Comments
Description
Transcript
P. 442-445
P. 442-445 Chapter 6, continued 2. 6. G; Y1=X^(1/3) Y2=9X Y3=Y1/Y2 Y4= Y5= Y6= Y7= Y7= Y3-8 () 277777778 0 . 0 16 4 5 1 }2 2 1} 4 2 1/2 5 5 1/2 5 25 5 32 7. 3. Y1=5X3-3X2 Y2=-2X2-5 Y3=Y2-Y1 Y4= Y5= Y6= Y7= Y7= Y3(2) 4 V 5 }3 :r 3 4 900 5 }3 (3.14)r 3 215 ø r 3 5.99 ø r The radius of the sphere is about 5.99 inches. 4. Y1=2X2+7X-2 Y2=X-6 Y3=Y1(Y2) Y4= Y5= Y6= Y7= Y7= Y3(5) -7 Lesson 6.4 Investigating Algebra Activity 6.4 (p. 437) 1. a. f(x) 5 3x 1 2 Mixed Review for TEKS (p. 436) 1. A; 3/2 79 3Ï 4:F V5} } 21 0 1 2 y 5 f (x) 24 21 2 5 8 y 120 522 1 3 6 m5}5} r(x) 5 x 2 2 }2 1 }2 x 2(x) 1 1 1 r(x) 5 x2 2 }4 x 2 3 r(x) 5 }4 x 2 128(8.8) 5 3.14(r 2)(2.5) 1126.4 ø 7.85r 2 143.5 ø r 2 611.98 ø r The radius is about 12 feet. f 2. a. You can graph the inverse of a function by reflecting it in the line y 5 x. 3. a. In words, g is the function that subtracts 2 from x then divides the result by 3. f (g(x)) 5 f 1 } 3 2 x22 g( f (x)) 5 g(3x 1 2) 3x 1 2 2 2 12 5 31 } 3 2 5} 3 5x2212 5} 3 5x 5x x22 g(f (x)) represents your bonus when x > 100,000. V 5 :r 2h (21, 21) g(x) 5 } 3 3. D; 4. H; x x22 The volume is about 66 cubic inches. r(x) 5 Area of square 2 Area of triangle (8, 2) g (2, 0) 6 (22, 24) x22 y5} 3 2. H; (5, 1) (24, 22) 1 y 2 0 5 }3 (x 2 2) (2, 8) (1, 5) (0, 2) y 2 y1 5 m(x 2 x1) V ø 66.03 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 (2, 0), (5, 1) V 5 321(4:)21/2(S 3)1/2 S 3/2 V5 } } 3Ï 4:F x 3x If f (g(x)) 5 x and g( f (x)) 5 x, then the function is indeed the inverse of the original function. x21 1. b. f(x) 5 } 6 x 25 22 y 5 f(x) 21 2}2 1 1 4 7 0 } 1 2 1 5. C; f (x) 5 5 2 x f ( f (x)) 5 5 2 (5 2 x) f( f (x)) 5 x Algebra 2 Worked-Out Solution Key 333 Chapter 6, continued (0, 1), (1, 7) 6.4 Guided Practice (pp. 439– 442) y (1, 7) 6 1 ( 2, 4) 1 (25, 21) (4, 2 ) (7, 1) (1, 0) g x (1, 0) 6 y 2 y1 5 m(x 2 x1) 1. y5x14 x5y14 1 y 2 1 5 6(x 2 0) x245y (22, 2 2 ) f 21(x) 5 x 2 4 1 (2 2 , 22) y 2 1 5 6x f(x) 5 x 1 4 (21, 25) f f ( f 21(x)) 5 f (x 2 4) y 5 6x 1 1 g(x) 5 6x 1 1 2. b. You can graph the inverse of a function by reflecting it 2. x 5 2y 2 1 x21 6x 1 1 2 1 1 2 1 2 }x 1 } 5 y 5 61 } 11 6 2 x21 6x 5} 6 5x2111 5x 5x 1 3 y 5 f (x) (4, 0), (1, 2) 22 0 2 7 4 1 f ( f 21(x)) 5 f 1 }2x 1 }2 2 220 2 y 2 y1 5 m(x 2 x1) 2 y 2 0 5 2}3 (x 2 4) 22(x 2 4) (25, 6) (22, 4) 6 5x1121 5 x 2 }2 1 }2 5x 5x 1 1 1 1 f(x) 5 23x 1 1 x 5 23y 1 1 x 2 1 5 23y (7, 22) 1 1 2}3 x 1 }3 5 y (4, 0) x 1 1 1 f 21(x) 52}3 x 1 }3 (6, 25) y5} 3 f ( f 21(x)) 5 f 1 2}3x 1 }3 2 1 f 22x 1 8 1 5 231 2}3x 1 }3 2 1 1 1 y5} 3 22x 1 8 g(x) 5 } 3 1 5x2111 5x 2. c. You can graph the inverse of a function by reflecting it in the line y 5 x. f 21( f(x)) 5 f 21(23x 1 1) 3. c. In words, g is the function that multiplies x by 22 and 1 f (g(x)) 5 f 1 } 2 3 22x 1 8 3 3 3 22x 1 8 5 4 2 }2 1} 2 3 5 }} 3 5 4 2 1} 2 2 5} 3 5 4 2 (2x 1 4) 5} 3 541x24 5x 22x 1 8 3x If f (g(x)) 5 x and g( f (x)) 5 x, then the function is indeed the inverse of the original function. 1 5x 8 40 8 40 104 40 144 4. L 5 }R 1 } 5 }(13) 1 } 5 } 1 } 5 } 5 48 3 3 3 3 3 3 3 The band provides 13 pounds of resistance when it is stretched to 48 inches. 28 1 3x 1 8 5x Algebra 2 Worked-Out Solution Key 1 5 x 2 }3 1 }3 g( f (x)) 5 g1 4 2 }2 x 2 221 4 2 }2 x 2 1 8 1 5 2}3 (23x 1 1) 1 }3 then adds 8, dividing the result by 3. 334 5 }2(2x 2 1) 1 }2 1 y 5 23x 1 1 1 (4, 22) 3. f 21( f(x)) 5 f 21(2x 2 1) 5 21 }2x 1 }2 2 2 1 1 (22, 7) (0, 4) (1, 2) (2, 1) 1 1 22 25 y g m5} 5 2}3 124 4 1 f 21(x) 5 }2 x 1 }2 If f (g(x)) 5 x and g( f (x)) 5 x, then the function is indeed the inverse of the original function. 1. c. f(x) 5 4 2 } x x 2 5x x 1 1 5 2y g( f (x)) 5 g1 } 6 2 5} 6 5x1424 5x y 5 2x 2 1 3. b. In words, g is the function that multiplies x by 6 and f (g(x)) 5 f (6x 1 1) 5x2414 f(x) 5 2x 2 1 in the line y 5 x. then adds 1. f 21( f (x)) 5 f 21(x 1 4) 5. f(x) 5 x 6, xq0 f(x) 5 x y 6 y 5 x6 y 5 x6 6 x 5 y6 y5 x 1 6} 6Ï x 5 y 6} f 21(x) 5 Ï x 21 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 721 m5} 56 120 Chapter 6, continued 1 g(x) 5 } x3 27 6. y 1 y5} x3 27 1 P 10.7 } 5 t 0.272 1 1/0.272 x 21 x5} y3 27 P 5 10.7t 0.272 11. y 1 5 27 x 3 P 1} 10.7 2 3 y53 x 27x 5 y 3 3.68 P 1} 10.7 2 3} Ï27x 5 y 3} 3Ï x 5 y 3} g21(x) 5 3Ïx 25 3.68 64 2 64 53 y 5 24 x x 21 64 x 5 2} y3 125 64 y 5 2125 x 3 6.4 Exercises (pp. 442– 445) Skill Practice 1. An inverse relation interchanges the input and output values of the original relation. 125 2} x 5 y3 64 2. A function g is an inverse of f provided f (g(x)) 5 x and Î2125 x5y 64 } g( f (x)) 5 x. } 3. 3} Ï2125x Ï64 3} 25Ï x 4 3} 25Ï x 5. f (x) 5 2x 3 1 4 y 5 2x 1 4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Ï4 2 x 5 y 3} f 21(x) 5 Ï4 2 x 9. f (x) 5 2x 5 1 3 y 5 2x 5 1 3 x 5 2y 5 1 3 x 2 3 5 2y5 21 3 2 22 1 2 11. 7 } 3 7 3 7 3 x 2 }5 5 2}5y 5 y 12. In the last step, each term was not divided by 6. y 5 27x 5 1 7 y 5 6x 2 11 x 5 6y 2 11 x 1 11 5 6y x 2 7 5 27y 5 x 1 2 }7 5 y5 2 y55 } x 5 1 2 }7 5 y x27 27 x x27 Î1 2 }7x 5 Î} 27 7 2}3x 1 }3 5 y y 5 27x 1 7 x 5 27y5 1 7 5 2}2x 1 3 5 y y 5 2}5 x 1 }5 Î12x 2 32 5 g21(x) 5 3 1 15 1 5 x 5 2}5 y 1 }5 g(x) 5 27x5 1 7 Î 2 x 2 2 5 2}3 y }x 2 } 5 y x 5x23 } 10. 2 x 5 2}3y 1 2 x 2 }3 5 5y y5 } y 5 2}3 x 1 2 1 1 5 2 10. x 5 5y 1 }3 3 1 }x 2 } 5 y 2 2 5 1 y 5 5x 1 }3 y 5 2x 5 1 3 y 5 218x 2 5 x 5 218y 2 5 x 1 5 5 218y 2} x2} 5y 18 18 1 9. y } f 21(x) 5 8. 7 12 1 12 14 5 1 10 }x 2 } 5 y }x 2 } 5 y 5 Î x y 5 10x 2 28 x 5 10y 2 28 x 1 28 5 10y }x 1 } 5 y y 5 12x 1 7 x 5 12y 1 7 x 2 7 5 12y y 5 4 2x 1 4 2 x 5 y3 5 7. 3 3} 6 7 1 7 x 5 2y 1 4 x 2 4 5 2y 3 6. }x 1 } 5 y y 5 2x 3 1 4 3 5 2}2x 1 }2 5 y y 5 7x 2 6 x 5 7y 2 6 x 1 6 5 7y y 3 y 5 22x 1 5 x 5 22y 1 5 x 2 5 5 22y 1 }x 1 } 5 y f 21(x) 5 } 4 1 2 1 4 1 4 }5y 4. y 5 4x 2 1 x 5 4y 2 1 x 1 1 5 4y } 5y 3} 8. ø 22.7 You can predict that the average ticket price will reach $25 about 23 years after 1995, or in 2018. y y 5 2} x3 125 3 5t When P 5 25: t 5 1 } 10.7 2 f (x) 5 2} x3 125 7. 5 (t 0.272)1/0.272 2 x 6 11 6 }1}5y } } 5 Algebra 2 Worked-Out Solution Key 335 Chapter 6, continued 13. In the first step, the terms involving x and y were switched instead of just the variables x and y. y 5 2x 1 3 x 5 2y 1 3 x 2 3 5 2y 32x5y 14. Sample answer: F x12 G 2 5 5F 1 x 1 5 2 G 2 2 f (g(x)) 5 f 1 } 5 2 1/2 } 5x1222 5 (x2)1/2 5x 5x 2 g( f (x)) 5 g(x 1 4) 2 5x2414 5x1424 5x 5x 2 x 1 4 5 }3 y 3 3 3 2 }x 1 6 5 y g( f (x)) 5 g(2x 1 3) 5 21 }2x 2 }2 2 1 3 5 }2(2x 1 3) 2 }2 5x2313 5 x 1 }2 2 }2 3 3 1 3 3 2 } x 1 6 5 g(x) 22. f(x) 5 x 7 x 5 y7 Ïx 5 y Î 7} f 21(x) 5 Ï x g( f (x)) 5 g1 }4x3 2 Îx + 4 } 1 f (g(x)) 5 f [(4x)1/3] F 1 5 41 }4x3 2 5 }4 (4x) 1 5 (x 3)1/3 5x 5x 5 }4 F (4x)1/3 G3 1 5y 64} 4+4 G 4} Ï4x 1/3 5y 6} 2 4} Ï4x f 21(x)5 } 2 f (g(x)) 5 f (5x 1 5) y 5 210x 6 x 5 210y 6 g( f (x)) 5 g1 }5x 2 1 2 1 1 5 51 }5x 2 1 2 1 5 1 5 }5 (5x 1 5) 2 1 5x1121 5x2515 5x 5x x + 10,000 6} Ï2100,000x 5y 6} 10 6} Ï2100,000x f 21(x) 5 2} 10 g( f (x)) 5 g(4x 1 9) 5 }4 (4x 1 9) 2 }4 5x2919 5 x 1 }4 2 }4 5x 5x Algebra 2 Worked-Out Solution Key Î 5y 6 6 2} 10 + 100,000 5 41 }4x 2 }4 2 1 9 9 Î x 2} 5 y6 10 } x 6 6 2} 5y 10 }} 9 1 f (x) 5 4x 1 9, g(x) 5 }4 x 2 }4 2 f(x) 5 210x 6, xa0 24. 1 f (x) 5 }5 x 2 1, g(x) 5 5x 1 5 1 x 5 4y 4 x } 5 y4 4 } x 6 4 }4 5 y 7} 5x 1 y 5 4x 4 y5x 3 1 f (x) 5 }4 x3, g(x) 5 (4x)1/3 9 1 f (g(x)) 5 f }4x 2 }4 23. f(x) 5 4x 4, xq0 7 9 1 9 9 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 x 5 }3 y 2 4 f (x) 5 2x 1 3, g(x) 5 }2 x 2 }2 5x 336 2 1/2 5 } 5 y 5 }3 x 2 4 f (x) 5 x 1 4, g(x) 5 x 2 4 1 19. 1 5x 2 5 51 } 22 5 2 2 1 18. 2 2 2 1 2 1/2 m 5 }3, b 5 24 1 1 f (x) 5 }3x 1 }3 f (g(x)) 5 f 1 }2x 2 }2 2 17. 2 5} 5 y 5 mx 1 b 1 3 f (g(x)) 5 f (x 2 4) 16. 1 5x 1/2 2 21. B; }x 1 } 5 y 15. g( f (x)) 5 g(5x2 2 2) x12 f 21(x) 5 3x 2 1 y 5 3x 2 1 x 5 3y 2 1 x 1 1 5 3y 1 3 x 1 2 1/2 f(x) 5 5x 2 2 2, xq0; g(x) 5 1 } 5 2 20. Chapter 6, continued f (x) 5 32x5 25. y 5 32x 30. y 1 5 1 x x 5 32y 5 x 32 } 5 y5 Î f(x) 5 2x 2 5 } 5 x }5y 32 Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. 5} Ïx Ï32 5} Ïx }5y 2 } 5} 5 y 31. y 5} Ïx 1 f 21(x) 5 } 2 2 f (x) 5 2}5x 3 26. 27. y5} x2 25 2 x5} y2 25 16 x 5 2}5 y 3 5 y x f(x) 5 26x 2 Î25 } } 6 } x5y 16 } Î25x2 + +4 4 5 y } 5 } 6}4Ï x 5 y } 3} Ï220x }5y 2 5 } 2}4Ï x 5 y 3} f 1 1 }x 5 y 2 Î25x2 5 y 3 32. 25 16 2}2 x 5 y 3 3 Because a horizontal line intersects the graph of f more than once, the inverse of f is not a function. 16 2 y 5 2}5 x 3 4 x 1 f(x) 5 4 x 2 2 1 16 2 f(x) 5 } x , xa0 25 Ï220x (x) 5 } 2 21 f Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. 33. y 5 } (x) 5 2}4Ï x 21 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28. C; 1 1 y 5 2} x3 64 1 3 x 5 2} y 64 x f(x) 5 3x 3 1 3 f (x) 5 2} x 64 Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. 34. y 264x 5 y 3 1 3} Ï264x 5 y 3} 24Ï x 5 y 3} 24Ï x 5 g(x) 29. x 21 f(x) 5 x 3 2 2 y Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. 1 1 x f(x) 5 3x 1 1 35. y 2 2 Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. x f(x) 5 (x 2 4)(x 1 1) Because a horizontal line intersects the graph of f more than once, the inverse of f is not a function. Algebra 2 Worked-Out Solution Key 337 Chapter 6, 36. continued 2 f(x) 5 2}5x 6 1 8, xa0 41. y 2 y 5 2}5x 6 1 8 2 x 5 2}5y 6 1 8 f(x) 5 uxu 1 4 2 2 x 2 8 5 2}5y 6 x 2 Because a horizontal line intersects the graph of f more than once, the inverse of f is not a function. 37. 5 Î } y 2 2}2x 1 20 5 y 6 x 2 5 6 6 2}2x 1 20 5 y Î } 5 f 21(x) 5 2 6 2}2x 1 20 2x 3 2 6 42. f(x) 5 4x 4 2 5x 2 2 6 f(x) 5 } 9 2x 3 2 6 y5} 9 Because a horizontal line intersects the graph of f more than once, the inverse of f is not a function. 3 f (x) 5 }2 x 4, xq0 3 y 5 }2 x4 39. f (x) 5 x 3 2 2 9x 5 2y 3 2 6 3 3 x 5 }2 y4 y5x 22 9x 1 6 5 2y 3 x 5 y3 2 2 }x 1 3 5 y 3 9 2 Î92x 1 3 5 y 9 f (x) 5 Î 2x 1 3 } 2 3 }x 5 y4 x 1 2 5 y3 Î2x } 3 } 3} Ïx 1 2 5 y 64} 5y 3 Î2x + 27 } 3} f 21(x) 5 Ï x 1 2 5y 64} 3 + 27 } 21 43. y 5 x4 2 9 x 5 y4 2 9 x 1 9 5 y4 4} f Ï54x (x) 5 } 3 21 4} 6Ïx 1 9 5 y 3 f (x) 5 }4x 5 1 5 40. } f(x) 5 x 4 2 9, xq0 4} Ï54x 5y 6} 3 3 4} f 21(x) 5 Ïx 1 9 44.a. False 3 y y 5 }4 x 5 1 5 3 x 5 }4 y5 1 5 3 1 x 2 5 5 }4 y5 4 3 f(x) 5 20 3 x2 1 x }x 2 } 5 y5 Î Because a horizontal line intersects the graph of f more than once, the inverse of f is not a function. } 5 4 3 20 3 }x 2 } 5 y Î43x 2 203 } f 21(x) 5 5 } b. True } y f(x) 5 x 3 1 1 x Because no horizontal line intersects the graph of f more than once, the inverse of f is a function. 338 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 38. 2y 3 2 6 x5} 9 Chapter 6, 45. continued f (x) 5 mx 1 b } v 1.34 v 2 5* 1} 1.34 2 } 5 Ï *F y 5 mx 1 b x 5 my 1 b x 2 b 5 my A water line length of about 31.3 feet is needed to achieve a maximum speed of 7.5 knots. b 1 }x 2 } 5 y m m A 5 0.2195h0.3964 50. b 1 (x) 5 } x2} m m 21 A 0.2195 } 5 h0.3964 b 1 Slope: } m y-intercept: 2} m This is the graph of a line, and it is a function if m Þ 0. Problem Solving 46. A 1} 0.2195 2 1/0.3964 A 1} 0.2195 2 2.523 5 (h0.3964)1/0.3964 5h When A 5 1.6: h 5 1 } 0.2195 2 1.6 E 5 0.81419D E 0.81419 }5D E 250 5} ø 307 When E 5 250: D 5 } 0.81419 0.81419 51. a. 1 g(x) 5 2x x 1 * 2 3 5 0.5w *23 0.5 }5w 2* 2 6 5 w g(x) 5 2x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b. When * 5 6.5: w 5 2(6.5) 2 6 5 7 y 5 2x The weight is 7 pounds. x 5 2y 5 C 5 }9 (F 2 32) 9 5 2x 5 y 2x 5 g21(x) } C 5 F 2 32 9 5 }C 1 32 5 F b. y g(x) 5 2x 1 7 4 From the inverse, you can convert temperatures from degrees Celsius C to degrees Fahrenheit F. 4 9 b. When C 5 5: F 5 } (5) 1 32 5 9 1 32 5 41 5 At the end of the race, the temperature was 148F. c. x g(x) 5 2x 2 5 At the start of the race, the temperature was 418F. 9 When C 5 210: F 5 }5 (210) 1 32 5 218 1 32 5 14 ø (7.29)2.523 ø 150 The function g(x) 5 2x is its own inverse because the graph of an inverse relation is a reflection of the graph of the original relation in the line y 5 x and the graph of an inverse relation is the same as the graph of the original relation. y * 5 0.5w 1 3 48. a. 2.523 The height of a 60 kilogram person who has a body surface area of 1.6 square meters is about 150 centimeters. The amount that could be obtained for 250 euros was about $307. 47. a. 7.5 2 When v 5 7.5: * 5 1 } ø 31.3 1.34 2 x2b }5y m f } v 5 1.34Ï*F 49. g(x) 5 2x 1 1 2 c. g(x) 5 2x 1 b, where b is any real number. Mixed Review for TAKS 52. A; f(x) 5 25x 4 1 3x 3 1 10x 2 2 x 2 8 f(21) 5 25(21)4 1 3(21)3 1 10(21)2 2 (21) 2 8 Intersection X=-40 Y=-40 The temperature that is the same on both temperature scales is 240. f(21) 5 25 2 3 1 10 1 1 2 8 f (21) 5 25 53. G; s 1 a 5 750 s 5 30 1 3a Algebra 2 Worked-Out Solution Key 339 Chapter 6, continued Quiz 6.3–6.4 (p. 445) 3 11. 1. f (x) 1 g(x) 5 4x 2 2 x 1 2x 2 5 6x 2 2 x 2. g (x) 2 f (x) 5 2x 2 2 (4x 2 2 x) 3 f (g (x)) 5 f 56 5. f (g(x)) 5 f (2x2) 5 4(2x 2)2 2 2x 2 5 4(4x 4) 2 2x2 f (x) 5 23x 1 15 f(x) 5 x 2 2 16, x q 0 y 5 x 2 2 16 2 x 5 y 2 2 16 x 1 16 5 y 2 } 6Ï x 1 16 5 y } f 21(x) 5 Ïx 1 16 The domain of g (g (x)) consists of all real numbers. 3 3 g ( f (x)) 5 g( x 2 9) 2 y 5 2}9x 5 5x2919 2 5x x 5 2}9 y 5 9 2}2x 5 y5 g (f ( x)) 5 g (5x 3) Î Î29x2 5 y } 5 } 5 3 5x 5 3 } 5 51 }5 2 5 Îx 3 5x 5x x 2 f(x) 5 2}9x 5 15. f (x) 5 x 2 9, g(x) 5 x 1 9 1Î}5x 2 3 } } Î29x2 ++1616 5 y } 5 } 5} Ï2144x 2 }5y 5} Ï2144x f 21(x) 5 } 2 340 Algebra 2 Worked-Out Solution Key 2 1/2 5x 21 14. The domain of f ( f (x)) consists of all real numbers. 55 1 6x 2 5x 23x 1 15 5 y 8. g(g(x)) 5 g(2x 2) 5 2(2x2)2 5 2(4x 4) 5 8x 4 } 2 1/2 1 5 64x 2 32x 1 4x 2 4x 1 x 1Î 2 1 1 2 1 1/2 x 2 5 5 2}3 y 5 64x4 2 32x 3 1 x f ( g (x)) 5 f 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 5 4(16x4 2 8x 3 1 x2) 2 4x 2 1 x 3 x } 5 1 6x 5 } 6 1 5 4(4x 2 x)(4x 2 x) 2 4x 1 x } 11 x 5 2}3 y 1 5 The domain of g( f (x)) consist of all real numbers. Î 2 1 7. f ( f (x)) 5 f (4x 2 2 x) 5 4(4x 2 2 x)2 2 (4x2 2 x) 10. x 2 1 1/2 6 } g ( f (x)) 5 g (6x 2 1 1) y 5 2}3 x 1 5 5 2(16x 4 2 8x 3 1 x 2) 5 32x 4 2 16x 3 1 2x 2 x f (x) 5 5x 3, g(x) 5 3 }5 G 2 G 2 x 2 1 1/2 6 } 2 5 (x2) 5 2(4x 2 x)(4x 2 x) } F1 F1 1 5x2111 2 5x 2 1 5 } 6 6. g( f (x)) 5 g(4x 2 2 x) 5 2(4x 2 2 x)2 5x1929 1 1 f (x) 5 2}3 x 1 5 13. f ( g (x)) 5 f (x 1 9) 1 5 61} 11 6 2 The domain of f (g(x)) consists of all real numbers. 9. 1 x21 to all real numbers except x 5 0. 2 3 2 5x f 3 5 2}3 1 2 }2 x 1 }4 1 5x numbers. Because g(0) 5 0, the domain of }g is restricted 4 1 5 x 2 }6 1 }6 The function f and g each have the same domain: All real 2 2 1 5 x 2 }4 1 }4 f (x) 4x 2 2 x 4x 2 x 1 4. } 5 } 5 }2 2 }2 5 2 2 } 2 2x g(x) 2x 2x 2x 2 3 x 2 1 1/2 12. f (x) 5 6x 2 1 1, x q 0; g (x) 5 } 6 The function f and g each have the same domain: All real numbers. So, the domain of f + g also consists of all real numbers. 5 16x 4 2 2x 2 g (f (x)) 5 g 1 2}2 x 1 }4 2 1 1 3. f (x) + g(x) 5 (4x 2 2 x)(2x 2) 5 8x 4 2 2x 3 1 5 2}21 2}3x 1 }6 2 1 }4 1 1 }6 5 2x 2 2 4x 2 1 x 5 22x 2 1 x The function f and g each have the same domain: All real numbers. So, the domain of f 2 g also consists of all real numbers. 2 f (g (x)) 5 f 1 2}3x 1 }6 2 2 The function f and g each have the same domain: All real numbers. So, the domain of f 1 g also consists of all real numbers. 2 1 f (x) 5 2}2 x 1 }4, g (x) 5 2}3 x1 }6 Chapter 6, 16. continued f (x) 5 5x 1 12 y 5 5x 1 12 x 5 5y 1 12 x 2 12 5 5y 1 5 x 0 y 0 1 2 3 4 23 24.24 25.2 26 The domain is x q 0 and the range is y a 0. 12 5 }x 2 } 5 y 1 } 2. f (x) 5 }Ï x 4 1 12 f 21(x) 5 }5x 2 } 5 1 y 3 17. f (x) 5 23x 2 4 y 5 23x 3 2 4 x 5 23y 3 2 4 x 21 3 x 1 4 5 23y x14 23 } 5 y3 Î } 3 Î x14 23 }5y 0 f (x) 0 0.25 0.35 0.43 0.5 1 2 3 4 The domain is x q 0 and range is y q 0. } 3 x (x 1 4)9 23 + 9 }5y 13} 3. y 5 2}Ï x 2 3} Ï9x 1 36 5y 2} 3 y 3} Ï9x 1 36 1 f 21(x) 5 2} 3 x 22 f (x) 5 9x 4 2 49, x a 0 18. y 5 9x 4 2 49 x 5 9y 4 2 49 x x 1 49 5 9y 4 f (x) x 1 49 9 22 21 0 1 2 20.63 0.5 0 20.5 20.63 } 5 y4 Î The domain and range are all real numbers. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } 4 x 1 49 9 3} 4. g (x) 5 4Ï x 6 }5y Ï 4 } y (x 1 49)9 5y 6 } 9+9 4} Ï9x 1 441 5y 6} 3 2 4} f 21 x 22 Ï9x 1 441 3 (x) 5 2} 19. C(g (d)) 5 C(0.02d) 5 2.15(0.02d) 5 0.043d C(g (400)) 5 0.043(400) 5 17.2 x The expression C(g(400)) or $17.20 represents the cost of gasoline for the car that is driven 400 miles. f (x) Lesson 6.5 22 21 25.04 24 0 1 2 0 4 5.04 The domain and range are all real numbers. 6.5 Guided Practice (pp. 447 – 449) 5. } 1. y 5 23Ï x 1 21 y x X=.80851064 Y=.99808114 A pendulum with a period of 1 second is about 0.81 foot long. Algebra 2 Worked-Out Solution Key 341 P. 449-451 Chapter 6, continued 11. g(x) 5 2Î x 1 2 2 3 } 3 } 6. y 5 24Ï x 1 2 y 1 1 21 y x 21 x } Because h 5 0 and k 5 2, shift the graph of y 5 24Ï x up 2 units. The domain is xq0 and the range is ya2. } 7. y 5 2Ï x 1 1 Because h 5 22 and k 5 23, shift the graph of 3} g(x) 5 2Ï x left 2 units and down 3 units. The domain and range are both all real numbers. 6.5 Exercises (pp. 449–451) y Skill Practice 1. Square root functions and cube root functions are examples of radical functions. } 2. a. When a 5 23, the graph of y 5 Ï x is stretched 1 vertically by a factor of 3 and then reflected in the x-axis. x 21 } Because h 5 1 and k 5 0, shift the graph of y 5 2Ï x left 1 unit. The domain is xq21and the range is yq0. 1 } 8. f (x) 5 }Ï x 2 3 2 1 2 } b. When h 5 2, the graph of y 5 Ï x is shifted to the right 2 units. } c. When k 5 4, the graph of y 5 Ï x is shifted up 4 units. } 3. y 5 24Ï x y 1 x x 0 y 0 24 25.66 26.93 28 2 3 4 y Because h 5 3 and k 5 21, shift the graph of 1 1 1 21 } f (x) 5 }2 Ï x right 3 units and down 1 unit. x The domain is xq3 and the range is f (x)q21. 3} 9. y 5 2Ï x 2 4 y The domain is xq0 and the range is ya0. 1 1 } 4. f (x) 5 }Ï x 2 x 21 3} Because h = 4 and k 5 0, shift the graph of y 5 2Ï x right 4 units. x 0 f (x) 0 0.5 0.71 0.87 1 1 2 3 4 y The domain and the range are both all real numbers. 10. y 5 Î x 2 5 3 } 1 1 y 21 x 21 x The domain is x q 0 and the range is f (x)q0. 4 } 5. y 5 2}Ï x 5 3} Because h 5 0 and k 5 25, shift the graph of y Ï x down 5 units. The domain and range are both all real numbers. 342 Algebra 2 Worked-Out Solution Key x 0 y 0 20.8 21.13 21.39 21.6 1 2 3 4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 21 Chapter 6, continued 13} 10. y 5 }Î x 4 y 1 x 21 x y 22 0 21 1 2 20.32 20.25 0 0.25 0.31 The domain is xq0 and the range is ya0. y } 6. y 5 26Ï x 1 4 x 0 y 0 26 28.49 210.39 1 2 3 x 22 4 212 The domain and range are all real numbers. y 2 11. y 5 2Î x 3 } x 21 x y 21 0 1 22 22.52 22 0 2 2 2.52 y The domain is xq0 and the range is ya0. 1 } 7. y 5 5Ï x x 22 x 0 1 y 0 5 7.07 8.66 10 2 3 4 The domain and range are all real numbers. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y 12. f (x) 5 25Î x 3 } x 22 21 0 f (x) 6.3 5 2 1 2 0 25 26.3 y x 21 The domain is xq0 and the range is yq0. 2 } 8. g(x) 5 9Ï x x 22 x 0 1 g(x) 0 9 2 3 4 12.73 15.59 18 The domain and range are all real numbers. y 13} 13. h(x) 5 2}Î x 7 3 x 22 h(x) 0.18 0.14 0 20.14 20.18 21 0 1 2 x 21 The domain is xqand the range is g(x)q0. 9. D; 3 y 0.3 } y 5 2}2Ï x 22 x 0 y 0 21.5 22.12 22.6 23 1 2 3 x 4 The domain and range are all real numbers. Algebra 2 Worked-Out Solution Key 343 Chapter 6, continued 14. g(x) 5 6Î x } 3 } x g(x) 18. y 5 24Ï x 2 5 1 1 22 21 0 1 2 27.56 26 0 6 7.56 y 1 x 21 y 3 } Because h 5 5 and k 5 1, shift the graph of y 5 24Ï x right 5 units and up 1 unit. x 22 The domain is xq5 and the range is ya1. 3 33} 19. y 5 }x1/321 5 }Î x 21 4 4 The domain and range are all real numbers. 73} 15. y 5 }Î x 9 x 1 x 22 22 h(x) y 0 21 1 2 20.98 20.78 0 0.78 0.98 Because h 5 0 and k 5 21, shift the graph of 3 y y 5 }4x1/3 down 1 unit. 1 22 The domain and range are both all real numbers. x 3 20. y 5 22Î x1515 } y The domain and range are all real numbers. } 16. f (x) 5 2Ï x 2 1 1 3 1 x 22 Because h 5 25 and k 5 5, shift the graph of 3} y 5 22Ï x left 5 units and up 5 units. 1 The domain and range are both all real numbers. x 21 } Because h 5 1 and k 5 3, shift the graph of f (x) 5 2Ï x right 1 unit and up 3 units. The domain is xq1 and the range is f (x)q3. } 17. y 5 (x 1 1)1/2 1 8 5 Ï x 1 1 1 8 21. h(x) 5 23Î x 1 7 2 6 3 } 2 22 y x y 2 21 x Because h 5 21 and k 5 8, shift the graph of y 5 x1/2 left 1 unit and up 8 units. The domain is xq21 and the range is yq8. 344 Algebra 2 Worked-Out Solution Key Because h 5}27 and k 5 26, shift the graph of 3 h(x) 5 23Ï x left 7 units and down 6 units. The domain and range are both all real numbers. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y Chapter 6, continued } } 22. y 5 2Ï x 2 4 2 7 2 29. The function y 5 Ï x 2 12 is a translation of the function } y 5 Ï x that has a domain xq0 and a range of yq0. Because h 5 12, the domain is xq12. Because k 5 0, the range is yq0. y x 22 1 } 30. The function y 5 }Ï x 2 4 is a translation of the function 3 1 } y 5 }3Ï x that has a domain of xq0 and a range of yq0. Because h 5 0, the domain is xq0. Because k 5 24, the range is yq24. } Because h 5 4 and k 5 27, shift the graph of y 5 2Ï x right 4 units and down 7 units. The domain is xq4 and the range is ya27. 13} 23. g(x) 5 2}Ï x 2 6 3 1 domain and range of all real numbers. 3 32. The function g(x) 5 Î x 1 7 is a translation of the y 22 13} 31. The function y 5 }Î x 1 7 is a translation of the 2 13} function y 5 }2Ï x that has a domain and range of all real 13} numbers. Therefore, the function y 5 }2Îx 1 7 also has a } function g(x) 5 Î x that has a domain of all real 3 } numbers. Therefore, the function g(x) 5 Î x 1 7 also has a domain and range of all real numbers. 3 } x 1 } 33. The function f (x) 5 }4 Ïx 2 3 1 6 is a translation of the 1 } function f (x) 5 }4 Ï x that has a domain of xq0 and a range of f (x)q0. Because h 5 3, the domain is xq3. Because k 5 6, the range is f (x)q6. Because h 5 0 and k 5 26 shift the graph of 1 3} g(x) 5 }3Ï x down 6 units. 34. The domain and range are both all real numbers. 24. y 5 4Î x 2 4 1 5 3 } y Copyright © by McDougal Littell, a division of Houghton Mifflin Company. n} When n is even, the domain of the function y 5 Ï x is xq0 and the range of the function is yq0. When n is} n odd, the domain and the range of the function y 5 Ï x are both all real numbers. 2 x 21 3} Because h 5 4 and k 5 5, shift the graph of y 5 4Ï x right 4 units and up 5 units. Problem Solving The domain and range are both all real numbers. 35. } 25. The domain of y 5 Ï x 2 5 1 4 is limited because of the square root of a negative number is not a real number. Because the domain is restricted, the range is also affected. X=43.03 Y=8 26. The error occured in describing the horizontal translation. Because h 5 21, the graph is translated left 3 } 1 unit. So, graph of y 5 22Îx 1 1 2 3 is the graph of 3 } y 5 22Î x translated left 1 unit and down 3 units. You can see 8 miles at an altitude of about 43 feet above sea level. 36. a. 27. C; Because the graph of y 5 3Î x is shifted left 2 units, h 5 22 and k 5 0. An equation of the translated graph is 3 } y 5 3Îx 1 2 . 3 } X=2 .01 Y=1 .5 7 } 28. The function y 5 Ï x 1 5 is a translation of the function } y 5 Ï x that has a domain of xq0 and a range of yq0. Because h 5 25, the domain is xq25. Because k 5 0, the range is yq0. A pendulum with a length of 2 feet has a period of about 1.6 seconds. Algebra 2 Worked-Out Solution Key 345 Chapter 6, continued b. s 5 :r 1 :r 2 40. a. s 5 :(r 1 r 2) s 1 :1 }4 2 5 :1 r 2 1 r 1 }4 2 1 X=3.26 1 : Y=2 s1} 5 :1 r 1 }2 2 4 A pendulum with a period of 2 seconds is about 3.3 feet long. 1 2 : 42 1 :1 1 2 2 1 }F s1} 5 r1} Î 273.15 1 C 5 331.5Î} 273.15 C 5 331.5Î1 1 } 273.15 } } : 2 Ï}:F1 s 1 }4 2 5 r 1 }2 K 37. a. v 5 331.5 } , Kq0 273.15 1 } 1 Ï: } : Ï1 s 1 }4 2 5 r 1 }2 } } } 1 Ï: 1 : 4 } Ï 1 1 2 } } s 1 } 2 } 5 r b. Because Kq0 and K 5 273.15 1 C: b. 273.15 1 Cq0 Cq2273.15 The domain of the function is Cq2273.15. The range of the function is vq0. s 250 200 150 100 50 : 1 1 c. r 5 } } s 1 } 2 } 4 2 Ï :F } Ï 1 0 0 1000 2000 3000 p Power (horsepower) 3: 1 Ï :F Î Î } } W 165 39. a. vt 5 33.7 } 5 33.7 } A A A 2 vt c. Ï : 1 4 } 1 r5} 2 }2 } + Ï :F The power of a 3500 pound car that reaches a speed of 200 miles per hour is about 2470 horsepower. b. } r5} } } 1 } 2 } 4 2 Ï :F 4 r 5 0.5 The radius is 0.5 unit. Mixed Review for TAKS 6 8 10 306.1 216.44 176.72 153.05 136.89 41. B; y 5 ax 2 1 bx 1 c 0 5 a(0)2 1 b(0) 1 c Vt 500 05c 37 5 a(1)2 1 b(1) 1 c 400 37 5 a 1 b 1 c 300 58 5 a(2)2 1 b(2) 1 c 200 58 5 4a 1 2b 1 c 100 Substitute c 5 0 into the last two equations. 0 0 2 4 6 8 10 A a 1 b 1 c 5 37 4a 1 2b 1 c 5 58 a 1 b 1 0 5 37 4a 1 2b 1 0 5 58 a 1 b 5 37 4a 1 2b 5 58 a 1 b 5 37 4a 1 2b 5 58 346 Algebra 2 Worked-Out Solution Key 3 22 22a 2 2b 5 274 4a 1 2b 5 58 2a 5 216 a 5 28 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Speed (mph) 38. Chapter 6, continued 5. 3x3/2 5 375 Substitute a 5 28. x3/2 5 125 a 1 b 5 37 (x3/2)2/3 5 1252/3 28 1 b 5 37 x 5 25 b 5 45 Check: 3(25)3/2 0 375 So a 5 28, b 5 45, and c 5 0. 2 3(125) 0 375 y 5 ax 1 bx 1 c 2 375 5 375 y 5 28x 1 45x 1 0 y 5 45x 2 8x 2 6. 22x3/4 5 216 x3/4 5 8 42. H; (x ) 3/4 4/3 (1128 1 628 1 908) 1 x8 5 3608 264 1 x 5 360 5 84/3 x 5 16 Check: 22(16) 3/4 0 216 22(8) 0 216 x 5 96 (y 2 72)8 5 968 216 5 216 y 5 168 2 7. 2}x1/5 5 22 3 Lesson 6.6 x1/5 5 3 6.6 Guided Practice (pp. 452 – 455) (x ) 1/5 5 3 1. Î x 2 9 5 21 } 5 35 x 5 243 Î3 }x 5 8 } (Î3 x )3 5 83 2 Check:2}3(243)1/5 0 22 2 x 5 512 Check: Î512 2 9 0 21 8 2 9 0 21 2}3(3) 0 22 3 } 21 5 21 2. 22 5 22 8. [(x 1 3)5/2]2/5 5 322/5 } Ïx 1 25 5 4 x1354 (Ïx 1 25 )2 5 42 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } x51 x 1 25 5 16 Check: (1 1 3)5/2 0 32 45/2 0 32 x 5 29 } Check: Ï29 1 25 0 4 } Ï16 0 4 32 5 32 454 3. 2Îx 2 3 5 4 3 } } 3 (x 2 5) 5 81 [(x 2 5)4/3]3/4 5 813/4 x 2 5 5 6(3)3 5 23 x 2 5 5 627 x2358 x 5 32 x 5 11 or Check x 5 32: 3 } 0 11 2 3 4 Check: 2Î 3 } 0 8 4 2Î 454 4. 9. 4/3 x 2 5 5 6(811/4)3 Î3 } x2352 (Ï3 x 2 3 ) (x 1 3)5/2 5 32 } v(p) 5 6.3Ï1013 2 p Check x 5 222: (32 2 5)4/3 0 81 274/3 0 81 (222 2 5)4/3 0 81 (227)4/3 0 81 (23)4 0 81 81 5 81 81 5 81 } 48.3 5 6.3Ï1013 2 p } 7.67 ø Ï 1013 2 p } 2 (7.67)2 ø (Ï1013 2 p ) 58.8 ø 1013 2 p 2954.2 ø 2p 954.2 ø p The air pressure at the center of the hurricane is about 954 millibars. x 5 222 10. (x 1 2)2/3 1 3 5 7 (x 1 2)2/3 5 4 [(x 1 2)2/3]3/2 5 43/2 x 1 2 5 (41/2)3 x 1 2 5 (62)3 x 1 2 5 68 x56 or x 5 210 Algebra 2 Worked-Out Solution Key 347