Comments
Description
Transcript
371 Algebra 2 Worked-Out Solution Key
Chapter 7 Prerequisite Skills (p. 476) 16a 1 4b 1 c 5 17 1. The domain of the function is xq2. 3 (21) 216a 2 4b 2 c 5 217 49a 1 7b 1 c 5 56 49a 1 7b 1 c 5 56 2. The range of the function is yq3. 33a 1 3b 3. The inverse of the function is y 5 (x 2 3)2 1 2. } 5. y 5 Ï x 1 3 } 4. y 5 22Ï x 2 1 Domain: xq0 Domain: xq23 Range: ya21 Range: yq0 1 7a 1 b 5 9 12a 5 12 a51 7(1) 1 b 5 9 l b 5 2 9(1) 1 3(2) 1 c 5 8 l c 5 27 x 21 33a 1 3b 5 39 33a 1 3b 5 39 y y 5 39 221a 2 3b 5 227 3 (23) An equation for the parabola is y 5 x 2 1 2x 2 7. 1 x 21 12. y 5 ax 2 1 bx 1 c (23, 9): 9 5 a(23)2 1 b(23) 1 c l 9a 2 3b 1 c 5 9 (1, 27): 27 5 a(1)2 1 b(1) 1 c l a 1 b 1 c 5 27 3} 6. y 5 Ï x 2 2 1 5 7. (5, 255): 255 5 a(5)2 1 b(5) 1 c l 25a 1 5b 1 c y 5 3x 1 5 Domain: all real numbers 5 255 x 5 3y 1 5 Range: all Real numbers a 1 b 1 c 5 27 l c 5 2a 2 b 2 7 x 2 5 5 3y 9a 2 3b 1 (2a 2 b 2 7) 5 x25 3 y 9 l 8a 2 4b 5 16 25a 1 5b 1 (2a 2 b 2 7) 5 255 l 24a 1 4b 5 248 }5y 32a a Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (21) 1 (26) 1 c 5 27 l c 5 0 x 21 y 5 22x3 1 1 9. An equation for the parabola is y 5 2x 2 2 6x. 1 y 5 }2 x 2, xq0 Lesson 7.1 1 x 5 22y3 1 1 x 5 }2 y 2 x 2 1 5 22y3 7.1 Guided Practice (pp. 479–481) 2x 5 y 2 x21 1. Domain: all real numbers 2. Domain: all real numbers } 2} 5 y3 2 Ï2x 5 y Range: y > 0 Î2x 22 1 5 y } 3 5 21 8(21) 2 4b 5 16 l b 5 26 1 8. 5 232 Range: y > 0 y } 10. y 5 ax2 1 bx 1 c y 2 (0, 21): 21 5 a(0)2 1 b(0) 1 c l c 5 21 1 (1, 2): 2 5 a(1) 1 b(1) 1 c l a 1 b 1 c 5 2 2 x 21 (3, 14): 14 5 a(3)2 1 b(3) 1 c l 9a 1 3b 1 c 5 14 a 1 b 1 (21) 5 2 l a 1 b 5 3 l a 5 3 2 b 3. Domain: all real numbers f (x) 9(3 2 b) 1 3b 5 15 l b 5 2 f(x) 5 3x 1 1 1 2 (0, 5) a532251 (21, 3) An equation for the parabola is y 5 x2 1 2x 2 1. 2 2 11. y 5 ax 1 bx 1 c f(x) 5 3x (3, 8): 8 5 a(3)2 1 b(3) 1 c l 9a 1 3b 1 c 5 8 (4, 17): 17 5 a(4) 1 b(4) 1 c l 16a 1 4b 1 c 5 17 2 (7, 56): 56 5 a(7)2 1 b(7) 1 c l 49a 1 7b 1 c 5 56 16a 1 4b 1 c 5 17 3 (21) x Range: y > 2 9a 1 3b 1 (21) 5 14 l 9a 1 3b 5 15 9a 1 3b 1 c 5 8 21 29a 2 3b 2 c 5 28 16a 1 4b 1 c 5 17 7a 1 b 59 (1, 3) (0, 1) 21 x 4. Using the graph, you can estimate that the number of incidents was about 250,000 during 2003 (t ø 7). 5. In the exponential growth model y 5 527(1.39) x, the initial amount is 527, the growth factor is 1.39, and the percent increase is 1 2 1.39 5 0.39 or 39%. Algebra 2 Worked-Out Solution Key 371 Chapter 7, continued 6. When p 5 2000, r 5 0.04, t 5 3, and n 5 365: 14. 1 h(x) r nt A 5 P 1 1 1 }n 2 1 x A 5 2000 1 1 1 } 365 2 0.04 (365)(3) 5 2000 1 } 365 2 365.04 1095 15. ø 2254.98 y 1 y 5 23 ? 2x (22, 23) y 5 23 ? amount is 2.4, the growth factor is 1.5, and the percent increase is 1 2 1.5 5 0.5 or 50%. (21, ) 5 4 y 18. y 5 2x 1 1 1 3 (21, 4) 4. A; When x 5 0, y 5 23 + 20 5 23; ( 22, When x 5 1, y 5 23 + 21 5 26 7 2 ) (1, 3) 2 y 5 3x y 5 2x 2 (21, ) 21 1 y 1 x (2, 0) x Domain: all real numbers Domain: all real numbers Range: y > 3 Range: y > 21 y 19. 2 (3, 2) x 1 1 2 When x 5 1, y 5 2 + 31 5 6 (0, 1) y 5 3x 2 2 2 1 (0, 1) 5. B; When x 5 0, y 5 2 + 30 5 2; x Range: y > 2 y When x 5 1, y 5 3 + 21 5 6 1 Domain: all real numbers Range y < 0 3. C; When x 5 0, y 5 3 + 20 5 3; 1 y 5 5 ? 4x 17. more closely. Domain: all real numbers (1, 6) Range: y > 21 3 (0, 2) y 5 2 ? 3x 8. 9. f(x) y (2, 1) x 21 20. 2 y 5 2 ? 3x 2 2 2 1 1 y 5 23 ? 4x 10. x (0, 23) (1, 25) x y 5 23 ? 4x 2 1 2 2 11. y 1 g(x) 1 x 21. Domain: all real numbers f(x) f (x) 5 6 ? 2x 2 3 1 Range: y > 3 3 (3, 9) 2 (0, 6) (2, 6) x 21 (21, 3) 12. 13. y f (x) 5 6 ? 2x y 1 21 1 21 372 Algebra 2 Worked-Out Solution Key Range: y < 22 (0, 22.75) 1 21 Domain: all real numbers 1 (21, 20.75) x 21 y x x 2 2 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (3, 5) x 21 y 5 5 ? 4x 1 2 (1, 26) 2x 1 2 Domain: all real number 2. An asymptote is a line that a graph approaches more and (0, 5) 13 4 (21, 26) 1. In the exponential growth model y 5 2.4(1.5) x, the initial 7. (21, ) (0, 23) Skill Practice y x 1 7.1 Exercises (pp. 482–485) y (0, 7) The balance after 3 years is $2254.98. 6. 16. Chapter 7, 22. continued Domain: all real numbers g(x) g(x) 5 5 ? 3x (0, 5) (22, 1) ( 21, ) ( Range: y > 24 33. y 5 ab x 2 h 1 k l y 5 2 + 5 x 1 4 1 3 a. If a changes to 1, there will be a vertical shrink. b. If b changes to 4, the graph will increase slower. 5 3 7 23, 2 3 21 ) c. If h changes to 3, there will be a horizontal shift (of 7 units right) x 1 d. If k changes to 21, there will be a vertical shift (of 4 units down). 34. a. f(x) 5 abx; f (x 1 1) 5 ab x 1 1 g(x) 5 5 ? 3x 1 2 2 4 23. Domain: all real numbers h(x) h(x) 5 22 ? 5x 2 1 1 1 (0, 0.6) h(x) 5 22 ? 5x (21, 20.4) (0, 22) Range: y < 1 x 2 (1, 21) f (x 1 1) f (x) ab x 1 1 ab bx 1 1 b (x 1 1) 2 x }5} 5b x 5} x 5b b. Check to see if the ratios of consecutive pairs of f (x 1 1) f (x) y-values satisfy the equation } 5 b, where b > 1. f (1) f (0) 24 f (3) f (2) When x 5 1: 2(1.5)1 1 1 5 3 1 1 5 4 l (1, 4) 25. D; Using the exponential growth model y 5 a(1 1 r)t with r 5 0.1 and a 5 1310, the model is y 5 1310(1.1)t. 26. The y-intercept should be at (0, 2), not (0, 1). y 8 4 }5}52 24 8 }5}53 }5}53 24. B; When x 5 0: 2(1.5)0 1 1 5 2(1) 1 1 5 3 l (0, 3) f (2) f (1) 4 4 }5}51 f (4) f (3) 72 24 The ratios are not all equal and are not all greater than 1. So, there is no exponential function f (x) 5 abx whose graph passes through the points. Problem Solving 35. a. initial amount 5 0.42 million or $420,000; growth factor 5 2.47; annual percent increase 5 2.47 2 1 5 1.47 or 147% b. Using the graph, you can estimate that the number of DVD players sold in 2001 was about 16 million. x x 27. The graph for y 5 2 should have been translated 3 units right and 3 units up rather than 3 units left and 3 units up. 28. y 5 number of monk parakeets t 5 number of years since 1992 y 5 a(1 1 r)t y 5 1219(1 1 0.12) t y 5 1219(1.12)t 29. A 5 amount in account t 5 years since deposit r nt A 5 p 1 1 1 }n 2 0.02 365t A 5 800 1 1 1 } 365 2 30. y 5 value of table t 5 years since purchase y 5 a(1 1 r)t y 5 450(1 1 0.06)t y 5 450(1.06)t 31. a. The balance after 7 years is $1844.81. b. You have to press enter 18 times, so it takes 18 years. 32. Sample answer: y 5 12 + 4 x 2 1 1 2 n 32 28 24 20 16 12 8 4 0 0 1 2 3 4 5 t Years since 1997 36. a. Initial amount 5 2500; growth factor 5 1.50; annual percent increase 5 1.5 2 1 5 0.5 or 50% b. Domain: 0, 1, 2, 3, 4, 5 Range: 2500, 3750, 5625, 8438, 12,656, 18,984 Using the graph, you can estimate that the number of referrals in March of 2002 was about 13,000. Number of referrals Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 21 Number of DVD players sold (millions) 2 y 16,000 14,000 12,000 10,000 8000 6000 4000 2000 0 0 1 2 3 4 5 t Years since 1998 Algebra 2 Worked-Out Solution Key 373 Chapter 7, continued r n(4) 37. A 5 22001 1 1 } ; P 5 2200; t 5 4 n2 b. Domain: 0 a ta10 0.03 4 + 4 5 2200(1.0075)16 ø 2479.38 4 2 The balance after 4 years is $2479.38. b. r 5 0.0225, n 5 12 0.0225 12 + 4 A 5 22001 1 1 } 12 2 5 2200(1.001875)48 ø 2406.98 Year (t 5 0; 1990) c. Using the graph, you can estimate that the population The balance after 4 years is $2406.98. was about 590,000 during 1996 (t ø 6). c. r 5 0.02, n 5 365 5 2200(1.00005479452)1460 ø 2383.23 l p 5 50(1.105)n 38. a. When A 5 3000, r 5 0.0225, n 5 4, and t 5 3: 0.0225 4 + 3 3000 5 p 1 1 1 } 4 2 3000 5 p (1.005625)12 41. a. Initial amount 5 48.28; percent increase 5 0.06 2804.71 ø p b. When A 5 3000, r 5 0.035, n 5 12, and t 5 3: r nt A 5 p 1 1 1 }n 2 0.035 12 + 3 3000 5 p 1 1} 12 l p 5 48.28(1.06)t ticket was $60 during 2004 (t ø 4). 2 2 2701.39 ø p You should deposit $2701.39 to have $3000 in your account after 3 years. c. When A 5 3000, r 5 0.04, n 5 1, and t 5 3: r nt A 5 p 1 1 1 }n 2 p 80 70 60 50 40 30 20 10 0 0 1 2 3 4 t Years (t 5 0; 2000) 0.04 1 + 3 3000 5 p 1 1 1 } 1 2 c. Over the domain tq0, the minimum value of t is 3000 5 p (1.04) 3 2666.99 ø p You should deposit $2666.99 to have $3000 in your account after 3 years. 39. a. Initial amount 5 494.29 thousand; percent increase 5 0.03; growth factor 5 1 1 0.03 5 1.03 t 5 0. The function is defined in the interval 0ata4. You can look at the graph between these values to determine the minumum or maximum that gives meaningful results. 42. a. Initial amount 5 41; percent increase 5 0.089 Exponential growth model: n 5 41(1 1 0.089) t l n 5 41(1.089) t t Exponential growth model: P 5 494.29(1.03) When t 5 10: P 5 494.29(1.03)10 ø 664.284 The population in 2000 was about 664,284 people. Algebra 2 Worked-Out Solution Key Exponential growth model: p 5 48.28(1 1 0.06)t b. Using the graph, you can estimate that the price of a 12.035 36 3000 5 p } 12 374 b. When n 5 5: p 5 50(1.105)5 ø 82.37. The price after 5 bids was $82.37. After 100 bids (n 5 100), the price will be p 5 50(1.105)100 ø $1,084,420.72. No. Sample answer: This amount is unreasonable because the model is only defined for 6 bids and 100 is out of this domain. r nt A 5 p 1 1 1 }n 2 1 number of bids 5 n Exponential growth model: p 5 50(1 1 0.105)n The balance after 4 years is $2383.23. 1 40. a. Initial amount 5 50; percent increase 5 0.105; Average price (dollars) 0.02 365 + 4 A 5 22001 1 1 } 365 2 P 700 600 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 t Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 A 5 2200 1 1 } Population (thousands) Range: 494.29aPa664,284 a. r 5 0.03, n 5 4 Chapter 7, b. t continued n t n t 46. H; n 0 41 9 88.315 17 174.686 mC AB C AB 5 + 2:r 3608 1 44.649 10 96.175 18 190.233 5 } + 2:(8) 2 48.623 11 104.735 19 207.164 } 1208 3608 ø 16.8 The approximate length of arc AB is 16.8 centimeters. 3 52.950 12 114.056 20 225.601 4 57.663 13 124.207 21 245.680 Lesson 7.2 5 62.795 14 135.262 22 267.545 7.2 Guided Practice (pp. 487–488) 6 68.383 15 147.230 23 291.357 7 74.470 16 160.410 24 317.288 8 81.097 Number of breeding pairs c. 1. 2. y x 21 3. y 4. f(x) (0, 5) 210 180 (21, 4) 150 120 1 x21 1 4 1 (1, 2) x 21 90 60 () y5 1 (0, 1) 1 21 0 3 6 9 12 15 18 21 24 t there were about 315 breeding pairs of bald eagles. 43. Investing $3000 at 6% annual interest: A1 5 3000(1.06) 5. Investing $6000 at 7% annual interest: A3 5 6000(1.07)t 1 2 3 ( 1, ) 10 3 y55 (21, 3) ( 4 A3 6420 6870 7352.18 0, 6869.40 7350.26 7868.90 4 3 ) 44. a. Initial amount 5 5200; final amount 5 9000; number of years 5 5 9000 5 5200(1 1 r)5 45 26 Î4526 5 1 1 r } 5 x () 2 x11 2 3 2 7864.78 No, A1 1 A2 and A3 are not the same. After the first year, the money split between the 6% and 8% accounts grows at a faster rate. } 5 (1 1 r)5 l () 2 x 3 1 y55 The average annual growth rate was about 11.6% b. y 5 9000(1 1 0.116)5 5 9000(1.116)5 ø 15,579.86 The cost will be $15,579.86 in 5 more years. Mixed Review for TAKS g(x) 5 23 () 3 x25 1 4 (6, ) x 7 4 (5, 1) 21 4 2 (1, 2 ) 9 4 (0, 23) g(x) 5 23 () 3 x 4 Domain: all real numbers Range: y > 22 Range: y < 4 7. Initial amount 5 4200; percent decrease 5 0.20 Exponential decay model: y 5 4200(1 2 0.20)t l y 5 4200(0.80) t using the graph, you can estimate that the value of the snowmobile will be $2500 after about 2 years. y 4000 } 0.116 ø r g(x) Domain: all real numbers Value (dollars) 6420 6. (0, 5) 21 A1 1 A2 x 1 x 4 Range: y > 1 y t Investing $3000 at 8% annual interest: A2 5 3000(1.08)t x () y5 Domain: all real numbers Years since 1977 d. Using the graph, you can estimate that in 2001 (t 5 24), Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 21 2 n 330 300 270 240 30 0 y 1 3000 2000 1000 0 0 1 2 3 4 5 6 7 8 9 t Time (yr) 45. A; 2 The graph of y 5 x 2 2 is translated 10 units up. Algebra 2 Worked-Out Solution Key 375 continued 3 x 15. B; y 5 22 } 5 1 2 8. Final cost 5 3000; number of years 5 3; percent decrease 5 0.07 3 0 When x 5 0: y 5 22 1 }5 2 5 22(1) 5 22 (0, 22) 3000 5 a(1 2 0.07)3 3000 5 a(0.93)3 3 1 16. The original cost of the snowmobile was $3729.69. y5 (( 1 x 1 3 1 21 21 x 2. The function y 5 b represents exponential growth if b > 1, and exponential decay if 0 < b < 1. Because 0 < b < 1, this 1 2 (( 1 3 y5 1 x 3 (( y52 x 19. y ( ) 2 3 1, y52 (0, 2 ) 7 3 Because 0 < b < 1, this function represents exponential decay. y (( 2 x 3 (( 2 5 x (0, 1) 1 x11 2 3 3 (( (1, ) 9. 21. y y y5 1 1 (1, ) 21 1 3 x 12. 1 (0, 23) f(x) f(x) 5 23 23. () 1 x 4 14. 1 5 x (2, ) 3 24 g(x) 5 6 (25, 4) () 21 2 21 376 Algebra 2 Worked-Out Solution Key x x 1 x x 3 f(x) 5 23 () 1 x21 4 (0, 6) (1, 3) 1 (24, 1) h(x) (( g(x) 1 x 2 (1, 23) y y5 Domain: all real numbers 1 13. 7 3 Range: y > 2 3 4 x ( 3, ) Range: y > 3 (1, 2 ) 21 2 Domain: all real numbers g(x) x 1 x22 1 3 (0, 1) y 5 3(0.25)x x 1 x 21 (1, ) 3 4 (( (2, 3) 3 1 22. 11. (1, ) (0, 3) 1 y 1 3 Domain: all real numbers y 21 21 (5, 2 ) 15 4 x 10. f(x) x (4, 0) Range: y > 21 20. 21 1 Range: y > 23 1 x 2 x24 2 3 Domain: all real numbers (0, 6) 21 (( 1 2 3 y 5 3(0.25)x 1 3 1 y5 1 x 3 y52 (21, 21) represents exponential growth. 1 x21 2 y y5 (0, 2) 1 8. (( Domain: all real numbers Because b > 1, this function y (1, 21) 4 3 (1, ) x Range: y < 0 Because b > 1, this function 6. f (x) 5 25(0.25) x, b 5 0.25 1 2 Range: y > 1 represents exponential growth. 2 5. f (x) 5 } + 4x, b 5 4 7 (2, 2 ) 1 x 2 Domain: all real numbers 18. function represents exponential decay. 5 5 x 4. f (x) 5 4 } , b 5 } 2 2 1 2 (0, 1) decrease 5 1 2 0.85 5 0.15 or 15% 1 2 (1, 2 ) (0, 21) 24 (1, ) (0, 2) 1. Initial amount 5 1250; decay factor 5 0.85; percent y 1 y52 Skill Practice 7. 3 17. y 7.2 Exercises (pp. 489–491) 3 3 x 3. f (x) 5 3 } , b 5 } 4 4 1 1, 2}65 2 6 When x 5 1: y 5 22 1 }5 2 5 22 1 }5 2 5 2}5 3729.69 ø a 1 g(x) 5 6 () 1 x15 2 2 2 Domain: all real numbers Domain: all real numbers Range: y < 0 Range: y > 22 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 7, Chapter 7, 24. continued b–c. Using the graph, you can estimate that the value of h(x) h(x) 5 4 () the bike will be $100 after about 2.5 years. 1 x 2 (0, 4) (21, 4) Value (dollars) (1, 2) (0, 2) 1 21 h(x) 5 4 () 1 x 1 1x 2 Domain: all real numbers Range: y > 0 Years 25. y 5 ab x 2 h 1 k l y 5 3(0.4) x 2 2 2 1 a. If a changes to 4, there will be a vertical stretch. b. If b changes to 0.2, the graph will be steeper because the decay factor is smaller. c. If h changes to 5, there will be a horizontal translation (of 3 units right) d. If k changes to 3, there will be a vertical translation (of 4 units up). 26. The decay factor was written incorrectly. It should be 1 2 percent decrease 5 1 2 0.02 5 0.98. t 1 2 28. You need a base between 0.25 and 0.5 and a vertical translation up between 0 and 3 units. Sample answer: y 5 (0.3)x 1 1 1 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 x 29. Yes; (4)2x is just another way of saying } or 4 x 2x (0.25) , so f (x) 5 5(4) the same function. 1762 ø 0.96 Ratio from year 2–3: } 1832 1692 ø 0.96 Ratio from year 3–4: } 1762 1627 ø 0.96 Ratio from year 4–5: } 1692 The ratio of depreciation remains a constant 0.96 or 96%. 1906 d 5 a(0.96)1 5 1906 l a 5 } ø 1985 0.96 An equation is d 5 1985(0.96)t. 1 x 22 27. D; The graph y 5 } 1 3 has an asymptote at the 2 line y 5 3. 1832 32. Ratio from year 1–2: } ø 0.96 1906 and g(x) 5 5(0.25)x represent 33. a. Value (dollars) y 5 (inital amount)(decay factor) y 5 500(0.98) t y 200 175 150 125 100 75 50 25 0 0 1 2 3 4 5 6 7 8 t y 28,000 24,000 20,000 16,000 12,000 8000 4000 0 0 1 2 3 4 5 6 7 8 t Years Using the graph, you can estimate that the value of the car will be $10,000 after about 5 years. Problem Solving 30. a. When I 5 200 and t 5 1.5: A 5 I(0.71) t A 5 200(0.71)15 ø 119.65 There is about 120 milligrams of ibuprofen remaining in the bloodstream. b. When I 5 325 and t 5 3.5: A 5 I(0.71)t A 5 325(0.71)3.5 ø 98.01 There is about 98 milligrams of ibuprofen remaining in the bloodstream. t c. When I 5 400 and t 5 5: A 5 I(0.71) b. When t 5 50: y 5 24,000(0.845)50 ø 5.29 The value after 50 years is $5.29 according to the model. Sample answer: This is too low to be reasonable for the price of a car. In addition, car values usually begin to increase once they become antiques. 1 t/5730 34. a. P 5 100 } 2 1 2 When t 5 2500: P 5 1001 }2 2 1 2500/5730 1 5000/5730 A 5 400(0.71)5 ø 72.17 When t 5 5000: P 5 1001 }2 2 There is about 72 milligrams of ibuprofen remaining in the bloodstream. When t 5 10,000: P 5 1001 }2 2 31. a. When r 5 0.25 and a 5 200: y 5 a(1 2 r)t y 5 200(1 2 0.25)t l y 5 200(0.75)t When t 5 3: y 5 200(0.75)3 ø 84.38 The value of the bike after 3 years is about $84.38. ø 73.90 ø 54.62 1 10,000/5730 ø 29.83 After 2500 years there will be about 73.9% of the original carbon-14 remaining, after 5000 years there will be about 54.6% remaining, and after 10,000 years there will be about 29.8% remaining. Algebra 2 Worked-Out Solution Key 377 Chapter 7, 38. J; This year’s price 5 (1 2 0.167)(960) 5 799.68 799.68x 5 960 x ø 1.20 x ø 120% Lesson 7.3 00 0 0 t 16 , 0 12 ,0 0 0 Last year’s price is approximately 120% of this year’s price for the computer. 80 0 c. Using the graph, you can estimate the age of the bison bone is about 8000 years old when 37% of the carbon-14 is present. 35. a. The decay facter is 0.89 and the percent decrease is 1 2 0.89 5 0.11, or 11%. Number of eggs produced per year b. E 180 170 160 150 140 130 120 110 100 0 7.3 Guided Practice (pp. 493–495) 1. e7 + e4 5 e7 1 4 5 e11 2. 2e23 + 6e 5 5 12e23 1 5 5 12e 2 24e8 3. } 5 6e8 2 5 5 6e3 4e5 1000 4. (10e24x) 3 5 103(e24x)3 5 1000e212x 5 } e12x 5. e 3/4 ø 2.117 6. Domain: all real numbers y Range: y > 0 1 0 20 40 60 80 100 120 140 w c. There are 52 weeks in a year, so when a chicken is 7. 2.5 years old, it is 2.5(52) 5 130 weeks old. Using the graph, you can estimate that the number of eggs produced by a 130 week old chicken is about 134 per year. 3 22 f(x) 5 (1, 0.18) 8. ( )e 1 2 2x x Domain: all real numbers y (1, 1.93) y 5 1.5e 0.25x 275 5 1300(1 2 r)4 Range: y > 1 11 (1, 1.18) 1 2 t e2x 3 2 number of years 5 4 Range: y > 22 (0, ) 3 2 1 21 0 + 2115 ø (1 2 r)4 (1, 2 ) x (2, 20.07) 1 2 0.678 ø 1 2 r The decay factor is 0.678, so an equation giving the stereo’s resale value as a function of time is V 5 1300(0.678)t. () 1 2 (0, ) (0, ) E 5 179.2(0.89)t. V 5 a(1 2 r) Domain: all real numbers f(x) f(x) 5 d. Let t represent the chicken’s age in years. w , you can rewrite the equation as Because t 5 } 52 36. Initial amount 5 1300; resale value after t years 5 275; x 21 Age of chicken (weeks) y 5 1.5e 0.25(x 2 1) 2 2 9. Mixed Review for TAKS 37. C; The image of point Q will be at (21, 21), which is in Quadrant III. X=5 Y=223.65901 Use the trace feature to determine that * ø 224 when t 5 5. The length of a 5-year-old tiger shark is about 224 centimeters. 378 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 P 100 90 80 70 60 50 40 30 20 10 0 40 0 Percent b. continued Chapter 7, continued Î( } 10. A 5 Pe rt where p 5 2500 and r 5 0.05 16. D; a. When t 5 2: A 5 2500e0.05(2) 5 2500e0.1 ø 2762.93 The balance after 2 years is $2762.93. b. When t 5 5: A 5 2500e0.05(5) 5 2500e (0.25) ø 3210.06 The balance after 5 years is $3210.06 c. When t 5 7.5: A 5 2500e0.05(7.5) 5 2500e0.375 ø 3637.48 The balance after 7.5 years is $3637.48. 11. Amount of interest earned 5 balance 2 principle a. The interest earned after 2 years is 2762.93 2 2500 5 $262.93. b. The interest earned after 5 years is 3210.06 2 2500 5 $710.06. c. The interest earned after 7.5 years is 3637.48 2 2500 5 $1137.48. 7.3 Exercises (pp. 495–498) Î 5 }} } 5 Ï36e6x4 } } } 5 Ï36 Ïe6 Ïx4 5 6e3x2 17. The power 2 should have been applied to the 3 also. (3e5x)2 5 32(e5x)2 5 9e10x 18. The term 22x rather than 2x should have been subtracted from 6x. e6x e } 5 e6x 2 (22x) 5 e8x 22x 19. e3 ø 20.086 20. e23/4 ø 0.472 21. e2.2 ø 9.025 22. e1/2 ø 1.649 24. e4.3 ø 73.700 ø 0.670 25. e7 ø 1096.633 27. 2e equal to 2.71828. 108e13x 3e x } 7 23 5 Ï36e13 2 7x1 2 (23) 23. e 1. The number e is an irrational number approximately 3e x } 22/5 Skill Practice 20.3 26. e24 ø 0.018 28. 5e 2/3 ø 9.739 ø 1.482 1 2. The function f (x) 5 } e4x is an example of exponential 3 1 } growth because 3 > 0 and 4 > 0. 29. 26e2.4 ø 266.139 3. e3 + e4 5 e3 1 4 5 e7 1 32. The function f (x) 5 } e4x is an example of exponential 3 4. e22 + e6 5 e22 1 6 5 e4 5. (2e Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 27e13x) } 7 23 ) 3x 3 5 2 (e 3 ) 3x 3 5 8e 9x 30. 0.4e 4.1 ø 24.136 2x 31. The function f (x) 5 3e is an example of exponential decay. growth. 33. The function f (x) 5 e24x is an example of exponential decay. e8 1 6. (2e22)24 5 224(e22)24 5 } e8 5 } 16 16 3 34. The function f (x) 5 } ex is an example of exponential 5 1 1 7. (3e 5x)21 5 321(e 5x)21 5 } e25x 5 } 3 3 e5x 1 35. The function f (x) 5 } e25x is an example of exponential 4 8. e x + e23x + e4 5 e x 2 3x 1 4 5 e22x 1 4 9. } } } Ï9e6 5 Ï9 Ïe6 5 3e3 10. e x + 5e x 1 3 5 5e x 1 x 1 3 5 5e 2x 1 3 3e 11. }x 5 3e1 2 x e 3} 3} decay. 36. The function f (x) 5 e 3x is an example of exponential growth. 37. The function f (x) 5 2e4x is an example of exponential growth. 4 4ex 12. } 5 4e x 2 4x 5 4e23x 5 } e3x e4x 13. growth. 3} Ï8e9x 5 Ï8 Ïe9x 5 2e3x 38. The function f (x) 5 4e22x is an example of exponential decay. 39. B; When x 5 0, y 5 0.5e 0.5(0) 5 0.5; When x 5 1, y 5 0.5e0.5(1) ø 0.82 3 6e4x 14. } 5 } e4x 2 1 4 8e 40. C; When x 5 0, y 5 2e 0.5(0) 5 2; when x 5 1, 15. C; (4e2x)3 5 43(e2x) 3 5 64e 6x 41. A; When x 5 0, y 5 e 0.5(0) 1 2 5 3; When x 5 22, y 5 2e0.5(1) ø 3.30 y 5 e0.5(22) 1 2 ø 2.37 Algebra 2 Worked-Out Solution Key 379 Chapter 7, 42. continued 43. y 51. Using the table feature, you can notice that incrementing y small values of n increases the function very slowly. Incrementing n by powers of 10 gives values that are one digit closer to the actual value of e each time. When n 5 1010, the value of the function is 2.718281828, which is the value of e correct to 9 decimal places. 1 x 21 52. No, e cannot be expressed as a ratio of two integers 1 x 21 Domain: all real numbers Domain: all real numbers Range: y > 0 Range: y > 0 44. 45. y because it is an irrational number; it is a decimal that neither terminates nor repeats. 53. Choose a, b, r, and q, such that a > 0, b > 0, r < 0, q < 0, and r 2 q > 0. y Sample answer: f (x) 5 2e23x, g (x) 5 e24x f (x) g (x) 2e23x e n 1 r 54. Let m 5 }, so n 5 rm and } 5 } . r m n 23x 2 (24x) }5} 5 2ex 24x 5 2e (0, 2) (0, 1) x 21 21 y 5 2e23x x 2 y 5 2e23x 2 1 (1, 20.90) Domain: all real numbers Range: y > 0 Range: y > 21 47. y y 5 2.5e20.5x 1 2 (0, ) ( ) 0, 5 2 (3, 1.63) (2, ) 21 21 3 5 x y 5 0.6e x 2 2 Domain: all real numbers Domain: all real numbers Range: y > 2 Range: y > 0 f(x) 5 1 x13 e 2 f(x) 5 1 x e 2 Domain: all real numbers f(x) 22 Range: y > 22 2 1 2 (23, 2 ) 3 2 (2, 4.62) (1, 3.62) 4 x21 e 3 g(x) 5 50. 5 4 x e 3 21 (1, ) 7 3 (0, ) 4 3 3 x Domain: all real numbers h(x) Range: y > 23 (1, 0.14) h(x) 5 e 22x 5 (0, 22.86) h(x) 5 e 22(x 1 1) 2 3 380 Algebra 2 Worked-Out Solution Key About 23,247 termites were collected in 1999. 57. When P 5 2000, r 5 0.04, and t 5 5: A 5 Pert The balance after 12.5 years is $1114.17. 59. a. When k 5 20.02: L(x) 5 100ekx l L(x) 5 100e20.02x L(x) 100 90 80 70 60 50 40 30 20 10 0 0 20 40 60 80 x Depth below water surface (m) (0, 1) (21, 22) y 5 738e0.345(10) 5 738e3.45 ø 23,247 A 5 800e(0.0265)(12.5) 5 800e0.33125 ø 1114.17 Range: y > 1 11 56. When t 5 1999 2 1989 5 10: y 5 738e0.345t Percent of light g(x) 5 About 895 million camera phones were shipped globally in 2002. 58. When P 5 800, r 5 0.0265 and t 5 12.5: A 5 Pert Domain: all real numbers g(x) y 5 1.28e1.31(5) 5 1.28e6.55 ø 895 The balance after 5 years is $2442.81. 3 x (22, 20.64) 49. 55. When x 5 2002 2 1997 5 5: y 5 1.28e1.31x A 5 2000e(0.04 + 5) 5 2000e0.2 ø 2442.81 (1, 1.36) (0, ) approximates e. Problem Solving 3 5 1 y 5 2.5e20.5x x 21 m 1 1 1 }m1 2 G 1 m rt approaches 1`. (0, ) (1, 1.52) F 5 P 11 1 } m2 r nt (1, 1.63) (1, 3.52) 1 rmt So, A 5 P1 1 1 }n 2 approximates A 5 Pe rt as n y y 5 0.6e x 9 2 r nt A 5 P 1 1 1 }n 2 5 P 1 1 1 } m2 As n approaches 1`, m approaches 1`, and Domain: all real numbers 46. 48. (1, 0.10) x b. Using the graph, you can estimate that the percent of surface light is about 45% at a depth of 40 meters. c. Using the graph, you can estimate that the submarine can descend about 35 meters before only 50% of surface light is available. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 Chapter 7, continued 60. a. P(t) 5 P0e0.116t; when P0 5 30: P(t) 5 30e0.116t Population b. P(t) 90 80 70 60 50 40 30 20 10 0 0 3. Domain: all real numbers f(x) ( 21, ) f (x) 5 ( ) 14 3 Range: y > 2 3 x 1 8 ( 21, ) 8 3 (0, 3) 1 (0, 1) 1 2 4 6 f (x) 5 () 3 x x 8 4. 3e4 + e 3 5 3e4 1 3 5 3e7 t 8 2 5. (25e 3x) 3 5 253(e 3x) 3 5 2125e9x Hours after 1:00 P.M. c. Using the graph, you can estimate that the bacteria population is about 48 at 5:00 p.m. d. P(2.75) 5 30e0.116(2.75) 5 30e0.319 ø 41 1 e4x 6. } 5 } e4x 2 1 5 5e 4e 5x 2 2x 4e3x 8e 5x 7. } 5} 5} 3 3 6e2x 8. 9. y y There are 2.75 hours between 1:00 p.m. and 3:45 p.m. so, let t 5 2.75. There are about 41 bacteria at 3:45 p.m. 1 1 61. A 5 A0e20.05t where A0 5 4 and t 5 14 x 21 A 5 4e20.05(14) 5 4e20.7 ø 1.99 21 Domain: all real numbers The area after 14 days is about 2 square centimeters. Domain: all real numbers Range: y > 0 62. a. x Range: y > 0 10. 11. y g(x) (0, 5) 2 X=0 y 5 ex Y=630 (1, 2.72) (0, 1) (0, 0.72) (21, 21) The arch is 630 feet tall at its highest point. (0, 4) g(x) 5 4e 23x 1 1 (1, 1.20) x 1 1 y 5 ex 1 1 2 2 21 ends of the arch are about 315 2 (2315) 5 630 feet apart. x (1, 0.20) g(x) 5 4e 23x Domain: all real numbers Domain: all real numbers Range: y > 22 Range: y > 1 12. Decay factor 5 0.85; Mixed Review for TAKS percent decrease 5 1 2 0.85 5 0.15 63. A; } Conjecture: Ï x < x TVs sold (millions) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b. The x-intercepts are approximately x 5 6315, so the Î } 1 1 1 If x 5 }4 , }4 < }4 1 2 1 4 }ñ} 20 10 0 64. J; 2 2. y Lesson 7.4 y 7.4 Guided Practice (pp. 499 – 503) (3, 6) 1. log3 81 5 4 3 3 4 5 81 1 (2, 2) 1 t The balance after 5 years is $1502.79. Quiz 7.1–7.3 (p. 498) y 5 2 ? 3x 2 2 6 A 5 1200e(0.045)(5) 5 1200e(0.225) ø 1502.79 mQ 5 mN 5 1258 (0, 2) y 5 2 ? 3x 4 Range: 14.0 a n a 26.8; using the graph you can estimate that the number of black-and-white TVs sold in 1999 (t 5 2) was about 19 million. 13. When P 5 1200, r 5 0.045, and t 5 5: A 5 Pe rt mN 5 1808 2 mP 5 1808 2 558 5 1258 (1, 6) 0 Years since 1997 mM 5 mP 5 558 1. Domain: 0 a t a 4 n 30 21 x x 3. log14 1 5 0 140 5 1 Domain: all real numbers Domain: all real numbers Range: y > 0 Range: y > 0 2. log7 7 5 1 71 5 7 4. log1/2 32 5 25 1 25 } 5 32 2 1 2 Algebra 2 Worked-Out Solution Key 381