Comments
Description
Transcript
C H A P T E R 3
C H A P T E R 3 Exponential and Logarithmic Functions Section 3.1 Exponential Functions and Their Graphs . . . . . . . . . 265 Section 3.2 Logarithmic Functions and Their Graphs Section 3.3 Properties of Logarithms . . . . . . . . . . . . . . . . . 281 Section 3.4 Exponential and Logarithmic Equations . . . . . . . . . 289 Section 3.5 Exponential and Logarithmic Models Review Exercises . . . . . . . . 273 . . . . . . . . . . 303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 C H A P T E R 3 Exponential and Logarithmic Functions Section 3.1 Exponential Functions and Their Graphs ■ You should know that a function of the form f x a x, where a > 0, a 1, is called an exponential function with base a. ■ You should be able to graph exponential functions. ■ You should know formulas for compound interest. (a) For n compoundings per year: A P 1 r n . nt (b) For continuous compoundings: A Pert. Vocabulary Check 1. algebraic 4. A P 1 2. transcendental r n nt 3. natural exponential; natural 5. A Pert 1. f 5.6 3.45.6 946.852 2. f x 2.3x 2.332 3.488 3. f 5 0.006 4. f x 23 23 5. gx 50002x 500021.5 6. f x 2001.212x 5x 50.3 0.544 2001.212 24 1767.767 1.274 1025 7. f x 2x 9. f x 2x 8. f x 2x 1 rises to the right. Increasing Asymptote: y 1 Decreasing Asymptote: y 0 Intercept: 0, 2 Asymptote: y 0 Intercept: 0, 1 Matches graph (c). Intercept: 0, 1 Matches graph (a). Matches graph (d). 10. f x 2x2 rises to the right. Asymptote: y 0 1 Intercept: 0, 4 Matches graph (b). 11. f x 12 x y 5 x 2 1 0 1 2 f x 4 2 1 0.5 0.25 4 3 2 Asymptote: y 0 1 −3 −2 x −1 1 2 3 −1 265 266 Chapter 3 12. f x 12 x Exponential and Logarithmic Functions 13. f x 6x 2x x 2 1 0 1 2 x 2 1 0 1 2 f x 0.25 0.5 1 2 4 f x 36 6 1 0.167 0.028 Asymptote: y 0 Asymptote: y 0 y y 5 5 4 4 3 3 2 1 −3 −2 −1 x 1 2 −3 3 −2 −1 −1 x 1 2 3 −1 15. f x 2x1 14. f x 6x x 2 1 0 1 2 x 2 1 0 1 2 f x 0.028 0.167 1 6 36 f x 0.125 0.25 0.5 1 2 Asymptote: y 0 Asymptote: y 0 y y 5 5 4 4 3 3 2 2 1 −3 −2 −1 1 x 1 2 −3 3 −2 x −1 1 2 3 −1 −1 16. f x 4x3 3 y 7 x 1 0 1 2 3 f x 3.004 3.016 3.063 3.25 4 6 5 4 Asymptote: y 3 2 1 −3 −2 −1 17. f x 3x, gx 3x4 Because gx f x 4, the graph of g can be obtained by shifting the graph of f four units to the right. 19. f x 2x, gx 5 2x Because gx 5 f x, the graph of g can be obtained by shifting the graph of f five units upward. x 1 2 3 4 5 18. f x 4x, gx 4x 1 Because gx f x 1, the graph of g can be obtained by shifting the graph of f one unit upward. 20. f x 10x, gx 10x3 Because gx f x 3, the graph of g can be obtained by reflecting the graph of f in the y-axis and shifting f three units to the right. (Note: This is equivalent to shifting f three units to the left and then reflecting the graph in the y-axis.) Section 3.1 21. f x 72 , gx 72 x6 x gx f x 5, hence the graph of g can be obtained by reflecting the graph of f in the x-axis and shifting the resulting graph five units upward. 24. y 3x 2 25. f x 3x2 1 3 3 26. y 4x1 2 3 4 −6 −3 267 22. f x 0.3x, gx 0.3x 5 Because gx f x 6, the graph of g can be obtained by reflecting the graph of f in the x-axis and y-axis and shifting f six units to the right. (Note: This is equivalent to shifting f six units to the left and then reflecting the graph in the x-axis and y-axis.) 23. y 2x Exponential Functions and Their Graphs −3 3 3 3 −1 −1 −1 5 −3 0 3 27. f 4 e34 0.472 28. f x ex e3.2 24.533 29. f 10 2e510 3.857 1022 30. f x 1.5e12x 31. f 6 5000e0.066 7166.647 32. f x 250e0.05x 250e0.0520 679.570 1.5e120 1.956 1052 33. f x e x 34. f x ex x 2 1 0 1 2 x 2 1 0 1 2 f x 0.135 0.368 1 2.718 7.389 f x 7.389 2.718 1 0.368 0.135 Asymptote: y 0 Asymptote: y 0 y y 5 5 4 4 3 3 2 2 1 −3 −2 1 x −1 1 2 −3 3 −1 −2 −1 x 1 2 3 −1 36. f x 2e0.5x 35. f x 3e x4 x 8 7 6 5 4 x 2 1 0 1 2 f x 0.055 0.149 0.406 1.104 3 f x 5.437 3.297 2 1.213 0.736 Asymptote: y 0 Asymptote: y 0 y y 8 6 7 5 6 5 4 4 3 3 2 2 1 1 − 8 − 7 − 6 − 5 − 4 −3 −2 − 1 x 1 − 3 − 2 −1 −1 x 1 2 3 4 268 Chapter 3 Exponential and Logarithmic Functions 37. f x 2e x2 4 38. f x 2 ex5 x 2 1 0 1 2 x 0 2 4 5 6 f x 4.037 4.100 4.271 4.736 6 f x 2.007 2.050 2.368 3 4.718 Asymptote: y 4 Asymptote: y 2 y y −3 −2 −1 9 8 7 6 5 8 3 2 1 3 7 6 5 4 1 x −1 1 2 3 4 5 6 7 3 4 5 6 7 41. st 2e0.12t 22 −4 −7 8 5 −10 −2 −1 42. st 3e0.2t 44. hx ex2 4 4 − 16 17 −3 −2 −2 3 46. 3x1 33 4 0 0 3x1 27 23 0 43. gx 1 ex 20 2x3 16 47. 2x3 24 1 2x2 32 2x2 25 x13 x34 x 2 5 x2 x7 x 3 15 x1 125 15 x1 53 15 x1 15 3 49. e3x2 e3 50. 2x 1 4 3x 1 2x 5 1 3 x 52 x 4 ex 2 3 e2x x 2 3 2x 52. ex 2 6 e5x x 2 6 5x x 2 2x 3 0 x 2 5x 6 0 x 3x 1 0 x 3x 2 0 x 3 or x 1 e2x1 e4 3x 2 3 x x 1 3 51. 8 6 7 48. 2 40. y 1.085x 39. y 1.085x 45. x 1 x 3 or x 2 Section 3.1 Exponential Functions and Their Graphs 53. P $2500, r 2.5%, t 10 years Compounded n times per year: A P 1 r n nt 2500 1 0.025 n 10n Compounded continuously: A Pert 2500e0.02510 n 1 2 4 12 365 Continuous Compounding A $3200.21 $3205.09 $3207.57 $3209.23 $3210.04 $3210.06 54. P $1000, r 4%, t 10 years Compounded n times per year: A 1000 1 0.04 n 10n Compounded continuously: A 1000e0.0410 n 1 2 4 12 365 Continuous Compounding A $1480.24 $1485.95 $1488.86 $1490.83 $1491.79 $1491.82 55. P $2500, r 3%, t 20 years Compounded n times per year: A P 1 r n nt 2500 1 0.03 n 20n Compounded continuously: A Pert 2500e0.0320 n 1 2 4 12 365 Continuous Compounding A $4515.28 $4535.05 $4545.11 $4551.89 $4555.18 $4555.30 56. P $1000, r 6%, t 40 years Compounded n times per year: A 1000 1 0.06 n 40n Compounded continuously: A 1000e0.0640 n 1 2 4 12 365 Continuous Compounding A $10,285.72 $10,640.89 $10,828.46 $10,957.45 $11,021.00 $11,023.18 57. A Pert 12,000e0.04t t 10 20 30 40 50 A $17,901.90 $26,706.49 $39,841.40 $59,436.39 $88,668.67 58. A Pert 12,000e0.06t t 10 20 30 40 50 A $21,865.43 $39,841.40 $72,595.77 $132,278.12 $241,026.44 269 270 Chapter 3 Exponential and Logarithmic Functions 59. A Pert 12,000e0.065t t 10 20 30 40 50 A $22,986.49 $44,031.56 $84,344.25 $161,564.86 $309,484.08 60. A Pert 12,000e0.035t t 10 20 30 40 50 A $17,028.81 $24,165.03 $34,291.81 $48,662.40 $69,055.23 61. A 25,000e0.087525 62. A 5000e0.07550 $222,822.57 64. p 5000 1 (a) 63. C10 23.951.0410 $35.45 $212,605.41 4 4 e0.002x 65. Vt 100e4.6052t (a) V1 10,000.298 computers 1200 (b) V1.5 10,004.472 computers (c) V2 1,000,059.63 computers 0 2000 0 (b) When x 500: p 5000 1 4 $421.12 4 e0.002500 (c) Since 600, 350.13 is on the graph in part (a), it appears that the greatest price that will still yield a demand of at least 600 units is about $350. 67. Q 2512 t1599 66. (a) P 152.26e0.0039t (a) Q0 25 grams Since the growth rate is negative, 0.0039 0.39%, the population is decreasing. (b) Q1000 16.21 grams (b) In 1998, t 8 and the population is given by P8 152.26e0.00398 147.58 million. (c) 30 In 2000, t 10 and the population is given by P10 152.26e0.003910 146.44 million. 0 (c) In 2010, t 20 and the population is given by P20 152.26e0.003920 140.84 million. t5715 (a) When t 0: Q 1012 05715 101 10 grams (b) When t 2000: Q 102 1 20005715 7.85 grams (c) Q Mass of 14C (in grams) 68. Q 1012 5000 0 12 10 8 6 4 2 t 4000 8000 Time (in years) Exponential Functions and Their Graphs x Sample Data Model 0 12 12.5 25 44 44.5 50 81 81.82 75 96 96.19 100 99 99.3 271 100 1 7e0.069x 69. y (a) Section 3.1 (b) 110 0 120 0 70. (a) y (d) 100 63.14%. 1 7e0.06936 2 100 100 when 3 1 7e0.069x x 38 masses. (b) p 107,428e0.150h P Atmospheric pressure (in pascals) (c) When x 36: 120,000 107,428e0.1508 100,000 32,357 pascals 80,000 60,000 40,000 20,000 h 5 10 15 20 25 Altitude (in km) 271,801 99,990 . 71. True. The line y 2 is a horizontal asymptote for the graph of f x 10x 2. 72. False, e 73. f x 3x2 74. gx 22x6 22x 26 3x32 1 6422x 2 6422x 3 3x 1 3x 9 644x hx hx Thus, f x gx, but f x hx. 75. f x 164x e is an irrational number. and f x 164x Thus, gx hx but gx f x. 76. f x 5x 3 5x 424x 1622x gx 53x 53 42x 1622x hx 5x3 5x 53 hx Thus, none are equal. 2x 14 4 1 x2 gx Thus, f x gx hx. 272 Chapter 3 Exponential and Logarithmic Functions 77. y 3x and y 4x y 3 y = 3x y = 4x x 2 1 0 1 2 3x 1 9 1 3 1 3 9 4x 1 16 1 4 1 4 16 2 1 −2 x −1 1 (a) 4x < 3x when x < 0. 2 −1 (b) 4x > 3x when x > 0. (b) gx x23x 78. (a) f x x2ex 6 5 −2 −2 7 10 −2 −1 Decreasing: , 0, 2, Decreasing: 1.44, Increasing: 0, 2 Increasing: , 1.44 Relative maximum: 2, 4e2 Relative maximum: 1.44, 4.25 Relative minimum: 0, 0 79. f x 1 0.5 x and gx e x 0.5 80. The functions (c) 3x and (d) 2x are exponential. (Horizontal line) 4 f g −3 3 0 As x → , f x → gx. As x → , f x → gx. 81. x2 y2 25 y2 82. x y 2 25 y x 2 and y x 2, x ≥ 2 y ± 25 x2 83. f x 2 9x y 12 Vertical asymptote: x 9 9 6 Horizontal asymptote: y 0 x 11 10 f x 1 2 x2 y x2 3 8 7 2 1 −18 − 15 −6 −3 −3 −6 −9 x 3 Section 3.2 84. f x 7 x y Domain: , 7 Logarithmic Functions and Their Graphs 85. Answers will vary. 6 4 x 9 2 3 6 7 y 4 3 2 1 0 2 −4 −2 x 2 4 6 8 −2 −4 −6 Section 3.2 Logarithmic Functions and Their Graphs ■ You should know that a function of the form y loga x, where a > 0, a 1, and x > 0, is called a logarithm of x to base a. ■ You should be able to convert from logarithmic form to exponential form and vice versa. y loga x ⇔ ay x ■ You should know the following properties of logarithms. (a) loga 1 0 since a0 1. (b) loga a 1 since a1 a. (c) loga ax x since ax ax . (d) aloga x x Inverse Property (e) If loga x loga y, then x y. ■ You should know the definition of the natural logarithmic function. loge x ln x, x > 0 ■ You should know the properties of the natural logarithmic function. (a) ln 1 0 since e0 1. (b) ln e 1 since e1 e. (c) ln ex x since ex ex . (d) eln x x Inverse Property (e) If ln x ln y, then x y. ■ You should be able to graph logarithmic functions. Vocabulary Check 1. logarithmic 2. 10 4. aloga x x 5. x y 3. natural; e 1. log4 64 3 ⇒ 43 64 2. log3 81 4 ⇒ 34 81 1 3. log7 49 2 ⇒ 72 491 1 1 4. log 1000 3 ⇒ 103 1000 2 5. log32 4 5 ⇒ 3225 4 6. log16 8 34 ⇒ 1634 8 1 7. log36 6 2 ⇒ 36 12 6 8. log8 4 23 ⇒ 823 4 9. 53 125 ⇒ log5 125 3 10. 82 64 ⇒ log8 64 2 1 11. 8114 3 ⇒ log81 3 4 3 12. 932 27 ⇒ log9 27 2 273 274 Chapter 3 Exponential and Logarithmic Functions 1 1 13. 62 36 ⇒ log6 36 2 1 1 14. 43 64 ⇒ log4 64 3 15. 70 1 ⇒ log7 1 0 16. 103 0.001 ⇒ log10 0.001 3 17. f x log2 x 18. f x log16 x f 4 log16 4 12 since 1612 4 f 16 log2 16 4 since 24 16 19. f x log7 x 20. f x log x f 1 log7 1 0 since 70 1 21. gx loga x f 10 log 10 1 since 101 10 ga2 loga a2 2 by the Inverse Property 22. gx logb x g b3 logb 23. f x log x b3 f 3 since 4 5 24. f x log x log 0.097 1 f 500 log 5001 2.699 4 5 b3 b3 f x log x 25. 26. f x log x f 12.5 1.097 27. log3 34 4 since 34 34 f 75.25 1.877 29. log 1 since 1 . 28. log1.5 1 30. 9log9 15 Since 1.50 1, log1.5 1 0. Since aloga x x, 9log9 15 15. 31. f x log4 x 32. gx log6 x y Domain: x > 0 ⇒ The domain is 0, . Domain: 0, 2 x-intercept: 1, 0 x-intercept: 1, 0 1 y Vertical asymptote: x 0 2 y log4 x ⇒ 4 y x 1 Vertical asymptote: x 0 y log6 x ⇒ 6 y x 1 4 1 4 2 f x 1 0 1 1 2 −1 1 2 3 −1 −2 33. y log3 x 2 4 x 2 −2 2 log3 x −4 32 x −2 x 1 6 1 6 6 y 1 0 1 2 1 The domain is 3, . 2 log3 x 2 0 4 6 8 10 12 y x-intercept: 6 log4x 3 0 4 2 40 x 3 −6 9x The x-intercept is 9, 0. x 2 1x3 −2 4x −4 4 Vertical asymptote: x 0 The x-intercept is 4, 0. y log3 x 2 Vertical asymptote: x 3 0 ⇒ x 3 log3 x 2 y ⇒ 32y x 3 Domain: x 3 > 0 ⇒ x > 3 6 x-intercept: 2 34. hx log4x 3 y Domain: 0, 1 −1 x x x −1 y log4x 3 ⇒ 4 y 3 x x 27 9 3 1 1 3 x 34 1 4 7 19 y 1 0 1 2 3 y 1 0 1 2 6 8 10 Section 3.2 35. f x log6x 2 Logarithmic Functions and Their Graphs 36. y log5x 1 4 Domain: x 2 > 0 ⇒ x > 2 Domain: x 1 > 0 ⇒ x > 1 The domain is 2, . The domain is 1, . y x-intercept: 0 log6x 2 4 x-intercept: 2 log5x 1 4 0 0 log6x 2 6 −2 1x2 −4 The x-intercept is 1, 0. 1 0 1 37. y log 135 36 2 5 Domain: x x > 0 ⇒ x > 0 5 x-intercept: x1 626 625 x 1 x 2 3 4 x 1.00032 1.0016 1.008 1.04 1.2 y 1 0 1 2 3 1 2 3 4 5 6 7 y 0.70 0.40 0.22 0.10 0 0.08 0.15 y 4 5 0 x 2 x 4 x 100 5 6 8 −2 x 1 ⇒ x5 5 −4 The x-intercept is 5, 0. Vertical asymptote: 1 625 x The domain is 0, . log 2 y log5x 1 4 ⇒ 5y4 1 x 6y 2 x f x 3 Vertical asymptote: x 1 0 ⇒ x 1 y log6x 2 1 4 626 y log6x 2 4 5 The x-intercept is 625, 0. Vertical asymptote: x 2 0 ⇒ x 2 x 6 54 x 1 1 x 156 y log5x 1 4 x 60 x 2 275 x 0 ⇒ x0 5 The vertical asymptote is the y-axis. 38. y logx Domain: x > 0 ⇒ x < 0 The domain is , 0. x 1 100 10 1 1 10 y 2 1 0 1 x-intercept: logx 0 y 100 x 2 1 x 1 The x-intercept is 1, 0. −3 −2 x −1 1 Vertical asymptote: x 0 −1 y logx ⇒ 10y x −2 5 6 276 Chapter 3 Exponential and Logarithmic Functions 39. f x log3 x 2 40. f x log3 x Asymptote: x 0 Asymptote: x 0 Point on graph: 1, 2 Point on graph: 1, 0 Matches graph (c). Matches graph (f). The graph of f x is obtained by shifting the graph of gx upward two units. f x reflects gx in the x-axis. 41. f x log3x 2 42. f x log3x 1 Asymptote: x 2 Asymptote: x 1 Point on graph: 1, 0 Point on graph: 2, 0 Matches graph (d). Matches graph (e). The graph of f x is obtained by reflecting the graph of gx about the x-axis and shifting the graph two units to the left. f x shifts gx one unit to the right. 43. f x log31 x log3 x 1 44. f x log3x Asymptote: x 1 Asymptote: x 0 Point on graph: 0, 0 Point on graph: 1, 0 Matches graph (b). Matches graph (a). The graph of f x is obtained by reflecting the graph of gx about the y-axis and shifting the graph one unit to the right. f x reflects gx in the x-axis then reflects that graph in the y-axis. 45. ln 12 0.693 . . . ⇒ e0.693 . . . 12 46. ln 25 0.916 . . . ⇒ e0.916 . . . 25 47. ln 4 1.386 . . . ⇒ e1.386 . . . 4 48. ln 10 2.302 . . . ⇒ e2.302 . . . 10 49. ln 250 5.521 . . . ⇒ e5.521 . . . 250 50. ln 679 6.520 . . . ⇒ e6.520 . 51. ln 1 0 ⇒ e0 1 52. ln e 1 ⇒ e1 e 53. e3 20.0855 . . . ⇒ ln 20.0855 . . . 3 54. e2 7.3890 . . . ⇒ ln 7.3890 . . . 2 55. e12 1.6487 . . . ⇒ ln 1.6487 . . . 12 1 56. e13 1.3956 . . . ⇒ ln 1.3956 . . . 3 57. e0.5 0.6065 . . . ⇒ ln 0.6065 . . . 0.5 58. e4.1 0.0165 . . . ⇒ ln 0.0165 . . . 4.1 59. ex 4 ⇒ ln 4 x 60. e2x 3 ⇒ ln 3 2x 61. f x ln x 62. f x 3 ln x f 18.42 ln 18.42 2.913 63. gx 2 ln x g0.75 2 ln 0.75 0.575 f 0.32 3 ln 0.32 3.418 64. gx ln x g12 ln 12 0.693 . . 679 Section 3.2 65. gx ln x Logarithmic Functions and Their Graphs 66. gx ln x ge3 ln e3 3 by the Inverse Property ge2 ln e2 2 67. gx ln x 68. gx ln x ge23 ln e23 23 ge52 ln e52 52 by the Inverse Property 69. f x lnx 1 70. hx lnx 1 Domain: x 1 > 0 ⇒ x > 1 Domain: x 1 > 0 ⇒ x > 1 The domain is 1, . The domain is 1, . y 3 x-intercept: 2 0 lnx 1 1 e0 x 1 −1 2x 6 lnx 1 0 4 2 3 4 5 −1 2 3 4 f x 0.69 0 0.69 1.10 2 4 8 The x-intercept is 0, 0. Vertical asymptote: x 1 0 ⇒ x 1 y lnx 1 ⇒ ey 1 x x 0.39 0 1.72 6.39 19.09 y 12 0 1 2 3 72. f x ln3 x 71. gx lnx Domain: x > 0 ⇒ x < 0 Domain: 3 x > 0 ⇒ x < 3 y The domain is , 0. 2 The domain is , 3. x-intercept: 1 x-intercept: 0 lnx −3 −2 y 3 2 ln3 x 0 x −1 1 e0 3 x e0 x 1 x −2 −1 13x −2 The x-intercept is 1, 0. x 1 −3 The x-intercept is 2, 0. x 0.5 1 2 3 Vertical asymptote: 3 x 0 ⇒ x 3 gx 0.69 0 0.69 1.10 y ln3 x ⇒ 3 ey x 74. f x logx 1 73. y1 logx 1 x 2.95 2.86 2.63 2 0.28 y 3 2 1 0 1 75. y1 lnx 1 3 2 2 5 2 −1 −2 2x Vertical asymptote: x 0 ⇒ x 0 −2 6 0x Vertical asymptote: x 1 0 ⇒ x 1 1.5 x −2 1x1 −3 x 2 e0 x 1 x 1 y x-intercept: −2 The x-intercept is 2, 0. −1 277 −1 5 −2 0 −3 9 4 278 Chapter 3 Exponential and Logarithmic Functions 76. f x lnx 2 78. f x 3 ln x 1 77. y ln x 2 5 3 −4 4 −5 5 0 10 9 −1 −3 −6 80. log2x 3 log2 9 79. log2x 1 log2 4 x39 x14 x 12 x3 81. log2x 1 log 15 82. log5x 3 log 12 2x 1 15 5x 3 12 x7 5x 9 9 x5 83. lnx 2 ln 6 84. lnx 4 ln 2 x26 x42 x4 x6 85. lnx 2 2 ln 23 lnx 2 x ln 6 86. x 2 2 23 x2 x 6 x 2 25 x2 x 6 0 x ±5 x 3x 2 0 x 2 or x 3 87. t 12.542 ln x x1000, x > 1000 (a) When x $1100.65: 88. t (a) 1100.65 t 12.542 ln 30 years 1100.65 1000 When x $1254.68: t 12.542 ln (b) Total amounts: 1100.651230 $396,234.00 (c) Interest charges: 396,234 150,000 $246,234 301,123.20 150,000 $151,123.20 (d) The vertical asymptote is x 1000. The closer the payment is to $1000 per month, the longer the length of the mortgage will be. Also, the monthly payment must be greater than $1000. K 1 2 4 6 8 10 12 t 0 7.3 14.6 18.9 21.9 24.2 26.2 The number of years required to multiply the original investment by K increases with K. However, the larger the value of K, the fewer the years required to increase the value of the investment by an additional multiple of the original investment. 1254.68 20 years 1254.68 1000 1254.681220 $301,123.20 ln K 0.095 (b) t 25 20 15 10 5 K 2 4 6 8 10 12 Section 3.2 89. f t 80 17 logt 1, 0 ≤ t ≤ 12 (a) Logarithmic Functions and Their Graphs 90. 10 log 10I 12 100 (a) 10 log 0 101 10 log10 (b) 10 log 12 279 0 120 decibels 12 12 2 1010 10 log10 100 decibels 10 12 (c) No, the difference is due to the logarithmic relationship between intensity and number of decibels. (b) f 0 80 17 log 1 80.0 (c) f 4 80 17 log 5 68.1 (d) f 10 80 17 log 11 62.3 91. False. Reflecting gx about the line y x will determine the graph of f x. 93. f x 3x, gx log3 x 94. f x 5x, gx log5 x 95 . f x ex, gx ln x y y 2 y 2 f 2 f 1 −2 92. True, log3 27 3 ⇒ 33 27. g 1 g x −1 f 1 1 −2 2 −1 1 −2 2 −1 −2 −2 −2 f and g are inverses. Their graphs are reflected about the line y x. 40 g The natural log function grows at a slower rate than the square root function. 2 f 1 f 0 x 1 4 x (b) f x ln x, gx 2 −1 15 g The natural log function grows at a slower rate than the fourth root function. −2 f 0 f and g are inverses. Their graphs are reflected about the line y x. (a) 1000 0 g −1 20,000 0 ln x x x 1 5 10 102 104 106 f x 0 0.322 0.230 0.046 0.00092 0.0000138 (b) As x → , f x → 0. (c) 0.5 0 100 0 2 f and g are inverses. Their graphs are reflected about the line y x. 97. (a) f x ln x, gx x y 98. f x 1 −1 96. f x 10x, gx log10 x −2 x −1 −1 f and g are inverses. Their graphs are reflected about the line y x. g x 280 Chapter 3 Exponential and Logarithmic Functions (b) True. y loga x 99. (a) False. If y were an exponential function of x, then y ax, but a1 a, not 0. Because one point is 1, 0, y is not an exponential function of x. For a 2, y log2 x. x 1, log2 1 0 (c) True. x ay x 2, log2 2 1 For a 2, x 2y. x 8, log2 8 3 y 0, 20 1 (d) False. If y were a linear function of x, the slope between 1, 0 and 2, 1 and the slope between 2, 1 and 8, 3 would be the same. However, y 1, 21 2 y 3, 23 8 m1 10 31 2 1 1 and m2 . 21 82 6 3 Therefore, y is not a linear function of x. 100. y loga x ⇒ ay x, so, for example, if a 2, there is no value of y for which 2y 4. If a 1, then every power of a is equal to 1, so x could only be 1. So, loga x is defined only for 0 < a < 1 and a > 1. 101. f x ln x (a) 102. (a) hx lnx2 1 (b) Increasing on 1, Decreasing on 0, 1 4 −1 8 (b) Increasing on 0, Decreasing on , 0 8 (c) Relative minimum: 0, 0 (c) Relative minimum: 1, 0 −9 −2 9 −4 For Exercises 103–108, use f x 3x 2 and gx x3 1. 103. f g2 f 2 g2 104. f x gx 3x 2 x3 1 32 2 23 1 3x 2 x3 1 87 3x x3 3 15 Therefore, f g1 31 13 3 3 1 3 1. 105. fg6 f 6g6 36 263 1 20215 106. f x 3x 2 3 gx x 1 f 302 Therefore, 0 3 2. g 0 1 4300 107. f g7 f g7 108. g f (x g f x g3x 2 3x 23 1 f 73 1 Therefore, f 342 g f 3 3 3 23 1 3342 2 1028 73 1 344. Section 3.3 Section 3.3 ■ Properties of Logarithms You should know the following properties of logarithms. logb x log10 x ln x loga x (a) loga x loga x log10 a ln a logb a (b) logauv loga u loga v (c) loga v log u a lnuv ln u ln v u loga v ln (d) loga un n loga u ■ Properties of Logarithms v ln u ln v u ln un n ln u You should be able to rewrite logarithmic expressions using these properties. Vocabulary Check log x ln x log a ln a 1. change-of-base 2. 3. logauv loga u loga v This is the Product Property. Matches (c). 4. ln un n ln u This is the Power Property. Matches (a). u loga u loga v v This is the Quotient Property. Matches (b). 5. loga 1. (a) log5 x (b) log5 x log x log 5 ln x ln 5 4. (a) log13 x (b) log13 x 7. (a) log2.6 x (b) log2.6 x 10. log7 4 log x log13 ln x ln13 log x log 2.6 ln x ln 2.6 2. (a) log3 x (b) log3 x 5. (a) logx (b) logx 14. log20 0.125 16. log3 0.015 log 0.125 ln 0.125 0.694 log 20 ln 20 log 0.015 ln 0.015 3.823 log 3 ln 3 (b) log15 x log310 3 log x 10 6. (a) logx 3 ln310 10 ln x (b) log7.1 x log 5 ln 5 1.161 log14 ln14 3. (a) log15 x ln x ln 3 8. (a) log7.1 x log 4 ln 4 0.712 log 7 ln 7 12. log14 5 log x log 3 (b) logx log x log 7.1 log x log15 ln x ln15 3 log34 4 log x 3 ln34 4 ln x 9. log3 7 log 7 ln 7 1.771 log 3 ln 3 ln x ln 7.1 11. log12 4 log 4 ln 4 2.000 log12 ln12 13. log90.4 log 0.4 ln 0.4 0.417 log 9 ln 9 15. log15 1250 17. log4 8 log 1250 ln 1250 2.633 log 15 ln 15 log2 8 log2 23 3 log2 4 log2 22 2 281 282 Chapter 3 Exponential and Logarithmic Functions 18. log242 34 log2 42 log2 34 1 1 19. log5 250 log5125 12 2 log2 4 4 log2 3 1 log5 125 log5 12 2 log2 log5 22 4 log2 3 53 log5 9 3 20. log 300 log 100 log 3 log 100 21 log 3 log 102 3 log5 2 4 log2 2 4 log2 3 log 3 2 log 10 4 4 log2 3 log 3 2 21. ln5e6 ln 5 ln e6 22. ln 6 ln 6 ln e2 e2 ln 5 6 23. log3 9 2 log3 3 2 ln 6 2 ln e 6 ln 5 ln 6 2 1 24. log5 125 log5 53 3 log5 5 31 3 4 8 1 log 23 3 log 2 3 1 3 25. log2 4 2 4 2 4 4 3 6 log 613 1 log 6 1 1 1 26. log6 6 3 6 3 3 27. log4 161.2 1.2log4 16 1.2 log4 42 1.22 2.4 28. log3 810.2 0.2 log3 81 29. log39 is undefined. 9 is not in the domain of log3 x. 0.2 log3 3 4 0.24 0.8 30. log216 is undefined because 16 is not in the domain of log2 x. 31. ln e4.5 4.5 32. 3 ln e4 34 ln e 121 12 33. ln 1 e 4 e3 ln e34 34. ln ln 1 lne 0 1 ln e 2 1 2 36. 2 ln e6 ln e5 ln e12 ln e5 ln 3 ln e 4 3 1 4 1 0 1 2 35. ln e2 ln e5 2 5 7 e12 e5 3 4 37. log5 75 log5 3 log5 75 3 log5 25 ln e7 log5 52 7 2 log5 5 2 38. log4 2 log4 32 log4 412 log4 452 1 2 5 2 log4 4 log4 4 121 521 3 39. log4 5x log4 5 log4 x Section 3.3 40. log3 10z log3 10 log3 z 43. log5 5 log5 5 log5 x x Properties of Logarithms 283 y log y log 2 2 41. log8 x4 4 log8 x 42. log 44. log6 z3 3 log6 z 45. lnz ln z12 47. ln xyz2 ln x ln y ln z2 48. log 4x2y log 4 log x2 log y 1 ln z 2 1 log5 x 3 t ln t13 1 ln t 46. ln 3 ln x ln y 2 ln z 49. ln zz 12 ln z lnz 12 50. ln ln z 2 lnz 1, z > 1 log 4 2 log x log y x2 1 lnx2 1 ln x3 x3 lnx 1x 1 ln x3 lnx 1 lnx 1 3 ln x 51. log2 a 1 9 log2a 1 log2 9 6 52. ln x2 1 ln 6 lnx2 112 1 log2a 1 log2 32 2 ln 6 1 log2a 1 2 log2 3, a > 1 2 xy 31 ln yx xy 2 3 53. ln ln 6 lnx2 1 54. ln 3 ln 1 ln x ln y 3 1 1 ln x ln y 3 3 y x2 3 12 1 lnx2 1 2 1 x2 ln 3 2 y 1 ln x2 ln y3 2 1 2 ln x 3 ln y 2 ln x x z y ln x 4 55. ln 4y 5 ln z5 56. log2 1 ln y 5 ln z 2 yxz log x log y z 2 3 5 2 5 2 3 log2 x y4 log2 z4 2 57. log5 z4 log2 x log2 y4 log2 z4 ln x4 ln y ln z5 4 ln x x y4 3 ln y 2 58. log 1 log2 x 4 log2 y 4 log2 z 2 xy4 log xy4 log z5 z5 log5 x2 log5 y2 log5 z3 log x log y4 log z5 2 log5 x 2 log5 y 3 log5 z log x 4 log y 5 log z 4 3 2 59. ln x x 3 14 ln x3x2 3 1 3 4 ln x lnx2 3 60. lnx2x 2 lnx2x 212 lnxx 212 14 3 ln x lnx2 3 ln x lnx 212 34 ln x 14 lnx2 3 ln x 12 lnx 2 284 Chapter 3 Exponential and Logarithmic Functions 61. ln x ln 3 ln 3x 64. log5 8 log5 t log5 67. 8 t 62. ln y ln t ln yt ln ty 63. log4 z log4 y log4 65. 2 log2x 4 log2x 42 66. 1 4 5x log3 5x log35x14 log3 4 ln 1 16x 4 70. 2 ln 8 5 lnz 4 ln 82 lnz 45 ln 64 lnz 45 x x 13 ln 64z 45 71. log x 2 log y 3 log z log x log y2 log z3 log 2 log7z 2 log7z 223 3 68. 4 log6 2x log62x4 log6 69. ln x 3 lnx 1 ln x lnx 13 72. 3 log3 x 4 log3 y 4 log3 z log3 x3 log3 y4 log3 z4 x xz3 log z3 log 2 y2 y log3 x3y4 log3 z4 log3 73. ln x 4lnx 2 lnx 2 ln x 4 lnx 2x 2 ln x 4 lnx2 4 ln x lnx2 44 ln x x2 44 74. 4ln z lnz 5 2 lnz 5 4ln zz 5 lnz 52 lnzz 54 lnz 52 ln 75. z y z4z 54 z 52 1 1 2 lnx 3 ln x lnx2 1 lnx 32 ln x lnx2 1 3 3 1 ln xx 32 lnx2 1 3 1 xx 32 ln 2 3 x 1 xxx 31 ln 2 3 2 76. 23 ln x lnx 1 lnx 1 2ln x3 lnx 1 lnx 1 2ln x3 lnx 1 lnx 1 2ln x3 lnx 1x 1 2 ln ln x2 x 2 x3 1 x3 1 2 x3y4 z4 Section 3.3 77. Properties of Logarithms 1 1 log8 y 2 log 8 y 4 log 8 y 1 log 8 y log 8 y 42 log 8 y 1 3 3 1 log 8 y y 42 log 8 y 1 3 3 log 8 y y 42 log 8 y 1 log 8 3 y y 42 y1 78. 12log4x 1 2 log4x 1 6 log4 x 12log4x 1 log4x 12 log4 x6 12log4x 1x 12 log4 x6 log4x 1x 1 log4 x6 log4x6x 1x 1 79. log2 32 log2 32 log2 32 log2 4 4 log2 4 The second and third expressions are equal by Property 2. 80. log770 1 1 log7 70 log7 7 log7 10 2 2 81. 10 log 10I 12 1 1 log7 10 2 10log I log 1012 1 1 log7 10 2 2 120 10 log I 10log I 12 When I 106 : 1 log7 10 by Property 1 and Property 3 2 120 10 log 106 120 106 60 decibels 82. 10 log 10I 83. 120 10 log2I 12 Difference 10 log 5 7 3.1610 10 10 log1.2610 10 12 12 10log3.16 107 log1.26 105 10 3.16 1.26 10 10 log 7 5 10log2.5079 102 10log250.79 24 dB 120 10log 2 log I 120 10 log I 10 log 2 With both stereos playing, the music is 10 log 2 3 decibels louder. 285 286 Chapter 3 Exponential and Logarithmic Functions 84. f t 90 15 logt 1, 0 ≤ t ≤ 12 (a) f t 90 logt 115 (f) The average score will be 75 when t 9 months. See graph in (e). (b) f 0 90 (g) (c) f 4 90 15 log4 1 79.5 15 15 logt 1 (d) f 12 90 15 log12 1 73.3 (e) 75 90 15 logt 1 1 logt 1 95 101 t 1 t 9 months 0 12 70 85. By using the regression feature on a graphing calculator we obtain y 256.24 20.8 ln x. 86. (a) (c) 80 0 30 0 (b) T 21 54.40.964 t T 54.40.964 t 21 See graph in (a). (d) 1 0.0012t 0.016 T 21 T 1 21 0.0012t 0.016 t (in minutes) T C T 21 C lnT 21 1T 21 0 78 57 4.043 0.0175 5 66 45 3.807 0.0222 10 57.5 36.5 3.597 0.0274 15 51.2 30.2 3.408 0.0331 20 46.3 25.3 3.231 0.0395 25 42.5 21.5 3.068 0.0465 30 39.6 18.6 2.923 0.0538 5 0.07 80 0 0 30 0 0 30 30 0 0 (e) Since the scatter plot of the original data is so nicely exponential, there is no need to do the transformations unless one desires to deal with smaller numbers. The transformations did not make the problem simpler. lnT 21 0.037t 4 T e0.037t4 21 This graph is identical to T in (b). Taking logs of temperatures led to a linear scatter plot because the log function increases very slowly as the x-values increase. Taking the reciprocals of the temperatures led to a linear scatter plot because of the asymptotic nature of the reciprocal function. 87. f x ln x False, f 0 0 since 0 is not in the domain of f x. f 1 ln 1 0 88. f ax f a f x, a > 0, x > 0 True, because f ax ln ax ln a ln x f a f x. Section 3.3 89. False. f x f 2 ln x ln 2 ln x lnx 2 2 90. f x Properties of Logarithms 1 f x; false 2 f x ln x can’t be simplified further. f x lnx ln x12 1 1 ln x f x 2 2 92. If f x < 0, then 0 < x < 1. 91. False. f u 2f v ⇒ ln u 2 ln v ⇒ ln u ln v2 ⇒ u v2 True 93. Let x logb u and y logb v, then bx u and by v. 94. Let x logb u, then u bx and un bnx. logb un logb bnx nx n logb u u bx y bxy v b Then logbuv logbb xy x y logb u logb v. 95. f x log2 x ln x log x log 2 ln 2 96. f x log4 x 97. f x log12 x 2 3 −3 log x ln x log 4 ln 4 6 −1 3 5 −3 −2 −3 log x ln x log12 ln12 6 −3 99. f x log11.8 x 98. f x log14 x log x ln x log14 ln14 log x ln x log 11.8 ln 11.8 5 −1 −2 x ln x 101. f x ln , gx , hx ln x ln 2 2 ln 2 f x hx by Property 2 log x ln x log 12.4 ln 12.4 2 2 2 −1 100. f x log12.4 x −1 5 −2 5 −2 y 2 1 g f=h x 1 −1 −2 2 3 4 287 288 Chapter 3 Exponential and Logarithmic Functions 102. ln 2 0.6931, ln 3 1.0986, ln 5 1.6094 ln 2 0.6931 ln 3 1.0986 ln 4 ln2 2 ln 2 ln 2 0.6931 0.6931 1.3862 ln 5 1.6094 ln 6 ln2 3 ln 2 ln 3 0.6931 1.0986 1.7917 ln 8 ln 23 3 ln 2 30.6931 2.0793 ln 9 ln 32 2 ln 3 21.0986 2.1972 2 ln 5 ln 2 1.6094 0.6931 2.3025 ln 12 ln22 3 ln 22 ln 3 2 ln 2 ln 3 20.6931 1.0986 2.4848 ln 15 ln5 3 ln 5 ln 3 1.6094 1.0986 2.7080 ln 10 ln5 ln 16 ln 24 4 ln 2 40.6931 2.7724 2 ln 32 ln 2 2 ln 3 ln 2 21.0986 0.6931 2.8903 ln 20 ln5 22 ln 5 ln 22 ln 5 2 ln 2 1.6094 20.6931 2.9956 ln 18 ln32 103. 24xy2 24xx3 3x4 ,x0 16x3y 16yy2 2y3 105. 18x3y4318x3y43 107. 18x3y43 1 if x 0, y 0. 18x3y43 3x2 2x 1 0 104. 2x2 3 2x 3y 2 3 106. xyx1 y11 108. 3y3 27y3 2 3 2x 8x 6 xy x1 y1 xy 1x 1y xy2 xy y xxy x y 4x2 5x 1 0 4x 1x 1 0 3x 1x 1 0 3x 1 0 ⇒ x 3y 4x 1 0 ⇒ x 14 1 3 x10 ⇒ x1 x 1 0 ⇒ x 1 The zeros are x 14, 1. 2 x 3x 1 4 109. 5 2x x1 3 110. 3x 1x 24 53 2xx 1 3x x 8 0 15 2x2 2x 2 x 1 ± 12 438 23 1 ± 97 6 0 2x2 2x 15 2 ± 22 4215 x 22 2 ± 124 x 4 1 ± 31 x 2 The zeros are 1 ± 31 . 2 Section 3.4 Section 3.4 ■ Exponential and Logarithmic Equations To solve an exponential equation, isolate the exponential expression, then take the logarithm of both sides. Then solve for the variable. 1. loga ax x ■ 2. ln ex x To solve a logarithmic equation, rewrite it in exponential form. Then solve for the variable. 1. aloga x x ■ Exponential and Logarithmic Equations 2. eln x x If a > 0 and a 1 we have the following: 1. loga x loga y ⇔ x y 2. ax ay ⇔ x y ■ Check for extraneous solutions. Vocabulary Check 2. (a) x y (c) x 1. solve 1. 42x7 64 425 7 3. extraneous 2. 23x1 32 x5 (a) (b) x y (d) x 231 1 64 Yes, x 5 is a solution. x2 (b) 1 64 No, x 2 is not a solution. x 2 e25 No, x 2 (b) No, x 2 is not a solution. 4. 2e5x2 12 2e25 2 3e 25 3ee e25 1 x 2 ln 6 5 (a) 75 2e5152ln 6 2 2e2ln 62 is not a solution. 2eln 6 2 6 12 x 2 ln 25 1 Yes, x 2 ln 6 is a solution. 5 3e2ln 25 2 3eln 25 325 75 Yes, x 2 ln 25 is a solution. (c) x2 232 1 27 128 64 3. 3ex2 75 22 14 No, x 1 is not a solution. (b) 422 7 43 (a) x 1 (a) 43 x 1.219 x (b) 3e1.2192 3e3.219 75 ln 6 5 ln 2 2e5[ln 65 ln 2 2 2eln 6ln 2 2 Yes, x 1.219 is a solution. 2e2.5852 2 97.9995 195.999 No, x ln 6 is not a solution. 5 ln 2 x 0.0416 (c) 50.0416 2 2e 2e1.792 26.00144 12 Yes, x 0.0416 is an approximate solution. 289 290 Chapter 3 Exponential and Logarithmic Functions 5. log43x 3 ⇒ 3x 43 ⇒ 3x 64 6. log2x 3 10 x 21.333 (a) x 1021 (a) 321.333 64 log21021 3 log21024 Yes, 21.333 is an approximate solution. Since 210 1024, x 1021 is a solution. x 4 (b) x 17 (b) 34 12 64 log217 3 log220 No, x 4 is not a solution. Since 210 20, x 17 is not a solution. x 64 3 (c) 364 3 64 Yes, x 64 3 x 102 3 97 (c) log297 3 log2100 Since 210 100, 102 3 is not a solution. is a solution. 7. ln2x 3 5.8 8. lnx 1 3.8 x (a) 1 2 3 ln 5.8 x 1 e3.8 (a) ln2 3 ln 5.8 3 lnln 5.8 5.8 ln1 e3.8 1 ln e3.8 3.8 No, x 12 3 ln 5.8 is not a solution. Yes, x 1 e3.8 is a solution. 1 2 x 12 3 e5.8 (b) x 45.701 (b) ln2 3 e5.8 3 lne5.8 5.8 ln45.701 1 ln44.701 3.8 Yes, x 12 3 e5.8 is a solution. Yes, x 45.701 is an approximate solution. 1 2 x 163.650 (c) x 1 ln 3.8 (c) ln2163.650 3 ln 330.3 5.8 ln1 ln 3.8 1 lnln 3.8 0.289 Yes, x 163.650 is an approximate solution. No, x 1 ln 3.8 is not a solution. 9. 4x 16 10. 3x 243 11. 12 x 32 12. 14 x 64 4x 42 3x 35 2x 25 4x 43 x2 x5 x 5 x 3 x 5 13. ln x ln 2 0 ln x ln 2 ln x ln 5 x2 x5 17. ln x 1 ln x e 14. ln x ln 5 0 e 1 18. ln x 7 ln x e e 7 15. ex 2 x 3 16. ex 4 ln ex ln 2 ln e x ln 4 x ln 2 x ln 4 x 0.693 x 1.386 19. log4 x 3 4log4 x 43 x e1 x e7 x 43 x 0.368 x 0.000912 x 64 20. log5 x 3 x 53 1 x 125 or 0.008 Section 3.4 21. f x gx 22. f x gx 27 9 2x 23 27x 2723 x Point of intersection: 3, 8 2 2 25. e x ex Point of intersection: 2 8 e2 x ex 26. 27. 2 2x x 4x 2 0 2x 2 2x 0 x log3 5 x 0, x 1 2ex 10 x log516 log 5 ln 5 or log 3 ln 3 x 4ex 91 33. ex 9 19 ex 5 ex 91 4 ex 28 ln ex ln 5 ln ex ln 91 4 ln ex ln 28 x ln 5 1.609 34. 6x 10 47 35. 32x 80 36. 5x ln 6 ln 3000 2x ln 3 ln 80 ln 37 ln 6 5x ln 80 x 1.994 2 ln 3 x x 2.015 37. 5t2 0.20 5t2 1 5 5t2 51 t 1 2 t2 2x3 32 x 3 log2 32 x35 x8 65x 3000 ln 65x ln 3000 ln 32x ln 80 x log6 37 x x ln 28 3.332 x ln 91 4 3.125 6x 37 40. ln 16 ln 5 x 1.723 x 1.465 32. ex2 5x 16 log3 3x log3 5 2xx 1 0 2 3 30. 25x 32 43x 20 3x 5 x 2 x 2 2x ex By the Quadratic Formula x 1.618 or x 0.618. x 2, x 4 29. Point of intersection: 5, 0 x2 x 1 0 x 2 2x 8 0 x 1 or x 2 ex ex x5 x2 3 x 2 2x x 2 8 0 x 1x 2 31. x41 Point of intersection: 9, 2 23, 9 0 x2 x 2 2 elnx4 e0 x9 x x2 2 28. lnx 4 0 x 32 2 3 38. 43t 0.10 ln 43t ln 0.10 39. 3x1 33 x13 ln 0.10 ln 4 x4 t ln 0.10 0.554 3 ln 4 ln 3000 ln 6 ln 3000 0.894 5 ln 6 3x1 27 3t ln 4 ln 0.10 3t 291 f x gx 24. log3 x 2 x x3 f x gx 23. 2 8 x Exponential and Logarithmic Equations 292 Chapter 3 Exponential and Logarithmic Functions 23x 565 41. 82x 431 42. ln 23x ln 565 ln 82x ln 431 3 x ln 2 ln 565 2 x ln 8 ln 431 3 ln 2 x ln 2 ln 565 2 ln 8 x ln 8 ln 431 x ln 2 ln 565 3 ln 2 x ln 8 ln 431 ln 82 x ln 2 3 ln 2 ln 565 x x ln 8 ln 431 ln 64 3 ln 2 ln 565 ln 2 3 x ln 565 6.142 ln 2 43. 8103x 12 44. 510x6 7 12 8 103x log 103x log 10 x6 32 ln 5x1 ln 7 7 5 x 1 ln 5 ln 7 x1 ln 7 ln 5 x1 7 x 6 log 5 ln 7 2.209 ln 5 6.146 0.059 836x 40 47. e3x 12 36x 5 48. x 6 x ln 3 ln 5 e2x 50 ln e2x ln 50 3x ln 12 ln 36x ln 5 x 35x1 21 5x1 7 7 x 6 log 5 3 1 x log 3 2 6x 45. 7 5 log 10 x6 log 3 3x log 2 46. ln 431 ln 64 4.917 ln 8 2x ln 50 ln 12 0.828 3 x ln 5 ln 3 ln 50 1.956 2 ln 5 6 ln 3 x6 ln 5 4.535 ln 3 49. 500ex 300 ex 35 x ln 35 x ln 35 ln 53 0.511 50. 1000e4x 75 3 e4x 40 3 ln e4x ln 40 3 4x ln 40 3 x 14 ln 40 0.648 51. 7 2ex 5 52. 14 3ex 11 2ex 2 3ex 25 ex 1 ex 25 3 x ln 1 0 ln ex ln 25 3 x ln 25 3 2.120 Section 3.4 53. 623x1 7 9 log2 23x1 462x 3.5 8 3 6 2x log4 3.5 3x 1 log2 55. 8462x 28 8 log2 3 x 6 2x 83 loglog832 or lnln832 1 log83 1 0.805 3 log 2 x3 ln 3.5 2.548 2 ln 4 ex 2ex 3 0 ex 5 (No solution) 57. ln 3.5 ln 4 e2x 5ex 6 0 56. ex 1ex 5 0 or ln 3.5 ln 4 2x 6 e2x 4ex 5 0 ex 1 ex 2 or ex 3 x ln 5 1.609 x ln 2 0.693 or x ln 3 1.099 e2x 3ex 4 0 58. e2x 9ex 36 0 ex 1ex 4 0 ex2 9ex 36 0 ex 10 ⇒ ex 1 Because the discriminant is 92 4136 63, there is no solution. Not possible since ex > 0 for all x. ex 40 ⇒ ex 4 ⇒ x ln 4 1.386 59. 293 54. 8462x 13 41 623x1 16 23x1 Exponential and Logarithmic Equations 500 20 100 e x2 500 20100 e x2 60. 400 350 1 ex 400 3501 ex 25 100 e x2 8 1 ex 7 e x2 75 x ln 75 2 8 1 ex 7 1 ex 7 x 2 ln 75 8.635 ln 1 ln ex 7 x ln 1 7 x ln 71 x ln 7 x ln 7 1.946 61. 3000 2 2 e2x 3000 22 e2x 1500 2 e2x 1498 e2x ln 1498 2x x ln 1498 3.656 2 294 62. Chapter 3 Exponential and Logarithmic Functions 119 7 e 14 63. 6x 119 7e 6x 14 ln 1 17 e 6x 14 0.065 365 31 e6x ln 31 ln 1 0.065 365 365t ln 1 e 6x 365t 365t 64. t 4 2.471 40 9t 21 65. 16 0.878 26 3t ln 16 12t 12t 21.330 3t 3t 2 ln 2 0.10 ln 2 12 12t ln 1 ln 21 0.247 9 ln 3.938225 t 0.10 12 9t ln 3.938225 ln 21 0.878 ln 16 26 1 0.10 12 ln 1 ln 3.9382259t ln 21 ln 4 365 ln1 0.065 365 ln 31 0.572 6 3.9382259t 21 66. ln 4 0.065 ln 4 365 ln 31 6x x 4 t 30 ln 2 6.960 12 ln1 0.10 12 67. gx 6e1x 25 Algebraically: ln 30 15 6e1x 25 0.878 ln 30 26 t 6 −6 e1x ln 30 0.409 3 ln16 0.878 26 25 6 1 x ln −30 256 x 1 ln 256 x 0.427 The zero is x 0.427. 68. f x 4ex1 15 69. f x 3e3x2 962 20 0 4ex1 15 15 4ex1 3.75 ex1 ln 3.75 x 1 1 ln 3.75 x 1 ln 3.75 x 2.322 x The zero is 2.322. Algebraically: −5 5 − 20 300 −6 9 3e3x2 962 e3x2 962 3 −1200 3x 962 ln 2 3 x 2 962 ln 3 3 x 3.847 The zero is x 3.847. Section 3.4 gx 8e2x3 11 70. 8e2x3 11 71. gt e0.09t 3 5 −3 − 20 40 0.09t ln 3 −15 x 0.478 −4 ln 3 0.09 t x 1.5 ln 1.375 t 12.207 The zero is 0.478. The zero is t 12.207. 72. f x e1.8x 7 73. ht e0.125t 8 e1.8x 7 0 Algebraically: 74. f x e2.724x 29 e2.724x 29 e0.125t 80 e1.8x 7 2.724x ln 29 e0.125t 8 e1.8x 7 x 0.125t ln 8 1.8x ln 7 x 8 e0.09t 3 2x ln 1.375 3 295 Algebraically: 7 e2x3 1.375 Exponential and Logarithmic Equations ln 7 1.8 t x 1.236 ln 8 0.125 The zero is 1.236. t 16.636 x 1.081 10 The zero is t 16.636. The zero is 1.081. 13 ln 29 2.724 −5 5 2 −40 40 −35 −5 5 −7 −10 75. ln x 3 76. ln x 2 x e3 0.050 77. ln 2x 2.4 2x eln x e2 x e2 7.389 78. ln 4x 1 e2.4 eln 4x e1 e2.4 5.512 x 2 4x e x 80. log 3z 2 79. log x 6 81. 3 ln 5x 10 10log 3z 102 x 106 1,000,000.000 3z 100 100 z 33.333 3 83. ln x 2 1 x 2 e1 x2 e2 x e2 2 5.389 84. lnx 8 5 elnx8 e5 x 8 e5 x 8 e10 x e10 8 22,034.466 ln 5x 82. 2 ln x 7 10 3 ln x 5x e103 e103 x 5.606 5 85. 7 3 ln x 5 3 ln x 2 ln x e 0.680 4 23 7 2 eln x e72 x e72 33.115 86. 2 6 ln x 10 6 ln x 8 ln x 43 x e23 eln x e43 0.513 x e43 0.264 296 Chapter 3 Exponential and Logarithmic Functions 87. 6 log30.5x 11 88. 5 log10x 2 11 log30.5x 11 6 log10x 2 11 5 3log30.5x 3116 10log10x2 10115 0.5x 3116 x 2 10115 x 23116 14.988 x 10115 2 160.489 89. ln x lnx 1 2 90. ln x lnx 1 1 x 1 2 lnxx 1 1 x e2 x1 xx 1 e1 ln x elnxx1 e1 x2 x e 0 x e2x 1 x x e2x e2 1 ± 1 4e 2 x e2x e2 The only solution is x x1 e2 e2 x 1 1 4e 1.223. 2 e2 1.157 1 e2 This negative value is extraneous. The equation has no solution. 91. ln x lnx 2 1 92. ln x lnx 3 1 lnxx 2 1 lnxx 3 1 xx 2 e1 elnxx3 e1 x2 2x e 0 xx 3 e1 x 2 ± 4 4e 2 x2 3x e 0 x 2 ± 21 e 1 ± 1 e 2 The only solution is x The negative value is extraneous. The only solution is x 1 1 e 2.928. ln x 5 lnx 1 lnx 1 93. lnx 5 ln x5 x1 x 1 x1 x1 x 5x 1 x 1 x2 6x 5 x 1 x2 5x 6 0 x 2x 3 0 x 2 or x 3 Both of these solutions are extraneous, so the equation has no solution. 3 ± 9 4e 2 94. 3 9 4e 0.729. 2 lnx 1 lnx 2 ln x ln x1 x 2 ln x x1 x x2 x 1 x2 2x 0 x2 3x 1 3 ± 32 411 x 21 3 ± 13 x 2 3.303 x (The negative apparent solution is extraneous.) 95. log22x 3 log2x 4 2x 3 x 4 x7 Section 3.4 Exponential and Logarithmic Equations 297 96. logx 6 log2x 1 x 6 2x 1 7 x The apparent solution x 7 is extraneous, because the domain of the logarithm function is positive numbers, and 7 6 and 27 1 are negative. There is no solution. 97. logx 4 log x logx 2 98. log2 x log2x 2 log2x 6 x4 logx 2 x log2xx 2 log2x 6 log xx 2 x 6 x2 x4 x2 x x 4 x2 2x 0 x2 x60 x 3x 2 0 x 3 or x 2 x4 1 ± 17 x 2 Quadratic Formula The value x 3 is extraneous. The only solution is x 2. Choosing the positive value of x (the negative value is extraneous), we have x 1 17 1.562. 2 1 2 1 x log4 x1 2 100. log3 x log3x 8 2 99. log4 x log4x 1 log3xx 8 2 3log3x 2 8x 32 x2 8x 9 4log4xx1 412 x 412 x1 x2 8x 9 0 x 9x 1 0 x 2x 1 x 9 or x 1 x 2x 2 The value x 1 is extraneous. The only solution is x 9. x 2 x2 101. log 8x log1 x 2 log 8x 2 1 x 8x 102 1 x 8x 1001 x 2x 251 x 25 25x 2x 25 25x 2x 252 25x 2 4x2 100x 625 625x 4x2 725x 625 0 x 725 ± 7252 44625 2529 ± 533 725 ± 515,625 24 8 8 x 0.866 (extraneous) or x 180.384 The only solution is x 2529 533 180.384. 8 298 Chapter 3 Exponential and Logarithmic Functions 102. log 4x log12 x 2 log 12 4xx 2 10log4x (12 x 102 4x 100 12 x 4x 10012 x 4x 1200 100x 4x 1200 100x x 300 25x x 3002 25x 2 x2 600x 90,000 625x x2 1225x 90,000 0 x 1225 ± 12252 4190,000 2 x 1225 ± 1,140,625 2 x 1225 ± 12573 2 x 78.500 extraneous or x 1146.500 The only solution is x 1225 12573 1146.500. 2 103. y1 7 y2 104. 10 2x From the graph we have x 2.807 when y 7. Algebraically: ln −8 10 ln −2 2 ln ln 7 105. y1 3 x e 3 20.086 18 4 lnx 2 10 y2 ln x ln x 3 1 x 3 106. 10 4 lnx 2 0 5 3 ln x 0 10 − 200 The solution is x 2.197. ln 7 2.807 ln 2 From the graph we have x 20.086 when y 3. Algebraically: −2 1 x 3 2 2.197 x x ln 2 ln 7 x 800 1 ex2 3 2x 7 2x 500 1500ex2 −5 30 −1 lnx 2 2.5 elnx2 e2.5 x 2 e2.5 x e2.5 2 x 14.182 The solution is x 14.182. −5 30 −3 Section 3.4 A Pert 107. (a) 5000 A Pert (b) Exponential and Logarithmic Equations r 0.12 108. (a) 3 e0.085t ln 2 0.085t 5000 2500e0.12t 7500 2500e0.12t 2 e0.12t 3 e0.12t ln 2 ln e0.12t ln 3 ln e0.12t ln 2 0.12t ln 3 0.12t ln 3 0.085t ln 2 t 0.085 ln 3 t 0.085 t 8.2 years A Pert rt 0.085t 2 e0.085t r 0.12 (b) A Pe 7500 2500e 2500e0.085t t 12.9 years 299 ln 2 t 0.12 ln 3 t 0.12 t 5.8 years t 9.2 years 109. p 500 0.5e0.004x p 350 (a) (b) p 300 350 500 0.5e0.004x 300 500 0.5e0.004x 300 e0.004x 400 e0.004x 0.004x ln 300 0.004x ln 400 x 1426 units 110. p 5000 1 x 1498 units 4 4 e0.002x (a) When p $600: (b) When p $400: 600 5000 1 0.12 1 4 4 e0.002x 400 5000 1 4 4 e0.002x 0.08 1 4 0.88 4 e0.002x 4 4 e0.002x 4 0.92 4 e0.002x 4 3.52 0.88e0.002x 4 3.68 0.92e0.002x 0.48 0.88e0.002x 0.32 0.92e0.002x 6 e0.002x 11 8 e0.002x 23 ln 6 ln e0.002x 11 ln 8 ln e0.002x 23 ln 6 0.002x 11 ln 8 0.002x 23 x 4 4 e0.002x ln611 303 units 0.002 x ln823 528 units 0.002 111. V 6.7e48.1t , t ≥ 0 (a) (b) As t → , V → 6.7. 10 1.3 6.7e48.1t (c) Horizontal asymptote: V 6.7 0 1500 0 The yield will approach 6.7 million cubic feet per acre. 1.3 e48.1t 6.7 ln 67 13 t 48.1 t 48.1 29.3 years ln1367 300 Chapter 3 Exponential and Logarithmic Functions 112. N 68100.04x 113. y 7312 630.0 ln t, 5 ≤ t ≤ 12 When N 21: 7312 630.0 ln t 5800 21 6810 0.04x 630.0 ln t 1512 21 100.04x 68 ln t 2.4 t e2.4 11 21 log10 0.04x 68 x t 11 corresponds to the year 2001. log102168 12.76 inches 0.04 114. y 4381 1883.6 ln t, 5 ≤ t ≤ 13 9000 4381 1883.6 ln t 4619 1883.6 ln t ln t 4619 2.45222 1883.6 t e2.45222 11.6 Since t 5 represents 1995, t 11.6 indicates that the number of daily fee golf facilities in the U.S. reached 9000 in 2001. 115. (a) From the graph shown in the textbook, we see horizontal asymptotes at y 0 and y 100. These represent the lower and upper percent bounds; the range falls between 0% and 100%. Females (b) Males 50 100 1 e0.6114x69.71 50 1 e0.6114x69.71 2 1 e0.66607x64.51 2 e0.6114x69.71 1 e0.6667x64.51 1 0.6114x 69.71 ln 1 0.66607x 64.51 ln 1 0.6114x 69.71 0 0.66607x 64.51 0 x 64.51 inches x 69.71 inches 116. P (a) 100 1 e0.66607x64.51 0.83 1 e0.2n (c) When P 60% or P 0.60: 1.0 0.60 0 40 0 (b) Horizontal asymptotes: P 0, P 0.83 The upper asymptote, P 0.83, indicates that the proportion of correct responses will approach 0.83 as the number of trials increases. 1 e0.2n e0.2n 0.83 1 e0.2n 0.83 0.60 0.83 1 0.60 ln e0.2n ln 0.60 1 0.2n ln 0.60 1 0.83 0.83 ln n 0.60 1 0.83 0.2 5 trials Section 3.4 117. y 3.00 11.88 ln x (a) 36.94 x Exponential and Logarithmic Equations 118. T 201 72h (a) From the graph in the textbook we see a horizontal asymptote at T 20. This represents the room temperature. x 0.2 0.4 0.6 0.8 1.0 y 162.6 78.5 52.5 40.5 33.9 100 201 72h (b) (b) 301 5 1 72h 200 4 72h 0 4 2h 7 1.2 0 The model seems to fit the data well. ln 7 ln 2 ln 7 h ln 2 (c) When y 30: 36.94 30 3.00 11.88 ln x x 4 h 4 ln47 h ln 2 Add the graph of y 30 to the graph in part (a) and estimate the point of intersection of the two graphs. We find that x 1.20 meters. h 0.81 hour (d) No, it is probably not practical to lower the number of gs experienced during impact to less than 23 because the required distance traveled at y 23 is x 2.27 meters. It is probably not practical to design a car allowing a passenger to move forward 2.27 meters (or 7.45 feet) during an impact. 120. logau v loga uloga v 119. logauv loga u loga v False. True by Property 1 in Section 3.3. 2.04 log1010 100 log10 10log10 100 2 121. logau v loga u loga v 122. loga False. uv log a u loga v 123. Yes, a logarithmic equation can have more than one extraneous solution. See Exercise 93. True by Property 2 in Section 3.3. 1.95 log100 10 log 100 log 10 1 124. A Pert 125. Yes. (a) A 2P ert 2 This doubles your money. Pert Time to Quadruple 2P Pe 4P Pert (c) A Per2t Pertert ertPert 2 ert 4 ert ln 2 rt ln 4 rt (b) A Pertert Time to Double Pert Pe2rt ert Doubling the interest rate yields the same result as doubling the number of years. If 2 > ert (i.e., rt < ln 2), then doubling your investment would yield the most money. If rt > ln 2, then doubling either the interest rate or the number of years would yield more money. rt ln 2 t r 2 ln 2 t r Thus, the time to quadruple is twice as long as the time to double. 302 Chapter 3 Exponential and Logarithmic Functions 126. (a) When solving an exponential equation, rewrite the original equation in a form that allows you to use the One-to-One Property ax ay if and only if x y or rewrite the original equation in logarithmic form and use the Inverse Property loga ax x. 128. 32 225 16 127. 48x2y5 16x2y43y 3 10 2 10 2 3 10 2 2 25 3 3 3 25 15 375 129. 3 3 125 3 5 3 42 10 4 x y 23y 130. (b) When solving a logarithmic equation, rewrite the original equation in a form that allows you to use the One-to-One Property loga x loga y if and only if x y or rewrite the original equation in exponential form and use the Inverse Property aloga x x. 10 2 131. f x x 9 y 310 2 10 4 Domain: all real numbers x 310 2 6 y-axis symmetry 8 6 4 y 2 12 y-intercept: 0, 9 x 10 2 14 ±1 0 9 10 ±2 11 2 ±3 x −8 −6 − 4 − 2 −2 12 2 4 6 8 1 3 4 1 10 1 2 133. gx y 132. 8 6 2x, x 4, 2 x < 0 x ≥ 0 y 5 Domain: all real numbers x 4 4 3 x-intercept: 2, 0 2 x −6 − 4 − 2 −2 2 4 6 8 2 1 y-intercept: 0, 4 x −4 −3 − 2 − 1 −4 −6 −3 x 3 2 1 0.5 0 1 2 3 y 6 4 2 1 4 3 2 5 y 134. 6 4 1 −6 −4 −2 x 2 4 6 −2 −6 135. log6 9 log10 9 ln 9 1.226 log10 6 ln 6 137. log34 5 log10 5 ln 5 5.595 log1034 ln34 136. log3 4 log10 4 ln 4 1.262 log10 3 ln 3 138. log8 22 log10 22 ln 22 1.486 log10 8 ln 8 Section 3.5 Section 3.5 ■ Exponential and Logarithmic Models 303 Exponential and Logarithmic Models You should be able to solve growth and decay problems. (a) Exponential growth if b > 0 and y aebx. (b) Exponential decay if b > 0 and y aebx. ■ You should be able to use the Gaussian model y aexb c. 2 ■ You should be able to use the logistic growth model a . y 1 berx ■ You should be able to use the logarithmic models y a b ln x, y a b log x. Vocabulary Check 1. y aebx; y aebx 2. y a b ln x; y a b log x 4. bell; average value 5. sigmoidal 1. y 2ex4 3. normally distributed 3. y 6 logx 2 2. y 6ex4 This is an exponential growth model. Matches graph (c). 4. y 3ex2 5 2 This is a Gaussian model. Matches graph (a). This is a logarithmic function shifted up six units and left two units. Matches graph (b). This is an exponential decay model. Matches graph (e). 6. y 5. y lnx 1 This is a logarithmic model shifted left one unit. Matches graph (d). 7. Since A 1000e0.035t, the time to double is given by 2000 1000e0.035t and we have 1500 750e0.105t ln 2 ln e0.035t 2 e0.105t t ln 2 19.8 years. 0.035 Amount after 10 years: A 1000e0.35 $1419.07 This is a logistic growth model. Matches graph (f). 8. Since A 750e0.105t, the time to double is given by 1500 750e0.105t, and we have 2 e0.035t ln 2 0.035t 4 1 e2x ln 2 ln e0.105t ln 2 0.105t t ln 2 6.60 years. 0.105 Amount after 10 years: A 750e0.10510 $2143.24 304 Chapter 3 Exponential and Logarithmic Functions 9. Since A 750ert and A 1500 when t 7.75, we have the following. 10. Since A 10,000ert and A 20,000 when t 12, we have 1500 750e7.75r 20,000 10,000e12r 2 e7.75r 2 e12r ln 2 ln e7.75r ln 2 ln e12r ln 2 7.75r ln 2 12r r ln 2 0.089438 8.9438% 7.75 r Amount after 10 years: A 750e0.08943810 $1834.37 ln 2 0.057762 5.7762%. 12 Amount after 10 years: A 10,000e0.05776210 $17,817.97 11. Since A 500ert and A $1505.00 when t 10, we have the following. 1505.00 r 12. Since A 600ert and A 19,205 when t 10, we have 19,205 600e10r 500e10r 19,205 e10r 600 ln1505.00500 0.110 11.0% 10 The time to double is given by 1000 500e0.110t t ln 2 6.3 years. 0.110 ln ln e 19,205 600 ln 10r 19,205 600 10r r ln19,205600 0.3466 or 34.66%. 10 The time to double is given by 1200 600e0.3466t t 13. Since A Pe0.045t and A 10,000.00 when t 10, we have the following. 10,000.00 14. Since A Pe0.02t and A 2000 when t 10, we have 2000 Pe0.0210 Pe0.04510 P 10,000.00 P $6376.28 e0.04510 The time to double is given by t 15. 500,000 P 1 P 0.075 12 500,000 0.075 1220 1 12 500,000 $112,087.09 1.00625240 2000 $1637.46. e0.0210 The time to double is given by t ln 2 15.40 years. 0.045 1220 ln 2 2 years. 0.3466 16. AP 1 500,000 P 1 r n nt 0.12 12 P $4214.16 12(40) ln 2 34.7 years. 0.02 Section 3.5 Exponential and Logarithmic Models 305 17. P 1000, r 11% n1 (a) n 12 (b) 1 0.11t 2 1 0.11 12 t ln 1.11 ln 2 t 12t ln 1 ln 2 6.642 years ln 1.11 1 0.11 365 365t ln 1 365t t 2 ln 2 12 ln1 0.11 12 (d) Compounded continuously e0.11t 2 0.11 ln 2 365 0.11t ln 2 ln 2 t 2 0.11 ln 2 12 n 365 (c) 12t 365 ln1 0.11 365 t 6.302 years ln 2 6.301 years 0.11 18. P 1000, r 10.5% 0.105 (b) n 12 (a) n 1 ln 2 6.94 years ln1 0.105 t t (c) n 365 365 ln1 0.105 365 3P Pert 19. 12 ln1 0.105 12 6.63 years (d) Compounded continuously ln 2 t ln 2 t 6.602 years r 3 ert t ln 3 rt ln 3 (years) r ln 2 6.601 years 0.105 2% 4% 6% 8% 10% 12% 54.93 27.47 18.31 13.73 10.99 9.16 ln 3 t r 20. 60 0 0.16 0 Using the power regression feature of a graphing utility, t 1.099r1. 21. 3P P1 rt r 3 1 rt ln 3 ln1 rt ln 3 t ln1 r ln 3 t ln1 r t ln 3 (years) ln1 r 2% 4% 6% 8% 10% 12% 55.48 28.01 18.85 14.27 11.53 9.69 6.330 years 306 Chapter 3 22. Exponential and Logarithmic Functions 23. Continuous compounding results in faster growth. 60 A 1 0.075 t and A e0.07t A 0.16 Amount (in dollars) 0 0 Using the power regression feature of a graphing utility, t 1.222r1. A = e0.07t 2.00 1.75 1.50 1.25 A = 1 + 0.075 [[ t [[ 1.00 t 2 4 6 8 10 Time (in years) 24. 2 ( 1 C Cek1599 2 25. ) 0.055 [[365t [[ A = 1 + 365 26. 1 C Cek1599 2 0.5 ek1599 ln 0.5 ln 0 ln 0.5 k1599 10 0 1 ek1599 2 ek1599 A = 1 + 0.06 [[ t [[ k 512% From the graph, compounded daily grows faster than 6% simple interest. ln 0.5 1599 Given C 10 grams after 1000 years, we have ln 1 ln ek1599 2 ln 1 k1599 2 k y 10eln 0.51599 1000 ln12 1599 Given y 1.5 grams after 1000 years, we have 6.48 grams. 1.5 Ce ln121599 1000 C 2.31 grams. 27. 1 C Cek5715 2 28. 1 C Cek5715 2 0.5 ek5715 1 ek5715 2 ln 0.5 ln ek5715 ln 0.5 k5715 k ln 0.5 5715 Given y 2 grams after 1000 years, we have 2 Celn 0.55715 1000 C 2.26 grams. ln 1 ln ek5715 2 ln 1 k5715 2 k ln12 5715 Given C 3 grams, after 1000 years we have y 3eln125715 1000 y 2.66 grams. 29. 1 C Cek24,100 2 0.5 ek24,100 ln 0.5 ln ek24,100 ln 0.5 k24,100 k ln 0.5 24,100 Given y 2.1 grams after 1000 years, we have 2.1 Celn 0.524,100 1000 C 2.16 grams. Section 3.5 30. 1 C Cek24,100 2 y aebx 31. 1 ln ek24,100 2 ln 1 k24,100 2 1 1 aeb0 ⇒ a 2 2 10 eb3 1 5 eb4 2 ln 10 3b ln 10 b ⇒ b 0.7675 3 10 e4b ln 10 ln e4b Thus, y e0.7675x . ln12 k 24,100 307 y aebx 32. 1 aeb0 ⇒ 1 a 1 ek24,100 2 ln Exponential and Logarithmic Models ln 10 4b Given y 0.4 grams after 1000 years, we have ln 10 b ⇒ b 0.5756 4 0.4 Celn1224,100 1000 Thus, y 12e0.5756x. C 0.41 grams. y aebx 33. ln y aebx 34. 5 aeb0 ⇒ 5 a 1 aeb0 ⇒ 1 a 1 5eb4 1 eb3 4 1 e4b 5 ln 15 4b 14 ln e ln 4 3b ln15 b ⇒ b 0.4024 4 3b 1 ln14 b 3 Thus, y 5e0.4024x. ⇒ b 0.4621 Thus, y e0.4621x . 35. P 2430e0.0029t (a) Since the exponent is negative, this is an exponential decay model. The population is decreasing. (c) 2.3 million 2300 thousand 2300 2430e0.0029t (b) For 2000, let t 0: P 2430 thousand people 2300 e0.0029t 2430 For 2003, let t 3: P 2408.95 thousand people ln 0.0029t 2300 2430 t ln23002430 18.96 0.0029 The population will reach 2.3 million (according to the model) during the later part of the year 2018. 36. Country 2000 2010 Bulgaria 7.8 7.1 Canada 31.3 34.3 1268.9 1347.6 59.5 61.2 282.3 309.2 China United Kingdom United States —CONTINUED— 308 Chapter 3 Exponential and Logarithmic Functions 36. —CONTINUED— Canada: (a) Bulgaria: a 31.3 a 7.8 34.3 31.3eb10 7.1 7.8eb10 ln 7.1 10b ⇒ b 0.0094 7.8 ln 34.3 10b ⇒ b 0.00915 31.3 For 2030, use t 30. For 2030, use t 30. y 7.8e0.009430 5.88 million y 31.3e0.0091530 41.2 million United States: China: ln a 1268.9 a 282.3 1347.6 1268.9eb10 309.2 282.3eb10 1347.6 10b ⇒ b 0.00602 1268.9 ln 309.2 10b ⇒ b 0.0091 282.3 For 2030, use t 30. For 2030, use t 30. y 1268.9e0.0060230 1520.06 million y 282.3e0.009130 370.9 million United Kingdom: a 59.5 61.2 59.5eb10 ln 61.2 10b ⇒ b 0.00282 59.5 For 2030, use t 30. y 59.5e0.0028230 64.7 million (b) The constant b determines the growth rates. The greater the rate of growth, the greater the value of b. (c) The constant b determines whether the population is increasing b > 0 or decreasing b < 0. 37. y 4080ekt y 10ekt 38. 65 10ek14 When t 3, y 10,000: 10,000 4080ek3 10,000 e3k 4080 ln 3k 10,000 4080 k ln10,0004080 0.2988 3 When t 24: y 4080e0.298824 5,309,734 hits ln 14k ⇒ k 0.1337 65 10 For 2010, t 20: y 10e0.133720 $144.98 million Section 3.5 39. N 100ekt Exponential and Logarithmic Models N 250ekt 40. 280 250ek10 300 100e5k 3 e5k 1.12 e10k ln 3 ln e5k k ln 3 5k 500 250eln 1.1210 t 2 eln 1.1210 t N 100e0.2197t ln 2 200 100e0.2197t 41. R ln 2 3.15 hours 0.2197 t 1 t8223 e 1012 R (a) ln 1 5715k 2 1012 814 k t 1012 ln 14 8223 8 ln12 5715 The ancient charcoal has only 15% as much radioactive carbon. 0.15C Celn 0.55715 t 108 12,180 years old 12 14 ln 0.15 1 t8223 1 e 11 (b) 1012 13 t 1012 et8223 11 13 ln 2 61.16 hours ln 1.1210 1 C Ce5715k 2 1 814 t 8223 ln ln 101.12t y Cekt 42. 1 t8223 1 e 14 1012 8 et8223 ln 1.12 10 N 250eln 1.1210 t ln 3 k 0.2197 5 t ln 0.5 t 5715 5715 ln 0.15 15,642 years ln 0.5 t 1012 ln 8223 1311 t 8223 ln 4797 years old 10 13 12 11 43. 0, 30,788, 2, 18,000 (a) m 309 18,000 30,788 6394 20 a 30,788 (b) 32,000 18,000 30,788ek2 b 30,788 4500 e2k 7697 Linear model: V 6394t 30,788 ln 0 4 0 2k 4500 7697 k —CONTINUED— (c) 4500 1 ln 0.268 2 7697 Exponential model: V 30,788e0.268t The exponential model depreciates faster in the first two years. 310 Chapter 3 Exponential and Logarithmic Functions 43. —CONTINUED— (d) t 1 3 V 6394t 30,788 $24,394 $11,606 V 30,788e $23,550 $13,779 0.268t (e) The linear model gives a higher value for the car for the first two years, then the exponential model yields a higher value. If the car is less than two years old, the seller would most likely want to use the linear model and the buyer the exponential model. If it is more than two years old, the opposite is true. 44. 0, 1150, 2, 550 (a) m 550 1150 300 20 V 300t 1150 (c) 550 1150ek2 (b) ln 550 1150 2k ⇒ k 0.369 1200 V 1150e0.369t (d) 0 4 0 The exponential model depreciates faster in the first two years. t 1 3 V 300t 1100 $850 $250 V 1150e0.369t $795 $380 (e) The slope of the linear model means that the computer depreciates $300 per year, then loses all value in the third year. The exponential model depreciates faster in the first two years but maintains value longer. 45. St 1001 ekt 15 1001 ek1 (b) 85 100ek 85 100 ek 0.85 ek ln 0.85 ln S Sales (in thousands of units) (a) ek 120 90 60 30 t 5 10 15 20 25 30 Time (in years) k ln 0.85 k 0.1625 (c) S5 1001 e0.16255 55.625 55,625 units St 1001 e0.1625t 46. N 301 ekt (a) N 19, t 20 N 25 (b) 25 301 e0.050t 19 301 e20k 30e20k 11 e20k 11 30 11 ln e20k ln 30 20k ln 11 30 k 0.050 So, N 301 e0.050. 5 e0.050t 30 ln 305 ln e ln 305 0.050t 0.050t t ln530 36 days 0.050 Section 3.5 47. y 0.0266ex100 450, 70 ≤ x ≤ 116 2 (a) Exponential and Logarithmic Models 48. (a) 311 0.9 0.04 4 7 0 70 115 0 (b) The average IQ score of an adult student is 100. 49. pt 1000 1 9e0.1656t (a) p5 50. S 1000 203 animals 1 9e0.16565 500 (b) (b) The average number of hours per week a student uses the tutor center is 5.4. 1000 1 9e0.1656t (a) 500,000 1 0.6ekt 300,000 1 0.6e4k 5 3 0.6e4k 2 3 1 9e0.1656t 2 9e0.1656t 1 e0.1656t e4k 1 9 k 1200 So, S 0 40 0 The horizontal asymptotes are p 0 and p 1000. The asymptote with the larger p-value, p 1000, indicates that the population size will approach 1000 as time increases. 51. R log I log I since I0 1. I0 10 9 4k ln ln19 t 13 months 0.1656 (c) 500,000 1 0.6e4k 9 10 1 10 ln 0.0263 4 9 500,000 . 1 0.6e0.0263t (b) When t 8: S 52. R log 500,000 287,273 units sold. 1 0.6e0.02638 I log I since I0 1. I0 (a) 7.9 log I ⇒ I 107.9 79,432,823 (a) R log 80,500,000 7.91 (b) 8.3 log I ⇒ I 108.3 199,526,231 (b) R log 48,275,000 7.68 (c) 4.2 log I ⇒ I 104.2 15,849 (c) R log 251,200 5.40 53. 10 log I where I0 1012 wattm2. I0 (a) 10 log 1010 10 log 102 20 decibels 1012 (b) 10 log 105 10 log 107 70 decibels 1012 (c) 10 log 108 10 log 104 40 decibels 1012 (d) 10 log 1 10 log 1012 120 decibels 1012 312 Chapter 3 54. I 10 log Exponential and Logarithmic Functions I where I0 1012 wattm2 I0 (a) 1011 10 log 10 log (b) 102 10 log 104 10 log 108 80 decibels 1012 (c) 104 10 log 55. 1011 10 log 101 10 decibels 1012 I I0 (d) 102 10 log 56. I log 10 I0 102 10 log 1010 100 decibels 1012 10 log10 1010 10 10 10log II0 1010 102 10 log 1014 140 decibels 1012 I I0 I I0 I I01010 I I0 % decrease I0108.8 I0107.2 100 97% I0108.8 I I010 10 % decrease I0109.3 I0108.0 100 95% I0109.3 57. pH logH 58. pH logH log2.3 105 4.64 59. 5.8 logH log11.3 106 4.95 60. 5.8 logH 3.2 logH 103.2 H 105.8 10logH H 6.3 104 mole per liter 105.8 H H 1.58 106 mole per liter 61. 2.9 logH 2.9 logH H 102.9 for the apple juice 8.0 logH 8.0 logH H 108 for the drinking water 102.9 108 105.1 times the hydrogen ion concentration of drinking water 63. t 10 ln T 70 98.6 70 At 9:00 A.M. we have: t 10 ln 85.7 70 6 hours 98.6 70 From this you can conclude that the person died at 3:00 A.M. 62. pH 1 logH pH 1 logH 10pH1 H 10pH1 H 10pH 10 H The hydrogen ion concentration is increased by a factor of 10. Section 3.5 Pr 12 64. Interest: u M M Principal: v M Pr 12 1 12 r 1 12 r 313 12t 12t (a) P 120,000, t 35, r 0.075, M 809.39 (c) P 120,000, t 20, r 0.075, M 966.71 800 800 u u v v 0 35 0 0 20 0 (b) In the early years of the mortgage, the majority of the monthly payment goes toward interest. The principal and interest are nearly equal when t 26 years. 65. u 120,000 (a) Exponential and Logarithmic Models 0.075t 1 1 1 0.07512 12t 1 150,000 0 The interest is still the majority of the monthly payment in the early years. Now the principal and interest are nearly equal when t 10.729 11 years. 24 (b) From the graph, u $120,000 when t 21 years. It would take approximately 37.6 years to pay $240,000 in interest. Yes, it is possible to pay twice as much in interest charges as the size of the mortgage. It is especially likely when the interest rates are higher. 0 66. t1 40.757 0.556s 15.817 ln s t2 1.2259 0.0023s2 (a) Linear model: t3 0.2729s 6.0143 Exponential model: t4 1.5385e0.02913s or t4 1.53851.0296s (b) t2 25 t4 t3 20 t1 100 0 (c) s 30 40 50 60 70 80 90 t1 3.6 4.6 6.7 9.4 12.5 15.9 19.6 t2 3.3 4.9 7.0 9.5 12.5 15.9 19.9 t3 2.2 4.9 7.6 10.4 13.1 15.8 18.5 t4 3.7 4.9 6.6 8.8 11.8 15.8 21.2 Note: Table values will vary slightly depending on the model used for t4. S2 3.4 3.3 5 4.9 7 7 9.3 9.5 12 12.5 15.8 15.9 20 19.9 1.1 S3 3.4 2.2 5 4.9 7 7.6 9.3 10.4 12 13.1 15.8 15.8 20 18.5 5.6 S4 3.4 3.7 5 4.9 7 6.6 9.3 8.9 12 11.9 15.8 15.9 20 21.2 2.6 (d) Model t1: S1 3.4 3.6 5 4.6 7 6.7 9.3 9.4 12 12.5 15.8 15.9 20 19.6 2.0 Model t2: Model t3: Model t4: The quadratic model, t2, best fits the data. 314 Chapter 3 Exponential and Logarithmic Functions 67. False. The domain can be the set of real numbers for a logistic growth function. 68. False. A logistic growth function never has an x-intercept. 69. False. The graph of f x is the graph of gx shifted upward five units. 70. True. Powers of e are always positive, so if a > 0, a Gaussian model will always be greater than 0, and if a < 0, a Gaussian model will always be less than 0. 71. (a) Logarithmic 72. Answers will vary. (b) Logistic (c) Exponential (decay) (d) Linear (e) None of the above (appears to be a combination of a linear and a quadratic) (f) Exponential (growth) 73. 1, 2, 0, 5 74. 4, 3, 6, 1 y (a) y (a) (0, 5) 5 6 4 (− 6, 1) 3 2 (− 1, 2) −6 2 x −4 2 −2 −1 2 3 −1 −6 (b) d 0 12 5 22 12 32 10 (c) Midpoint: (b) d 6 42 1 32 12 0, 2 2 5 21, 72 100 16 116 229 (c) Midpoint: 3 52 3 (d) m 0 1 1 76. 10, 4, 7, 0 y y (a) 8 6 (10, 4) 6 4 4 (3, 3) 2 2 −2 −2 x 2 4 6 8 10 14 (14, − 2) −4 (7, 0) −2 2 4 6 x 8 10 −2 −4 −6 −6 −8 (b) d 14 32 2 32 112 52 146 (c) Midpoint: (d) m 62 4, 32 1 1, 1 4 3 1 2 4 6 10 5 (d) m 75. 3, 3, 14, 2 (a) (4, −3) −4 x 1 6 −2 1 −3 4 3 2 14, 3 22 172, 12 5 2 3 14 3 11 (b) d 10 72 4 02 9 16 25 5 (c) Midpoint: (d) m 7 2 10, 0 2 4 172, 2 4 40 10 7 3 Section 3.5 77. 12, 41, 34, 0 78. y (a) Exponential and Logarithmic Models 315 73, 16, 32, 31 y (a) 2 1 1 1 2 ( ( 3 ,0 4 ( 1 , −1 2 4 ( 3 3 ( 2 2 3 ( 32 37 31 61 1 3 9.25 2 2 2 2 2 14 0 14 1 (d) m 34 12 14 79. y 10 3x 232 73, 132 16 56, 121 13 16 12 1 23 73 3 6 80. y 4x 1 y 3 Line 10 2 Slope: m 4 8 6 y-intercept: 0, 10 y-intercept: 0, 1 4 −3 −2 1 2 3 −1 −2 x −2 −2 2 6 81. y 2x2 3 8 10 12 −3 82. y 2x2 7x 30 y y 2x 02 3 2 −6 x −1 2 Parabola 2 (c) Midpoint: (d) m y Slope: m 3 2 (b) d 12 2 34, 142 0 58, 81 Line 2 −2 34 21 0 41 1 1 1 4 4 8 (b) d (c) Midpoint: 1 − 2, − 1 2 −1 2 x −1 x 1 −1 ( 73 , 16 ( −4 −2 x 2 4 6 −2 Vertex: 0, 3 2x 5x 6 2x 4 7 2 y x −4 2 −5 289 8 4 8 Parabola 74, 2898 5 x-intercepts: 2, 0, 6, 0 Vertex: 83. 3x2 4y 0 3x2 4y 4 3y 5 x2 Parabola 4 3 2 Vertex: 0, 0 1 1 Focus: 0, 3 − 4 −3 − 2 − 1 1 Directrix: y 3 y x2 8y 6 Parabola − 35 84. x2 8y 0 y 7 − 30 x 1 2 3 4 2 −6 −4 x 4 −2 Vertex: 0, 0 −4 Focus: 0, 2 −6 Directrix: y 2 −8 − 10 6 316 Chapter 3 85. y Exponential and Logarithmic Functions 4 1 3x 86. y Vertical asymptote: x x2 4 x 2 x 2 x 2 Vertical asymptote: x 2 1 3 Slant asymptote: y x 2 Horizontal asymptote: y 0 y y 10 3 8 6 1 −3 −2 −1 4 x 1 2 2 −1 −8 −2 −6 x −4 4 −3 87. x2 y 82 25 88. x 42 y 7 4 y x 42 y 7 4 14 Circle 12 Center: 0, 8 x 42 y 3 10 8 Radius: 5 Parabola 6 4 Vertex: 4, 3 2 −8 −6 −4 −2 y x 2 4 6 8 x −2 2 −2 P 14 −4 Focus: 4, 3.25 −6 Directrix: y 2.75 −8 − 10 89. f x 2x1 5 90. f x 2x1 1 Horizontal asymptote: y 5 5 x f x 3 5.02 5.06 1 Horizontal asymptote: y 1 0 5.3 5.5 1 6 3 9 5 x 21 f x 2 3 y 1 0 1 2 2 32 54 8 y 14 2 12 x −2 10 8 6 −4 4 −6 2 −6 −4 −2 −8 x 2 4 6 8 10 − 10 91. f x 3x 4 y 5 4 3 2 1 Horizontal asymptote: y 4 x 4 2 1 0 1 2 f x 3.99 3.89 3.67 3 1 5 − 6 − 5 − 4 − 3 − 2 −1 −2 −3 −5 x 2 3 4 9 4 6 8 Review Exercises for Chapter 3 92. f x 3x 4 317 y Horizontal asymptote: y 4 5 x 2 1 0 1 2 f x 389 323 3 1 5 2 1 − 5 − 4 −3 −2 − 1 x 1 2 3 4 5 −2 −3 −4 −5 93. Answers will vary. Review Exercises for Chapter 3 1. f x 6.1x 2. f x 30x 3. f x 20.5x f 3 303 361.784 f 2.4 6.12.4 76.699 4. f x 1278x5 5. f 20.5 0.337 f x 70.2x f 11 70.211 f 1 127815 4.181 f x 145x 6. f 0.8 1450.8 3.863 1456.529 7. f x 4x 8. f x 4x 9. f x 4x Intercept: 0, 1 Intercept: 0,1 Intercept: 0, 1 Horizontal asymptote: x-axis Horizontal asymptote: y 0 Horizontal asymptote: x-axis Increasing on: , Decreasing on: , Decreasing on: , Matches graph (c). Matches graph (d). Matches graph (a). 10. f x 4x 1 12. f x 4x, gx 4x 3 11. f x 5x Intercept: 0, 2 gx 5x1 Horizontal asymptote: y 1 Since gx f x 1, the graph of g can be obtained by shifting the graph of f one unit to the right. Increasing on: , Because gx f x 3, the graph of g can be obtained by shifting the graph of f three units downward. Matches graph (b). 2 2 14. f x 3 , gx 8 3 1 13. f x 2 x x gx 12 x2 Because gx f x 8, the graph of g can be obtained by reflecting the graph of f in the x-axis and shifting the graph of f eight units upward. Since gx f x 2, the graph of g can be obtained by reflecting the graph of f about the x-axis and shifting f two units to the left. 15. f x 4x 4 y Horizontal asymptote: y 4 8 x 1 0 1 2 3 f x 8 5 4.25 4.063 4.016 2 x −4 x −2 2 4 318 Chapter 3 Exponential and Logarithmic Functions 17. f x 2.65x1 16. f x 4x 3 Horizontal asymptote: y 0 Horizontal asymptote: y 3 x 2 1 0 1 2 f x 3.063 3.25 4 7 19 x 2 1 0 1 2 f x 0.377 1 2.65 7.023 18.61 y y −6 1 1 2 3 6 9 −3 x −6 −5 −4 −3 −2 −1 x −3 3 −6 −2 −3 −9 −4 −5 − 12 −6 − 15 −7 −8 19. f x 5x2 4 18. f x 2.65x1 Horizontal asymptote: y 4 Horizontal asymptote: y 0 x 3 1 0 1 3 x 1 0 1 2 3 f x 0.020 0.142 0.377 1 7.023 f x 4.008 4.04 4.2 5 9 y y 8 5 4 6 3 2 2 1 −3 −2 x −1 1 2 x 3 −4 −1 −2 2 1 21. f x 2 x 20. f x 2x6 5 Horizontal asymptote: y 5 4 3 2x 3 Horizontal asymptote: y 3 x 0 5 6 7 8 9 x 2 1 0 1 2 f x 4.984 4.5 4 3 1 3 f x 3.25 3.5 4 5 7 y y 8 6 4 6 2 −2 x −2 2 4 6 10 2 −4 −6 x −4 −2 2 4 Review Exercises for Chapter 3 22. f x 18 x2 5 y Horizontal asymptote: y 5 2 x x 3 2 1 0 2 f x 3 4 4.875 4.984 5 −4 2 4 −2 −4 −6 23. 3x2 19 24. 3x2 32 x 2 2 13 x2 81 13 x2 34 13 x2 13 4 x 4 e5x7 e15 25. e82x e3 26. 8 2x 3 5x 7 15 2x 11 5x 22 x x 2 4 x 22 5 11 2 x 2 27. e8 2980.958 28. e58 1.868 29. e1.7 0.183 30. e0.278 1.320 32. hx 2 ex2 31. hx ex2 x 2 1 0 1 2 x 2 1 0 1 2 hx 2.72 1.65 1 0.61 0.37 y 0.72 0.35 1 1.39 1.63 y y 3 7 6 5 4 −4 −3 3 −1 x 1 2 3 4 −2 2 −3 −4 −3 −2 −1 −4 x 1 2 3 4 −5 33. f x e x2 34. st 4e2t, t > 0 x 3 2 1 0 1 t 1 2 1 2 3 4 f x 0.37 1 2.72 7.39 20.09 y 0.07 0.54 1.47 2.05 2.43 y y 7 5 6 4 3 2 2 1 − 6 − 5 − 4 −3 − 2 − 1 x 1 1 2 t 1 2 3 4 5 319 320 Chapter 3 35. A 3500 1 Exponential and Logarithmic Functions 0.065 n 10n or A 3500e0.06510 n 1 2 4 12 365 Continuous Compounding A $6569.98 $6635.43 $6669.46 $6692.64 $6704.00 $6704.39 36. A 2000 1 0.05 n 30n or A 2000e0.0530 n 1 2 4 12 365 Continuous A $8643.88 $8799.58 $8880.43 $8935.49 $8962.46 $8963.38 37. Ft) 1 et3 (a) F 12 0.154 (b) F2 0.487 (c) F5 0.811 3 38. Vt 14,000 4 t (a) 39. (a) A 50,000e0.087535 $1,069,047.14 15,000 (b) The doubling time is 0 ln 2 7.9 years. 0.0875 10 0 (b) V2 14,00034 $7875 2 (c) According to the model, the car depreciates most rapidly at the beginning. Yes, this is realistic. 40. Q 10012 t14.4 (a) For t 0: Q 10012 014.4 (c) 100 grams (b) For t 10: Q 10012 1014.4 61.79 grams Mass of 241Pu (in grams) Q 100 80 60 40 20 t 20 40 60 80 100 Time (in years) 41. 43 64 42. log4 64 3 44. e0 1 ln 1 0 2532 125 3 log25 125 2 45. f x log x f 1000 log 1000 log 103 3 43. e0.8 2.2255 . . . ln 2.2255 . . . 0.8 46. log9 3 log9 912 21 Review Exercises for Chapter 3 48. f x log4 x 47. gx log2 x g 1 8 f log2 23 3 log2 18 1 4 log4 14 321 49. log4x 7 log4 14 1 x 7 14 x7 50. log83x 10 log8 5 51. lnx 9 ln 4 52. ln2x 1 ln11 x94 3x 10 5 2x 1 11 x 5 3x 15 2x 12 x6 x5 53. gx log7 x ⇒ x 7y Domain: 0, 3 gx 1 7 1 1 0 55. f x log 7 1 x 1 −2 49 −1 x 1 2 3 2 1 50 x −1 x1 4 −1 1 −1 2 3 4 5 4 6 8 10 −2 x-intercept: 1, 0 −2 2 3 log5 x 0 2 Vertical asymptote: x 0 y Domain: 0, 4 x-intercept: 1, 0 x 54. gx log5 x ⇒ 5y x y −3 Vertical asymptote: x 0 3x ⇒ 3x 10 y ⇒ x 310 y Domain: 0, 1 25 1 5 1 5 25 gx 2 1 0 1 2 56. f x 6 log x 1 x 0.03 0.3 3 30 f x 2 1 0 1 8 6 log x 6 2 −1 10 6 log x 0 3 Vertical asymptote: x0 y Domain: 0, y x-intercept: 3, 0 x 3 4 2 x 106 x 2 4 5 −2 x 0.000001 −1 −2 x 2 −2 x-intercept: 0.000001, 0 −3 Vertical asymptote: x 0 57. f x 4 logx 5 x Domain: 5, 4 3 2 x 1 2 4 6 8 10 f x 6 6.3 6.6 6.8 6.9 7 1 0 y 1 7 f x x-intercept: 9995, 0 4 3.70 3.52 3.40 3.30 3.22 6 5 4 Since 4 logx 5 0 ⇒ logx 5 4 3 2 x 5 104 x 10 5 9995. 4 Vertical asymptote: x 5 1 −6 −4 −3 −2 −1 x 1 2 322 Chapter 3 Exponential and Logarithmic Functions 58. f x logx 3 1 y Domain: 3, logx 3 1 0 logx 3 1 x3 x 4 5 6 7 8 f x 1 1.3 1.5 1.6 1.7 5 4 3 2 1 x −1 101 1 2 4 5 6 7 8 9 −2 −3 −4 −5 x 3.1 x-intercept: 3.1, 0 Vertical asymptote: x 3 59. ln 22.6 3.118 60. ln 0.98 0.020 61. ln e12 12 62. ln e7 7 63. ln7 5 2.034 64. ln 65. f x ln x 3 6 5 x-intercept: ln x 3 0 4 ln x 3 4 lnx 3 0 2 x 3 e0 2 x 2 x4 1 e3, 0 y Domain: 3, 3 x e3 66. f x lnx 3 y Domain: 0, 83 1.530 x −1 1 2 3 4 5 Vertical asymptote: x 0 4 x-intercept: 4, 0 −4 Vertical asymptote: x 3 1 2 3 1 2 1 4 x 3.5 4 4.5 5 5.5 f x 3 3.69 4.10 2.31 1.61 y 0.69 0 0.41 0.69 0.92 67. hx lnx2 2 ln x Domain: , 0 0, 4 x-intercepts: ± 1, 0 2 3 Domain: 0, 3 1 4 1 −4 −3 −2 −1 y 68. f x 14 ln x y 2 3 1 x ln x 0 x 1 2 ln x 0 4 1 −3 3 4 5 −2 x1 −4 2 −1 x e0 −3 x-intercept: 1, 0 69. x ± 0.5 ±1 ±2 y 1.39 0 1.39 2.20 ±3 h 116 loga 40 176 h55 116 log55 40 176 53.4 inches 8 −2 x Vertical asymptote: x 0 6 ±4 Vertical asymptote: x 0 2.77 70. s 25 13 ln1012 ln 3 27.16 miles x 1 2 1 3 2 2 5 2 3 y 0.17 0 0.10 0.17 0.23 0.27 71. log4 9 log4 9 log 9 1.585 log 4 ln 9 1.585 ln 4 6 Review Exercises for Chapter 3 72. log12 200 log12 200 log 200 2.132 log 12 73. log12 5 ln 200 2.132 ln 12 75. log 18 log2 log12 5 log 5 2.322 log12 32 76. log2 ln 0.28 1.159 ln 3 log3 0.28 1 log2 1 log2 12 0 log22 12 log 2 2 log 3 2 log2 22 log2 3 2 1.255 77. ln 20 ln22 log 0.28 1.159 log 3 74. log3 0.28 ln 5 2.322 ln12 3 log 3 log 2 3.585 5 78. ln 3e4 ln 3 ln e4 79. log5 5x2 log5 5 log5 x2 ln 3 4 2 ln 2 ln 5 2.996 1 2 log5 x 2.90 80. log10 7x 4 log 7 log x 4 81. log3 log 7 4 log x 6 3 x 3 x log3 6 log3 log33 1 log3 2 86. ln log7 x12 log7 4 1 log3 x 3 1 log7 x log7 4 2 1 log3 x 3 y 4 1 2 2 ln y 4 1 lnx 3 ln x ln y 2 ln y 1 2 ln 4 lnx 3 ln x ln y 2 ln y 1 ln 16, y > 1 88. log6 y 2 log6 z log6 y log6 z2 87. log2 5 log2 x log2 5x log6 91. log7 x log7 4 ln 3 ln x 2 ln y x xy 3 lnx 3 ln xy 89. ln x 4 84. ln 3xy2 ln 3 ln x ln y 2 2 ln x 2 ln y ln z 85. ln x 2 log3 x13 log3 3 log3 2 83. ln x2y 2z ln x2 ln y 2 ln z 82. log7 x 1 4 y ln ln y ln x ln 4 4 y 1 3 x 4 log y7 log8x 4 7 log8 y log8 8 3 3 log8 y7 x 4 323 y z2 90. 3 ln x 2 lnx 1 ln x3 lnx 12 ln x3x 12 92. 2 log x 5 logx 6 log x2 logx 65 log x2 x 65 log 1 x2x 65 324 93. Chapter 3 Exponential and Logarithmic Functions 1 ln2x 1 2 lnx 1 ln2x 1 lnx 12 2 ln 2x 1 x 12 94. 5 lnx 2 lnx 2 3 ln x lnx 25 lnx 2 ln x3 lnx 25 lnx 2 ln x3 lnx 25 ln x3x 2 ln 95. t 50 log x 25 x3x 2 18,000 18,000 h (a) Domain: 0 ≤ h < 18,000 (b) (c) As the plane approaches its absolute ceiling, it climbs at a slower rate, so the time required increases. 100 (d) 50 log 0 18,000 5.46 minutes 18,000 4000 20,000 0 Vertical asymptote: h 18,000 96. Using a calculator gives s 84.66 11 ln t. ex 6 100. ln ex 1 98. 6x 216 97. 8x 512 8x 83 6x 63 x3 x 3 101. log4 x 2 ln 6 103. ln x 4 61 x e4 x 4 16 6log6 x x 16 x ln 6 1.792 ex 12 105. x e3 0.0498 106. ln ex ln12 e3x2 40 ln e3x2 ln 40 3x 2 ln 40 x ln 40 2 0.563 3 107. e4x ex 109. 2x 13 35 2x 22 x log2 22 4x x 2 3 3x ln 25 x 14e3x2 560 2 3 e3x 25 ln e3x ln 25 x ln 12 2.485 108. x ln 3 102. log6 x 1 2 104. ln x 3 99. ex 3 log 22 ln 22 or log 2 ln 2 x 4.459 0 x 2 4x 3 0 x 1x 3 ln 25 1.073 3 x 1 or x 3 110. 6x 28 8 6x 20 log6 6x log6 20 x log6 20 x ln 20 1.672 ln 6 Review Exercises for Chapter 3 111. 45x 68 112. 212x 190 5x 17 12x 95 ln 5x ln 17 ln 12x ln 95 x ln 5 ln 17 x ln 12 ln 95 ln 17 1.760 ln 5 x x 113. e2x 7e x 10 0 ex 2 ex 2ex 4 0 ex 5 or ln e x ln 2 ex 2 ln e x ln 5 x ln 2 0.693 x ln 5 1.609 115. 20.6x 3x 0 3x e8.2 x x 1.386 x. −12 6 −3 12 Graph y1 4e1.2x and y2 9. −6 The graphs intersect at x 0.676. 18 −6 6 −2 −2 120. ln 5x 7.2 5x x e8.2 1213.650 3 9 40.2x 118. 4e1.2x 9 16 Graph y1 25e0.3x and y2 12. x 0.693 The x-intercepts are at x 7.038 and at x 1.527. −10 119. ln 3x 8.2 x ln 4 10 The x-intercepts are at x 0.392 and at x 7.480. 117. 25e0.3x 12 ex 4 x ln 2 Graph y1 −10 The graphs intersect at x 2.447. or 116. 40.2x x 0 10 Graph y1 20.6x 3x. e8.2 ln 95 1.833 ln 12 e2x 6ex 8 0 114. e x 2e x 5 0 eln 3x 325 121. 2 ln 4x 15 e7.2 ln 4x 7.2 e 267.886 5 15 2 eln 4x e7.5 4x e7.5 1 x e7.5 452.011 4 122. 4 ln 3x 15 ln 3x 123. ln x ln 3 2 15 4 x e154 3 14.174 lnx 8 3 x 2 3 1 lnx 8 3 2 elnx3 e2 lnx 8 6 x e2 3 x 8 e6 ln 3x e154 124. x e6 8 395.429 x 3e 22.167 2 326 125. Chapter 3 Exponential and Logarithmic Functions lnx 1 2 126. ln x ln 5 4 1 lnx 1 2 2 ln lnx 1 4 elnx1 x 4 5 x e4 5 e4 x 5e4 272.991 x 1 e4 x e4 1 53.598 log8x 1 log8x 2 log8x 2 127. log8x 1 log8 x1 128. log6x 2 log6 x log6x 5 x2 x 2 log6 x x 2 log x 5 6 x2 x5 x x2 x2 x 2 x2 5x x 1x 2 x 2 0 x2 4x 2 x2 x 2 x 2 x 2 ± 6, Quadratic Formula x2 0 Only x 2 6 0.449 is a valid solution. x0 Since x 0 is not in the domain of log8x 1 or of log8x 2, it is an extraneous solution. The equation has no solution. 129. log1 x 1 130. logx 4 2 1 x 10 x 4 102 1 1 1 10 x x 100 4 x 0.900 x 104 131. 2 lnx 3 3x 8 132. 6 logx 2 1 x 0 Graph y1 2 lnx 3 3x and y2 8. Graph y1 6 logx 2 1 x. 12 10 (1.64, 8) −8 −9 16 9 −4 −2 The graphs intersect at approximately 1.643, 8. The solution of the equation is x 1.643. 133. 4 lnx 5 x 10 Graph y1 4 lnx 5 x and y2 10. 11 −6 12 −1 The graphs do not intersect. The equation has no solution. The x-intercepts are at x 0, x 0.416, and x 13.627. Review Exercises for Chapter 3 135. 37550 7550e0.0725t 134. x 2 logx 4 0 3 e0.0725t Let y1 x 2 logx 4. ln 3 ln e0.0725t 12 ln 3 0.0725t −8 t 16 −4 ln 3 15.2 years 0.0725 The x-intercepts are at x 3.990 and x 1.477. 136. S 93 logd 65 137. y 3e2x3 283 93 logd 65 Exponential decay model 218 93 logd Matches graph (e). logd 218 93 d 1021893 220.8 miles 139. y lnx 3 138. y 4e2x3 Exponential growth model Logarithmic model Matches graph (b). Vertical asymptote: x 3 Graph includes 2, 0 Matches graph (f). 140. y 7 logx 3 141. y 2ex4 3 2 142. y Logarithmic model Gaussian model Vertical asymptote: x 3 Matches graph (a). Logistics growth model Matches graph (c). Matches graph (d). 143. y aebx 144. 2 aeb0 ⇒ a 2 3 2eb4 1.5 e4b ln 1.5 4b ⇒ b 0.1014 Thus, y 2e0.1014x. 6 1 2e2x y aebx 1 1 aeb0 ⇒ a 2 2 1 5 eb5 2 10 e5b ln 10 5b ln 10 b 5 b 0.4605 1 y e0.4605x 2 327 328 Chapter 3 Exponential and Logarithmic Functions P 3499e0.0135t 145. 4.5 million 4500 thousand 4500 ln y Cekt 146. 1 C Ce250,000k 2 3499e0.0135t 4500 e0.0135t 3499 ln 1 ln e250,000k 2 0.0135t 4500 3499 ln 1 250,000k 2 t ln45003499 18.6 years 0.0135 k ln12 250,000 When t 5000, we have According to this model, the population of South Carolina will reach 4.5 million during the year 2008. y Celn12250,000 5000 0.986C 98.6%C. After 5000 years, approximately 98.6% of the radioactive uranium II will remain. 147. (a) 20,000 10,000er5 2 e5r 2 40 ≤ x ≤ 100 1400 2000e3k ln 2 5r (a) Graph y1 0.0499ex71 128. 2 7 e3k 10 ln 2 r 5 r 0.138629 3k ln 13.8629% (b) A 149. y 0.0499ex71 128, 148. N0 2000 and N3 1400 so N 2000ekt and: k 10,000e0.138629 $11,486.98 0.05 107 ln710 0.11889 3 40 100 0 (b) The average test score is 71. The population one year ago: N4 2000e0.118894 1243 bats 150. N 157 1 5.4e0.12t (a) When N 50: 50 (b) When N 75: 157 1 5.4e0.12t 75 1 5.4e0.12t 157 50 1 5.4e0.12t 5.4e0.12t 107 50 5.4e0.12t e0.12t 107 270 e0.12t 0.12t ln t 107 270 ln107270 7.7 weeks 0.12 157 1 5.4e0.12t 157 75 82 75 82 405 0.12t ln t 82 405 ln82405 13.3 weeks 0.12 Problem Solving for Chapter 3 10 log 151. 125 10 log 12.5 log 1012.5 10 I 152. R log I since I0 1. 16 I 1016 329 (a) log I 8.4 I 108.4 251,188,643 (b) log I 6.85 10 I 16 I 106.85 7,079,458 (c) log I 9.1 I 1016 I 109.1 1,258,925,412 I 103.5 wattcm2 154. False. ln x ln y lnxy lnx y 153. True. By the inverse properties, logb b2x 2x. 155. Since graphs (b) and (d) represent exponential decay, b and d are negative. Since graph (a) and (c) represent exponential growth, a and c are positive. Problem Solving for Chapter 3 1. y ax 0.5x 7 y2 1.2x 5 y3 2.0x 3 y1 2. y1 ex y y2 y3 6 y4 x 1 2 3 y4 0 6 0 y5 x y1 −4 −3 −2 −1 y2 y5 y4 x y2 2 y1 y3 y3 x3 y4 4 24 x2 x The function that increases at the fastest rate for “large” values of x is y1 ex. (Note: One of the intersection points of y ex and y x3 is approximately 4.536, 93 and past this point ex > x3. This is not shown on the graph above.) 4 The curves y 0.5x and y 1.2x cross the line y x. From checking the graphs it appears that y x will cross y ax for 0 ≤ a ≤ 1.44. 3. The exponential function, y ex, increases at a faster rate than the polynomial function y xn. 4. It usually implies rapid growth. 5. (a) f u v auv 6. f x 2 g x 2 e ex 2 e 2 e2x e2x 2 e2x 4 4 4 4 au av f u f v (b) f 2x a2x ax2 (b) 6 y = ex 2x e x 2 ex 2 1 f x 2 7. (a) x (c) 6 6 y = ex y1 y = ex y2 −6 6 −2 −6 6 −2 −6 6 y3 −2 2 330 Chapter 3 Exponential and Logarithmic Functions x x2 x3 x4 1! 2! 3! 4! 8. y4 1 f x e x ex 9. 6 y4 y = ex −6 y e x ex x 2 ey 3 ey 1 e2y 1 x ey 6 −2 x − 4 − 3 − 2 −1 xe y e2y 1 As more terms are added, the polynomial approaches ex. 1 2 3 4 −4 e 2y xe y 10 x x2 x3 x4 x5 . . . 1! 2! 3! 4! 5! ex 1 y 4 ey x ± x2 4 2 Quadratic Formula Choosing the positive quantity for e y we have y ln ax 1 , a > 0, a 1 ax 1 10. f x x x x2 4 x x2 4 . Thus, f 1x ln . 2 2 11. Answer (c). y 61 ex 2 2 The graph passes through 0, 0 and neither (a) nor (b) pass through the origin. Also, the graph has y-axis symmetry and a horizontal asymptote at y 6. ay 1 ay 1 xay 1 ay 1 xay ay x 1 ayx 1 x 1 x1 x1 ln x1 y loga x1 xx 11 ln a f 1x 12. (a) The steeper curve represents the investment earning compound interest, because compound interest earns more than simple interest. With simple interest there is no compounding so the growth is linear. (b) Compound interest formula: A 5001 0.07 1 1t 5001.07t Simple interest formula: A Prt P 5000.07t 500 A Compounded Interest Growth of investment (in dollars) ay (c) One should choose compound interest since the earnings would be higher. 13. y1 c1 12 1 c1 2 tk1 tk1 and y2 c2 1 c2 2 c1 1 c2 2 12 tk2 ln c1 ln c2 t t 1 k1 k1 ln12 2 1000 Simple Interest t 5 10 15 20 25 30 Time (in years) B0 500 tk2 tk1 2 2000 200 500ak2 1 2 3000 14. B B0akt through 0, 500 and 2, 200 tk2 cc kt kt ln12 ln 4000 1 ln c1 ln c2 1k2 1k1 ln12 2 a2k 5 loga 25 2k 1 2 loga k 2 5 B 500a 12 loga 25 t 500 a log a 25 t2 500 25 t2 Problem Solving for Chapter 3 15. (a) y 252.6061.0310t 16. Let loga x m and logab x n. Then x am and x abn. (b) y 400.88t 1464.6t 291,782 2 (c) am 2,900,000 y2 amn a b amn1 1 b y1 0 200,000 ab n 85 (d) Both models appear to be “good fits” for the data, but neither would be reliable to predict the population of the United States in 2010. The exponential model approaches infinity rapidly. loga 1 m 1 b n 1 loga 1 m b n 1 loga 1 loga x b logab x ln x2 ln x2 17. ln x2 2 ln x 0 ln xln x 2 0 ln x 0 or ln x 2 x 1 or x e2 18. y ln x y1 x 1 y2 x 1 12x 12 y3 x 1 12x 12 13x 13 (a) (b) 4 y1 −3 (c) 4 y = ln x 4 y = ln x 9 −3 −4 y3 9 y2 y = ln x −3 9 −4 −4 19. y 4 x 1 12x 12 13x 13 14x 14 4 y = ln x The pattern implies that ln x x 1 12x 12 13x 13 14x 14 . . . . −3 9 y4 −4 20. y abx y axb ln y lnabx ln y lnax b ln y ln a ln bx ln y ln a ln x b ln y ln a x ln b ln y ln a b ln x ln y ln bx ln a ln y b ln x ln a Slope: m ln b Slope: m b y-intercept: 0, ln a y-intercept: 0, ln a 21. y 80.4 11 ln x 30 100 1500 0 y300 80.4 11 ln 300 17.7 ft3min 331 332 Chapter 3 Exponential and Logarithmic Functions 22. (a) 450 15 cubic feet per minute 30 15 80.4 11 ln x (b) 11 ln x 65.4 ln x x V xh x 382 e65.411 9 0 Let x floor space in square feet and h 30 feet. 11,460 x30 65.4 11 x 382 cubic feet of air space per child. 23. (a) (c) Total air space required: 38230 11,460 cubic feet If the ceiling height is 30 feet, the minimum number of square feet of floor space required is 382 square feet. 24. (a) 9 36 0 9 0 0 (b) The data could best be modeled by a logarithmic model. (b) The data could best be modeled by an exponential model. (c) The shape of the curve looks much more logarithmic than linear or exponential. (c) The data scatter plot looks exponential. (d) y 2.1518 2.7044 ln x (d) y 3.1141.341x 36 9 0 0 9 0 9 0 (e) The model graph hits every point of the scatter plot. (e) The model is a good fit to the actual data. 25. (a) 26. (a) 9 0 9 10 0 0 (b) The data could best be modeled by a linear model. (c) The shape of the curve looks much more linear than exponential or logarithmic. (d) y 0.7884x 8.2566 (b) The data could best be modeled by a logarithmic model. (c) The data scatter plot looks logarithmic. (d) y 5.099 1.92 lnx 9 0 9 0 10 9 0 (e) The model is a good fit to the actual data. 0 9 0 (e) The model graph hits every point of the scatter plot. Practice Test for Chapter 3 Chapter 3 Practice Test 1. Solve for x: x35 8. 1 2. Solve for x: 3x1 81. 3. Graph f x 2x. 4. Graph gx ex 1. 5. If $5000 is invested at 9% interest, find the amount after three years if the interest is compounded (a) monthly. (b) quarterly. (c) continuously. 1 6. Write the equation in logarithmic form: 72 49. 1 7. Solve for x: x 4 log2 64. 4 825. 8. Given logb 2 0.3562 and logb 5 0.8271, evaluate logb 1 9. Write 5 ln x 2 ln y 6 ln z as a single logarithm. 10. Using your calculator and the change of base formula, evaluate log9 28. 11. Use your calculator to solve for N: log10 N 0.6646 12. Graph y log4 x. 13. Determine the domain of f x log3x2 9. 14. Graph y lnx 2. 15. True or false: ln x lnx y ln y 16. Solve for x: 5x 41 1 17. Solve for x: x x2 log5 25 18. Solve for x: log2 x log2x 3 2 19. Solve for x: ex ex 4 3 20. Six thousand dollars is deposited into a fund at an annual interest rate of 13%. Find the time required for the investment to double if the interest is compounded continuously. 333