 5 Analytic Trigonometry Section 5.5 ■ Multiple-Angle and Product-to-Sum Formulas You should know the following double-angle formulas. (a) sin 2u 2 sin u cos u (b) cos 2u cos2 u sin2 u (b) 2 cos2 u 1 (b) 1 2 sin2 u (c) tan 2u ■ ■ 2 tan u 1 tan2 u You should be able to reduce the power of a trigonometric function. (a) sin2 u 1 cos 2u 2 (b) cos2 u 1 cos 2u 2 (c) tan2 u 1 cos 2u 1 cos 2u You should be able to use the half-angle formulas. The signs of sin u u u and cos depend on the quadrant in which lies. 2 2 2 1 2cos u u 1 cos u (b) cos ± 2 2 ■ ■ (a) sin u ± 2 (c) tan u 1 cos u sin u 2 sin u 1 cos u You should be able to use the product-sum formulas. 1 (a) sin u sin v cosu v cosu v 2 1 (b) cos u cos v cosu v cosu v 2 1 (c) sin u cos v sinu v sinu v 2 1 (d) cos u sin v sinu v sinu v 2 You should be able to use the sum-product formulas. (a) sin x sin y 2 sin (c) cos x cos y 2 cos xy xy cos 2 2 xy xy cos 2 2 (b) sin x sin y 2 cos xy xy sin 2 2 (d) cos x cos y 2 sin xy xy sin 2 2 Section 5.5 Multiple-Angle and Product-to-Sum Formulas 491 Vocabulary Check 1. 2 sin u cos u 2. cos2 u 3. cos2 u sin2 u 2 cos2 u 1 1 2 sin2 u 4. tan2 u 5. ± 1 2cos u sin u 1 cos u sin u 1 cos u 1 8. sinu v sinu v 2 uv uv 10. 2 sin sin 2 2 6. 1 cosu v cosu v 2 uv uv 9. 2 sin cos 2 2 7. Figure for Exercises 1–8 sin 17 17 417 cos 17 1 tan 4 1 θ 4 1. sin 17 2. tan 17 17 1 4 3. cos 2 2 cos2 1 4 1717 1 2 4. sin 2 2 sin cos 2 5. tan 2 117417 2 tan 1 tan2 4 1 1 4 8 17 1 1 1 sin 2 2 sin cos 17 8 1 2 8 15 1 17 2 17 417 17 32 1 17 15 17 1 cos 2 1 cos2 sin2 2 1 2 7. csc 2 6. sec 2 1 2 2 1 16 8. cot 2 15 8 117 1 16 1 17 17 17 15 1 1 tan tan 2 2 tan 2 2 16 15 1 4 17 14 1 2 4 1 2 2 492 Chapter 5 Analytic Trigonometry sin 2x sin x 0 9. 10. sin 2x cos x 0 2 sin x cos x sin x 0 2 sin x cos x cos x 0 sin x2 cos x 1 0 cos x2 sin x 1 0 sin x 0, or 2 cos x 1 0 cos x 0 1 sin x 0, or 2 1cos x 2 sin x 0, or 2 1cos x x 5 , 3 3 or 2 sin x 1 0 3 , 2 2 sin x x 5 x 0, , , 3 3 11. 4 sin x cos x 1 2 sin x cos x sin x cos x 0 2 sin 2x 1 1 sin 2x 2 2x 2n or 6 x x 13. cos x2 sin2 x 1 0 cos x 0 2x 5 2n 6 x 5 n or 2 x n 12 12 13 , 12 12 or 2 x cos 2x cos x x sin2 x cos x cos2 x 1 cos2 x cos x 0 2 cos2 x cos x 1 0 2 cos x 1cos x 1 0 2 cos x 1 0, 4 or cos x 1 0 1 cos x , 4 2 or 1cos x 1 2 4 , 3 3 or 1cos x 0 cos 2x sin x 0 1 2 sin2 x sin x 0 2 sin2 x sin x 1 0 2 sin x 1sin x 1 0 2 sin x 1 0 sin x x or 1 2 7 11 , 6 6 sin2 x 1 2 2 2 3 5 7 x , , , 4 4 4 4 5 17 , 12 12 x 3 , 2 2 or 2 sin2 x 1 0 sin x ± cos 2x cos x 0 cos2 14. sin 2x sin x cos x 12. sin x 1 0 sin x 1 x 2 1 2 7 11 , 6 6 Section 5.5 15. tan 2x cot x 0 Multiple-Angle and Product-to-Sum Formulas tan 2x 2 cos x 0 16. 2 tan x 2 cos x 1 tan2 x 2 tan x cot x 1 tan2 x 2 tan x cot x1 tan2 x 2 tan x 2 cos x1 tan2 x 2 tan x cot x cot x tan2 x 2 tan x 2 cos x 2 cos x tan2 x 2 tan x cot x tan x 2 tan x 2 cos x 2 cos x 3 tan x cot x 3 tan x cot x 0 3 tan x 2 tan x 2 cos x 2 1 0 tan x tan x cos x 3 tan2 x 1 0 tan x sin2 x cos x sin2 x cos x sin x sin2 x cos x 0 cos x cos x cot x3 tan2 x 1 0 cot x 0, 3 or 3 tan2 x 1 0 sin x sin2 x cos2 x 0 cos x 1 3 , or 3 1tan2 x 2 2 3 tan x ± x 1 sin x sin2 x 1 sin2 x 0 cos x 3 sec x2 sin2 x sin x 1 0 3 5 7 11 , , , 6 6 6 6 5 7 3 11 x , , , , , 6 2 6 6 2 6 sec x2 sin x 1sin x 1 0 sec x 0 or 2 sin x 1 0 No solution sin x x 1 2 or sin x 1 0 sin x 1 5 , 6 6 Also, values for which cos x 0 need to be checked. 3 , are solutions. 2 2 x sin 4x 2 sin 2x 17. sin 4x 2 sin 2x 0 2 sin 2x cos 2x 2 sin 2x 0 2 sin 2xcos 2x 1 0 2 sin 2x 0 or sin 2x 0 2x 2n n x 2 x 0, cos 2x 1 0 cos 2x 1 2x n 3 , , 2 2 sin2 x cos2 x sin x sin2 x cos x cos x cos x 1 3 tan2 x 1 0 tan x x 493 x n 2 x 3 , 2 2 5 3 , , , 6 2 6 2 x 3 2 494 Chapter 5 Analytic Trigonometry sin 2x cos 2x2 1 18. sin2 2x 2 sin 2x cos 2x cos2 2x 1 2 sin 2x cos 2x 0 sin 4x 0 4x n x n 4 3 5 3 7 x 0, , , , , , , 4 2 4 4 2 4 19. 6 sin x cos x 32 sin x cos x 20. 6 cos2 x 3 32 cos2 x 1 3 sin 2x 3 cos 2x 22. cos x sin xcos x sin x cos2 x sin2 x 21. 4 8 sin2 x 41 2 sin2 x cos 2x 4 cos 2x 4 3 3 ⇒ cos u 23. sin u , < u < 5 2 5 2 24. cos u , < u < 3 2 sin 2u 2 sin u cos u 2 24 54 53 25 sin 2u 2 sin u cos u 2 9 16 7 cos 2u cos2 u sin2 u 25 25 25 cos 2u cos2 u sin2 u 2 3 2 tan u 8 9 24 2 1 tan u 1 16 3 7 7 9 4 tan 2u 2 tan u tan 2u 1 tan2 u 2 3 u x −2 csc u 3, 3 3 4 ⇒ sin u and cos u 25. tan u , 0 < u < 4 2 5 5 sin 2u 2 sin u cos u 2 24 3545 25 cos 2u cos2 u sin2 u 2 4 3 16 24 2 tan u 9 2 7 1 tan2 u 1 16 7 3 tan 2u 9 7 16 25 25 25 < u < 2 3 3 2 4 5 1 9 9 9 5 2 5 1 4 y 5 5 4 5 45 9 Section 5.5 26. cot u 4, Multiple-Angle and Product-to-Sum Formulas 3 < u < 2 2 y sin 2u 2 sin u cos u 2 1 17 17 4 17 8 u 4 −1 cos 2u cos2 u sin2 u 17 17 4 2 1 2 tan u tan 2u 1 tan2 u x 17 2 4 1 1 4 2 15 17 1 2 8 15 21 5 2 and cos u 27. sec u , < u < ⇒ sin u 2 2 5 5 521 52 4 2521 2 21 17 cos 2u cos u sin u 5 5 25 21 2 2 tan u 2 tan 2u 1 tan u 21 1 2 sin 2u 2 sin u cos u 2 2 2 2 2 2 421 21 21 17 1 4 1 22 42 3 3 9 28. sin 2u 2 sin u cos u 2 cos 2u cos2 u sin2 u tan 2u 2 2 tan u 1 tan2 u 22 3 3 2 1 4 2 29. cos4 x cos2 xcos2 x 1 2 7 9 1 2 3 u x −2 2 4 2 y 2 1 cos 2x 2 42 7 1 cos 2x 1 2 cos 2x cos2 2x 2 4 1 2 cos 2x 1 cos 4x 2 4 2 4 cos 2x 1 cos 4x 8 3 4 cos 2x cos 4x 8 1 3 4 cos 2x cos 4x 8 495 496 Chapter 5 Analytic Trigonometry 30. sin8 x sin4 x sin4 x sin2 x sin2 xsin2 x sin2 x sin2 x 1 cos 2x 2 sin4 x 2x 1 cos 2x 1 cos 2 2 1 1 2 cos 2x cos2 2x 4 1 1 cos 4x 1 2 cos 2x 4 2 1 3 4 cos 2x cos 4x 8 sin8 x sin4 x sin4 x 1 3 4 cos 2x cos 4x3 4 cos 2x cos 4x 64 1 9 24 cos 2x 16 cos2 2x 6 cos 4x 8 cos 2x cos 4x cos2 4x 64 1 1 cos 4x 1 1 cos 8x 9 24 cos 2x 16 6 cos 4x 8 cos 6x cos 2x 64 2 2 2 1 35 1 28 cos 2x 14 cos 4x 4 cos 6x cos 8x 64 2 2 1 35 56 cos 2x 28 cos 4x 8 cos 6x cos 8x 128 1 In the above, we used cos 2x cos 4x cos 6x cos 2x. 2 31. sin2 xcos2 x 1 cos 2x 2 1 cos2 1 cos 2x 2 2x 4 32. sin4 x cos4 x sin2 x sin2 x cos2 x cos2 x sin2 x cos2 xsin2 x cos2 x 14 sin 2x14 sin 2x 4x 4x 14 1 cos 14 1 cos 2 2 2 2 1 1 cos 4x 1 4 2 1 2 1 cos 4x 8 1 1 2 cos 4x cos2 4x 64 1 1 cos 4x 8 1 1 cos 8x 1 2 cos 4x 64 2 1 3 1 2 cos 4x cos 8x 64 2 2 1 3 4 cos 4x cos 8x 128 Section 5.5 33. sin2 x cos4 x sin2 x cos2 x cos2 x 1 cos 2x 2 1 cos 2x 2 Multiple-Angle and Product-to-Sum Formulas 1 cos 2x 2 1 1 cos 2x1 cos 2x1 cos 2x 8 1 1 cos2 2x1 cos 2x 8 1 1 cos 2x cos2 2x cos3 2x 8 1 cos 4x 1 cos 4x 1 1 cos 2x cos 2x 8 2 2 1 2 2 cos 2x 1 cos 4x cos 2x cos 2x cos 4x 16 1 1 cos 2x cos 4x cos 2x cos 4x 16 34. sin4 x cos2 x sin2 x sin2 x cos2 x 1 cos 2x 2 1 cos 2x 2 1 cos 2x 2 1 1 cos 2x1 cos2 2x 8 1 1 cos 2x cos2 2x cos3 2x 8 1 1 cos 4x 1 cos 4x 1 cos 2x cos 2x 8 2 2 1 2 2 cos 2x 1 cos 4x cos 2x cos 2x cos 4x 16 1 1 1 1 cos 2x cos 4x cos 2x cos 6x 16 2 2 1 2 2 cos 2x 2 cos 4x cos 2x cos 6x 32 1 2 cos 2x 2 cos 4x cos 6x 32 Figure for Exercises 35– 40 17 8 sin 17 8 θ 15 cos 17 15 35. cos 36. sin 2 2 1 2cos 1 2 1 2cos 1 2 15 17 15 17 3234 1617 4 1717 2 2 17 1 17 17 17 497 498 Chapter 5 Analytic Trigonometry 37. tan sin 8 17 8 2 1 cos 1 15 17 17 1 17 32 4 38. sec 1 1 2 cos 2 1 cos 2 39. csc 1 1 2 sin 2 1 cos 2 1 1 15 17 2 41. sin 75 sin sin 8 17 1 2 tan 2 1 cos 1 15 17 17 8 17 4 2 17 12 150 1 cos2 150 1 2 3 2 1 2 3 2 12 150 1 sincos150150 1 1 2 3 2 2 3 1 2 3 42. sin 165 sin 2 3 2 330 1 cos 165 cos tan 165 tan 2 3 2 3 43 1 cos 330 2 2 330 1 1 2 3 2 212 1 cos 330 2 3 1 2 3 2 212 3 1 2 2 330 1 cos 330 1 3 2 2 13 3 2 1 sin 330 43. sin 112 30 sin 2 225 1 cos 112 30 cos tan 112 30 tan 44. sin 67 30 sin 2 225 1 tan 67 30 tan 1 2 2 2 212 1 cos 225 2 2 1 2 2 2 212 2 2 2 225 1 cos 225 1 2 2 1 2 1 sin 225 2 135 1 cos 67 30 cos 1 cos 225 2 1 cos 135 2 2 135 1 1 cos 135 2 1 2 2 2 212 2 1 2 2 2 212 2 2 2 2 135 1 cos 135 1 2 2 1 2 1 sin 135 1 16 17 4 1 2 3 2 tan 75 tan 1 1 17 17 12 150 1 cos2 150 1 2 3 2 cos 75 cos 40. cot 1 1 15 17 2 2 Section 5.5 1 45. sin sin 8 2 4 cos tan 1 cos 8 2 4 1 tan 8 2 4 3 1 sin 47. sin 8 2 3 1 cos cos 8 2 tan 1 cos 1 3 tan 8 2 1 cos 1 cos 1 tan tan 12 2 6 2 3 4 2 2 sin 1 cos 2 6 1 cos 6 1 6 1 2 1 3 2 1 cos7 6 2 1 cos 7 6 2 1 2 1 2 2 2 3 2 2 1 1 2 3 2 3 2 2 1 2 3 2 1 7 6 2 2 3 7 3 1 cos 1 6 2 sin 3 50. cos u , 0 < u < 5 2 1 cos u 2 1 2 5 13 2 1 cos u 1 526 1 12 13 26 2 12 13 5 12 13 26 26 sin u2 1 2cos u 1 2 3 5 u2 1 2cos u 1 2 3 5 cos 2 2 2 3 2 2 3 1 2 3 2 sin 1 cos u 2 sin u 2 1 1 2 2 2 2 2 6 2 1 5 12 , < u < ⇒ cos u 13 2 13 u u 2 2 2 3 2 3 4 2 2 2 1 2 4 2 2 2 2 3 1 cos 1 2 4 2 tan 3 4 2 1 1 cos 12 2 6 7 1 7 tan tan 12 2 6 u 1 2 1 cos 499 1 2 3 2 3 4 cos cos 2 1 cos 7 1 7 cos cos 12 2 6 2 2 1 cos 4 sin 4 1 2 2 2 2 7 1 7 sin 48. sin 12 2 6 49. sin u 4 1 46. sin sin 12 2 6 1 2 2 2 2 sin 3 4 4 Multiple-Angle and Product-to-Sum Formulas 5 5 25 5 500 Chapter 5 Analytic Trigonometry 5 3 5 8 < u < 2 ⇒ sin u and cos u 51. tan u , 89 89 8 2 u sin 2 u cos 2 52. cot u 3, < u < u cos 2 2 89 8 289 89 1788 89 8 1 89 2 89 8 289 89 1788 89 89 5 8 89 5 89 3 2 y 1 cos u 2 89 8 1 8 1 1 cos u 2 u 1 cos u tan 2 sin u u sin 2 1 cos u 2 1 10 203 10 3 10 2 10 203 1 2 10 53 10 10 1 2 10 1 10 −1 10 53 10 10 3 5 3 3 4 ⇒ sin u and cos u 53. csc u , < u < 3 2 5 5 sin 2 u cos tan 2 u 2 u 1 cos u 2 310 1 45 10 2 1 cos u 2 1 2 4 5 10 10 4 5 1 cos u 1 3 sin u 35 7 54. sec u , < u < 2 2 u sin 2 cos 2 u 1 cos u 2 1 cos u u tan 2 sin u y 1 cos u 2 1 3 1 2 7 5 7 2 7 2 314 14 2 1 70 7 2 14 35 5 3 5 7 u −2 u −3 3 1 10 2 1 cos u 2 u 1 cos u tan 2 sin u 3 1 x x 10 Section 5.5 55. 6x sin 3x 1 cos 2 57. 1 cos 8x 1 cos 8x Multiple-Angle and Product-to-Sum Formulas 56. 8x 1 cos 2 8x 1 cos 2 4x 4x cos 1 cos 2 2 cos 2x 1 cos2x 1 sinx 2 1 58. sin 4x cos 4x tan 4x 59. sin ± x cos x 0 2 hx sin 60. 1 cos x cos x 2 sin 1 cos x cos2 x 2 x cos x 1 0 2 ± 1 2cos x 1 cos x 1 cos x 1 2 cos x cos2 x 2 0 2 cos2 x cos x 1 2 cos x 1cos x 1 1 cos x 2 4 cos x 2 cos2 x 1 cos x , 5or cos x 1 2 x 5 , or cos x 3 3 2 cos2 x 3 cos x 1 0 2 cos x 1cos x 1 0 2 cos x 1 0 2 0 cos x 2 −2 By checking these values in the original equation, we see that x 3 and x 53 are extraneous, and x is the only solution. x cos x 1 2 x or 1 2 cos x 1 0 cos x 1 5 , 3 3 x0 5 are all solutions to the equation. 0, , and 3 3 1 0 −2 2 501 502 Chapter 5 61. Analytic Trigonometry cos ± x sin x 0 2 gx tan 62. 1 cos x sin x 2 tan x sin x 0 2 1 cos x sin2 x 2 1 cos x sin x sin x 1 cos x 2 sin2 x 1 cos x sin2 x 1 cos x 2 2 cos2 x 1 cos x 1 cos2 x 2 cos2 x cos x 1 0 cos2 x cos x 0 2 cos x 1cos x 1) 0 cos xcos x 1 0 cos x 0 2 cos x 1 0, 5or cos x 1 0 1 cos x , 5or 2 x x x sin x 2 x 1cos x 1 or cos x 1 0 3 , 2 2 cos x 1 x0 5 , or cos 1x 3 3 3 0, , and are all solutions to the equation. 2 2 5 , , 3 3 3 3, , and 53 are all solutions to the equation. 0 2 2 0 −3 2 −2 63. 6 sin 1 cos 6 sin sin 4 4 2 4 4 4 4 64. 4 cos 5 1 5 5 sin 4 sin sin 3 6 2 3 6 3 6 3sin 2 sin 0 2sin76 sin 2 2sin76 sin2 65. 10 cos 75 cos 15 1012 cos75 15 cos75 15 5 cos 60 cos 90 66. 6 sin 45 cos 15 612 sin 60 sin 30 3sin 60 sin 30 67. cos 4 sin 6 12 sin4 6 sin4 6 12 sin 10 sin2 12sin 10 sin 2 68. 3 sin 2 sin 3 3 12 cos2 3 cos2 3 32 cos cos 5 32 cos cos 5 1 5 69. 5 cos5 cos 3 5 2 cos5 3 cos5 3 2 cos8 cos2 52cos 8 cos 2 1 1 70. cos 2 cos 4 12 cos2 4 cos2 4 2 cos2 cos 6 2cos 2 cos 6 71. sinx y sinx y 2cos 2y cos 2x 1 72. sinx y cosx y 2sin 2x sin 2y 1 Section 5.5 Multiple-Angle and Product-to-Sum Formulas 74. sin sin 12 cos 2 cos 2 1 73. cos sin 2 sin 2 sin2 1 2sin 2 sin 2 75. sin 5 sin 3 2 cos 5 2 3 sin5 2 3 76. sin 3 sin 2 sin 2 cos 4 sin 77. cos 6x cos 2x 2 cos 78. sin x sin 5x 2 sin 2 sin 2 cos 6x 2x 6x 2x cos 2 cos 4x cos 2x 2 2 80. cos 2 cos 2 cos sin 2 cos sin 2 2 sin x 2 sin 82. sin x 2 2 83. sin 60 sin 30 2 sin sin 60 sin 30 3 2 22 cos 22 2 cos cos 81. cos cos 2 sin 2 2 x 5x x 5x cos 2 sin 3x cos2x 2 sin 3x cos 2x 2 2 79. sin sin 2 cos 2 2 2 x x 2 2 2 sin x cos 2 2 2 x 2 2 2 1 3 1 2 2 120 30 120 30 2 cos 75 cos 45 cos 2 2 1 3 3 1 cos 120 cos 30 2 2 2 3 85. cos cos 2 sin 4 4 3 4 4 2 3 4 4 sin 2 2 sin sin sin 2 4 2 2 3 cos 2 4 4 2 2 5 3 sin 2 cos 86. sin 4 4 60 30 60 30 cos 2 sin 45 cos 15 2 2 84. cos 120 cos 30 2 cos cos 3 2 cos3 2 5 3 4 4 2 5 3 4 4 sin 2 2 2 3 5 sin 2 4 4 2 2 2 cos sin 4 2 sin sin 2 sin x cos 2 2 503 504 Chapter 5 Analytic Trigonometry sin 6x sin 2x 0 87. 2 sin 6x 2x 6x 2x cos 0 2 2 2sin 4x cos 2x 0 sin 4x 0 or cos 2x 0 4x n or cos 2x n 2 or cos 2x n 4 2 x n 4 2 In the interval 0, 2 we have x 0, 2 0 3 5 3 7 , , , , , , . 4 2 4 4 2 4 −2 hx cos 2x cos 6x 88. cos 2x cos 6x 0 2 sin 4x sin2x 0 2 sin 4x sin 2x 0 sin 4x 0 or n 4 x 3 5 3 7 x 0, , , , , , , 4 2 4 4 2 4 89. 2 2x n 4x n x sin 2x 0 cos 2x 10 sin 3x sin x cos 2x 1 sin 3x sin x cos 2x 1 2 cos 2x sin x 2 sin x 1 sin x x 3 x 0, , , 2 2 −2 f x sin2 3x sin2 x 90. sin2 3x sin2 x 0 sin 3x sin xsin 3x sin x 0 2 sin 2x cos x2 cos 2x sin x 0 3 sin 2x 0 ⇒ x 0, , , 2 2 cos x 0 ⇒ x 1 2 5 , 6 6 2 0 n 2 cos 2x 0 ⇒ x 3 , 2 2 1 0 2 0 −2 −1 or 3 5 7 , , , 4 4 4 4 sin x 0 ⇒ x 0, 2 2 or or Section 5.5 3 5 β Multiple-Angle and Product-to-Sum Formulas 13 5 α4 12 Figure for Exercises 91–94 91. sin2 13 2 5 25 169 92. cos2 cos 2 sin2 1 cos2 1 1 5 sin cos cos 95. csc 2 12 2 4 4 1 13 1 144 25 169 169 94. cos sin 2 sin 2 4 4 1 sin 2 96. sec 2 1 2 sin cos 1 sin csc 2 cos 2 144 169 2 135 65 12 3 36 2 cos 2 135 65 12 3 36 1 1 cos 2 cos2 sin2 1 cos2 sin2 1 cos2 1 2 cos 97. cos2 2 sin2 2 cos 22 5 cos sin sin 135 13 5 12 cos2 1 sin2 25 144 169 169 135 13 93. sin cos 13 13 sec2 1 tan2 sec2 1 sec2 1 sec2 2 sec2 98. cos4 x sin4 x cos2 x sin2 xcos2 x sin2 x cos 2x1 cos 4 cos 2x 99. sin x cos x2 sin2 x 2 sin x cos x cos2 x sin2 x cos2 x 2 sin x cos x 1 sin 2x 101. 1 cos 10y 1 cos2 5y sin2 5y 1 cos2 5y 1 cos2 5y 2 cos2 5y 100. sin 3 cos 3 2 2sin 3 cos 3 1 1 2 sin 2 3 505 506 102. Chapter 5 Analytic Trigonometry cos 3 cos2 cos cos 103. sec u 2 cos 2 cos sin 2 sin cos 1 2 sin2 cos 2 cos sin sin cos 1 2 sin2 2 sin2 1 cos ± 1 2cos u ± sin u21sin ucos u ± sin u 2 sinsin uu cos u ± ± tan 2u tan sinu u 1 4 sin2 104. tan cos u 1 sin u sin u xy x y cos 2 2 xy xy 2 sin sin 2 2 2 sin xy 2 cot cos t cos 3t 108. sin 3t sin t cos 4x cos 2x 107. sin 4x sin 2x 2 cos 2 4t 2t 2 cos sin 2 2 2 cos 4t cost sint cost cot t sint x±y 2 4x 2x 4x 2x 2 cos 2 4x 2x 4x 2x 2 sin cos 2 2 2 cos 2 cos 3x cos x cot 3x 2 sin 3x cos x 2t 109. sin 6 x sin 6 x 2 sin 6 cos x 2 1 cos x 2 cos x x x x x 3 3 3 3 x cos x 2 cos cos 110. cos 3 3 2 2 xy x±y 2 cos 2 xy xy 2 cos cos 2 2 2 sin tan csc u cot u sin x sin y 106. cos x cos y 2 sin u cos u sin u sin u cos u cos u cos u sin x ± sin y 105. cos x cos y u 1 cos u 2 sin u u 2 2 cos 2 3 cosx 12 cos x cos x Section 5.5 111. Multiple-Angle and Product-to-Sum Formulas 507 3 Let y1 cos3x and −2 2 y2 cos x3 3sin x2 cos x. −3 cos 3 cos2 cos 2 cos sin 2 sin cos2 sin2 cos 2 sin cos sin cos3 sin2 cos 2 sin2 cos cos3 3 sin2 cos 112. sin 4 2 sin 2 cos 2 113. 22 sin cos 1 2 sin2 3 −2 4 sin cos 1 2 sin2 Let y1 2 3 and y2 sin x. −3 −2 2 cos 4x cos 2x 2 sin 3x −3 cos 3x cos x 114. sin 3x sin x 3x x 2 sin 4x 2x 4x 2x sin 2 2 2 sin 3x 2 sin 3x sin x sin x 2 sin 3x 3x x 2 sin 2 3x x 3x x 2 cos sin 2 2 2 sin cos 4x cos 2x 2 sin 3x 115. sin2 x 1 cos 2x 1 cos 2x 2 2 2 y 2 sin 2x sin x 2 cos 2x sin x 2 1 tan 2x π 3 2π x −1 − −2 −3 116. f x cos2 x 1 cos 2x 1 cos 2x 2 2 2 Shifted upward by 1 unit. 2 1 Amplitude: a 2 Period: 2 2 117. sin2 arcsin x 2 sinarcsin x cosarcsin x 2x1 x2 y 2 1 π −1 −2 2π x 508 Chapter 5 Analytic Trigonometry 118. cos2 arccos x cos2arccos x sin2arccos x 119. 1 752 sin 2 130 32 x2 1 x2 2x2 1 13032 752 sin 2 1 1 13032 sin 2 752 23.85 1 A bh 2 120. (a) cos (b) A 100 sin θ h ⇒ h 10 cos 2 10 2 10 m cos 2 2 (b) A 50 2 sin 10 m h cos 2 2 (b) A 50 sin sin 12b 1 ⇒ b 10 sin 2 10 2 2 (b) When 2, sin 1 ⇒ the area is a maximum. b A 10 sin 10 cos ⇒ A 100 sin cos 2 2 2 2 121. sin (b) A 50 sin 1 2 M (a) sin 1 2 (b) sin 1 2 4.5 arcsin 1 2 1 arcsin 2 4.5 2 2 2 arcsin 0.4482 S (c) 760 1 (d) sin 2 arcsin S 3420 miles per hour r 1 cos So, x 2r1 cos . 1 2 M S 4.5 760 x 1 cos 2r sin2 2r 2 2 2 4.51 1 arcsin 2 M S 760 miles per hour 122. 501 50 square feet 2 123. False. For u < 0, sin 2u sin2u M1 124. False. If 90 < u < 180, u is in the first quadrant and 2 2 sinu cosu 2sin u cos u 2 sin u cos u. sin u 2 1 2cos u. Section 5.5 125. (a) y 4 sin x cos x 2 Multiple-Angle and Product-to-Sum Formulas 126. f x cos 2x 2 sin x (a) 4 2 ) 2 0 −3 2 0 0 Maximum points: 3.6652, 1.5, 5.7596, 1.5 Maximum: , 3 2 cos (b) Minimum points: 1.5708, 3, 4.7124, 1 x sin x 0 2 (b) 2 cos x2 sin x 1 0 2 cos x 0 1 2cos x sin x 2 ± cos x 0 1 cos x 4 sin2 x 2 x 21 cos x 1 cos x 2 cos2 or 3 4.7124 2 11 5.7596 2 cos x 1 0 127. f x sin4 x cos4 x (a) sin4 x cos4 x sin2 x2 cos2 x2 1 cos 2x 2 2 1 cos 2x 2 2 1 1 cos 2x2 1 cos 2x2 4 1 1 2 cos 2x cos2 2x 1 2 cos 2x cos2 2x 4 1 2 2 cos2 2x 4 1 1 cos 22x 22 4 2 1 3 cos 4x 4 (b) sin4 x cos4 x sin2 x2 cos4 x 1 cos2 x2 cos4 x 1 2 cos2 x cos4 x cos4 x 2 cos4 x 2 cos2 x 1 (c) sin4 x cos4 x sin4 x 2 sin2 x cos2 x cos4 x 2 sin2 x cos2 x sin2 x cos2 x2 2 sin2 x cos2 x 1 2 sin2 x cos2 x (d) 1 2 sin2 x cos2 x 1 2 sin x cos xsin x cos x 1 sin 2x 2 sin 2x 1 1 2 sin 2x 2 (e) No, it does not mean that one of you is wrong. There is often more than one way to rewrite a trigonometric expression. 1 x 7 3.6652 6 2 x sin x 1.5708 2 x 2 cos x 1 0 cos x 1 3 , 2 2 2 sin x 1 0 1 2 7 11 , 6 6 509 510 Chapter 5 128. (a) Analytic Trigonometry 129. (a) 2 y 6 −2 2 (−1, 4) 5 3 (5, 2) 2 −2 1 (b) The graph appears to be that of sin 2x. (c) 2 sin x 2 cos2 x −3 − 2 − 1 −1 2x 1 2 sin x cos x 1 4 5 (b) d 1 52 4 22 62 22 40 210 (c) Midpoint: 131. (a) y 12 3 −2 sin 2x 130. (a) 2 5 21, 2 2 4 2, 3 y (6, 10) 3 10 ( 43 , 52) 8 2 6 4 2 −6 −4 1 x −2 2 4 6 (0, 12 ) 8 10 −1 (− 4, − 3) 42 6, 3 2 10 1, 72 (c) Midpoint: 5 2 2 3 , 2 3 2 Supplement: 180 162 18 (− 1, − 32 ) − 2 13 1 23 23 43 136 16 169 233 1 233 9 36 36 6 2 2 2 (c) Midpoint: , (b) Complement: Not possible. 162 > 90 x 1 −1 1 3 4 1 3 2 Supplement: 180 55 125 ( 13 , 23) −1 (b) d 0 2 133. (a) Complement: 90 55 35 y −2 2 100 169 269 1 2 (b) d 102 132 132. (a) 2 43 0 52 21 169 4 52 2 13 9 3 (b) d 4 62 3 102 (c) Midpoint: x 1 2 3 23 56 1 3 2 1 5 , , , 2 2 2 2 3 12 2 Review Exercises for Chapter 5 134. (a) The supplement is 180 109 71. 135. (a) Complement: 4 2 18 9 There is no complement. Supplement: (b) The supplement is 180 78 102. The complement is 90 78 12. (b) Complement: 17 18 18 9 2 20 20 Supplement: 9 11 20 20 137. Let x profit for September, then x 0.16x profit for October. 136. (a) The supplement is 0.95 2.19. The complement is 511 0.95 0.62. 2 x x 0.16x 507,600 (b) The supplement is 2.76 0.38. 2.16x 507,600 x 235,000 There is no complement. x 0.16x 272,600 Profit for September: $235,000 Profit for October: $272,600 138. Let x number of gallons of 100% concentrate. 0.3055 x 1.00x 0.5055 139. d 2 902 902 Second base 90 ft 16,200 90 ft d 16,200 16.50 0.30x x 27.50 d 0.70x 11 x 15.7 gallons 902 127 feet 90 ft 90 ft Home plate Review Exercises for Chapter 5 1. 1 sec x cos x 2. 1 csc x sin x 3. 4. 1 cot x tan x 5. cos x cot x sin x 6. 1 tan2 x sec2 x sec x sin x cos x 3 5 4 5 1 4 cot x tan x 3 1 5 sec x cos x 4 5 1 csc x sin x 3 13 2 8. tan , sec 3 3 3 4 7. sin x , cos x 5 5 tan x 1 cos x sec x 3 4 is in Quadrant I. cos 1 3 313 sec 13 13 sin 1 cos2 csc 13 1 sin 2 cot 1 3 tan 2 1 139 134 2 1313 512 Chapter 5 9. sin 2 x sin x Analytic Trigonometry 2 2 ⇒ cos x 1 2 2 10. csc 2 2 sec 9, sin 4 9 5 is in Quadrant I. 2 2 1 1 sec 9 1 sin x 2 tan x 1 cos x 1 2 1 cot x 1 tan x cos sec x 1 2 cos x csc 1 9 95 sin 45 20 csc x 1 2 sin x cot 5 1 1 tan 45 20 sin tan cos 45 9 45 1 9 sin tan 1 cos 12. 1 cos2 sin2 sin cos 1 1 11. sin2 x cot2 x 1 csc2 x csc sec 13. tan2 xcsc2 x 1 tan2 xcot2 x tan2 x sin 15. 2 sin tan1 x 1 14. cot2 xsin2 x 2 cot cos cot sin 16. 17. cos2 x cos2 x cot2 x cos2 x1 cot2 x cos2 xcsc2 x cos2 x x cot sin1 x cos sin x 2 u cos u cos2 x 2 sin x cos2 x sin2 x tan u tan u sec u cos u 18. tan2 csc2 tan2 tan2 csc2 1 tan2 cot2 1 2 2 2 2 x 19. tan x 12 cos x tan2 x 2 tan x 1 cos x sec2 x 2 tan x cos x sec2 x cos x 2 sin x cos x sec x 2 sin x cos x 20. sec x tan x2 sec2 x 2 sec x tan x tan2 x 1 tan2 x 2 sec x tan x tan2 x 21. 1 1 csc 1 csc 1 csc 1 csc 1 csc 1csc 1 1 2 sec x tan x 2 tan2 x 2 csc2 1 2 cot2 2 tan2 22. cos2 x cos2 x 1 sin x 1 sin x 1 sin x 1 sin x cos2 x1 sin x 1 sin2 x 1 sin x 23. csc2 x csc x cot x 1 1 sin2 x sin x 1 cos x sin2 x x cos sin x Review Exercises for Chapter 5 24. sin12 x cos x 1 sin x sin x cos x sin x sin x cos x 25. cos xtan2 x 1 cos x sec2 x x sin x cot x cos sin x 1 sec2 x sec x sec x 26. sec2 x cot x cot x cot xsec2 x 1 cot x tan2 x 27. cos x cos x cos sin x sin 2 2 2 1 tan2 x tan x tan x 28. cot 30. sin x 2 x tan x by the Cofunction Identity 1 tan x csc x sin x 1 1 1 tan x tan x sin x sin x cos x0 sin x1 29. 1 1 cos tan csc sin 1 cos sin 31. sin5 x cos2 x sin4 x cos2 x sin x 1 cos2 x2 cos2 x sin x 1 2 cos2 x cos4 x cos2 x sin x cot x cos2 x 2 cos4 x cos6 x sin x 33. sin x 3 sin x 32. cos3 x sin2 x cos x cos2 x sin2 x cos x1 sin2 x sin2 x cos x sin2 x sin4 x sin2 x sin4 x cos x 34. 4 cos 1 2 cos sin x x 36. 2 2 n, 2 n 3 3 tan u 1 2 2n or 3 u 5 2n 3 1 sec x 1 0 2 csc2 x n 6 4 3 sin x ± sec x 2 1 cos x 2 2n or 3 1 3 37. 3 csc2 x 4 1 sec x 1 2 x 2 35. 33 tan u 3 2 cos 1 cos 3 x 5 2n 3 3 2 2 4 5 2 n, 2 n, 2 n, 2 n 3 3 3 3 These can be combined as: x 2 n or x n 3 3 513 514 Chapter 5 Analytic Trigonometry 38. 4 tan2 u 1 tan2 u 2 cos2 x cos x 1 39. 3 tan2 u 1 0 2 cos2 x cos x 1 0 1 3 2 cos x 1cos x 1 0 tan2 u 2 cos x 1 0 3 1 tan u ± ± 3 3 u n or 6 cos x 5 n 6 x 2 sin2 x 3 sin x 1 40. cos x 1 0 1 2 cos x 1 2 4 , 3 3 x0 cos2 x sin x 1 41. 2 sin2 x 3 sin x 1 0 1 sin2 x sin x 1 0 2 sin x 1sin x 1 0 sin xsin x 1 0 2 sin x 1 0 or sin x 1 0 1 2 sin x 1 sin x 5 x , 6 6 sin x 0 x 0, 1 cos2 x cos2 2 43. 2 sin 2x 2 0 x 2 cos x 2 0 sin x 1 x 2 sin2 x 2 cos x 2 42. sin x 1 0 sin 2x x 2 cos x 1 0 cos x 12 2x cos x 1 0 cos x 1 x0 2 2 3 2 n, 2 n 4 4 x 3 n, n 8 8 x 3 9 11 , , , 8 8 8 8 45. cos 4xcos x 1 0 44. 3 tan 3x 0 tan 3x 0 cos 4x 0 3x 0, , 2, 3, 4, 5 4x 2 4 5 x 0, , , , , 3 3 3 3 x cos x 1 0 3 2 n, 2 n 2 2 cos x 1 3 n, n 8 2 8 2 x0 3 5 7 9 11 13 15 x 0, , , , , , , , 8 8 8 8 8 8 8 8 46. 3 csc2 5x 4 47. sin2 x 2 sin x 0 48. 2 cos2 x 3 cos x 0 4 3 sin xsin x 2 0 cos x2 cos x 3 0 sin x 0 cos x 0 csc2 5x csc 5x ± No real solution 4 3 x 0, sin x 2 0 No solution or 2 cos x 3 0 3 x , 2 2 2 cos x 3 cos x 3 2 No solution Review Exercises for Chapter 5 49. 515 tan2 tan 12 0 tan 4tan 3 0 tan 4 0 tan 3 0 arctan4 n arctan 3 n arctan4 , arctan4 2, arctan 3, arctan 3 51. sin 285 sin315 30 sec2 x 6 tan x 4 0 50. 1 tan2 sin 315 cos 30 cos 315 sin 30 x 6 tan x 4 0 tan2 x 6 tan x 5 0 tan x 5tan x 1 0 tan x 5 0 tan x 1 0 or tan x 5 tan x 1 2 2 4 23 2212 3 1 cos 285 cos315 30 3 7 x , 4 4 x arctan5 2 cos 315 cos 30 sin 315 sin 30 x arctan5 2 22 23 2212 2 3 1 4 tan 285 tan315 30 tan 315 tan 30 1 tan 315 tan 30 33 2 3 3 1 1 3 1 52. sin345 sin300 45 53. sin 25 11 11 11 sin cos cos sin sin 12 6 4 6 4 6 4 sin 300 cos 45 cos 300 sin 45 3 2 3 1 2 2 2 4 2 1 2 2 21 22 23 22 2 4 cos 1 3 23 22 21 22 1 2 2 4 2 25 11 tan tan 12 6 4 2 3 2 2 1 3 tan 300 tan 45 3 1 1 tan 300 tan 45 1 31 4 23 2 3 2 1 3 1 3 4 3 1 2 4 3 1 11 tan 6 4 11 1 tan tan 6 4 tan 33 1 2 3 3 1 1 3 tan345 tan300 45 2 cos 300 cos 45 sin 300 sin 45 2 25 11 11 11 cos cos sin sin cos 12 6 4 6 4 6 4 cos345 cos300 45 516 Chapter 5 Analytic Trigonometry 54. sin 1912 sin116 4 tan 1912 cos116 4 11 11 cos cos sin 6 4 6 4 sin cos 1 2 2 4 2 2 3 2 cos 2 2 1 3 2 4 3 1 3 2 2 4 11 11 cos sin sin 6 4 6 4 2 2 21 22 3 1 1912 tan116 4 11 tan 6 4 11 tan 1 tan 6 4 tan 3 3 1 1 3 3 1 3 3 3 3 3 3 3 3 12 63 2 3 6 55. sin 60 cos 45 cos 60 sin 45 sin60 45 sin 15 56. cos 45 cos 120 sin 45 sin 120 cos45 120 cos 165 57. tan 25 tan 10 tan25 10 1 tan 25 tan 10 58. tan 68 tan 115 tan68 115 tan47 1 tan 68 tan 115 tan 35 y y 4 3 13 u − 12 x v 7 −5 x Figures for Exercises 59–64 59. sinu v sin u cos v cos u sin v 34 135 4712 13 3 5 47 52 tan u tan v 60. tanu v 1 tan u tan v 37 125 3 12 1 7 5 15 127 36 57 36 57 960 5077 36 57 1121 Review Exercises for Chapter 5 61. cosu v cos u cos v sin u sin v 62. sinu v sin u cos v cos u sin v 3 12 5 4 13 4 13 7 1 57 36 52 63. cosu v cos u cos v sin u sin v 7 4 135 3412 13 67. cot cos x cos sin x sin 2 2 2 34 135 47 12 13 15 127 127 15 52 52 tan u tan v 64. tanu v 1 tan u tan v 1 57 36 52 65. cos x 66. sin x 15 127 36 57 960 5077 1121 37 125 3 12 1 7 5 36 57 57 36 3 3 3 sin x cos cos x sin 2 2 2 cos x0 sin x1 sin x0 cos x1 sin x cos x 2 x tan x by the cofunction identity. 68. sin x sin cos x cos sin x 0 cos x 1sin x sin x 69. cos 3x cos2x x 70. cos 2x cos x sin 2x sin x cos2 x sin2 x cos x 2 sin x cos x sin x cos3 x sin2 x cos x 2 sin2 x cos x cos3 x 3 sin2 x cos x cos3 x 31 cos2 x cos x cos3 x 3 cos x 3 cos3 x 4 cos3 x 3 cos x 71. sin x sin x 1 4 4 2 cos x sin 1 4 cos x x 2 2 7 , 4 4 sin sin cos cos sin cos cos cos cos sin cos cos sin cos cos cos cos sin sin cos cos tan tan 517 518 Chapter 5 Analytic Trigonometry cos x 72. cos x 1 6 6 cos x cos 6 sin x sin 6 cos x cos 6 sin x sin 6 1 2 sin x sin 2 sin x 1 6 12 1 sin x 1 x 73. sin x 3 2 sin x 3 2 2 2 cos x sin 3 2 3 cos x x 2 11 , 6 6 cos x 74. 3 3 cos x 0 4 4 cos x cos 34 sin x sin 34 cos x cos 34 sin x sin 34 0 2 sin x sin 3 0 4 22 0 2 sin x 2 sin x 0 sin x 0 x 0, 4 3 75. sin u , < u < 5 2 cos u 1 sin2 u tan u 76. cos u 3 5 tan u , 1 and < u < ⇒ sin u 2 5 1 2 15 25 45 2 cos 2u cos u sin u 5 15 53 sin u 4 cos u 3 sin 2u 2 sin u cos u 2 24 54 53 25 53 54 2 cos 2u cos2 u sin2 u 43 4 1 3 2 2 24 7 2 sin 2u 2 sin u cos u 2 2 tan u tan 2u 1 tan2 u 2 5 2 2 7 25 2 2 2 tan u tan 2u 1 tan2 u 21 1 1 2 2 2 1 4 3 3 4 Review Exercises for Chapter 5 77. sin 4x 2 sin 2x cos 2x 78. 22 sin x cos xcos2 x sin2 x 1 1 2 sin2 x 1 cos 2x 1 cos 2x 1 2 cos x2 1 4 sin x cos x2 cos2 x 1 8 cos3 x sin x 4 cos x sin x 2 sin2 x 2 cos2 x tan2 x 2 4 −2 2 −2 −2 −1 1 cos 4x 2 2x 2 1 cos 4x sin 79. tan2 2x cos2 2x 1 cos 4x 1 cos 4x 2 81. sin2 x tan2 x sin2 x 2 4 2 2 2x 1 cos 2 1 cos 2x 2 2 1 2 cos 2x cos2 2x 4 1 cos 2x 2 1 cos 4x 2 21 cos 2x 1 2 cos 2x 3 4 cos 2x cos 4x 41 cos 2x 83. sin75 1 cos 150 2 1 3 2 2 3 2 2 1 2 3 2 1 cos 150 2 1 3 2 2 3 2 2 1 2 3 2 1 cos 150 tan75 sin 150 2 3 1 cos 6x 2 82. cos2 x tan2 x sin2 x 2 4 cos 2x 1 cos 4x 41 cos 2x 80. cos2 3x sin x sin x cos x cos x cos75 2 1 1 2 3 2 2 3 1 cos 2x 2 519 520 Chapter 5 Analytic Trigonometry 30 84. sin 15 sin 2 30 cos 15 cos 2 1 cos 30 2 1 cos 30 30 tan 15 tan 2 sin 30 19 85. sin 12 19 cos 12 19 tan 12 1 cos 19 6 2 1 cos 19 6 2 2 2 1 2 3 2 3 2 2 3 1 3 2 3 2 2 2 3 2 2 17 6 2 17 6 2 1 cos 17 6 2 1 cos 17 6 2 1 2 tan 1 2 3 2 1 2 3 2 10 10 u2 1 2cos u 1 245 109 3 1010 u2 1 sincosu u 1 3 54 5 31 3 2 12 2 1 3 17 1 6 2 17 1 sin 6 2 1 cos u2 1 2cos u 1 245 101 cos 4 3 u ⇒ cos u and is in Quadrant I. 87. Given sin u , 0 < u < 5 2 5 2 sin 3 2 2 1 1 2 3 2 3 1 1 2 17 tan tan 12 1 2 2 3 19 1 6 2 2 3 19 1 sin 6 2 17 cos cos 12 1 cos 17 17 6 sin 86. sin 12 2 3 1 1 cos 30 2 2 3 2 3 12 2 2 3 3 Review Exercises for Chapter 5 5 3 88. tan u , < u < 8 2 sin u cos u 521 y 5 −8 89 u 8 −5 x 89 89 1 2cos u 1 8 2 sin u 2 c os u 2 89 1 2cos u 1 8 2 89 u 1 cos u t an 2 sin u 1 8 89 5 89 89 8 5 89 8 289 89 1788 89 89 8 289 89 1788 89 8 89 5 u 2 35 89. Given cos u , < u < ⇒ sin u and is in Quadrant I. 7 2 7 2 sin u2 1 2cos u 1 227 149 314 3 1414 cos tan u2 1 2cos u 1 227 145 70 14 3 5 97 3 u2 1 sincosu u 1 327 5 57 357 5 1 361 635, u 1 cos u 1 16 7 21 sin 2 2 2 12 6 u 1 cos u 1 16 5 15 cos 2 2 2 12 6 90. sec u 6, < u < , 2 sin u cos u 1 6 tan u 1 cos u 1 16 7 2 sin u 6 356 tan u sinu2 216 21 35 2 cosu2 5 156 15 91. 1 cos2 10x cos 10x2 93. cos 35 7 6 or 5 35 35 1 1 sin sin sin 0 sin 6 6 2 3 2 3 cos 5x 92. sin 6x tan 3x 1 cos 6x 94. 6 sin 15 sin 45 6 12cos15 45 cos15 45 3cos30 cos 60 3cos 30 cos 60 1 95. cos 5 cos 3 2 cos 2 cos 8 1 96. 4 sin 3 cos 2 42 sin3 2 sin3 2 2sin 5 sin 522 Chapter 5 Analytic Trigonometry 97. sin 4 sin 2 2 cos 4 2 2 sin4 2 2 98. cos 3 cos 2 2 cos 2 cos 3 sin 2 cos 3 2 3 2 cos 2 2 5 cos 2 2 sin x 2 cos 100. sin x 4 4 r x 4 x 4 2 sin x 4 x 4 2 2 cos x sin 1 2 v sin 2 32 0 range 100 feet v0 80 feet per second r 1 802 sin 2 100 32 sin 2 0.5 2 30 15 or 12 102. Volume V of the trough will be the area A of the isosceles triangle times the length l of the trough. VAl (a) cos x 2 sin x sin 6 6 6 99. cos x 101. A cos 1 bh 2 h ⇒ h 0.5 cos 2 0.5 2 4m b b 2 b ⇒ 0.5 sin sin 2 0.5 2 2 A 0.5 sin 0.5 cos 2 2 0.52 sin 0.25 sin (b) V sin cos square meters 2 2 cos cubic meters 2 2 cos cubic meters 2 2 1 1 cos 2 sin cos sin cubic meters 2 2 2 2 2 2 Volume is maximum when 0.5 m Not drawn to scale cos 2 2 V 0.254 sin sin h 0.5 m . 2 4 Review Exercises for Chapter 5 103. y 1.5 sin 8t 0.5 cos 8t 2 523 1 104. y 1.5 sin 8t 0.5 cos 8t 3 sin 8t 1 cos 8t 2 Using the identity a sin B b cos B a2 b2 sinB C, 2 0 b C arctan , a > 0 a −2 (Exercise 83, Section 5.4), we have 1 1 y 32 12 sin 8t arctan 2 3 105. Amplitude 10 2 2 sin 8t arctan 106. Frequency feet < < , then < < and is in 2 4 2 2 2 Quadrant I. 107. False. If cos 10 13. 1 4 cycles per second 2 8 108. False. The correct identity is sinx y sin x cos y cos x sin y. > 0 2 109. True. 4 sinxcosx 4sin xcos x 4 sin x cos x 22 sin x cos x 2 sin 2x 110. True. It can be verified using a product-to-sum identity. 111. Reciprocal Identities: sin 1 csc csc 1 sin cos 1 sec sec 1 cos tan 1 cot cot 1 tan tan sin cos cot cos sin 1 4 sin 45 cos 15 4 sin 60 sin 30 2 2 23 12 3 1 Quotient Identities: Pythagorean Identities: sin2 cos2 1 1 tan2 sec2 1 cot2 csc2 112. No. For an equation to be an identity, the equation must be true for all real numbers. sin 12 has an infinite number of solutions but is not an identity. 113. a sin x b 0 sin x b a If b > a , then b > 1 and there is no solution a since sin x ≤ 1 for all x. 524 Chapter 5 Analytic Trigonometry 3 cos 3 114. S 6hs s 2 , 0 < ≤ 90 2 sin where h 2.4 inches, s 0.75 inch, and is the given angle. (a) For a surface area of 12 square inches, (b) Using a graphing calculator yields the following graph: 3 cos 3 S 62.40.75 0.752 12 2 sin 10.8 0.84375 0.84375 3 cos sin 3 cos sin 20 12 (0.9553, 11.99) 3 4 0 1.2. 0 Using the minimum function yields Using the solve function of a graphing calculator gives 0.9553 radians or 54.73466. 49.91479 or 59.86118. 116. y1 115. The graph of y1 is a vertical shift of the graph of y2 one unit upward so y1 y2 1. cos 3x , cos x y2 2 sin x2 If the graph of y2 is reflected in the x-axis and then shifted upward by one unit, it coincides with the graph of y1. Therefore, cos 3x 2 sin x2 1. cos x So, y1 1 y2. 117. y x 3 4 cos x 1 x 118. y 2 x2 3 sin 2 2 11 Zeros: x 1.8431, 2.1758, 3.9903, 8.8935, 9.8820 −4 20 −2 Approximate roots: 3.1395, 2.0000, 7 −10 0.4378, 2.0000 −7 x 1 y 2 x2 3 sin 2 2 Problem Solving for Chapter 5 1. (a) Since sin2 cos2 1 and cos2 1 sin2 : cos ± 1 sin2 tan sin sin ± 1 sin2 cos cot 1 sin2 1 ± tan sin We also have the following relationships: cos sin tan 2 sin sin 2 sin 2 1 1 sec ± 1 sin2 cos cot 1 cos sin sec 1 sin 2 csc 1 sin —CONTINUED— sin 10 Problem Solving for Chapter 5 1. —CONTINUED— (b) sin ± 1 cos2 2. cos We also have the following relationships: tan 1 sin ± cos cos csc 1 1 ± 1 cos2 sin tan cos 2 cos sec 1 cos csc 1 cos 2 cot 1 cos ± tan 1 cos2 sec 1 cos cot cos cos 2 cos2 sin cos 2n 2 1 cos2n2 cos n 2 3. sin 2 12n 1 1 sin 12n 6 6 sin ± 10 01 Thus, sin 0 4. pt sin 2n cos n cos sin n sin 2 2 Thus, cos 1 12n 1 for all integers n. 6 2 1 p t 30p2t p3t p5t 30p6t 4 1 1 p2t sin1048 t 2 1.4 p1 p2 p3 − 0.003 1 p3t sin1572 t 3 p5 p6 0.003 −1.4 1 p5t sin2620 t 5 1 p6t sin3144 t 6 The graph of pt 1 1 1 sin524 t 15 sin1048 t sin1572 t sin2620 t 5 sin3144 t 4 3 5 y yields the graph shown in the text and to the right. y = p(t) 1.4 t 0.006 —CONTINUED— 1 6 2 2n 2 1 0 for all integers n. (a) p1t sin524 t 6 −1.4 525 526 Chapter 5 Analytic Trigonometry 4. —CONTINUED— (b) Function Period (c) p1t 2 1 0.0038 524 262 p2t 2 1 0.0019 1048 524 p3t 2 1 0.0013 1572 786 p5t 2 1 0.0008 2620 1310 p6t 1 2 0.0006 3144 1572 1.4 Max 0 −1.4 0.00382 Min Over one cycle, 0 ≤ t < 1 262 , we have four t-intercepts: t 0, t 0.00096, t 0.00191, and t 0.00285 (d) The absolute maximum value of p over one cycle is p 1.1952, and the absolute minimum value of p over one cycle is p 1.1952. The graph of p appears to be periodic with a period 1 of 262 0.0038. 5. From the figure, it appears that u v w. Assume that u, v, and w are all in Quadrant I. From the figure: tan u s 1 3s 3 tan v s 1 2s 2 tan w s 1 s tanu v tan u tan v 1 tan u tan v 1 3 1 2 1 1 31 2 5 6 1 1 6 1 tan w. Thus, tanu v tan w. Because u, v, and w are all in Quadrant I, we have arctantan(u v arctantan wu v w. 6. y 16 x2 tan x h0 v02 cos2 Let h0 0 and take half of the horizontal distance: 1 1 2 1 2 1 2 v sin 2 v 2 sin cos v sin cos 2 32 0 64 0 32 0 Substitute this expression for x in the model. y 16 2 cos2 v0 321 v 2 0 sin cos sin 1 v cos 32 2 1 2 2 1 2 2 v sin v sin 64 0 32 0 1 2 2 v sin 64 0 2 0 sin cos Problem Solving for Chapter 5 7. 527 The hypotenuse of the larger right triangle is: 1 sin2 1 cos 2 sin2 1 2 cos cos2 θ 2 2(1 + cos θ ) 2 2 cos 21 cos 1 cos θ θ sin θ sin 2 21sin cos 21sin cos 11 cos cos sin 1 cos sin 1 cos 21 cos2 2 sin 1 2cos 2 211coscos 211coscos 1 2cos 2 cos tan 2 1 sincos 8. F 0.6W sin 90 sin 12 (a) F t 0.2 182.6 9. Seward: D 12.2 6.4 cos 0.6Wsin cos 90 cos sin 90 sin 12 0.6W sin 0 cos 1 sin 12 0.6W cos sin 12 t 0.2 182.6 New Orleans: D 12.2 1.9 cos (a) 20 0 0.6185 cos x . (b) Let y1 sin 12 365 0 550 (b) The graphs intersect when t 91 and when t 274. These values correspond to April 1 and October 1, the spring equinox and the fall equinox. 0 90 0 (c) The force is maximum (533.88 pounds) when 0. The force is minimum (0 pounds) when 90. (c) Seward has the greater variation in the number of daylight hours. This is determined by the amplitudes, 6.4 and 1.9. (d) Period: 2 365.2 days 182.6 t when t 0 corresponds to 12:00 A.M. 6.2 (a) The high tides occur when cos t 1. Solving yields t 6.2 or t 18.6. 6.2 These t-values correspond to 6:12 A.M. and 6:36 P.M. 10. d 35 28 cos The low tide occurs when cos t 1. Solving yields t 0 and t 12.4 which corresponds to 12:00 A.M. 6.2 and 12:24 P.M. (b) The water depth is never 3.5 feet. At low tide the depth is d 35 28 7 feet. (c) 70 0 24 0 528 Chapter 5 Analytic Trigonometry 11. (a) Let y1 sin x and y2 0.5. (b) Let y1 cos x and y2 0.5. 2 2 2 0 −2 −2 sin x ≥ 0.5 on the interval 5 6 , 6 . (c) Let y1 tan x and y2 sin x. cos x ≤ 0.5 on the interval 2 4 3 , 3 . (d) Let y1 cos x and y2 sin x. 2 2 2 0 2 0 −2 −2 tan x < sin x on the intervals sin 12. (a) n 2 0 2 , and 32, 2. 2 2 sin (b) For glass, n 1.50. 2 1.50 sin cos cos sin 2 2 2 2 sin 2 cos cot sin 2 2 2 sin 30 For 60, n cos 30 cot 2 n 3 2 2 1.50 3 2 3 2 1 cot 2 2 cot2 1 tan 2 3 3 2 tan1 3 3 76.52 1 . cot 2 2 13. (a) sinu v w sinu v w sinu v cos w cosu v sin w sin u cos v cos u sin v cos w cos u cos v sin u sin v sin w sin u cos v cos w cos u sin v cos w cos u cos v sin w sin u sin v sin w (b) tanu v w tanu v w tanu v tan w 1 tanu v tan w 1tan utanutantanvv tan w 1 tan u tan v 1 tan u tan v tan u tan v 1 tan w 1 tan u tan v tan u tan v 1 tan u tan v tan w 1 tan u tan v tan u tan v tan w tan u tan v tan w tan u tan v tan w 1 tan u tan v tan u tan w tan v tan w 4 and 54 , 2. cos x ≥ sin x on the intervals 0, 1 Problem Solving for Chapter 5 (b) cos4 cos2 2 14. (a) cos3 cos2 cos 2 cos sin 2 sin cos 2 cos 2 sin 2 sin 2 1 2 cos2 2 sin2 2 sin2 cos 2 sin cos sin cos 4 sin2 cos 1 sin2 2 sin2 2 cos 1 4 sin2 1 2 sin2 2 1 22 sin cos 2 1 8 sin2 cos2 15. h1 3.75 sin 733t 7.5 h2 3.75 sin 733 t (a) 4 7.5 3 15 0 1 0 (b) The period for h1 and h2 is 2 0.0086. 733 12 0 3 2 733 The graphs intersect twice per cycle. 1 There are 116.66 cycles in the interval 0, 1, so the graphs intersect approximately 233.3 times. 2 733 529 530 Chapter 5 Chapter 5 Analytic Trigonometry Practice Test sec2 x csc2 x . csc2 x1 tan2 x 1. Find the value of the other five trigonometric functions, 4 given tan x 11 , sec x < 0. 2. Simplify 3. Rewrite as a single logarithm and simplify ln tan ln cot . 4. True or false: cos 2 x csc x 1 5. Factor and simplify: sin4 x sin2 x cos2 x 6. Multiply and simplify: csc x 1csc x 1 7. Rationalize the denominator and simplify: 8. Verify: cos2 x 1 sin x 9. Verify: tan4 x 2 tan2 x 1 sec4 x 1 cos sin 2 csc sin 1 cos 10. Use the sum or difference formulas to determine: (a) sin 105 (b) tan 15 1 tan . 4 1 tan 11. Simplify: sin 42 cos 38 cos 42 sin 38 12. Verify tan 13. Write sinarcsin x arccos x as an algebraic expression in x. 14. Use the double-angle formulas to determine: 15. Use the half-angle formulas to determine: (a) sin 22.5 (b) tan 12 16. Given sin 45, lies in Quadrant II, find cos2. 17. Use the power-reducing identities to write sin2 x cos2 x in terms of the first power of cosine. 18. Rewrite as a sum: 6sin 5 cos 2. 19. Rewrite as a product: sinx sinx . 20. Verify 21. Verify: 22. Find all solutions in the interval 0, 2: cos u sin v 12sinu v sinu v. 23. Find all solutions in the interval 0, 2: tan2 3 1 tan 3 0 (a) cos 120 sin 9x sin 5x cot 2x. cos 9x cos 5x 4 sin2 x 1 24. Find all solutions in the interval 0, 2: sin 2x cos x 25. Use the quadratic formula to find all solutions in the interval 0, 2: tan2 x 6 tan x 4 0 (b) tan 300